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MODIFIED NONCLASSICAL COHERENT STATE: SQUEEZING,ANTIBUNCHING, SUB-POISSONIAN PHOTON STATISTICS,REALIZATION SCHEME WITH THE �(2)-NONLINEARITY,AND GENERATION OF A MACROSCOPIC ENTANGLED STATES. A. Podoshvedov *Shool of Computational Sienes, Korea Institute for Advaned Study130-722, Seoul, Republi of South KoreaReeived 17 August 2006The nonlinear �(2) Mah �Zehnder interferometer is proposed as a devie for onditional generation of a mo-di�ed oherent nonlassial state. We show that the generated marosopi state exhibits nonlassial e�ets,suh as squeezing, photon antibunhing, and sub-Poissonian statistis. The modi�ed oherent state generatesa marosopi entangled state. The sheme works without the photon number resolving detetion but requireshigh-e�ieny photodetetors. We explain a mehanism of generation of the modi�ed oherent nonlassialstate.PACS: 42.50.Dv 1. INTRODUCTIONThe Shrödinger at paradox [1℄ is a famous illustra-tion of entanglement between mirosopi (a radioa-tive atom) and marosopi (a at) systems; at-typestates given by quantum superpositions of marosopisystems are a diret onsequene of this e�et. Catstates play an essential role in both understanding ofthe unusual behavior of marosopi entangled systemsand quantum information proessing [2℄. As a result,the problem of generation of at states attrats on-siderable interest [3�10℄. Shrödinger-at-type states[3�7℄ have been realized in quantized avity �elds [8℄,ion traps [9℄, and Rydberg atoms [10℄. Protools forteleporting at states in free propagating �elds havebeen studied in [11℄. So far, a number of other possi-ble appliations inluding quantum omputation [12℄,quantum nonloality test [13℄, entanglement puri�a-tion [14℄, error orretion [15℄, and quantum metrol-ogy [16℄ have been extensively studied with entangledoherent states.When we talk about a at state, we usually meana superposition state of two oherent states with equalamplitudes but opposite phases. The Kerr nonlinearity*E-mail: sap�kias.re.kr

or the �(3)-nonlinearity is onsidered to be the resourefor the generation of a oherent superposition [3℄. Butthere are signi�ant di�ulties in pratially realizingthe oherent state superposition with a large ampli-tude due to small values of the �(3)-nonlinearity of theurrently available nonlinear media [7℄. The most at-trative shemes for generation of the free propagatingoherent state superposition were developed in [17℄. Inessene, these shemes are ampli�ation shemes for thesuperposition of small-amplitude oherent states ob-tained from the weak Kerr nonlinearity. These shemesuse the squeezed single-photon and simple all-optialoperations to amplify the amplitude of the free propa-gating oherent state superposition with high �delity.The sheme in [17℄ has been extensively analyzed in [18℄as regards onsiderably reduing the required nonlineare�et by using simple and e�ient optial elements.Reently, we have proposed using the �(2)-nonlinearity (with �(2) � �(3)) for produing maro-sopi entangled states [19; 20℄ that onsist of oherentand modi�ed oherent states. In this paper, wepropose a sheme of a nonlinear �(2) Mah �Zehnderinterferometer to onditionally produe this puremodi�ed oherent state, whih we all the j�i state.In a ertain sense, the proposed sheme of the non-615



S. A. Podoshvedov ÆÝÒÔ, òîì 131, âûï. 4, 2007linear �(2) Mah �Zehnder interferometer resemblesthe nonlinear Mah �Zehnder interferometer with aninternal Kerr medium in one arm [6℄, but the outputsof these devies are di�erent. We present a physialexplanation of the generation of the j�i state. We showthat the j�i state has nonlassial properties suh assqueezing, photon antibunhing, and sub-Poissonianstatistis. We show how the j�i state an be onvertedto a marosopi entangled state. The amount ofentanglement stored in the entangled state dependson the amplitude of the oherent state that pumpsthe nonlinear �(2) Mah �Zehnder interferometer. Weshow that the nonlinear �(2) Mah �Zehnder interfer-ometer works without speial detetors disriminatingbetween one- and multi-photon number states [21℄.We analyze the requirements that must be imposedon detetion e�ieny of the �(2) Mah �Zehnderinterferometer to suessfully generate the j�i state.2. A NONLINEAR �(2) MACH�ZEHNDERINTERFEROMETERThe sheme in Fig. 1 essentially involves a simpleMah �Zehnder interferometer with two input and twooutput ports. A nonlinear �(2) rystal is plaed withinone arm of the interferometer. We all suh an in-terferometer with an internal seond-order nonlinear-ity the nonlinear �(2) Mah �Zehnder interferometer.The nonlinear �(2) Mah �Zehnder interferometer isturned on if we diret a powerful beam in the oherentstate jp2�ip (the amplitude of the oherent state �is supposed to be real) to the spontaneous parametridown-onverter with type-I phase mathing (SPDCI).Before we turn on the powerful mode for theSPDCI, the nonlinear �(2) Mah �Zehnder interferom-eter is a simple Mah �Zehnder interferometer withequal optial paths. Below, we deal with only beamsplitters of the Mah �Zehnder interferometer with theHadamard unitary operationH = (j0i+ j1i) h0j+ (j0i � j1i) h1jp2 :If we plae two photodetetors behind the routes ofthe Mah �Zehnder interferometer, then there is 100%probability that the photon reahes the detetor D1and 0% probability that it reahes another detetorD3 in Fig. 1. It is therefore perfetly legitimate to saythat the photon takes both the transmitted and there�eted paths between the two beam splitters or, inother words, that the photon is in the oherent super-position

p2p1D2 BS1BS 1j1i 1 3pj21=2�i BS 1 D1D3
1 2 22Fig. 1. Experimental arrangement of the nonlinear �(2)Mah �Zehnder interferometer. The sheme involves asoure of single photons and a Mah � Zehnder interfer-ometer with equal optial paths. Parametri down-on-verters with type-I phase mathing are inserted intoone of the routes of the Mah � Zehnder interferome-ter. A photon that enters the interferometer alwaysstrikes detetor D1 if the SPDCI is turned o�. By turn-ing SPDCI on, we rediret the photon from detetor D1to detetor D3 beause the single-partile interfereneis modi�ed due to the interation of the photons withthe �(2)-nonlinearity. The photon ending up in detetorD2 leads to onditional generation of the marosopinonlassial state j�i. D1, D2, and D3 are registeringdetetors used in the auxiliary modes. BS is the no-tation for a beam splitter with the Hadamard unitaryoperationj10i12 + j01i12p2arrying whih-path information.We next turn on a powerful �eld in the pumpingmode of the SPDCI, giving the total input statej	IN i = 1p2 (j100i+ j010i)123 jp2�ip (1)within the nonlinear �(2) Mah �Zehnder interferom-eter, with the auxiliary three generated modes of theSPDCI taken into aount. Heneforth, the subsriptsof the states indiate the optial modes of photons [22℄.For simpliity, we assume that the dynamial de-sription of the SPDCI involves three modes with theorresponding annihilation operators â1, â2, and âp andthat the Hamiltonian [19; 20℄Ĥ = i~r2 �â+1 â+3 âp � â+p â3â1� (2)is used. The oupling oe�ient r in (2) is re-lated to the nonlinear seond-order suseptibility tensor616



ÆÝÒÔ, òîì 131, âûï. 4, 2007 Modi�ed nonlassial oherent state : : :�(2) [19; 20℄. The e�et of the �(2)-nonlinearity of themedium has been studied in detail in [19; 20℄. Beforewe proeed with the analysis, we reall the main resultsin [19; 20℄. The input state j100i123j�ip is transformedinto the output state [20℄j	(1)outi = 1Xn=0 jn+ 1i1j1i2jni3j�(1)n ip; (3a)with the output states in the pumping modes givenby [20℄j�(1)n ip = exp(��2)�� 1Xl=0 �p2��l+np(l + n)! f (1)(2(l+n)+1);n+1(�)jlip: (3b)By analogy with Eqs. (3a) and (3b), if the input stateis prepared in the state j010i123j�ip, then its outputbeomes [19℄j	(0)outi = 1Xn=0 jni1j1i2jni3j�(0)n ip; (4a)where the wave funtions j�(0)n ip arej�(0)n ip = exp(��2)�� 1Xl=0 �p2��l+np(l + n)! f (0)2(l+n);n+1(�)jlip: (4b)The notation in Eqs. (3a)�(4b) is the same as in [19; 20℄.We note that the wave amplitudes f (1)(2(l+n)+1);n+1 andf (0)2(l+n);n+1 in Eqs. (3b) and (4b) satisfy the sets of lin-ear di�erential equations presented in [19; 20℄.By virtue of the linearity of quantum mehanis,the output of Hamiltonian (2) with input ondition (1)an be expressed asj	outi = 1p2 nj	(0)outi+ j	(1)outio : (5)The overall output j	outi an be rewritten expli-itly asj	outi = 1p2 nj100i123j�(1)0 ip + j010i123j�(0)0 ip ++j111i123j�(0)1 ip + j201i123j�(1)1 ip + : : :o : (6)Using the asymptoti deomposition for the wave am-plitudes f (0)2l;k(�) and f (1)2l+1;k(�) in the leading order withrespet to the small parameter � � 1 [19; 20℄ that har-aterizes the strength of the SPDCI and is diretly pro-

portional to the omponent of the tensor of the seond-order suseptibility,f (0)2l;1(�) = 1� l�22 ; f (1)2l+1;1(�) = 1� l�2;f (00)2l;2 (�) = �pl �1� �2(5l � 4)6 � ;f (00)2l+3;2(�) = �p2(l+ 1) �1� �2(4l + 1)3 � ; (7)we �nd the nonnormalized wave funtions in the pump-ing mode asj�(0)0 ip = jp2�ip � p2��2p1 + 2�22 jp2�ip; (8a)j�(1)0 ip = jp2�ip �p2��2p1 + 2�2 jp2�ip; (8b)j�(0)1 ip = p2����1� �26 � jp2�ip�� 5p2��2p1 + 2�26 jp2�ip! ; (8)j�(1)1 ip = p2����1� �23 � jp2�ip�� 4p2��2p1 + 2�23 jp2�ip! ; (8d)where the normalized marosopi state j�i is de�nedby j�i = exp���22 ��p1 + �2 1Xl=1 �llpl! jli: (9)To �nish performane of the nonlinear �(2) Mah �Zehnder interferometer in Fig. 1, we erase the whih-way information that resides in modes 1 and 2. Twosingle-photon detetors D1 and D2 are attahed to theoutputs of the output beam splitter of the nonlinear�(2) Mah �Zehnder interferometer. The beam splitterwith the unitary Hadamard transformation produesthe transformationsÛH j100i123 = 1p2 fj100i+ j010ig123 ;ÛH j010i123 = 1p2 fj100i � j010ig123 ;ÛH j201i123 = 12 nj201i+p2j111i+ j021io123 ;ÛH j111i123 ! 1p2 fj201i � j021ig123 : (10)
Then, after superimposing modes 1 and 2 on the beamsplitter, the state j	outi (Eq. (6)) beomes617



S. A. Podoshvedov ÆÝÒÔ, òîì 131, âûï. 4, 2007j	outi = 12 np100j100i123j�ip�p010j010i123jp2�ip++ p201j201i123j�1ip � p021j021i123j�2ip ++p111j111i123j�3ip + : : : g ; (11)where we introdue the normalized statesj�ip = jp2�ip � 3p2��2p1 + 2�2 jp2�ip4r1� 3�2�2 + 9�2�4(1 + 2�2)8 ; (12a)j�1ip == jp2�ip � 13p2��2p1 + 2�2 jp2�ip12(1� �2=4)vuut1� 13�2�23(1��2=4)+ 13p2��2p1+2�212(1��2=4) !2 ; (12b)j�2ip = jp2�ip + 3p2�p1 + 2�2 jp2�ipp1 + 12�2 + 18�2(1 + 2�2) ; (12)j�3ip == jp2�ip � 4p2��2p1 + 2�2 jp2�ip3(1� �2=3)vuut1� 16�2�23(1��2=3)+ 4p2��2p1+2�23(1� �2=3) !2 : (12d)The wave amplitudes fijk in Eq. (11), where the sub-sripts indiate the number of the inoming down-on-verted photons in modes 1, 2, and 3, are given byp100 = 2r1� 32�2 + 9�2�4(1 + 2�2)8 ; (13a)p010 = ���2p1 + 2�2p2 ; (13b)p201 = 2p2���1� �24 ���vuut1� 13�2�23(1��2=4)+ 13p2��2p1+2�212(1��2=4) !2; (13)p021 = �p2��36 p1+12�2+18�2(1+2�2); (13d)p111 = 2���1� �23 ���vuut1� 1�16�2�23(1��2=3)+ 4p2��2p1+2�23(1��2=3) !2: (13e)

Depending on the result of the single-photon dete-tion, the state j	outi in Eq. (11) beomes either j�ipin Eq. (12a) if detetor D1 �res or jp2�ip in Eq. (9)if D2 does. If the pair of detetors D1 and D3, D2,and D3 or all three detetors D1 and D2, D3 registerthree photons, then the total state j	outi in Eq. (11)is projeted onto one of the states j�iip, i = 1; 2; 3(Eqs. (12b)�(12d)). We are interested in generationof the jp2�ip state. The overall suess probability ofthe onditional prodution of the state in the shemein Fig. 1 is equal to�2�4(1 + 2�2)2 :As noted above, the photon always strikes the de-tetor D1 and never detetor D2 in the arrangement ofthe Mah �Zehnder interferometer used in Fig. 1 with-out pumping of the SPDCI due to single-partile in-terferene. But if we introdue a ertain �xed-timedelay for the photon to reah the output beam splitterof the Mah �Zehnder interferometer, it may happenthat a photon ertainly emerges at detetor D2 insteadof D1. Suh a time delay an be organized by insertinga glass with some thikness. If we insert the glass inone of the arms of the Mah �Zehnder interferometerwith an arbitrary thikness, we observe that the pho-ton may strike both detetors D1 and D2 with somesuess probabilities. We now use a powerful �eld forthe SPDCI in a oherent state as the �time delay� fora single photon. Although the nonlinear e�et of theinteration of light �elds on the �(2)-nonlinearity is typ-ially too weak, it an nevertheless play the role of aglass plate. Superimposing the modes of the Mah �Zehnder interferometer on the output beam splitterleads to interferention of the output states in the pump-ing modes. If a single photon is deteted at detetorD1, the superpositions in (8a) and (8b) are superim-posed on eah other with equal phases and result is thestate (12a) in whih the ontribution of the oherentstates prevail over that of the j�i state. If the detetorD2 registers a single photon, but the other detetorsdo not, then superpositions (8a) and (8b) are summedwith opposite phases, whih leads to the disappearaneof the oherent state at the output. Thus, the nonlin-ear �(2) Mah �Zehnder interferometer in Fig. 1 allowsthe photon to take the route of detetor D1 with almostunit suess probability (Eq. (13a)) and the rare hane(Eq. (13b)) for the same photon to ome out from theforbidden route of the Mah �Zehnder interferometerleads to the generation of the j�i state.618



ÆÝÒÔ, òîì 131, âûï. 4, 2007 Modi�ed nonlassial oherent state : : :3. NONCLASSICAL PROPERTIES OF THE j�iSTATEWe now study nonlassial properties of the gener-ated single-mode marosopi state j�i with an arbi-trary amplitude of the parameter � (Eq. (9)). Thereare three prinipal phenomena that demonstrate thenonlassial harater of light: squeezing, photon an-tibunhing, and sub-Poissonian photon statistis. Westart with squeezing. We de�ne one of the two quadra-ture operators asX̂ = 12 �â exp(�i') + â+ exp(i')� ; (14)where ' is the phase of the loal osillator, assumedto be in a large-amplitude oherent state. Using thede�nition of the j�i state in Eq. (9), we obtain theexpetation values of operators ash�jâj�i = �2 + j�j21 + j�j2 ; (15a)h�jâ2j�i = �2 3 + j�j21 + j�j2 ; (15b)h�jâ+âj�i = j�j4 + 3j�j2 + 11 + j�j2 : (15)Using Eqs. (15a)�(15), we an alulate the varianeof the measured quadrature operator X̂,V̂ �X̂� � ��X̂�2 = hX̂2i � hX̂i2;asV̂j�i �X̂� = j�j4+4j�j2 �1� os2('��')�+34 (1+j�j2)2 ; (16a)where '� is the phase of � (i.e., � = j�j exp(i'�)).The degree of single-mode squeezing is assessed by thesaled quantity S, whih takes the minimum value at'� � ' = 0;��:S �X̂� � S(x) = V̂j�i �X̂�V̂j�i �X̂� == 3 + j�j4(1 + j�j2)2 = 1� 2 x� 1(x+ 1)2 ; (16b)where V̂j�i �X̂� = 0:25 is the variane for the oherentj�i state and x = j�j2. In Fig. 2a, we draw the saleddegree S(x) as a funtion of x = j�j2. We see fromFig. 2a that the degree of squeezing S(x) is greater thanone (to be more preise, we have to talk about de-sque-ezing in the range) when 0 � x � 1. As x beomes

greater than 1, squeezing appears (S(x) < 1), asymp-totially approahing unity (S(x) ! 1) as x ! 1.There is the value x = j�j2 = 3 at whih the degree ofsqueezing takes the minimum value Smin(x) = 0:75.To haraterize the statistial properties of the lightbeam in the modi�ed oherent state j�i, we introduethe seond-order orrelation funtiong(2)(0) = hâ+2â2ihâ+âi2 : (17a)It is well known that if g(2)(�) > g(2)(0), where � isthe time delay of arrival of one photon, with anotherphoton arriving at time t, then there is a tendenyfor the photons to arrive in pairs. This ase is re-ferred to as photon bunhing. The opposite situationg(2)(�) < g(2)(0) orresponds to the ase where losepairs annot be emitted. It is alled the antibunh-ing of photons. We have g(2)(0) ! 1 on a su�ientlylong time sale, and therefore a �eld for whih g2 < 1(we now use g2 instead of g(2)(0)) always exhibits anti-bunhing on some time sale. The analyti expressionfor g2 for the state j�i an be straightforwardly derivedfrom de�nitions (9) and (17a) asg2 = j�j2 �j�j2 + 1� �j�j4 + 5j�j2 + 4�(j�j4 + 3j�j2 + 1)2 == x(x + 1)(x2 + 5x+ 4)(x2 + 3x+ 1)2 : (17b)We plot g2 versus x in Fig. 2b. This dependene showsthat the light generated by the nonlinear �(2) Mah �Zehnder interferometer always exhibits photon anti-bunhing (g2 < 0), independent of the value of �.We next disuss the sub-Poisson statistis in themode oupied by the state j�i. The photon-numbervariane of the mode is given byF = h�n̂2ihn̂i = j�j2 �j�j4 + 2j�j2 + 2�(j�j2 + 1) (j�j4 + 3j�j2 + 1) == x(x2 + 2x+ 2)(x+ 1)(x2 + 3x+ 1) : (18)From Fig. 2b, we see that the j�i state exhibits asub-Poisson statistis F < 1 not depending on the valueof the parameter �, whih an be onsidered the sizeof the j�i state. Finally, we note the photon numberdistribution of the j�i statePj�i = jhnj�ij2 = exp ��j�j2� j�j2(n�1)n2(1 + j�j2)2 n! : (19)619
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Fig. 2. The dependenies of the squeezing parameter S (a) and the seond-order orrelation funtion g2 and Fano fator Fof the j�i state on its intensity x = �2 (b)4. MACROSCOPIC ENTANGLED STATEAt this stage, it is worth onsidering a possibilityof onverting the j�i state to a marosopi entangledstate. For this, we use the generalized form of the j�istate (Eq. (9)) involving the unitary displaement op-erator D̂(�) = exp (�â+ � ��â):j�i = 1�p1 + �2 ��D̂(�)â+j0i+ j�j2j�i� : (20)We then apply the unitary transformationÛ = P̂p2(' = �=2)B̂(� = ��=4)P̂p2(' = �=2);where P̂ (') = exp ��i'â+â�and B̂(�) = exp ��i� �â+1 â2 + â+2 â1�� ;to the j�i state. Here, p1 and p2 are the output modesof the Û transformation. This unitary transformationis e�eted by two �=2 phase shifters and one balanedbeam splitter loated between these two phase shiftersin the p2 mode. The beam-splitter transformationmaps the input j�i state into the entangled normalizedstateÛ jp2�ip = j�+ip1p2 = j�ip1 j�ip2 + j�ip1 j�ip2s2�1 + �21 + �2 � : (21)This state is analogous to the state studied in [20℄, butwith the plus sign. We estimate the amount of entan-glement stored in the states j�+ip1p2 by alulating theonurrene of the state de�ned in the general form asC (j i) =q2 (1� Sp(�2A)) ;

where �A is the redued density matrix of subsystemA [20℄. Using the orthonormal basis fj0ipi ; j1ipig,j0ipi = j�ipi ;j1ipi = j�ipi � aj�ipip1� a2 ; i = 1; 2; (22a)where a = haj�i = �=p1 + �2 ;we rewrite the state j�+ip1p2 Eq. (21) asj�+ip1p2 == �2aj00i+p1� a2 (j01i+ j10i)�p1p2p2(1 + a2) : (22b)The onurrene of the state j�+ip1p2 is then given byC (j�+ip1p2) = 1� a21 + a2 = 11 + 2�2 : (23)The onurrene of j�+ip1p2 depends on the inten-sity �2 of the j�i state. It takes the maximum valueC (j�+ip1p2) = 1 at � = 0, when the entangled statej�+ip1p2 in Eq. (21) is onverted into the one-photonstate, j�+ip1p2 ! (j10i+ j01i)p1p2p2 :If the size � of the entangled state j�+ip1p2 approahesthe in�nity (� ! 1), the onurrene goes to zero(C (j�+ip1p2) ! 0). This fat is in aordane withFigs. 2a and 2b. As an be seen from Figs. 2a and 2b,the squeezing S and the parameters g2 and F approahunity (S; g2; F ! 1) as � ! 1, whih shows that thej�i state may beome indistinguishable from the usualoherent state j�i for large values of �.620



ÆÝÒÔ, òîì 131, âûï. 4, 2007 Modi�ed nonlassial oherent state : : :We have shown that generation of the marosopij�i state by using the nonlinear �(2) Mah �Zehnder in-terferometer an be realized without photon number re-solving detetion. We now formulate the requirementsthat must be imposed on the detetion e�ieny insheme 1. We assume the detetion e�ieny of pho-todetetors in Fig. 1 to be d. Then, the probabilityfor the detetor not to register one photon (the fail-ure probability) is 1� d. It follows from Eq. (11) thatthere are two possible failure events, whih an be takenfor the right outomes when either the third detetoror the �rst and third detetors simultaneously registerany photons, while the seond detetor registers ar-rival of some photons. This means that photodetetorsare ine�ient in pratie and may miss some omingphotons, and we an therefore sometimes mistake thestates j�2i and j�3i (Eqs. (9), (12), and (12d)) for thejp2�i state. Therefore, suess probabilities for thestates jp2�i, j�2i, and j�3i in the leading order in �an be estimated asP010 � �4�4; (24a)P021 � 2�6�6(1� d); (24b)P111 � 4�2�2(1� d)2: (24)Detetion ine�ieny leads to generation of an ensem-ble of pure states fP010; j�i;P021; j�2i;P11j�3ig with therespetive probabilities P010, P021, and P111. Compar-ing them, we see that P021 � P010; P111 in the �� � 1approximation used in pratie, whih allows ignoringthe in�uene of j�2i. Then the density matrix an beapproximately written as� = �1� P111P010 + P111 � jp2�ihp2�j++�1� P010P010 + P111 � j�3ih�3j: (25)The �delity F = hp2�j�jp2�iof the sheme in Fig. 1 strongly depends on the e�-ieny of the detetors and on the value of �. To showthis, we take the j�3i state in the form jp2�ip in the�� � 1 approximation. Then the �delity of the shemeis equal to F = P010 + P111 p2�p1 + 2�2P010 + P111 : (26)If the parameter � takes a large value (in limit ase�!1), then F ! 1, whih is related to the j�i state

beoming indistinguishable from the oherent state j�ias � inreases. In the limit of small values of �, inwhih we are more interested, the �delity is mainly de-termined by the ratio of the probability P010 to P111.Under this ondition, the �delity between the �nal state(25) and the ideal output (9) is proportional to1� P111P010 + P111 :Comparing the error probability P111 in Eq. (24) withthe suess probability P010 in Eq. (24a), we see that inorder to minimize the in�uene of the undeteted errorevents (F � 1) while keeping the value of � small, weneed to substantially improve the detetion e�ieny(1� d � ��) in the sheme in Fig. 1. If the detetione�ieny is omparable to the experimental parameter�� (1 � d � ��), we reah half �delity for the sheme(F � 0:5). Another way to improve �delity of the non-linear �(2) Mah �Zehnder interferometer is to use arystal with a high value of the seond-order susepti-bility (whih in our ase means inreasing the value ofthe parameter �), leaving the intensity of the inidentlight to be low. The in�uene of the terms with morethan three down-onverted photons on the �delity ofonditional prodution of the j�i state is negligible.Examining the �nal outome of the studied �(2)Mah �Zehnder interferometer may lead to the fol-lowing question: how an one down-onverted photonause a notieable variane in the pump �eld statis-tis and, as onsequene, give a rise to entanglement?We suppose that we take the wave funtion j11i13j�ipas an input to Hamiltonian (2) (Fig. 1) and onsiderthe outome of the seond term of Hamiltonian (2) onthe input state j11i13j�ip. Then the following hain oftransformations holds:â+p â1â3j11i13j�ip == exp(�2=2)â+p â1â3j11i12 1Xl=0 �lpl! jlip !! exp(�2=2)j00i13 1Xl=0 �lpl + 1pl! jl+1ip(m = l+1)!! exp(�2=2)� j00i13 1Xm=1 �mmpm! jmip ==p1 + �2 j00i13j�ip: (27)As an be seen from (27), the spontaneous up-onver-sion leads to to the j�i state when two down-onvertedphotons are annihilated. The suess probability of theup-onversion is omparable to the suess probability621



S. A. Podoshvedov ÆÝÒÔ, òîì 131, âûï. 4, 2007of the generation of a pair of down-onverted photons(� �2�2) if we stok two input down-onverted pho-tons. Where an two down-onverted photons arise in-side the rystal? Spontaneous down-onversion � theproess reverse to spontaneous up-onversion � servesas a resoure for the pair of down-onverted photonswith the suess probability also proportional to �2�2.Therefore, two suessive proesses of reation and an-nihilation of two down-onverted photons generate thej�i state. The total suess probability of suh a ��ip-�op� of a pair of the down-onverted photons is of thesame order as the suess probability of the generationof two pairs of down-onverted photons (� �4�4). Asshown above, the single photon used in the all-optialsheme of the nonlinear �(2) Mah �Zehnder interfer-ometer serves as a trigger to identify the j�i state. In-deed, estimations for the input stateâ+1 â+3 âpj10i13j�ip ! p2 j21i12j�ip(down-onversion),â+p â1â3p2 j21i13j�ip ! 2p1 + �2 j10i13j�ip(up-onversion), and hain (27) show that the fatorsfor the j�i state are di�erent from eah other dependingon the presene or absene of a single photon at the in-put. This di�erene of the fators is su�ient to obtaina pure nonlassial j�i state at the output of the nonlin-ear �(2) Mah �Zehnder interferometer. In the urrentexperiments for generating multiphoton entanglementby using spontaneous parametri down-onversion [23℄,the photon pair generation rate per pulse (�2�2 in theunits used) is of the order of 5 � 10�4. Then the gen-eration rate for the expeted j�i state is of the order10�7.We omment on the feasibility of the studied non-linear �(2) Mah �Zehnder interferometer. Our resultsshow that the j�i state manifests its nonlassial prop-erties for small values of the parameter �. It is onve-nient to pass to real values of the �eld energy withinthe oherene volume from the dimensionless quantity�2 that gives the number of photons in the pumpingmode. We therefore haven = �2 = E20Voh8�~!0 = I�h�f;where I is the power, � is the wavelength, and�f = �!=2� is the spetral bandwidth. Then, forinstane, hoosing n = �2 = 3 (suh that the squeezingdegree of the j�i state takes the minimum value, seeFig. 2a), �f = 109 Hz, and � = 0:5�m, we obtain thepower of light 1:2 �10�9 W. This light �ux power is too
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