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We reconsider the conventional Moriya approach to the Dzyaloshinsky—Moriya antisymmetric exchange coupling
for a single Cu;j—O—Cus bond in cuprates using a perturbation scheme that provides an optimal way to account
for intra-atomic electron correlations, the low-symmetry crystal field, and local spin-orbital contributions with
a focus on the oxygen term. The Dzyaloshinsky vector and the corresponding weak ferromagnetic moment
are shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. We
predict the effect of oxygen staggered spin polarization in the antiferromagnetic edge-shared CuO2 chains due
to the uncompensated oxygen Dzyaloshinsky vectors. The polarization is directed perpendicular to both the
main chain antiferromagnetic vector and the CuO» chain normal. The intermediate '"O NMR is shown to
be an effective tool to inspect the effects of the Dzyaloshinsky—Moriya coupling in an external magnetic field.
In particular, we argue that the puzzling planar 'O Knight shift anomalies observed in paramagnetic phase of
generic Dzyaloshinsky—Moriya antiferromagnetic cuprate LaaCuOy4 can be assigned to the effect of the field-
induced staggered magnetization. Finally, we revisit the effects of symmetric spin anisotropy, in particular,
those directly induced by the Dzyaloshinsky—Moriya coupling. The perturbation scheme generalizes the well-
known Moriya approach and presents a basis for reliable quantitative estimations of the symmetric partner of
the Dzyaloshinsky—Moriya coupling. At variance with the conventional standpoint, the parameters of the effec-
tive two-ion spin anisotropy are shown to incorporate the contributions of a single-ion anisotropy for two-hole

configurations at both the Cu and O sites.
PACS: 71.70.Ej, 75.30.Et, 75.30.Gw

1. INTRODUCTION

Fifty years ago, Borovik-Romanov and Orlova [1]
proposed a spin canting model for weak ferromag-
nets, whose origin was shortly after [2] related
to the exchange-relativistic effect with the mainly
antisymmetric exchange coupling. Starting from
pioneering papers by Dzyaloshinsky [2] and Moriya [3],
the Drzyaloshinsky—Moriya (DM) antisymmetric ex-
change coupling was extensively investigated in the
1960s-1980s in connection with weak ferromagnetism
focusing on hematite «a-FeoO3 and orthoferrites
RFeO3 [4]. A renewed interest in the subject was
motivated by the cuprate problem, in particular, by
the weak ferromagnetism observed in La,CuQy4 [5] and
many other interesting effects for the DM systems, in
particular, the “field-induced gap” phenomena [6]. At
variance with typical three-dimensional systems such

* . .
E-mail: alexandr.moskvin@usu.ru

as orthoferrites, cuprates are characterized by a low
dimensionality, a large diversity of Cu—O—Cu bonds
including corner- and edge-sharing, different ladder
configurations, strong quantum effects for s = (1/2)
Cu?* centers, and a particularly strong Cu-O cova-
lency resulting in a comparable magnitude of hole
charge/spin densities at copper and oxygen sites.
Several groups (see, e.g., Refs. [7-9]) developed the
microscopic model approach by Moriya for different
one- and two-dimensional cuprates using different
perturbation schemes, different types of the low-sym-
metry crystalline field, and different approaches to
intra-atomic electron—electron repulsion. But despite
a rather large number of publications and heated
debate (see, e.g., Ref. [10]), the problem of exchange-
relativistic effects, that is, of antisymmetric exchange
and the related problem of spin anisotropy in cuprates
remains open (see, e.g., Refs. [11, 12] for recent exper-
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imental data and discussion). Common shortcomings
of current approaches to the DM coupling in 3d oxides
concern the problem of allocating the Dzyaloshinsky
vector and respective “weak” (anti)ferromagnetic
moments, and full neglect of spin—orbital effects for
“nonmagnetic” 02~ ions, which are usually believed to
play only an indirect intervening role. On the other
hand, the 17O NMR-NQR studies of weak ferromagnet
Lay;CuOy4 [13] seem to evidence an unconventional
local oxygen “weak-ferromagnetic” polarization, whose
origin cannot be explained in the framework of current
models. All this stimulated a critical reconsideration
of many old approaches to the spin—orbital effects in
3d oxides, starting from the choice of the proper per-
turbation scheme and the effective spin Hamiltonian
model, usually implying only an indirect intervening
role of “nonmagnetic” O>~ ions.

In this paper, we revisit the problem of the DM
antisymmetric exchange coupling for a single bond in
cuprates specifying the local spin—orbital contributions
to the Dzyaloshinsky vector and focusing on the oxygen
term. In Sec. 2, we present a short overview of the ef-
fective spin Hamiltonian of a typical three-center (Cu;—
0O-Cus) two-hole system. A microscopic theory of the
DM coupling is presented in Sec. 3. The Dzyaloshinsky
vector is shown to be a superposition of the local Cu
and O contributions. In Sec. 4, we examine a response
of the DM-coupled Cu;—O-Cus bond to uniform and
staggered external fields, and demonstrate some un-
usual manifestations of the local oxygen contribution
to the DM coupling in edge-sharing CuQO», chains. In
Sec. 5, the intermediate 17O NMR is shown to be an
effective tool for inspecting the effects of DM coupling
in an external magnetic field. In Sec. 6, we revisit the
related problem of symmetric spin anisotropy with the
inclusion of local oxygen spin—orbital contributions.

2. SPIN HAMILTONIAN

Below, for illustration, we consider the three-center
(Cu;—0-Cus) two-hole system with the tetragonal Cu
on-site symmetry and ground Cu 3d,2_,2 states (see
Fig. 1), which is typical for cuprates and whose con-
ventional bilinear spin Hamiltonian is written in terms
of copper spins as

>
Hy(12) = Ji2(81 - 82)+ D12 - [81 X $2]+81 K128, (1)

where Jio > 0 is an exchange integral, Diy is the
A4

Dzyaloshinsky vector, and K- is a symmetric second-
rank tensor of the anisotropy constants. In contrast

Ad
with Ji» and K12, the Dzyaloshinsky vector D5 is an-
tisymmetric under site permutation:

Di2 = —Das.
Hereafter, we write
<> >
J12 = J, Ki2 = K, D12 =D.

We note that using effective spin Hamiltonian (1) im-
plies removing the orbital degree of freedom, which re-
quires caution in the case of the DM coupling because
it changes both the spin multiplicity and the orbital
state.

It is clear that the applicability of an operator such
as H,(12) for describing all the “oxygen” effects is ex-
tremely limited. Moreover, the question arises regard-
ing the composite structure and spatial distribution of
what is termed the Dzyaloshinsky vector density. This
vector is usually assumed to be located at the bond
connecting spins 1 and 2.

Strictly speaking, up to a constant, the spin Hamil-
tonian H,(12) can be viewed as a result of the projec-
tion onto the purely ionic ground state

Cu%+ (3dac2—y2 )*027 (2p6)fCu§+ (3dac2—y2)

of the two-hole spin Hamiltonian

Hy = 3 16,5)(66)-5())+ 3 (i, )-[8() xs())+
i<j 1<j
<>
+ 380K G)80G),  (2)
i<j
where the summation ranges holes 1 and 2 rather than
sites 1 and 2. This form not only implies both copper
and oxygen hole location but also allows accounting
for purely oxygen two-hole configurations. Moreover,
such a form allows neatly separating the one-center and
two-center effects. Two-hole spin Hamiltonian (2) can
be projected onto three-center states incorporating the
Cu-0 charge transfer effects.
For a composite system of two s = 1/2 spins, three
types of the vector order parameters must be consid-
ered,

A,

gzél-l-ég./ V:§1—§2, TZQ[él Xég], (3)

with the kinematic constraints

S?4+V2=3L (S-V) @
A

V] =

(T-V)=6i, [Tx
Here, S is the net spin of the pair, the \Ys operator de-
scribes the effect of local antiferromagnetic order, or

0,

08
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Fig.1. Geometry of the three-center (Cu—O-Cu) two-hole system with ground Cu 3d,»

staggered spin polarization, and the T operator can
be associated with the vector chirality [14]. In recent
years, phases with the broken vector chirality in frus-
trated quantum spin chains have attracted consider-
able interest. Such phases are characterized by nonzero
long-range correlations of the vector order parameter
(’i‘) Interestingly, a chirally ordered phase can mani-
fest itself as a “nonmagnetic” one, with

(S) = (V) =0.

Both T and V operators change the net spin mul-
tiplicity with the matrix elements

(00| T | 10) = —(10|T7,|00) = 6y,

(00| Vi 112) = (10|V; [00) = By (5)

where we use a Cartesian basis for S = 1. The eigen-
states of the operators V,, and T, with the nonzero
eigenvalues +1 form Néel doublets

€
V2
and Dzyaloshinsky—Moriya doublets
1
V2

respectively. The Néel doublets correspond to classical
collinear antiferromagnetic spin configurations and the
Dzyaloshinsky—Moriya doublets correspond to quan-
tum spin configurations that are sometimes associated
with a rectangular 90° spin ordering in the plane or-
thogonal to the Dzyaloshinsky vector.

(100) + [1n))

(100) + i[1n}),

—y2 states

We note that both the above spin Hamiltonians can
be reduced up to a constant to the spin operator

. 1 .
Hs = ZJ(s2 -
A4S ~ Vo

SK S—-VK V (6)
acting in a net spin space. For simple dipole-like two-
ion anisotropy as in Eq. (1),

—S -V “

K =K =K,

although these tensorial parameters can differ from
each other in general. Using the anticommutator re-
lations
{Slvsj}-l_{VZ/VJ}:Q(sZJ/ {maw}Z{TlaTJ}/ (7)
we conclude that the effective operator of symmetric
anisotropy can be equivalently expressed in terms of
the symmetric products {S;, S;}, {Vi, V;}, or {Ti, Tj}.
The most general form of spin Hamiltonian (6) does
not discriminate between copper or oxygen contribu-
tion and can be used to properly accHount for oxygen

effects. As we see below, the D and K parameters al-
low the correct separation of local copper and oxygen
contributions.

Generally speaking, expressions (1), (2), and (6)
represent the effective Hamiltonians that are not
strictly equivalent to each other. Indeed, the basic
form (1) implies only the two-ion pseudodipole contri-
bution to the anisotropy parameters §12= while Hamil-
tonians (2) and (6) allow for the single-ion anisotropy
for the two-hole oxygen configuration (see below). The
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effective use of either form strongly depends on the per-
turbation scheme applied. Below, we use form (6),
which is most efficient in describing the exchange-
relativistic effects. We note that the net spin repre-
sentation and the quantum approach in general are es-
pecially efficient in describing antisymmetric exchange
in Cu-Cu dimer systems (see, e.g., Ref. [15] and the ref-
erences therein). The classical approach to the s = 1/2
spin Hamiltonian should be applied with caution, par-
ticularly for one-dimensional systems.

Before proceeding with the microscopic analysis, we
note that the interaction of our three-center system
with external spins and/or fields H,yy is usually ad-
dressed by introducing only two types of effective exter-
nal fields: the conventional Zeeman-like uniform field
and an unconventional Néel-like staggered field, such
that ﬁezt is given by

Hep = —(h%-S) — (0" - V). (8)

We note that an ideal Néel state is attainable only
in the limit of the infinitely large staggered field, and
therefore, for a finite staggered field h" || n, the ground
state is a superposition of a spin singlet and a Néel

state,
%

2h
tg2a = ——
g20 = —,

whose composition reflects the role of quantum effects.
For instance, in a Heisenberg spin-1/2 chain with nn
exchange, the maximum value of the staggered field is
hY = J/2, and hence the ¥ function strongly differs
from that of the Néel state, .
(Vo) =sin2a = 7
and the quantum mechanical average for a single spin

1 1 1
<52>§§sin£=—~—zo.71~—

V2 2 2

deviates strongly from the classical value 1/2. We note
that for an isolated antiferromagnetically coupled spin
pair, the zero-temperature uniform spin susceptibility
vanishes:

U = cosa|00) + sin a|1n),

x° =0,
while for the staggered spin susceptibility, we obtain
XY =2/J.

3. MICROSCOPIC THEORY OF THE
DZYALOSHINSKY-MORIYA COUPLING IN
CUPRATES

3.1. Preliminaries

To derive the microscopic expression for the
Dzyaloshinsky vector, Moriya [3] used Anderson’s

formalism of superexchange interaction [16] with
two main contributions of the so-called kinetic and
potential exchange. Then he took the spin-orbital
corrections to the effective d—d transfer integral and
potential exchange into account. Such an approach
seems to be inappropriate to account for purely oxygen
effects. In subsequent papers (see, e.g., Refs. [8,17]),
the authors used the Moriya scheme to account for
spin—orbital corrections to the p—d transfer integral,
but without any analysis of the oxygen contribu-
tion. It is worth noting that in both instances, the
spin—orbital renormalization of a single-hole transfer
integral leads immediately to many problems with
the correct responsiveness of the on-site Coulomb
hole-hole correlation effects. Anyway, the effective
DM spin Hamiltonian evolves from the higher-order
perturbation effects, which makes its analysis rather
involved and leads to many misleading conclusions.

At variance with the Moriya approach, we start
with the construction of spin-singlet and spin-triplet
wave functions for our three-center two-hole system
taking account of the p—d hopping, on-site hole-hole
repulsion, and crystal field effects for excited configu-
rations {n} (011, 110, 020, 200, 002) with different hole
occupation of Cuy, O, and Cus sites, respectively. The
p—d hopping for a Cu—O bond implies the conventional
Hamiltonian

Hypa = Z tpadﬁﬁldﬁ +h.c, (9)
a,p

where p! creates a hole in the « state at the oxygen
site, and dg annihilates a hole in the / state at the
copper site; tpaqp is the p—d transfer integral,

V3

tpzdﬂ,yg = Ttl’zd# = tpdo > O,tpydzy = tpar > 0.

For the basic 101 configuration with two dy2_,»
holes localized at their parent sites, we obtain the per-
turbed wave function

Vior,sm = Prorsm +

+ > ey D) ® s, (10)
{n}.T

where the summation ranges both different configura-
tions and different orbital I' states. It is worth noting
that the probability amplitudes

C{o11}: C{110} X Tpd:s  C{200}> C{020}s C{002} OX tf;d-

To account for orbital effects for Cu; s 3d holes and
the covalency-induced mixing of different orbital states
for the 101 configuration, we introduce an effective ex-
change Hamiltonian
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Hez =
1
= 5 Z ozﬂ'y(s 101# 23“ d2fyud15u +h. Coy (]‘]‘)
~ou
where d{  creates a hole in the ath 3d orbital at a

lop
Cu; site with the spin projection p. Exchange Hamil-

tonian (11) involves both spinless and spin-dependent
terms, but it preserves the spin multiplicity of the Cu;—
O-Cus system. The exchange parameters J(afSvd) are
of the order of t;d.

We next introduce the standard effective spin
Hamiltonian acting in a four-fold spin-degenerate space
of the basic 101 configuration with two d,2_,> holes.
We then easily calculate the singlet—triplet separation
to find the effective exchange integral

Tia = J(dg>_yrdyr_ypdys_y2dys_y2),

and calculate the singlet—triplet mixing due to three lo-
cal spin-orbital terms V;,(Cuy), Vio(O), and Vi, (Cus)
to find the local contributions to Dzyaloshinsky vector:

D =D + DO + DO®, (12)

The local spin—orbital coupling is taken in the form

Vso = anl(lz 'Si) = % X

X [(i1+12) : S+(il —12) V] =A% S+AV -V (13)

with a single-particle constant &,; > 0 for electrons and
& < 0 for holes. We use the orbital matrix elements

<dm27y2|l$‘dyz> = <dz27y2|ly|dxz> =1,

(oo llday) = ~20. Gill|k) =

with Cu 3d,,=|1), 3d;.=|2), 3dz,=|3) for Cu 3d holes,
and

—i€ijk

(pillj|pr) = i€sjn

for O 2p holes. A free cuprous Cu?* ion is described
by a large spin-orbital coupling with |&34] ~ 0.1 eV
(see, e.g., Ref. [18]), although its value may be signif-
icantly reduced in oxides. Information regarding the
& value for the 0% ion in oxides is scant, if any.
The spin—orbital coupling on oxygen is usually taken to
be much smaller than that on copper, and is therefore
neglected [19, 20]. But even for a free oxygen atom,
the electron spin—orbital coupling turns out to reach
an appreciable magnitude: &, = 0.02 eV [21], while
for the O%>~ ion in oxides, a visible enhancement of
the spin—orbital coupling is expected because the 2p
wave function is more compact [22]. If we account for
& o< (r73), and compare these quantities for copper

((r—3)3q4 ~ 6-8 a.u. [22]) and oxygen ((r—3)s, ~ 4 a.u.
[13, 22]), we obtain the difference between {34 and &,
by at least a factor of two.

Hereafter, we assume a tetragonal symmetry at Cu
sites with local coordinate systems as shown in Fig. 1.
The global xzyz coordinate system is chosen such that
the Cu;—O-Cuy plane coincides with the zy plane and
the z axis is directed along the Cu;—Cuy bond (see
Fig. 1). The basic unit vectors x, y, and z can then be
written in local systems of Cu; and Cuy sites as

6 0
, = €08 3 oS 01, — COS 3 sin d1),

X = (smi

—(cos? . sin? cos s, sin P sin s
y = | cossin g cosdy sinosindy |
z = (0,sindy, cos dy)

for Cuy, with 6,01 to be replaced by —6,4d, for Cus.
The exchange integral can be written as

J=> ey CD)P Bar({n}) —
{n},T

D) Eir({n})]. (14)

As regards the DM interaction, we deal with two
competing contributions. The first is derived as a
first-order contribution, which does not take Cu; » 3d-
orbital fluctuations for the ground state 101 configura-
tion into account. Projecting spin—-orbital coupling (13)
onto states (10), we see that the AV -V term is equiv-
alent to the purely spin DM coupling with local contri-
butions to the Dzyaloshinsky vector

IDES

=2 Y i ('T)ep(PTa) x
{n},Fl,Fg

X <(I>{n};1"100|AzV‘(b{n};r'21i>' (15)

= legny(

D™ = —2i(00|V,o(m

(3

In all the instances, the nonzero contribution to the
local Dzyaloshinsky vector is determined solely by the
spin-orbital singlet-triplet mixing for the one-site 200,
020, 002 and two-site 110, 011 two-hole configurations,
respectively. For one-site two-hole configurations, we
have

D) = p)  p020) —p©)  po2) - p@),
The second contribution, associated with Cuy » 3d-
orbital fluctuations within a ground state 101 configu-
ration, is more familiar; it evolves from a second-order
combined effect of Cuy . spin-orbital Vso(Cuq ) and
the effective orbitally anisotropic Cu;—Cus exchange

coupling
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{101}:T,00[AY|{101}; T14)({101}; T1i| H.,|{101}; T;14)

(3

D™ = —2i(00[Vyo(m)|1i) = —2i Y <
r

Esr, ({101}) - Esp ({101})

s ({101}; T400| H,,|{101}; T00)({101}; T00|AY|{101}; T, 1i)

r

We note that at variance with the original Moriya ap-
proach [3], both spinless and spin-dependent parts of
the exchange Hamiltonian contribute additively and
comparably to the DM coupling, because of the same
magnitude and opposite sign of the singlet—singlet and
triplet—triplet exchange matrix elements on the one
hand and the orbital antisymmetry of spin—orbital ma-
trix elements on the other hand.

It is easy to see that the contributions of 002 and
200 configurations to the Dzyaloshinsky vector bear a
similarity to the respective second type (ox VioHey)
contributions; however, in the former we deal with the
spin—orbital coupling for two-hole Cu; » configurations,
while in the latter, with that of one-hole Cu; » config-
urations.

3.2. Copper contribution

We first address a relatively simple instance of a
strong rhombic crystal field for intermediate oxygen ion
with the crystal field axes oriented along global coor-
dinate z,y,z axes. It is worth noting that in such a
case, the O 2p. orbital does not play an active role
in either symmetric or antisymmetric (DM) exchange
interaction and that the Cu 3d,. orbital appears to
be inactive in the DM interaction due to a zero over-
lap/transfer with O 2p orbitals.

For illustration, we consider the first contribu-
tion (15) of the one-site 200, 002 two-hole configura-
tions d§2_y2., dy2_y2dyy, and dy2 2 d, ., which do cova-
lently mix with the ground state configuration. Calcu-
lating the singlet—triplet mixing matrix elements in the
global coordinate system, we find all the components of
the local Dzyaloshinsky vectors. The Cu; contribution
turns out to be nonzero only for the 200 configuration,
and can be written as a sum of several terms. We first
give the contribution of the singlet (di2_y2)1A19 state:

Bur ({101)) - Ery ({101)) (16)

D = —2i(00| Vs (Cuy ) 12) =

= V2€34 ca00(* A1 g) ¥

x [c200(* Ey) cos 61 — 2¢a00 (> Ay, ) sin 8] cos g’

DV = ~2i{00|V;,(Cuy) | 1y) =

= —V/2834 200 (" A1) X 4
X [e200(° Byg) cos 1 — 2¢200(* Azg) sin 6] sin 2’

D = —2i(00|Vso(Cuy)[12) =

= —V/2€34 ea00(* Arg) X

X [CQOO (SEg) sin (51 — 20200 (SAQQ) COS (51]7

where

6 [
3, 1 sin’ 3 cos? 3

— ¢ — ,
2\/5 pdo ElAlg €x Gy

cao0(PA1g) =

V3 1
a0 (" A2g) = =P tpirtpan g X
29

1 1
X <— + —> sin # cos 41,

€2 €y

V3 1
c200(MPEy) = ——tpdotpd”m

4
1 1
X <— + —) sin 6 sin d¢

€z €y

X

are the respective probability amplitudes for the singlet
(42> ,2)"' A1g and the singlet /triplet (dy2 2 dqy)' Aag,
(dy2_y2dy )" E4 200 configurations in the ground state
wave function. Here,

Eia,, = A+4B+3C

is the energy of the two-hole copper singlet with the

>, configuration and

Eip,, = €2y + A+ 4B + 2C,
Esy,, = €2y + A+ 4B,
Eip, =€+ A+ B+2C,
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E3Eg :Emz-l-A—E)B

are the energies of the two-hole copper terms with
dg2_y2dyy and dy2_od,. configurations, with A, B,
and C being the Racah parameters. Taking into ac-
count that")

0002(1A1g) = 0200(1A1g), 0002(3A29) = 0200(31429)7

coo2 (3 Eay) = cano P E,),

we see that the Cuy contribution to the Dzyaloshin-
sky vector can be obtained from Eqs. (17) if 6,0, are
replaced by —6,d5. Interestingly,
D12 o sin sin 26 5.

Both collinear (§ = 7) and rectangular (8 = 7/2) su-
perexchange geometries appear to be unfavorable for
copper contribution to the antisymmetric exchange, al-
though the result in the rectangular geometry strongly
depends on the relation between the energies of O
2p, and 2p, orbitals. Contributions of the singlet
(dp2_y2dyy)' Aoy and (d,2_,2d,.)' By states to the
Dzyaloshinsky vector are

where

dV = £34(ca00(* Azg)ca00 CE,) — caoo (P Ey)ea00 (P Aag)).

Here, we deal with a vector directed along the Cu;-O
bond, whose modulus

dV) o sin? @ sin 201

is determined by partial cancellation of two terms.

It is easy to see that the copper Vs, (1) contribution
to the Dzyaloshinsky vector for two-site 110 and 011
configurations is determined by the d—p-exchange.

3.3. Oxygen contribution

With the same assumption regarding the orienta-
tion of the rhombic crystal field axes for the interme-
diate oxygen ion, the local oxygen contribution to the
Drzyaloshinsky vector for the one-site 020 configuration

1) This is true up to the replacement §; < d2. We note
that the probability amplitudes for triplet 200 and 002 config-
urations are of the same sign due to the double-minus effect:
1) the 6 ++ —0 replacement and 2) the antisymmetry of orbital
functions: the 200-function o d,2_,2(1)dzy(2), while the 002-
function o< d,2_,2(2)day(1).

turns out to be oriented along the local O, axis and
can be written as

D = —2i(00|V,,(0)|12) =
= V28, et (papy)c(pl) + c(p2)],  (18)
where
sin” —

3

2 2 2
= — t ,
C(pz) 2\/5 pdo € Es(p%)’

[
c(p2) _ 3 tZd cos> ¢ |
v 2v2 P ey Eg(py)

3, < 1 1> sin 6
ct(pepy) = =t — 4 — | = 19
( x y) 8 pdo € 6y Et(pxpy) ( )
are the respective probability amplitudes for the sin-
glet, p3,p;, and triplet p,p, 020 configurations in the
ground state wave function;

4
Es(pi,y) =264,y + Fy + %Fm

1
Ei(papy) = €z + €y + Fy — EFQ

are the energies of the oxygen two-hole singlet (s) and
triplet () configurations pi,pz and p,py, respectively,
and Fy and F5 are Slater integrals. This vector can be
written as?

D©) = Do (8)[r; x r3] (20)

3

where rq » are unit radius vectors along Cu; »—O bonds,
and

9&apth, 1 11
Dn(8) = pea _ _
o(®) 16 Ei(papy) <ez + € ) %

y
COSQQ sin2§

x 2 2. (21)
ewES(pm) eyES(py)

It is worth noting that D(©) is independent of the d;
and 0> angles. The Dg(6) dependence is expected to
be rather smooth without any singularities for collinear
and rectangular superexchange geometries.

2) Such a simple and helpful formula for the Dzyaloshinsky
vector was phenomenologically proposed in Ref. [23] and micro-
scopically derived by Moskvin (see, e.g., Ref. [4]).
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The local oxygen contribution to the Dzyaloshinsky
vector for two-site 110 and 011 configurations is also
oriented along the local O, axis and can be written as

D©) = —2i(00|V;,(0)|12) =
= &([es(dp) x ci(dp)]: + [es(pd) x e;(pd)].), (22)

\/g tpdo' . 0
T B My
cs,t(dpy) = —ﬁ _lpdo cosg

B 2 E,(dpy) 2’

where

Cs,t(dp) = cr10(dp),  cs,t(pd) = cor1(dp)

are the respective probability amplitudes for different
singlet (c;) and triplet (¢;) 110 (dy2_y2pe,y) and 011
(Pa,ydy2_y2) configurations in the ground state wave
function. The energies E; ;(dps,,) are those for singlet
and triplet states of dp, , configurations:

Es t(dpe,y) = €2,y + Kapz,y £ Lapz,y,

where K4y, and Igp, , are Coulomb and d-p-exchange
integrals, respectively. It is easy to see that the nonzero
contribution to the Dzyaloshinsky vector is determined
by a direct d-p-exchange and can be written similarly
to (20) with

Do () = 3ortar 1 (Tape _ Iam)
© 8 €€y \ €z e )
0

. 5 0
N 3£2Pt12)d0' 1 Sin 5 COS 5

8 €x€y € €y

Idp0'7 (24)

where we take only the d—p—o-exchange into account

(Idp(’ & t?)da) :

3.4. Comment on microscopic estimations of
Dzyaloshinsky vectors

Thus, the net Dzyaloshinsky vector D is a superpo-
sition of three contributions (see (12)) associated with
the respective sites. In general, all the vectors can be
oriented differently. Comparative analysis of Eqs. (17),
(21), and (24) with the estimates for different param-
eters typical for cuprates given in [24] (tpgr ~ 1.5 €V,
tpar = 0.7eV, A =6.5eV, B=0.15¢eV, C =0.58 eV,
Fy = 5 €V, and F5 = 6 €V) evidences that copper
and oxygen Dzyaloshinsky vectors can be of compa-
rable magnitude. However, this in fact strongly de-
pends on the Cu;—O—Cus bond geometry and crystal

field effects. The latter determines the single-hole en-
ergies for both O 2p- and Cu 3d-holes such as ¢, , and
€xy,22, Whose values are usually of the order of 1 eV
and 1-3 eV [25], respectively. It is worth noting that
for two limiting bond geometries, § ~ m and 6 ~ 7/2
(nearly collinearly and nearly rectangular bonding), we
deal with a strong “geometry reduction” of the DM cou-
pling due to the sin f factor for the first geometry and
the factor
sin’ g cos? g

€2 €y

for the second. Indeed, the resulting effect for the
nearly rectangular Cu;—O—Cus bonding appears to be
very sensitive to the local oxygen crystal field. A crit-
ical angle fc, at which the Cu contribution to the
Dzyaloshinsky vector vanishes is defined as

GCu _ e_m

tg? =% =
& 2 €y

For the oxygen contribution in (21), we arrive at an-
other critical angle:

2 90 — GyEs(pZ)
2 €2 Es(p3)

The maximum value of the scalar parameter Dq(6)
that determines the oxygen contribution to the
Drzyaloshinsky vector can be estimated to be of the
order of 1 meV for the typical parameters mentioned
above. As a whole, our model microscopic theory
is believed to provide a reasonable estimation of the
direction and numerical value of the Dzyaloshinsky
vectors. A seemingly more important result concerns
the elucidation of the role played by the Cu;—O—Cus
bond geometry, crystal field, and correlation effects.

3.5. Dzyaloshinsky—Moriya coupling in
La20u04

The DM coupling and magnetic anisotropy in
LasCuO,4 and related compounds have attracted con-
siderable attention in the 1990s (see, e.g., Refs. [7-9]),
and are still debated in the literature [11, 12]. In the
low-temperature tetragonal (LTT) and orthorhombic
(LTO) phases of LasCuQy, the oxygen octahedra sur-
rounding each copper ion rotate by a small tilting angle
(0T = 3°, 70 = 5°) relative to their location in the
high-temperature tetragonal phase. The structural dis-
tortion allows the appearance of the antisymmetric DM
coupling. For the LTT phase, in terms of our choice
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of structural parameters to describe the Cu;—O—Cuy
bond, we have

™
61:52:§i6LTT

for bonds oriented perpendicular to the tilting plane,
and

0=,

&:@:%

for bonds oriented parallel to the tilting plane. This
means that all the local Dzyaloshinsky vectors vanish
for the former bonds, and are orthogonal to the tilting
plane for the latter bonds. For the LTO phase,

0= :|:(71' — 25LTT),

m
0y =02 = = £dr70.

9:i(7r—\/§6LTo), 5

In this case, the largest (x d;70) component of the
local Dzyaloshinsky vectors (z-component in our no-
tation) is oriented perpendicular to the Cu;—O-Cus
bond plane. The other two components of the local
Dzyaloshinsky vectors are fairly small: the one perpen-
dicular to the CuQOj plane (y-component in our nota-
tion) is of the order of 6% 1., and the one oriented along
the Cu;—Cuy bond axis (z-component in our notation)
is of the order of §3 1.

4. DZYALOSHINSKY-MORIYA COUPLED
Cu;-O-Cus; BOND IN EXTERNAL FIELDS

4.1. Uniform external magnetic field

Application of a uniform external magnetic field hg
produces a staggered spin polarization in the antiferro-
magnetically coupled Cu;—Cuy pair,

1 i «VS
(Wﬁ:Lz—ﬁ—P:Dgxhﬂzx hS  (25)
12 |7

with an antisymmetric V' S-susceptibility tensor:
Vs Vs
XaB = ~XBa -

We see that the direction of the staggered spin polar-
ization, or antiferromagnetic vector, depends on that
of the Dzyaloshinsky vector [26]. The VS coupling re-
sults in many interesting effects for the DM systems, in
particular, the “field-induced gap” phenomena in one-
dimensional s = 1/2 antiferromagnetic Heisenberg sys-
tem with alternating DM coupling [6]. Approximately,
the phenomenon is described by the so-called staggered
s = 1/2 antiferromagnetic Heisenberg model with the
Hamiltonian

H=7 (8 -8i11) — hudi: — (=1)'hedin,  (26)

which includes the effective uniform field h, and the
induced staggered field hs o< hy perpendicular to both
the applied uniform magnetic field and the Dzyaloshin-
sky vector.

4.2. Staggered external field

Application of a staggered field hY for an antifer-
romagnetically coupled Cu;—Cus pair produces a local
spin polarization on both copper and oxygen sites,

1 . v SV i %
(8i) = 7D x b =X (@h". (@27
which can be detected by different site-sensitive meth-
ods including neutron diffraction and, mainly, by nu-
clear magnetic resonance. We note that the SV-sus-
ceptibility tensor is antisymmetric:

A% SV
XQB = _Xﬁa .

Strictly speaking, both formulas (25) and (27) work
well only in the paramagnetic regime and for relatively
weak external fields.

Above, we addressed a single Cu;—O-Cus bond,
where, despite the site location, the direction and mag-
nitude of the Dzyaloshinsky vector depend strongly on
the bond strength and geometry. It is clear that a
site rather than a bond location of DM vectors re-
quire revisiting conventional symmetry considerations
and the magnetic structure in weak ferro- and antifer-
romagnets. Interestingly, expression (27) predicts the
effects of a constructive or destructive (frustration) in-
terference of copper spin polarizations in one-, two-,
and three-dimensional lattices depending on the rela-
tive sign of Dzyaloshinsky vectors and staggered fields
for nearest neighbors. We note that with the destruc-
tive interference, the local copper spin polarization may
vanish, with the DM coupling then manifesting itself
only through the oxygen spin polarization. Another in-
teresting manifestation of the oxygen DM antisymmet-
ric exchange coupling concerns the edge-shared CuO,
chains (see Fig. 2), ubiquitous for many cuprates, where
we deal with an exact compensation of copper contri-
butions to Dzyaloshinsky vectors and the unique possi-
bility to observe the effects of uncompensated but op-
positely directed local oxygen contributions. It is worth
noting that for purely antiferromagnetic in-chain order-
ing, the oxygen spin polarization induced due to the d-
p-covalency by two neighboring Cu ions is in fact com-
pensated. In other words, the oxygen ions are expected
to be nonmagnetic. However, the situation changes if
a nonzero oxygen DM coupling is taken into account.
Indeed, applying the staggered field, for instance, along
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A
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Fig.2. The fragment of a typical edge-shared CuO2 chain with copper and oxygen spin orientation under a staggered field
applied along the z-direction. Note the antiparallel orientation of oxygen Dzyaloshinsky vectors

the chain direction (O,) we arrive in accordance with
Eq. (27) at a staggered spin polarization of oxygen ions
in an orthogonal O, direction, whose magnitude is ex-
pected to be strongly enhanced due to the usually small
magnitudes of a 90°-symmetric superexchange. In gen-
eral, the direction of the oxygen staggered spin polar-
ization is to be perpendicular to both the main chain
antiferromagnetic vector and the CuO, chain normal.

We emphasize that the net in-chain Dzyaloshinsky
vector

D=DW + DO + D(Om) + D®

vanishes, and hence, in terms of the conventional ap-
proach to the DM theory, we miss the anomalous oxy-
gen spin polarization effect. In this connection, it is
worth noting the neutron diffraction data in [27], which
unambiguously evidence the oxygen momentum forma-
tion and canting in edge-shared CuQO, chain cuprate
LisCuO,. Anyhow, we predict an interesting possibil-
ity to find a purely oxygen contribution to the DM
coupling.

5. 170 NMR AS AN EFFECTIVE TOOL TO
INSPECT DM COUPLING FOR Cu-O-Cu
BONDS

The ligand nuclear magnetic resonance appears to
be an effective tool for inspecting all the peculiarities of

7 ZKIOT®, Bein. 6

the DM coupling in weak ferromagnets. This possibil-
ity was illustrated earlier with '°F NMR for weak ferro-
magnet FeF3 [26]. The remarkable progress in the 170
NMR-NQR investigations as a spin-off of the cuprate
activity provides unique opportunities to elucidate sub-
tle details of the electron and spin structure for both
parent and doped cuprates with the DM coupling.

Detailed study of the ligand '"O hyperfine couplings
in weak ferromagnetic La, CuQy4 for temperatures rang-
ing from 285 to 800 K undertaken in [13] has uncovered
puzzling anomalies of the '"O Knight shift. The au-
thors made the surprising conclusion that in approach-
ing T, the planar oxygen hyperfine tensor a) reverses
its sign, b) becomes enhanced by much more than an
order of magnitude, and ¢) exhibits 100 % anisotropy.
The anomalously large negative 17O Knight shift was
observed only when external field was parallel to the
local Cu-O—Cu bond axis (PL1 lines [13]) or perpen-
dicular to the CuQOs plane. The effect was not, observed
for the NMR signal corresponding to oxygen in the lo-
cal Cu—0O—Cu bonds whose axis is perpendicular to the
in-plane external field (PL2 lines [13]). In their opinion,
these characteristics do not correspond to any known
hyperfine mechanism, but are somewhat reminiscent of
the functional form of the DM exchange coupling. Such
an effect has not yet been reported for any other sys-
tem. It is worth noting once more that experimental
data were mainly collected in a paramagnetic state for
temperatures well above T, where there are no frozen
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The data were first interpreted as an in-
dication of a direct oxygen spin polarization due to a
local DM antisymmetric exchange coupling. However,
this requires unphysically large values for such a polar-
ization, and hence the dramatic 7O hyperfine tensor
anomaly remains unexplained up to now [13].

moments!

5.1. 170—Cu transferred hyperfine interactions:
ferro- and antiferromagnetic terms

Our interpretation of ligand NMR data in low-
symmetry systems such as La;CuQy4 implies a thorough
analysis of both spin canting effects and transferred hy-
perfine interactions; we revisit some textbook results
that are standard for model high-symmetry systems.
We start with the spin—dipole hyperfine interactions
for O 2p-holes, which are main participants of Cu;—
O-Cus bonding. Using the conventional formula for a
spin—dipole contribution to the local field,

3(r; - s;)r; —rls;
Hn = —gstin Y (rs ooty —risi
i

5
L

and calculating the appropriate matrix elements on
oxygen 2p-functions as
)=

<pz'
2 /1 —~
-7 <r_3>2 (pil3lals —200|p;) =
D

2 /1 3 3
=T\ = _5ai5 j _601‘5 i 6oz 52 ) 2
5<T3>2p <2 6J+2 798 B J) ( 8)

3xa3 — 12005

rd

we represent the local field on the 'O nucleus in the
Cu;—0-Cusy system as a sum of ferro- and antiferro-
magnetic contributions [26]:

=S =V

Ho=A -(S)+A -(V), (29)

where

A =A (dp)+A (pd), A =A (pd)—A (dp),

A$(dp) = AV [3ey(dpi)er(dpy) — lea(dp) 26351,
A;Sj (pd) = AI(JO) [3ce(pid)ce(pid) — |e(pd)[* 651,

AY (dp) = A [Be, (dps)er(dpy) — (e (dp) - e (dp))diy),

AY(pd) = AV [3cs(pid)cy(pid) — (cs(pd) - c¢(pd))di5],

where

and the tilde denotes symmetrization. Thus, along with
the conventional textbook ferromagnetic (o< (S)) trans-
ferred hyperfine contribution to the local field, which
simply mirrors the sum of two Cu—O bonds, we arrive
at an additional unconventional difference (x (V)), or
staggered (antiferromagnetic) contribution whose sym-
metry and magnitude strongly depend on the orien-
tation of the oxygen crystal field axes and the Cu;—

O—Cus bonding angle. In the case of the Cu;—O—Cus

A xd
geometry shown in Fig. 1, we arrive at a diagonal A
tensor:

(30)

oV
and the only nonzero zy, yz-components of the A  ten-

Sor are

Ay, = Ay, =3A,sinb, (31)
with
3 (tips ’ 0 0
Ap =7 AY = £, A% (32)
P

where f, is the parameter of a transferred spin
density and we wuse the simple approximation
Esi(dpy,y) ~ €. Thus, the ligand '"O NMR
provides an effective tool to inspect the spin cant-
ing effects in oxides with the DM coupling in both
paramagnetic and ordered phases.

5.2. Anomalous 7O Knight shift in La;CuOy
as a manifestation of the field-induced
staggered spin polarization

The two-term structure of the oxygen local field im-
plies a two-term SV -structure of the 7O Knight shift

7. ©56SS  aVoVs
K=AX +4+A X |, (33)

which points to the Knight shift as an effective tool to
inspect both uniform and staggered spin polarization.
The existence of an antiferromagnetic term in oxygen
hyperfine interactions yields a rather simple explana-
tion of the 70 Knight shift anomalies in LayCuQOy4 [13]

3) Generally speaking, we should take an additional contribu-

tion of magneto-dipole hyperfine interactions into account.
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as a result of the external-field-induced staggered spin

polarization
o ~VS

(V)=L= X Heat.

Indeed, “our” local y axis for the Cu;—O-Cus bond
corresponds to the crystal tetragonal ¢ axis oriented
perpendicular to CuO, planes in both LTO and LTT
phases of LasCuQy4, while the 2 axis corresponds to
the local Cu—O—Cu bond axis. This means that for
the geometry of the experiment in [13] (with the crys-
tal oriented such that the external uniform field was
either parallel or perpendicular to the local Cu-O-
Cu bond axis), the antiferromagnetic contribution to
the 17O Knight shift is observed only a) for oxygen
in Cu;—0O—Cus bonds oriented along the external field
or b) for the external field along the tetragonal c
axis. Experimental data in [13] agree with the stag-
gered magnetization along the tetragonal ¢ axis in case
a) and along the rhombic ¢ axis (tetragonal ab axis)
in case b). With L = 1, AZ(,O) ~ +100 kG/spin
(see Ref. [13]), |sinf| =~ 0.1, and f, ~ 20%, we
obtain &~ 6 kG as the maximum value of the low-
temperature antiferromagnetic contribution to the hy-
perfine field, which is equivalent to a giant 17O Knight
shift of the order of almost 10 %. Nevertheless, this
value agrees with a low-temperature extrapolation of
the high-temperature experimental data in [13]. In-
terestingly, a sizeable effect of the anomalous nega-
tive contribution to the 'O Knight shift has been ob-
served in LasCuOy4 well inside the paramagnetic state
for temperatures T ~ 500 K, essentially higher than
Tnx =~ 300 K. This points to a close relation between
the magnitude of the field-induced staggered magneti-
zation and the spin-correlation length, which increases
as T is approached.

The ferro-antiferromagnetic SV -structure of the lo-
cal field on the nucleus of an intermediate oxygen ion
in a Cu;—-0-Cus triad points to 'O NMR as, prob-
ably, the only experimental technique to measure the
value and direction of the Dzyaloshinsky vector. For
instance, the negative sign of the 17O Knight shift in

La,CuQy4 [13] points to a negative sign of ?VS for the
Cu;—0-Cu, triad with A}, > 0, and hence to a positive
sing of the z-component of the net Dzyaloshinsky vec-
tor in the Cu;—0O—Cus triad with the geometry shown
in Fig. 1 for 6 < 7, §; = d» ~ 7/2. We emphasize that
the above effect is determined by the net Dzyaloshin-
sky vector in the Cu;—O-Cus triad rather than by a
local oxygen “weak-ferromagnetic” polarization as was
first proposed in [13]

A similar effect of the anomalous ligand '3C
Knight shift was recently observed in copper pyrimidine

dinitrate [CuPM(NO3)2(H20)2]n, a one-dimensional
S = 1/2 antiferromagnet with the alternating local
symmetry, and was also interpreted in terms of the
field-induced staggered magnetization [28]. However,

the authors took only the inter-site magneto-dipole
SV
contribution to the A  tensor into account, which

questions their quantitative conclusions regarding the
“giant” spin canting in CuO, chains.

6. SYMMETRIC SPIN ANISOTROPY

The symmetric two-ion spin anisotropy ia a sym-
metric partner of the DM coupling; both are usually
addressed on equal footing as two main exchange-re-
lativistic interactions. The symmetric spin anisotropy
for a Cu;—Cusy pair is described by the effective Hamil-
tonian

N 1.5 Vo

Han =-SK S--VK V (34)
with kinematic relations (7).  Depending on the
sign of the anisotropy constants, we arrive at two
types of spin configurations minimizing the energy of
spin anisotropy: the conventional twofold-degenerate
ferromagnetic state or an unconventional multiple-
degenerate antiferromagnetic state. As a relevant il-
lustrative example, we refer to the axial anisotropy

which stabilizes the |1 £ 1) doublet for K < 0 or a set
of superposition states

¥, 4 = cosal00) + e sin a|10) (35)

for K > 0. The latter incorporates the limiting config-
urations |00) and [10), the Néel doublet
1
V2

the Dzyaloshinsky—Moriya doublet

(100) £ [10)),

1
V2

and their arbitrary superpositions.

As usual, the term is processed using a number of
simple model approximations. First, instead of the
generalized form in (34), we consider a pseudodipole
anisotropy

(100) £ i]10)),

A hyd A
Hon =$1K12 82 - (36)
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Second, we use a trivial local mean-field-approximation
(MFA) approach, whose applicability for s = 1/2 spin
systems is questionable. Indeed, calculating the classi-
cal energy of the pseudodipole two-ion anisotropy

K(31)(6a:) = TR((8.)? = (72)?)

and the respective quantum energy

A

e L. &
K(81:85.) = 7K ((S2) = (V7))
for the two-ion state
U, 0 = cos@|00) + sin a|1n)

induced by a Néel-like staggered field h" || n, we obtain

1
Eelass = —ZK sin 2a - n?,

1
Ejuant = ZK(I —2sina - n?),

which evidences the crucial importance of quantum
effects when addressing the numerical aspect of spin
anisotropy. ~ We note that the mean value (V2)
reaches the maximum (= 1) on a set of superposi-
tion states (35), while (V.)2? does on a single Néel state

\I’oz:ﬂ'/4,¢:0-

6.1. Effective symmetric spin anisotropy due
to the DM interaction

Speaking about an effective spin anisotropy due to
the DM interaction, one usually addresses a simple clas-
sical two-sublattice weak ferromagnet where the free
energy has a minimum when both ferro- (x (S)) and
antiferromagnetic (o< (V) vectors, being perpendicu-
lar to each other, lie in the plane perpendicular to the
Drzyaloshinsky vector D. However, the issue is rather
involved and appeared to be hotly debated for a long
time [9,10,29,30]. In our opinion, we should first of
all define what the spin anisotropy is. Indeed, the de-
scription of any spin system implies that the free en-
ergy ® depends on a set of vectorial order parameters
(e.g., (S),x (V),x (T)) under a kinematic constraint,
rather than a single magnetic moment as in a simple
ferromagnet, which can make the orientational depen-
dence of ® extremely complicated. Such a situation
requires a careful analysis of the corresponding spin
Hamiltonian with a choice of proper approximations.

The effective symmetric spin anisotropy due to the
DM interaction can be easily derived as a second-order
perturbation correction due to the DM coupling as

HPM = Py REpy P,

where P is the projection operator projecting on the
ground manifold and

. 1-P

R=————.
Ey — Hy

For an antiferromagnetically coupled spin-1/2 pair,
HDPM can bhe written as

AN = 3" AKYVY;

1,7

with
1
-V
AK;; = gDiDj

if |D| < J. We thus see that in the framework of
the simple MFA approach, this anisotropy stabilizes a
Néel state with (V) L D. But this is actually an MFA
artefact. Indeed, we examine the second-order pertur-
bation correction to the ground state energy of an an-
tiferromagnetically coupled spin-1/2 pair in a Néel-like
staggered field h" || n,

EDM _ _ D - nf? _
an 4B - Ey)

D x nf? 2
cos” ay, 37
WE - F) @D

where
E,=J E =] cos’ a + hY sin2a,

E,=1J sin?a — h" sin 2a.

The first term in (37) stabilizes the n || D configura-
tion and the second stabilizes the n 1L D configuration.
Interestingly,

(E) — Ey)cos’a = E| — Ey,

that is, for any staggered field, EPM is independent of
its orientation, because

D -n|? + D x n|* = D%

In other words, at variance with the simple MFA
approach, the DM contribution to the energy of
anisotropy for an exchange-coupled spin-1/2 pair in a
staggered field vanishes. The conclusion proves to be
correct in the limit of a zero field as well.
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6.2. Microscopics of symmetric spin anisotropy

Anyway, the HaDnM term has not to be included into
effective spin anisotropy Hamiltonian (6). As regards
the true symmetric two-ion spin anisotropy (pseu-
dodipole, or exchange anisotropy), its magnitude can
be obtained if all other effects quadratic in the spin—
orbital coupling are taken into account. At variance
with the effective DM spin Hamiltonian, the symmet-
ric spin anisotropy evolves from the higher-order per-

turbation effects, which makes its analysis even more

Vior,sm = Piot;5m + Z C{n}(25+1r) Drnyrsm — Z
S M'T

{n}1"

involved and can lead to many misleading estimations.
Similarly to the case of the DM interaction, we deal
with two competing contributions. The first is derived
as the lowest-order contribution that does not take ac-
count of orbital fluctuations for Cuy» 3d states. For
this, we consider the effects of spin—orbital mixing for
the ground-state singlet and triplet 101 configurations
perturbed by covalent effects. Assuming the validity
of the conventional perturbation series, we arrive at a
modified expression for the corresponding functions as

({n};T'S"M'|Vso|{n}; TSM)
Essipap ({n})—Ees+1p,(101)

(p{n};F’S’M’ (38)

and then obtain the expressions for the tensorial anisotropy parameters (see Eq. (13)):

({n}? To A7 {n}5* T) ({n};* T'|AT [{n}: Ts)

-S _ C* 3 e n 3 5 ’
Kij = {n}rlz;rw fn} (T1)eqny () Farr ({n}) — Ear, (101) (39)
n};? Ty Ay {n}: T) ({n}i TV |A) [{n}:* Ty
K= % czn}(3F1)C{n}(3F2)<{ 3 IA [{nds T (g A [{n}:"Ta). (40)

{n}Fl,FQ,F,

It follows that K and K}/ are determined by the
triplet—triplet and singlet—triplet mixing, respectively.
Interestingly, for nonzero orbital matrix elements
in (39) and (40), we find

(F AT} T) = () TYAY [} T,

and hence
-S -V
K =K

if we suppose that

Eip ({n}) = Bar ({n}),

which is equivivalent to neglecting the singlet—triplet
splitting for T’ terms, or the respective exchange effects.
We note that the contribution of the two-hole one-
site 200, 002, and 020 configurations in (39) and (40)
is actually related to an one-site, or single-ion spin
anisotropy. Thus, we conclude that, strictly speak-
ing, a simple two-site pseudodipole form of symmetric
anisotropy (1) fails to correctly capture all the features
of spin anisotropy in our three-center two-hole system.
This primarily concerns the quantitative predictions
and estimations. The contribution the two-hole two-
site 110 and 011 configurations to spin anisotropy turns
out to be nonzero only if the p—d-exchange is taken into
account.

Expo({n}) — Bor, (101)

The second contribution is associated with orbital
fluctuations for Cuy » 3d states within the ground-state
101 configuration and evolves from a third-order com-
bined effect of Cuy o spin—orbital Vs, (Cuy 2) and effec-
tive Cu;—Cus exchange couplings (see, e.g., a detailed
analysis of similar terms in Ref. [31]). It is worth not-
ing that following [32], just this contribution is usually
considered to be the only source of the effective pseu-
dodipole anisotropy for Cu;—O—Cuy triads in cuprates
(see, e.g., Ref. [33]). Thus, we see that any decisive con-
clusions regarding the quantitative estimations of sym-
metric spin anisotropy imply a thorough analysis of the
numerous competing contributions that were classified
above.

7. CONCLUSIONS

We have revisited and generalized the conventional
Moriya approach to the antisymmetric exchange cou-
pling in cuprates specifying the local spin—orbital con-
tributions to the Dzyaloshinsky vector focusing on the
oxygen term. We have applied a scheme that pro-
vides an optimal way to account for intra-atomic elec-
tron correlations and low-symmetry crystal field, and
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to separate the local contributions to the Dzyaloshin-
sky vector. The Dzyaloshinsky vector and the corre-
sponding weak ferromagnetic momentum are shown to
be a superposition of comparable and, sometimes, com-
peting local Cu and O contributions. In this connec-
tion, it is worth noting that the anyonic contribution
to the Dzyaloshinsky vector is crucial for the very exis-
tence of the DM coupling in the pair of rare-earth ions
(e.g., Yb?T—As*=—Yb3* triads in YbsAs;3 [34]) because
a very strong spin—orbital coupling for rare-earth ions
is diagonalized within a ground state multiplet.

We have shown that the staggered magnetic field
h" applied to edge-shared CuO, chains induces the
oxygen staggered spin polarization in the direction
x [hY x m] (where m is a vector perpendicular
to the CuOs plane) due to uncompensated oxygen
Drzyaloshinsky vectors.  Its experimental observa-
tion could provide a direct evidence of the oxygen
DM coupling. The intermediate 7O NMR is shown
to be an effective tool for inspecting the effects of
Dzyaloshinsky—-Moriya coupling in an external mag-
netic field. The anisotropic antiferromagnetic con-
tribution to '"K explains the puzzling anomalies ob-
served in LayCuOy [13]. We have revisited the effects
of symmetric spin anisotropy, in particular, those di-
rectly induced by the Dzyaloshinsky—Moriya coupling.
The perturbation scheme that we applied generalizes
the well-known Moriya approach and presents a basis
for reliable quantitative estimations of the symmet-
ric partner of the Dzyaloshinsky—Moriya coupling. At
variance with the conventional standpoint, the param-
eters of the effective two-ion spin anisotropy are shown
to incorporate contributions of a single-ion anisotropy
for two-hole configurations on both the Cu and O sites.
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