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MODIFIED NONCLASSICAL COHERENT STATE: SQUEEZING,ANTIBUNCHING, SUB-POISSONIAN PHOTON STATISTICS,REALIZATION SCHEME WITH THE �(2)-NONLINEARITY,AND GENERATION OF A MACROSCOPIC ENTANGLED STATES. A. Podoshvedov *S
hool of Computational S
ien
es, Korea Institute for Advan
ed Study130-722, Seoul, Republi
 of South KoreaRe
eived 17 August 2006The nonlinear �(2) Ma
h �Zehnder interferometer is proposed as a devi
e for 
onditional generation of a mo-di�ed 
oherent non
lassi
al state. We show that the generated ma
ros
opi
 state exhibits non
lassi
al e�e
ts,su
h as squeezing, photon antibun
hing, and sub-Poissonian statisti
s. The modi�ed 
oherent state generatesa ma
ros
opi
 entangled state. The s
heme works without the photon number resolving dete
tion but requireshigh-e�
ien
y photodete
tors. We explain a me
hanism of generation of the modi�ed 
oherent non
lassi
alstate.PACS: 42.50.Dv 1. INTRODUCTIONThe S
hrödinger 
at paradox [1℄ is a famous illustra-tion of entanglement between mi
ros
opi
 (a radioa
-tive atom) and ma
ros
opi
 (a 
at) systems; 
at-typestates given by quantum superpositions of ma
ros
opi
systems are a dire
t 
onsequen
e of this e�e
t. Catstates play an essential role in both understanding ofthe unusual behavior of ma
ros
opi
 entangled systemsand quantum information pro
essing [2℄. As a result,the problem of generation of 
at states attra
ts 
on-siderable interest [3�10℄. S
hrödinger-
at-type states[3�7℄ have been realized in quantized 
avity �elds [8℄,ion traps [9℄, and Rydberg atoms [10℄. Proto
ols forteleporting 
at states in free propagating �elds havebeen studied in [11℄. So far, a number of other possi-ble appli
ations in
luding quantum 
omputation [12℄,quantum nonlo
ality test [13℄, entanglement puri�
a-tion [14℄, error 
orre
tion [15℄, and quantum metrol-ogy [16℄ have been extensively studied with entangled
oherent states.When we talk about a 
at state, we usually meana superposition state of two 
oherent states with equalamplitudes but opposite phases. The Kerr nonlinearity*E-mail: sap�kias.re.kr

or the �(3)-nonlinearity is 
onsidered to be the resour
efor the generation of a 
oherent superposition [3℄. Butthere are signi�
ant di�
ulties in pra
ti
ally realizingthe 
oherent state superposition with a large ampli-tude due to small values of the �(3)-nonlinearity of the
urrently available nonlinear media [7℄. The most at-tra
tive s
hemes for generation of the free propagating
oherent state superposition were developed in [17℄. Inessen
e, these s
hemes are ampli�
ation s
hemes for thesuperposition of small-amplitude 
oherent states ob-tained from the weak Kerr nonlinearity. These s
hemesuse the squeezed single-photon and simple all-opti
aloperations to amplify the amplitude of the free propa-gating 
oherent state superposition with high �delity.The s
heme in [17℄ has been extensively analyzed in [18℄as regards 
onsiderably redu
ing the required nonlineare�e
t by using simple and e�
ient opti
al elements.Re
ently, we have proposed using the �(2)-nonlinearity (with �(2) � �(3)) for produ
ing ma
ro-s
opi
 entangled states [19; 20℄ that 
onsist of 
oherentand modi�ed 
oherent states. In this paper, wepropose a s
heme of a nonlinear �(2) Ma
h �Zehnderinterferometer to 
onditionally produ
e this puremodi�ed 
oherent state, whi
h we 
all the j�i state.In a 
ertain sense, the proposed s
heme of the non-615



S. A. Podoshvedov ÆÝÒÔ, òîì 131, âûï. 4, 2007linear �(2) Ma
h �Zehnder interferometer resemblesthe nonlinear Ma
h �Zehnder interferometer with aninternal Kerr medium in one arm [6℄, but the outputsof these devi
es are di�erent. We present a physi
alexplanation of the generation of the j�i state. We showthat the j�i state has non
lassi
al properties su
h assqueezing, photon antibun
hing, and sub-Poissonianstatisti
s. We show how the j�i state 
an be 
onvertedto a ma
ros
opi
 entangled state. The amount ofentanglement stored in the entangled state dependson the amplitude of the 
oherent state that pumpsthe nonlinear �(2) Ma
h �Zehnder interferometer. Weshow that the nonlinear �(2) Ma
h �Zehnder interfer-ometer works without spe
ial dete
tors dis
riminatingbetween one- and multi-photon number states [21℄.We analyze the requirements that must be imposedon dete
tion e�
ien
y of the �(2) Ma
h �Zehnderinterferometer to su

essfully generate the j�i state.2. A NONLINEAR �(2) MACH�ZEHNDERINTERFEROMETERThe s
heme in Fig. 1 essentially involves a simpleMa
h �Zehnder interferometer with two input and twooutput ports. A nonlinear �(2) 
rystal is pla
ed withinone arm of the interferometer. We 
all su
h an in-terferometer with an internal se
ond-order nonlinear-ity the nonlinear �(2) Ma
h �Zehnder interferometer.The nonlinear �(2) Ma
h �Zehnder interferometer isturned on if we dire
t a powerful beam in the 
oherentstate jp2�ip (the amplitude of the 
oherent state �is supposed to be real) to the spontaneous parametri
down-
onverter with type-I phase mat
hing (SPDCI).Before we turn on the powerful mode for theSPDCI, the nonlinear �(2) Ma
h �Zehnder interferom-eter is a simple Ma
h �Zehnder interferometer withequal opti
al paths. Below, we deal with only beamsplitters of the Ma
h �Zehnder interferometer with theHadamard unitary operationH = (j0i+ j1i) h0j+ (j0i � j1i) h1jp2 :If we pla
e two photodete
tors behind the routes ofthe Ma
h �Zehnder interferometer, then there is 100%probability that the photon rea
hes the dete
tor D1and 0% probability that it rea
hes another dete
torD3 in Fig. 1. It is therefore perfe
tly legitimate to saythat the photon takes both the transmitted and there�e
ted paths between the two beam splitters or, inother words, that the photon is in the 
oherent super-position

p2p1D2 BS1BS 1j1i 1 3pj21=2�i BS 1 D1D3
1 2 22Fig. 1. Experimental arrangement of the nonlinear �(2)Ma
h �Zehnder interferometer. The s
heme involves asour
e of single photons and a Ma
h � Zehnder interfer-ometer with equal opti
al paths. Parametri
 down-
on-verters with type-I phase mat
hing are inserted intoone of the routes of the Ma
h � Zehnder interferome-ter. A photon that enters the interferometer alwaysstrikes dete
tor D1 if the SPDCI is turned o�. By turn-ing SPDCI on, we redire
t the photon from dete
tor D1to dete
tor D3 be
ause the single-parti
le interferen
eis modi�ed due to the intera
tion of the photons withthe �(2)-nonlinearity. The photon ending up in dete
torD2 leads to 
onditional generation of the ma
ros
opi
non
lassi
al state j�i. D1, D2, and D3 are registeringdete
tors used in the auxiliary modes. BS is the no-tation for a beam splitter with the Hadamard unitaryoperationj10i12 + j01i12p2
arrying whi
h-path information.We next turn on a powerful �eld in the pumpingmode of the SPDCI, giving the total input statej	IN i = 1p2 (j100i+ j010i)123 jp2�ip (1)within the nonlinear �(2) Ma
h �Zehnder interferom-eter, with the auxiliary three generated modes of theSPDCI taken into a

ount. Hen
eforth, the subs
riptsof the states indi
ate the opti
al modes of photons [22℄.For simpli
ity, we assume that the dynami
al de-s
ription of the SPDCI involves three modes with the
orresponding annihilation operators â1, â2, and âp andthat the Hamiltonian [19; 20℄Ĥ = i~r2 �â+1 â+3 âp � â+p â3â1� (2)is used. The 
oupling 
oe�
ient r in (2) is re-lated to the nonlinear se
ond-order sus
eptibility tensor616



ÆÝÒÔ, òîì 131, âûï. 4, 2007 Modi�ed non
lassi
al 
oherent state : : :�(2) [19; 20℄. The e�e
t of the �(2)-nonlinearity of themedium has been studied in detail in [19; 20℄. Beforewe pro
eed with the analysis, we re
all the main resultsin [19; 20℄. The input state j100i123j�ip is transformedinto the output state [20℄j	(1)outi = 1Xn=0 jn+ 1i1j1i2jni3j�(1)n ip; (3a)with the output states in the pumping modes givenby [20℄j�(1)n ip = exp(��2)�� 1Xl=0 �p2��l+np(l + n)! f (1)(2(l+n)+1);n+1(�)jlip: (3b)By analogy with Eqs. (3a) and (3b), if the input stateis prepared in the state j010i123j�ip, then its outputbe
omes [19℄j	(0)outi = 1Xn=0 jni1j1i2jni3j�(0)n ip; (4a)where the wave fun
tions j�(0)n ip arej�(0)n ip = exp(��2)�� 1Xl=0 �p2��l+np(l + n)! f (0)2(l+n);n+1(�)jlip: (4b)The notation in Eqs. (3a)�(4b) is the same as in [19; 20℄.We note that the wave amplitudes f (1)(2(l+n)+1);n+1 andf (0)2(l+n);n+1 in Eqs. (3b) and (4b) satisfy the sets of lin-ear di�erential equations presented in [19; 20℄.By virtue of the linearity of quantum me
hani
s,the output of Hamiltonian (2) with input 
ondition (1)
an be expressed asj	outi = 1p2 nj	(0)outi+ j	(1)outio : (5)The overall output j	outi 
an be rewritten expli
-itly asj	outi = 1p2 nj100i123j�(1)0 ip + j010i123j�(0)0 ip ++j111i123j�(0)1 ip + j201i123j�(1)1 ip + : : :o : (6)Using the asymptoti
 de
omposition for the wave am-plitudes f (0)2l;k(�) and f (1)2l+1;k(�) in the leading order withrespe
t to the small parameter � � 1 [19; 20℄ that 
har-a
terizes the strength of the SPDCI and is dire
tly pro-

portional to the 
omponent of the tensor of the se
ond-order sus
eptibility,f (0)2l;1(�) = 1� l�22 ; f (1)2l+1;1(�) = 1� l�2;f (00)2l;2 (�) = �pl �1� �2(5l � 4)6 � ;f (00)2l+3;2(�) = �p2(l+ 1) �1� �2(4l + 1)3 � ; (7)we �nd the nonnormalized wave fun
tions in the pump-ing mode asj�(0)0 ip = jp2�ip � p2��2p1 + 2�22 jp2�ip; (8a)j�(1)0 ip = jp2�ip �p2��2p1 + 2�2 jp2�ip; (8b)j�(0)1 ip = p2����1� �26 � jp2�ip�� 5p2��2p1 + 2�26 jp2�ip! ; (8
)j�(1)1 ip = p2����1� �23 � jp2�ip�� 4p2��2p1 + 2�23 jp2�ip! ; (8d)where the normalized ma
ros
opi
 state j�i is de�nedby j�i = exp���22 ��p1 + �2 1Xl=1 �llpl! jli: (9)To �nish performan
e of the nonlinear �(2) Ma
h �Zehnder interferometer in Fig. 1, we erase the whi
h-way information that resides in modes 1 and 2. Twosingle-photon dete
tors D1 and D2 are atta
hed to theoutputs of the output beam splitter of the nonlinear�(2) Ma
h �Zehnder interferometer. The beam splitterwith the unitary Hadamard transformation produ
esthe transformationsÛH j100i123 = 1p2 fj100i+ j010ig123 ;ÛH j010i123 = 1p2 fj100i � j010ig123 ;ÛH j201i123 = 12 nj201i+p2j111i+ j021io123 ;ÛH j111i123 ! 1p2 fj201i � j021ig123 : (10)
Then, after superimposing modes 1 and 2 on the beamsplitter, the state j	outi (Eq. (6)) be
omes617



S. A. Podoshvedov ÆÝÒÔ, òîì 131, âûï. 4, 2007j	outi = 12 np100j100i123j�ip�p010j010i123jp2�ip++ p201j201i123j�1ip � p021j021i123j�2ip ++p111j111i123j�3ip + : : : g ; (11)where we introdu
e the normalized statesj�ip = jp2�ip � 3p2��2p1 + 2�2 jp2�ip4r1� 3�2�2 + 9�2�4(1 + 2�2)8 ; (12a)j�1ip == jp2�ip � 13p2��2p1 + 2�2 jp2�ip12(1� �2=4)vuut1� 13�2�23(1��2=4)+ 13p2��2p1+2�212(1��2=4) !2 ; (12b)j�2ip = jp2�ip + 3p2�p1 + 2�2 jp2�ipp1 + 12�2 + 18�2(1 + 2�2) ; (12
)j�3ip == jp2�ip � 4p2��2p1 + 2�2 jp2�ip3(1� �2=3)vuut1� 16�2�23(1��2=3)+ 4p2��2p1+2�23(1� �2=3) !2 : (12d)The wave amplitudes fijk in Eq. (11), where the sub-s
ripts indi
ate the number of the in
oming down-
on-verted photons in modes 1, 2, and 3, are given byp100 = 2r1� 32�2 + 9�2�4(1 + 2�2)8 ; (13a)p010 = ���2p1 + 2�2p2 ; (13b)p201 = 2p2���1� �24 ���vuut1� 13�2�23(1��2=4)+ 13p2��2p1+2�212(1��2=4) !2; (13
)p021 = �p2��36 p1+12�2+18�2(1+2�2); (13d)p111 = 2���1� �23 ���vuut1� 1�16�2�23(1��2=3)+ 4p2��2p1+2�23(1��2=3) !2: (13e)

Depending on the result of the single-photon dete
-tion, the state j	outi in Eq. (11) be
omes either j�ipin Eq. (12a) if dete
tor D1 �res or jp2�ip in Eq. (9)if D2 does. If the pair of dete
tors D1 and D3, D2,and D3 or all three dete
tors D1 and D2, D3 registerthree photons, then the total state j	outi in Eq. (11)is proje
ted onto one of the states j�iip, i = 1; 2; 3(Eqs. (12b)�(12d)). We are interested in generationof the jp2�ip state. The overall su

ess probability ofthe 
onditional produ
tion of the state in the s
hemein Fig. 1 is equal to�2�4(1 + 2�2)2 :As noted above, the photon always strikes the de-te
tor D1 and never dete
tor D2 in the arrangement ofthe Ma
h �Zehnder interferometer used in Fig. 1 with-out pumping of the SPDCI due to single-parti
le in-terferen
e. But if we introdu
e a 
ertain �xed-timedelay for the photon to rea
h the output beam splitterof the Ma
h �Zehnder interferometer, it may happenthat a photon 
ertainly emerges at dete
tor D2 insteadof D1. Su
h a time delay 
an be organized by insertinga glass with some thi
kness. If we insert the glass inone of the arms of the Ma
h �Zehnder interferometerwith an arbitrary thi
kness, we observe that the pho-ton may strike both dete
tors D1 and D2 with somesu

ess probabilities. We now use a powerful �eld forthe SPDCI in a 
oherent state as the �time delay� fora single photon. Although the nonlinear e�e
t of theintera
tion of light �elds on the �(2)-nonlinearity is typ-i
ally too weak, it 
an nevertheless play the role of aglass plate. Superimposing the modes of the Ma
h �Zehnder interferometer on the output beam splitterleads to interferention of the output states in the pump-ing modes. If a single photon is dete
ted at dete
torD1, the superpositions in (8a) and (8b) are superim-posed on ea
h other with equal phases and result is thestate (12a) in whi
h the 
ontribution of the 
oherentstates prevail over that of the j�i state. If the dete
torD2 registers a single photon, but the other dete
torsdo not, then superpositions (8a) and (8b) are summedwith opposite phases, whi
h leads to the disappearan
eof the 
oherent state at the output. Thus, the nonlin-ear �(2) Ma
h �Zehnder interferometer in Fig. 1 allowsthe photon to take the route of dete
tor D1 with almostunit su

ess probability (Eq. (13a)) and the rare 
han
e(Eq. (13b)) for the same photon to 
ome out from theforbidden route of the Ma
h �Zehnder interferometerleads to the generation of the j�i state.618



ÆÝÒÔ, òîì 131, âûï. 4, 2007 Modi�ed non
lassi
al 
oherent state : : :3. NONCLASSICAL PROPERTIES OF THE j�iSTATEWe now study non
lassi
al properties of the gener-ated single-mode ma
ros
opi
 state j�i with an arbi-trary amplitude of the parameter � (Eq. (9)). Thereare three prin
ipal phenomena that demonstrate thenon
lassi
al 
hara
ter of light: squeezing, photon an-tibun
hing, and sub-Poissonian photon statisti
s. Westart with squeezing. We de�ne one of the two quadra-ture operators asX̂ = 12 �â exp(�i') + â+ exp(i')� ; (14)where ' is the phase of the lo
al os
illator, assumedto be in a large-amplitude 
oherent state. Using thede�nition of the j�i state in Eq. (9), we obtain theexpe
tation values of operators ash�jâj�i = �2 + j�j21 + j�j2 ; (15a)h�jâ2j�i = �2 3 + j�j21 + j�j2 ; (15b)h�jâ+âj�i = j�j4 + 3j�j2 + 11 + j�j2 : (15
)Using Eqs. (15a)�(15
), we 
an 
al
ulate the varian
eof the measured quadrature operator X̂,V̂ �X̂� � ��X̂�2 = hX̂2i � hX̂i2;asV̂j�i �X̂� = j�j4+4j�j2 �1� 
os2('��')�+34 (1+j�j2)2 ; (16a)where '� is the phase of � (i.e., � = j�j exp(i'�)).The degree of single-mode squeezing is assessed by thes
aled quantity S, whi
h takes the minimum value at'� � ' = 0;��:S �X̂� � S(x) = V̂j�i �X̂�V̂j�i �X̂� == 3 + j�j4(1 + j�j2)2 = 1� 2 x� 1(x+ 1)2 ; (16b)where V̂j�i �X̂� = 0:25 is the varian
e for the 
oherentj�i state and x = j�j2. In Fig. 2a, we draw the s
aleddegree S(x) as a fun
tion of x = j�j2. We see fromFig. 2a that the degree of squeezing S(x) is greater thanone (to be more pre
ise, we have to talk about de-sque-ezing in the range) when 0 � x � 1. As x be
omes

greater than 1, squeezing appears (S(x) < 1), asymp-toti
ally approa
hing unity (S(x) ! 1) as x ! 1.There is the value x = j�j2 = 3 at whi
h the degree ofsqueezing takes the minimum value Smin(x) = 0:75.To 
hara
terize the statisti
al properties of the lightbeam in the modi�ed 
oherent state j�i, we introdu
ethe se
ond-order 
orrelation fun
tiong(2)(0) = hâ+2â2ihâ+âi2 : (17a)It is well known that if g(2)(�) > g(2)(0), where � isthe time delay of arrival of one photon, with anotherphoton arriving at time t, then there is a tenden
yfor the photons to arrive in pairs. This 
ase is re-ferred to as photon bun
hing. The opposite situationg(2)(�) < g(2)(0) 
orresponds to the 
ase where 
losepairs 
annot be emitted. It is 
alled the antibun
h-ing of photons. We have g(2)(0) ! 1 on a su�
ientlylong time s
ale, and therefore a �eld for whi
h g2 < 1(we now use g2 instead of g(2)(0)) always exhibits anti-bun
hing on some time s
ale. The analyti
 expressionfor g2 for the state j�i 
an be straightforwardly derivedfrom de�nitions (9) and (17a) asg2 = j�j2 �j�j2 + 1� �j�j4 + 5j�j2 + 4�(j�j4 + 3j�j2 + 1)2 == x(x + 1)(x2 + 5x+ 4)(x2 + 3x+ 1)2 : (17b)We plot g2 versus x in Fig. 2b. This dependen
e showsthat the light generated by the nonlinear �(2) Ma
h �Zehnder interferometer always exhibits photon anti-bun
hing (g2 < 0), independent of the value of �.We next dis
uss the sub-Poisson statisti
s in themode o

upied by the state j�i. The photon-numbervarian
e of the mode is given byF = h�n̂2ihn̂i = j�j2 �j�j4 + 2j�j2 + 2�(j�j2 + 1) (j�j4 + 3j�j2 + 1) == x(x2 + 2x+ 2)(x+ 1)(x2 + 3x+ 1) : (18)From Fig. 2b, we see that the j�i state exhibits asub-Poisson statisti
s F < 1 not depending on the valueof the parameter �, whi
h 
an be 
onsidered the sizeof the j�i state. Finally, we note the photon numberdistribution of the j�i statePj�i = jhnj�ij2 = exp ��j�j2� j�j2(n�1)n2(1 + j�j2)2 n! : (19)619
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Fig. 2. The dependen
ies of the squeezing parameter S (a) and the se
ond-order 
orrelation fun
tion g2 and Fano fa
tor Fof the j�i state on its intensity x = �2 (b)4. MACROSCOPIC ENTANGLED STATEAt this stage, it is worth 
onsidering a possibilityof 
onverting the j�i state to a ma
ros
opi
 entangledstate. For this, we use the generalized form of the j�istate (Eq. (9)) involving the unitary displa
ement op-erator D̂(�) = exp (�â+ � ��â):j�i = 1�p1 + �2 ��D̂(�)â+j0i+ j�j2j�i� : (20)We then apply the unitary transformationÛ = P̂p2(' = �=2)B̂(� = ��=4)P̂p2(' = �=2);where P̂ (') = exp ��i'â+â�and B̂(�) = exp ��i� �â+1 â2 + â+2 â1�� ;to the j�i state. Here, p1 and p2 are the output modesof the Û transformation. This unitary transformationis e�e
ted by two �=2 phase shifters and one balan
edbeam splitter lo
ated between these two phase shiftersin the p2 mode. The beam-splitter transformationmaps the input j�i state into the entangled normalizedstateÛ jp2�ip = j�+ip1p2 = j�ip1 j�ip2 + j�ip1 j�ip2s2�1 + �21 + �2 � : (21)This state is analogous to the state studied in [20℄, butwith the plus sign. We estimate the amount of entan-glement stored in the states j�+ip1p2 by 
al
ulating the
on
urren
e of the state de�ned in the general form asC (j i) =q2 (1� Sp(�2A)) ;

where �A is the redu
ed density matrix of subsystemA [20℄. Using the orthonormal basis fj0ipi ; j1ipig,j0ipi = j�ipi ;j1ipi = j�ipi � aj�ipip1� a2 ; i = 1; 2; (22a)where a = haj�i = �=p1 + �2 ;we rewrite the state j�+ip1p2 Eq. (21) asj�+ip1p2 == �2aj00i+p1� a2 (j01i+ j10i)�p1p2p2(1 + a2) : (22b)The 
on
urren
e of the state j�+ip1p2 is then given byC (j�+ip1p2) = 1� a21 + a2 = 11 + 2�2 : (23)The 
on
urren
e of j�+ip1p2 depends on the inten-sity �2 of the j�i state. It takes the maximum valueC (j�+ip1p2) = 1 at � = 0, when the entangled statej�+ip1p2 in Eq. (21) is 
onverted into the one-photonstate, j�+ip1p2 ! (j10i+ j01i)p1p2p2 :If the size � of the entangled state j�+ip1p2 approa
hesthe in�nity (� ! 1), the 
on
urren
e goes to zero(C (j�+ip1p2) ! 0). This fa
t is in a

ordan
e withFigs. 2a and 2b. As 
an be seen from Figs. 2a and 2b,the squeezing S and the parameters g2 and F approa
hunity (S; g2; F ! 1) as � ! 1, whi
h shows that thej�i state may be
ome indistinguishable from the usual
oherent state j�i for large values of �.620



ÆÝÒÔ, òîì 131, âûï. 4, 2007 Modi�ed non
lassi
al 
oherent state : : :We have shown that generation of the ma
ros
opi
j�i state by using the nonlinear �(2) Ma
h �Zehnder in-terferometer 
an be realized without photon number re-solving dete
tion. We now formulate the requirementsthat must be imposed on the dete
tion e�
ien
y ins
heme 1. We assume the dete
tion e�
ien
y of pho-todete
tors in Fig. 1 to be d. Then, the probabilityfor the dete
tor not to register one photon (the fail-ure probability) is 1� d. It follows from Eq. (11) thatthere are two possible failure events, whi
h 
an be takenfor the right out
omes when either the third dete
toror the �rst and third dete
tors simultaneously registerany photons, while the se
ond dete
tor registers ar-rival of some photons. This means that photodete
torsare ine�
ient in pra
ti
e and may miss some 
omingphotons, and we 
an therefore sometimes mistake thestates j�2i and j�3i (Eqs. (9), (12
), and (12d)) for thejp2�i state. Therefore, su

ess probabilities for thestates jp2�i, j�2i, and j�3i in the leading order in �
an be estimated asP010 � �4�4; (24a)P021 � 2�6�6(1� d); (24b)P111 � 4�2�2(1� d)2: (24
)Dete
tion ine�
ien
y leads to generation of an ensem-ble of pure states fP010; j�i;P021; j�2i;P11j�3ig with therespe
tive probabilities P010, P021, and P111. Compar-ing them, we see that P021 � P010; P111 in the �� � 1approximation used in pra
ti
e, whi
h allows ignoringthe in�uen
e of j�2i. Then the density matrix 
an beapproximately written as� = �1� P111P010 + P111 � jp2�ihp2�j++�1� P010P010 + P111 � j�3ih�3j: (25)The �delity F = hp2�j�jp2�iof the s
heme in Fig. 1 strongly depends on the e�-
ien
y of the dete
tors and on the value of �. To showthis, we take the j�3i state in the form jp2�ip in the�� � 1 approximation. Then the �delity of the s
hemeis equal to F = P010 + P111 p2�p1 + 2�2P010 + P111 : (26)If the parameter � takes a large value (in limit 
ase�!1), then F ! 1, whi
h is related to the j�i state

be
oming indistinguishable from the 
oherent state j�ias � in
reases. In the limit of small values of �, inwhi
h we are more interested, the �delity is mainly de-termined by the ratio of the probability P010 to P111.Under this 
ondition, the �delity between the �nal state(25) and the ideal output (9) is proportional to1� P111P010 + P111 :Comparing the error probability P111 in Eq. (24
) withthe su

ess probability P010 in Eq. (24a), we see that inorder to minimize the in�uen
e of the undete
ted errorevents (F � 1) while keeping the value of � small, weneed to substantially improve the dete
tion e�
ien
y(1� d � ��) in the s
heme in Fig. 1. If the dete
tione�
ien
y is 
omparable to the experimental parameter�� (1 � d � ��), we rea
h half �delity for the s
heme(F � 0:5). Another way to improve �delity of the non-linear �(2) Ma
h �Zehnder interferometer is to use a
rystal with a high value of the se
ond-order sus
epti-bility (whi
h in our 
ase means in
reasing the value ofthe parameter �), leaving the intensity of the in
identlight to be low. The in�uen
e of the terms with morethan three down-
onverted photons on the �delity of
onditional produ
tion of the j�i state is negligible.Examining the �nal out
ome of the studied �(2)Ma
h �Zehnder interferometer may lead to the fol-lowing question: how 
an one down-
onverted photon
ause a noti
eable varian
e in the pump �eld statis-ti
s and, as 
onsequen
e, give a rise to entanglement?We suppose that we take the wave fun
tion j11i13j�ipas an input to Hamiltonian (2) (Fig. 1) and 
onsiderthe out
ome of the se
ond term of Hamiltonian (2) onthe input state j11i13j�ip. Then the following 
hain oftransformations holds:â+p â1â3j11i13j�ip == exp(�2=2)â+p â1â3j11i12 1Xl=0 �lpl! jlip !! exp(�2=2)j00i13 1Xl=0 �lpl + 1pl! jl+1ip(m = l+1)!! exp(�2=2)� j00i13 1Xm=1 �mmpm! jmip ==p1 + �2 j00i13j�ip: (27)As 
an be seen from (27), the spontaneous up-
onver-sion leads to to the j�i state when two down-
onvertedphotons are annihilated. The su

ess probability of theup-
onversion is 
omparable to the su

ess probability621
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onverted photons(� �2�2) if we sto
k two input down-
onverted pho-tons. Where 
an two down-
onverted photons arise in-side the 
rystal? Spontaneous down-
onversion � thepro
ess reverse to spontaneous up-
onversion � servesas a resour
e for the pair of down-
onverted photonswith the su

ess probability also proportional to �2�2.Therefore, two su

essive pro
esses of 
reation and an-nihilation of two down-
onverted photons generate thej�i state. The total su

ess probability of su
h a ��ip-�op� of a pair of the down-
onverted photons is of thesame order as the su

ess probability of the generationof two pairs of down-
onverted photons (� �4�4). Asshown above, the single photon used in the all-opti
als
heme of the nonlinear �(2) Ma
h �Zehnder interfer-ometer serves as a trigger to identify the j�i state. In-deed, estimations for the input stateâ+1 â+3 âpj10i13j�ip ! p2 j21i12j�ip(down-
onversion),â+p â1â3p2 j21i13j�ip ! 2p1 + �2 j10i13j�ip(up-
onversion), and 
hain (27) show that the fa
torsfor the j�i state are di�erent from ea
h other dependingon the presen
e or absen
e of a single photon at the in-put. This di�eren
e of the fa
tors is su�
ient to obtaina pure non
lassi
al j�i state at the output of the nonlin-ear �(2) Ma
h �Zehnder interferometer. In the 
urrentexperiments for generating multiphoton entanglementby using spontaneous parametri
 down-
onversion [23℄,the photon pair generation rate per pulse (�2�2 in theunits used) is of the order of 5 � 10�4. Then the gen-eration rate for the expe
ted j�i state is of the order10�7.We 
omment on the feasibility of the studied non-linear �(2) Ma
h �Zehnder interferometer. Our resultsshow that the j�i state manifests its non
lassi
al prop-erties for small values of the parameter �. It is 
onve-nient to pass to real values of the �eld energy withinthe 
oheren
e volume from the dimensionless quantity�2 that gives the number of photons in the pumpingmode. We therefore haven = �2 = E20V
oh8�~!0 = I�h
�f;where I is the power, � is the wavelength, and�f = �!=2� is the spe
tral bandwidth. Then, forinstan
e, 
hoosing n = �2 = 3 (su
h that the squeezingdegree of the j�i state takes the minimum value, seeFig. 2a), �f = 109 Hz, and � = 0:5�m, we obtain thepower of light 1:2 �10�9 W. This light �ux power is too

low to ensure the observation of the j�i state with asu

ess probability a

eptable in experiment and witha small value of the parameter �. Thus, resonan
enonlinear three-photon pro
esses leading to huge va-lues of the �(2)-nonlinearity must be used to in
reasethe su

ess probability of the j�i state generation witha small value of �. As regard a possible strategy tostudy this problem, we note that if we su

essfully gen-erated the j�i state with a su�
iently large value of �,we 
an pass the light before dete
tion through a linearabsorber with some intensity transmission 
oe�
ient.The j�i state is a non
lassi
al state, whi
h is 
on�rmedby the 
al
ulation of the squeezing degree and anti-bun-
hing of photo
ounts, the 
hara
teristi
s being the bestknown and the simplest 
riterion of non
lassi
ality. It iswell known that non
lassi
al light remains non
lassi
aleven after an arbitrarily strong linear absorption [24℄:as 
onsequen
e, non
lassi
al light gives a rise to entan-glement [25℄. The study of the non
lassi
al propertiesof the j�i state, its possible appli
ations, and improve-ment of the initial s
heme in Fig. 1 deserves furtherinvestigations.In 
on
lusion, we have studied a me
hanism of gen-eration of a non
lassi
al j�i state using the �(2)-nonli-nearity. For this, an all-opti
al s
heme of the nonlin-ear �(2) Ma
h �Zehnder interferometer 
onsisting of asour
e of single photons and a Ma
h �Zehnder interfer-ometer with a 
rystal with the se
ond-order sus
epti-bility inserted into one arm is proposed. We identifythe j�i state through the single photon in the forbiddenD2 route of the Ma
h �Zehnder interferometer.REFERENCES1. E. S
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