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The nonlinear x(® Mach - Zehnder interferometer is proposed as a device for conditional generation of a mo-
dified coherent nonclassical state. We show that the generated macroscopic state exhibits nonclassical effects,
such as squeezing, photon antibunching, and sub-Poissonian statistics. The modified coherent state generates
a macroscopic entangled state. The scheme works without the photon number resolving detection but requires
high-efficiency photodetectors. We explain a mechanism of generation of the modified coherent nonclassical

state.

PACS: 42.50.Dv

1. INTRODUCTION

The Schrodinger cat paradox [1] is a famous illustra-
tion of entanglement between microscopic (a radioac-
tive atom) and macroscopic (a cat) systems; cat-type
states given by quantum superpositions of macroscopic
systems are a direct consequence of this effect. Cat
states play an essential role in both understanding of
the unusual behavior of macroscopic entangled systems
and quantum information processing [2]. As a result,
the problem of generation of cat states attracts con-
siderable interest [3-10]. Schrodinger-cat-type states
[3-7] have been realized in quantized cavity fields [8],
ion traps [9], and Rydberg atoms [10]. Protocols for
teleporting cat states in free propagating fields have
been studied in [11]. So far, a number of other possi-
ble applications including quantum computation [12],
quantum nonlocality test [13], entanglement purifica-
tion [14], error correction [15], and quantum metrol-
ogy [16] have been extensively studied with entangled
coherent states.

When we talk about a cat state, we usually mean
a superposition state of two coherent states with equal
amplitudes but opposite phases. The Kerr nonlinearity
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or the y(3)-nonlinearity is considered to be the resource
for the generation of a coherent superposition [3]. But
there are significant difficulties in practically realizing
the coherent state superposition with a large ampli-
tude due to small values of the y(®-nonlinearity of the
currently available nonlinear media [7]. The most at-
tractive schemes for generation of the free propagating
coherent state superposition were developed in [17]. In
essence, these schemes are amplification schemes for the
superposition of small-amplitude coherent states ob-
tained from the weak Kerr nonlinearity. These schemes
use the squeezed single-photon and simple all-optical
operations to amplify the amplitude of the free propa-
gating coherent state superposition with high fidelity.
The scheme in [17] has been extensively analyzed in [18§]
as regards considerably reducing the required nonlinear
effect by using simple and efficient optical elements.

Recently, we have proposed using the y(?)-
nonlinearity (with y(*) > y)) for producing macro-
scopic entangled states [19, 20] that consist of coherent
and modified coherent states. In this paper, we
propose a scheme of a nonlinear y(2) Mach —Zehnder
interferometer to conditionally produce this pure
modified coherent state, which we call the |3) state.
In a certain sense, the proposed scheme of the non-
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linear (2 Mach - Zehnder interferometer resembles
the nonlinear Mach - Zehnder interferometer with an
internal Kerr medium in one arm [6], but the outputs
of these devices are different. We present a physical
explanation of the generation of the |3) state. We show
that the |3) state has nonclassical properties such as
squeezing, photon antibunching, and sub-Poissonian
statistics. We show how the |/3) state can be converted
to a macroscopic entangled state. The amount of
entanglement stored in the entangled state depends
on the amplitude of the coherent state that pumps
the nonlinear y(?) Mach - Zehnder interferometer. We
show that the nonlinear () Mach—Zehnder interfer-
ometer works without special detectors discriminating
between one- and multi-photon number states [21].
We analyze the requirements that must be imposed
on detection efficiency of the y(2) Mach-Zehnder
interferometer to successfully generate the |3) state.

2. A NONLINEAR x(¥ MACH-ZEHNDER
INTERFEROMETER

The scheme in Fig. 1 essentially involves a simple
Mach — Zehnder interferometer with two input and two
output ports. A nonlinear y(?) crystal is placed within
one arm of the interferometer. We call such an in-
terferometer with an internal second-order nonlinear-
ity the nonlinear y?) Mach - Zehnder interferometer.
The nonlinear y(?) Mach - Zehnder interferometer is
turned on if we direct a powerful beam in the coherent
state |[v/2a), (the amplitude of the coherent state a
is supposed to be real) to the spontaneous parametric
down-converter with type-I phase matching (SPDCI).

Before we turn on the powerful mode for the
SPDCI, the nonlinear y(* Mach - Zehnder interferom-
eter is a simple Mach—Zehnder interferometer with
equal optical paths. Below, we deal with only beam
splitters of the Mach — Zehnder interferometer with the
Hadamard unitary operation

(10) + [1) {0l + (10) = [1)) (1]
7 :

If we place two photodetectors behind the routes of
the Mach — Zehnder interferometer, then there is 100 %
probability that the photon reaches the detector Dy
and 0% probability that it reaches another detector
D3 in Fig. 1. It is therefore perfectly legitimate to say
that the photon takes both the transmitted and the
reflected paths between the two beam splitters or, in
other words, that the photon is in the coherent super-
position

H =
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Fig. 1. Experimental arrangement of the nonlinear y (%
Mach — Zehnder interferometer. The scheme involves a
source of single photons and a Mach — Zehnder interfer-
ometer with equal optical paths. Parametric down-con-
verters with type-l phase matching are inserted into
one of the routes of the Mach—Zehnder interferome-

ter. A photon that enters the interferometer always
strikes detector Dy if the SPDCl is turned off. By turn-
ing SPDCI on, we redirect the photon from detector Dy
to detector D3 because the single-particle interference
is modified due to the interaction of the photons with
the ¥ -nonlinearity. The photon ending up in detector
D, leads to conditional generation of the macroscopic
nonclassical state |3). D1, D2, and D3 are registering
detectors used in the auxiliary modes. BS is the no-
tation for a beam splitter with the Hadamard unitary
operation

[10)12 + [01)1>
V2
carrying which-path information.

We next turn on a powerful field in the pumping
mode of the SPDCI, giving the total input state

1
V2

within the nonlinear y(2) Mach - Zehnder interferom-
eter, with the auxiliary three generated modes of the
SPDCI taken into account. Henceforth, the subscripts
of the states indicate the optical modes of photons [22].

For simplicity, we assume that the dynamical de-
scription of the SPDCI involves three modes with the
corresponding annihilation operators ap, a2, and a, and
that the Hamiltonian [19, 20]

UiN) = (]100) +1010)), 54 |\/§O‘>p (1)

is used. The coupling coefficient r in (2) is re-
lated to the nonlinear second-order susceptibility tensor
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) [19,20]. The effect of the y(*)-nonlinearity of the
medium has been studied in detail in [19,20]. Before
we proceed with the analysis, we recall the main results
in [19,20]. The input state |100)123|), is transformed
into the output state [20]

Q)

n

Z In 4+ 1)1[1)2|n)s|

n=0

‘\I’out> >P7 (38“)

with the output states in the pumping modes given
by [20]

|®)), = exp(—a?) x
00 l+n
(V2a) 7 )
X ; U+n) f(2(1+n)+1),n+1 (77)\1>p- (3b)

By analogy with Eqs. (3a) and (3b), if the input state
is prepared in the state |010)123/a),, then its output
becomes [19]

out Z ‘TL |1 |n > (43)
where the wave functions ‘(I)%O)% are
|<I>£LO)>p = exp(—a?) x
0 l+n
V3 o
g ! 4b
; (I +n)! f2(l+n),n+1 (77)‘ >p (4b)

The notation in Eqs. (3a)—(4b) is the same asin [19, 20].

We note that the wave amplitudes f and

2(l4n)+1),n+1
f2(l+n),n+1 in Egs. (3b) and (4b) satisfy the sets of lin-
ear differential equations presented in [19, 20].

By virtue of the linearity of quantum mechanics,
the output of Hamiltonian (2) with input condition (1)
can be expressed as

-1 g0 M
o) = 5 {12600 + 150 } (5)

The overall output |¥,,;) can be rewritten explic-

itly as

)p +[010)125|® 5"

o +

W our) = 1100) 125/ @} )p +

} (6)

Using the asymptotic decomposition for the wave am-
plitudes fé?’)k (n) and fQ(;ll,k(n) in the leading order with
respect to the small parameter n < 1 [19, 20] that char-
acterizes the strength of the SPDCI and is directly pro-

1
7

H111)195|@(")), + [201) 105|101
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portional to the component of the tensor of the second-
order susceptibility,

l 2
B =1== £l ) = 1=,
2 ] —
£33 ) = Vi (1— U (56 4)>7 (7)
24l +1
Aot = n/2TH T (1 TEED)

we find the nonnormalized wave functions in the pump-
ing mode as

18", = [V2a),
VZa),

2 2
_ ﬁan \2/1-|-204 |\/§B>p7

oMy, = V2an* V1 +2a2 V2 8),,

2"}, = Via ((1 - 1) Vaa),-
B mﬁanQGIHQ2 |\/55>p> 7

(8¢c)

|‘I)§1)>p = \/50”7 <<1 - %) \\/ia>p—
~ 4\/§an2\/31+2a2 \/56>p>, 5a)

where the normalized macroscopic state |§) is defined

by i
5-s)

av1l+a?

oo

Z

To finish performance of the nonlinear y(2) Mach—
Zehnder interferometer in Fig. 1, we erase the which-
way information that resides in modes 1 and 2. Two
single-photon detectors D; and D» are attached to the
outputs of the output beam splitter of the nonlinear
x® Mach - Zehnder interferometer. The beam splitter
with the unitary Hadamard transformation produces
the transformations

9)

N 1
Ur|100)125 = 7 {/100) + [010) };55 .

. 1
U |010)125 = ﬁ {1100) — [010)},55 ,

(10)
) 1
Un[201)125 = {\201> +V2)111) + \021>}123
. 1
Un[111135 = =5 {1201) = [021) 5.

Then, after superimposing modes 1 and 2 on the beam
splitter, the state |¥,,) (Eq. (6)) becomes
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1
|Vout) = 3 {p100|100)123\@;7—]9010\010>123|ﬁﬂ)pﬂL

+ P201]201)123|71)p — P021[021)123]|72), +

+p111|111>123‘7'3>p+...}, (].].)
where we introduce the normalized states
3V2an?V1 + 2a2 V2
| > ‘\/§Oé>p— \/_ n 4 ‘\/_ﬂ>17 ( )
p = — = , (12a
\/1—302772+ 90 n* (1 + 2a7)
8
|7'1>p =
13v2an?V1 + 202 |v2 B),
|\/§a>iﬂ - 2
= 120 -7 /4) . (12b)
=
3 13a%n? N 13v2 an?v1+2a?2
3(1-n?/4) 12(1-n?/4)
|T2)p = [V2a), + 3V2aV1+ 2072 6, (12¢)
P V1+12a% + 18a%(1 + 202)
|T3>p =
W2an* V14222 |V26),
‘\/iahl - 2
2
_16a”p? N 4/2an*V1+2a2
3(1-n?/3) 3(1=n?/3)

The wave amplitudes f;;; in Eq. (11), where the sub-
scripts indicate the number of the incoming down-con-
verted photons in modes 1, 2, and 3, are given by

90214 (1 + 202
Pioo = 2\/1 — 3292 + w , (13a)
an?y/1 + 2a2
Poto = _arv_ e , (13b)
V2
e
Pao1 = 2V2 o <1 - Z) X
2
w1 13a2n?2 N 13v2 an?vV/142a2 (13¢)
3(1-n%/4) 12(1-n?/4) "
2 3
Poz1 = —‘[g“” V11202 +18a2(1+202),  (13d)
2
pi11 = 2an <1 — %) X
2
B 1-16a2%n? N 4\/§an2\/1+2o¢2 (130)
3(1-n2/3) 3(1-n/3) '
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Depending on the result of the single-photon detec-
tion, the state |¥,,) in Eq. (11) becomes either |£),
in Eq. (12a) if detector D fires or |v/23), in Eq. (9)
if Dy does. If the pair of detectors D; and D3, Ds,
and D3 or all three detectors D; and D5, D3 register
three photons, then the total state |¥,,:) in Eq. (11)
is projected onto one of the states |r;),, i = 1,2,3
(Egs. (12b)—(12d)). We are interested in generation
of the |v/2 3), state. The overall success probability of
the conditional production of the state in the scheme
in Fig. 1 is equal to

a’n*(1+ 2a?)
5 .

As noted above, the photon always strikes the de-
tector Dy and never detector Dy in the arrangement of
the Mach — Zehnder interferometer used in Fig. 1 with-
out pumping of the SPDCI due to single-particle in-
terference. But if we introduce a certain fixed-time
delay for the photon to reach the output beam splitter
of the Mach—Zehnder interferometer, it may happen
that a photon certainly emerges at detector D5 instead
of Dy. Such a time delay can be organized by inserting
a glass with some thickness. If we insert the glass in
one of the arms of the Mach —Zehnder interferometer
with an arbitrary thickness, we observe that the pho-
ton may strike both detectors D; and Dy with some
success probabilities. We now use a powerful field for
the SPDCI in a coherent state as the “time delay” for
a single photon. Although the nonlinear effect of the
interaction of light fields on the y(?)-nonlinearity is typ-
ically too weak, it can nevertheless play the role of a
glass plate. Superimposing the modes of the Mach—
Zehnder interferometer on the output beam splitter
leads to interferention of the output states in the pump-
ing modes. If a single photon is detected at detector
D;, the superpositions in (8a) and (8b) are superim-
posed on each other with equal phases and result is the
state (12a) in which the contribution of the coherent
states prevail over that of the |3) state. If the detector
Dy registers a single photon, but the other detectors
do not, then superpositions (8a) and (8b) are summed
with opposite phases, which leads to the disappearance
of the coherent state at the output. Thus, the nonlin-
ear x(?) Mach - Zehnder interferometer in Fig. 1 allows
the photon to take the route of detector D; with almost
unit success probability (Eq. (13a)) and the rare chance
(Eq. (13b)) for the same photon to come out from the
forbidden route of the Mach—Zehnder interferometer
leads to the generation of the |3) state.
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3. NONCLASSICAL PROPERTIES OF THE |3)
STATE

We now study nonclassical properties of the gener-
ated single-mode macroscopic state |3) with an arbi-
trary amplitude of the parameter a (Eq. (9)). There
are three principal phenomena that demonstrate the
nonclassical character of light: squeezing, photon an-
tibunching, and sub-Poissonian photon statistics. We
start with squeezing. We define one of the two quadra-
ture operators as

o 1, . . .

X=3 (aexp(—ip) + a*t exp(iyp)) (14)
where ¢ is the phase of the local oscillator, assumed
to be in a large-amplitude coherent state. Using the
definition of the |3) state in Eq. (9), we obtain the
expectation values of operators as

2 2
(3lal) = a2 (152)
. 3 §
(3h215) = 0?3 (13h)
3l +1
(Blatalp) = St (150

Using Eqs. (15a)-(15¢), we can calculate the variance
of the measured quadrature operator X,

A,

A A\ 2 A A
V(X) = (AX) — (X% - (X)2,
as
. N || +4|al? (1—cos?(pa—¢)) +3
Vi (£) = Lo o (1o
4 (1+]a?)
where ¢, is the phase of a (i.e., a = |alexp(ig,)).

The degree of single-mode squeezing is assessed by the
scaled quantity S, which takes the minimum value at

Yo —p =0,%£m:
(%)

A,

Vigy

X

S (X) = S(z) =

iy (%)
34! N
- 7(1 AT CESVER (16b)

where VM (X') = 0.25 is the variance for the coherent

la) state and z = |a|?. In Fig. 2a, we draw the scaled
degree S(x) as a function of x = |a|>. We see from
Fig. 2a that the degree of squeezing S(z) is greater than
one (to be more precise, we have to talk about de-sque-
ezing in the range) when 0 < 2 < 1. As z becomes

619

greater than 1, squeezing appears (S(z) < 1), asymp-
totically approaching unity (S(z) — 1) as * — oc.
There is the value x = |a|?> = 3 at which the degree of
squeezing takes the minimum value S,,;,,(z) = 0.75.

To characterize the statistical properties of the light
beam in the modified coherent state |5), we introduce
the second-order correlation function

B <&+2d2>
(@tay?

It is well known that if ¢ (1) > ¢(®(0), where 7 is
the time delay of arrival of one photon, with another
photon arriving at time ¢, then there is a tendency
for the photons to arrive in pairs. This case is re-
ferred to as photon bunching. The opposite situation
g (1) < g™ (0) corresponds to the case where close
pairs cannot be emitted. It is called the antibunch-
ing of photons. We have g(®(0) — 1 on a sufficiently
long time scale, and therefore a field for which ¢go < 1
(we now use gy instead of ¢(?)(0)) always exhibits anti-
bunching on some time scale. The analytic expression
for go for the state |3) can be straightforwardly derived
from definitions (9) and (17a) as

9'%(0)

(17a)

_ lal® (Ja]® + 1) (Ja]* + 5]al* + 4)
- (lal* + 3jaf? +1)°
z(x + 1) (22 + 5z +4)
- (22 + 32+ 1)2

(17h)

We plot g» versus z in Fig. 2b. This dependence shows
that the light generated by the nonlinear y(® Mach—
Zehnder interferometer always exhibits photon anti-
bunching (g2 < 0), independent of the value of «.

We next discuss the sub-Poisson statistics in the
mode occupied by the state |3). The photon-number
variance of the mode is given by

jaf? (laf* + 2al* + 2)
(lal*+1) (Jal* + 3|al* + 1)
o z(@® 4220 +2)
(4 D) (22 + 3z + 1)

(18)

From Fig. 2b, we see that the |3) state exhibits a
sub-Poisson statistics F' < 1 not depending on the value
of the parameter a, which can be considered the size
of the |3) state. Finally, we note the photon number
distribution of the |3) state

Pgy = |(n|B)|* = exp (—[af?)
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Fig.2. The dependencies of the squeezing parameter S (a) and the second-order correlation function g2 and Fano factor F'
of the |3) state on its intensity 2 = o (b)

4. MACROSCOPIC ENTANGLED STATE

At this stage, it is worth considering a possibility
of converting the |3) state to a macroscopic entangled
state. For this, we use the generalized form of the |3)
state (Eq. (9)) involving the unitary displacement op-
erator D(a) = exp (adt — a*a):

8) =

aD(a)at|0) + |a|2\oz)) . (20)

1
av1+ a? (

We then apply the unitary transformation

U = Byl = 7/2)B(O = ~1/4) Py (o = 7/2)

3

where

P(¢) = exp (—ipata)
and

B(©) =exp (—i0 (afas + a3 ai)) ,
to the |3) state. Here, p; and py are the output modes
of the U transformation. This unitary transformation
is effected by two 7/2 phase shifters and one balanced
beam splitter located between these two phase shifters
in the py mode. The beam-splitter transformation
maps the input |3) state into the entangled normalized
state

|a>p1 |ﬂ>p2 + ‘mm |a>p2

P Oriw)

U|\/§ﬁ>p = |A+>p1p2 = - (21)

+1+a2

This state is analogous to the state studied in [20], but
with the plus sign. We estimate the amount of entan-
glement stored in the states |Ay),,p, by calculating the
concurrence of the state defined in the general form as

C (1Y) = /2 (1 —=Sp(p2)).
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where p4 is the reduced density matrix of subsystem

A ]20]. Using the orthonormal basis {|0),;,|1)p; },
|0>:Dz' = |a>m7
.= , 22a
P L A I
V1—a?
where
a={(ap) =a/\V/1+a?,
we rewrite the state [A4)p, p, Eq. (21) as
AL ) pipe =
2a|00) + /1 — a2 (|01) + |10))
— ( | | | )p1p2 ) (22b)

2(1+ a?)
The concurrence of the state |[AL)p, p, is then given by

2 1

1+42a2°

T 14a®

C(1A+)pin) (23)

The concurrence of |Ay),,,, depends on the inten-
sity a? of the |3) state. It takes the maximum value
C(|A+)pps) = 1 at @ = 0, when the entangled state
|[AL)pp, in Eq. (21) is converted into the one-photon
state,

(110) +01))

pip2
V2

If the size av of the entangled state |AL),, p, approaches
the infinity (&« — o0), the concurrence goes to zero
(C (|A4)pips) — 0). This fact is in accordance with
Figs. 2a and 2b. As can be seen from Figs. 2a and 20,
the squeezing S and the parameters go and F' approach
unity (S, g2, F — 1) as @ — oo, which shows that the
|3) state may become indistinguishable from the usual

coherent state |a) for large values of a.

A ) pips =
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We have shown that generation of the macroscopic
3) state by using the nonlinear y(*) Mach - Zehnder in-
terferometer can be realized without photon number re-
solving detection. We now formulate the requirements
that must be imposed on the detection efficiency in
scheme 1. We assume the detection efficiency of pho-
todetectors in Fig. 1 to be d. Then, the probability
for the detector not to register one photon (the fail-
ure probability) is 1 — d. It follows from Eq. (11) that
there are two possible failure events, which can be taken
for the right outcomes when either the third detector
or the first and third detectors simultaneously register
any photons, while the second detector registers ar-
rival of some photons. This means that photodetectors
are inefficient in practice and may miss some coming
photons, and we can therefore sometimes mistake the
states |72) and |73) (Egs. (9), (12¢), and (12d)) for the
V2 B) state. Therefore, success probabilities for the
states |v/23), |72), and |73) in the leading order in 7
can be estimated as

P010 ~ a4n4, (243)
Poor ~ 2046776(1 —d), (24b)
P111 ~ 40427’}2(1 — d)2 (24C)

Detection inefficiency leads to generation of an ensem-
ble of pure states { Po10, |3); Po21, |m2); Pi1|73)} with the
respective probabilities Pyig, P21, and Pyi;. Compar-
ing them, we see that Pya1 < Pyig, P11 in the an < 1
approximation used in practice, which allows ignoring
the influence of |72). Then the density matrix can be

approximately written as
— | V2B (V28| +
) VBBV

p=(1-
+<1—

The fidelity
F = (V28|p|v2p)

of the scheme in Fig. 1 strongly depends on the effi-
ciency of the detectors and on the value of a. To show
this, we take the |73) state in the form |\/2a), in the
an < 1 approximation. Then the fidelity of the scheme
is equal to

Py

POlO

——— ) |m){m3]. (25
P010+P111>|3><3 (25)

V2a

1+ 2a?
FPoio + P11

Poio + P
F =

(26)

If the parameter a takes a large value (in limit case
a — o), then F' — 1, which is related to the |3) state
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becoming indistinguishable from the coherent state |«)
as « increases. In the limit of small values of a,
which we are more interested, the fidelity is mainly de-
termined by the ratio of the probability Pyio to Pi11.
Under this condition, the fidelity between the final state
(25) and the ideal output (9) is proportional to

in

Plll

1- —-
Poio + Pii1

Comparing the error probability P11 in Eq. (24¢) with
the success probability Poio in Eq. (24a), we see that in
order to minimize the influence of the undetected error
events (F ~ 1) while keeping the value of a small, we
need to substantially improve the detection efficiency
(1 —d < an) in the scheme in Fig. 1. If the detection
efficiency is comparable to the experimental parameter
an (1 —d =~ an), we reach half fidelity for the scheme
(F ~ 0.5). Another way to improve fidelity of the non-
linear x(® Mach - Zehnder interferometer is to use a
crystal with a high value of the second-order suscepti-
bility (which in our case means increasing the value of
the parameter 1), leaving the intensity of the incident
light to be low. The influence of the terms with more
than three down-converted photons on the fidelity of
conditional production of the |3) state is negligible.

~

Examining the final outcome of the studied y(?)
Mach —Zehnder interferometer may lead to the fol-
lowing question: how can one down-converted photon
cause a noticeable variance in the pump field statis-
tics and, as consequence, give a rise to entanglement?
We suppose that we take the wave function |11)13|a),
as an input to Hamiltonian (2) (Fig. 1) and consider
the outcome of the second term of Hamiltonian (2) on
the input state [11)13|a),. Then the following chain of
transformations holds:

+

p 1d3\11)13|a)

oo
al
= exp(a®/2)a aras|11), Z—
:0\/_-

— exp(a?/2)[00) 132 +1),(m=1+1) =
2
. exp( /2

|00 132 \/_ |m
= \/1+O€2|00 13‘6 P

As can be seen from (27), the spontaneous up-conver-
sion leads to to the |/3) state when two down-converted
photons are annihilated. The success probability of the
up-conversion is comparable to the success probability

(27)
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of the generation of a pair of down-converted photons
(~ a’n?) if we stock two input down-converted pho-
tons. Where can two down-converted photons arise in-
side the crystal? Spontaneous down-conversion — the
process reverse to spontaneous up-conversion — serves
as a resource for the pair of down-converted photons
with the success probability also proportional to a?n?.
Therefore, two successive processes of creation and an-
nihilation of two down-converted photons generate the
|3) state. The total success probability of such a “flip-
flop” of a pair of the down-converted photons is of the
same order as the success probability of the generation
of two pairs of down-converted photons (~ a’n*). As
shown above, the single photon used in the all-optical
scheme of the nonlinear x(® Mach - Zehnder interfer-
ometer serves as a trigger to identify the |3) state. In-
deed, estimations for the input state

af af apl10)13]0r), = V2121)12]0),

(down-conversion),

atarazv2(21)15la), — 2v/1+ a?]10)15la),

(up-conversion), and chain (27) show that the factors
for the |3) state are different from each other depending
on the presence or absence of a single photon at the in-
put. This difference of the factors is sufficient to obtain
a pure nonclassical |3) state at the output of the nonlin-
ear x») Mach - Zehnder interferometer. In the current
experiments for generating multiphoton entanglement
by using spontaneous parametric down-conversion [23],
the photon pair generation rate per pulse (a?n? in the
units used) is of the order of 5-10~%. Then the gen-
eration rate for the expected |3) state is of the order
1077,

We comment on the feasibility of the studied non-
linear y(?) Mach — Zehnder interferometer. Our results
show that the |3) state manifests its nonclassical prop-
erties for small values of the parameter a. It is conve-
nient to pass to real values of the field energy within
the coherence volume from the dimensionless quantity
a? that gives the number of photons in the pumping
mode. We therefore have
2 _ Echoh

n=aoa =

I\

8rhwy EAJC’

where [ is the power, A is the wavelength, and
Af = Aw/2m is the spectral bandwidth. Then, for
instance, choosing n = a® = 3 (such that the squeezing
degree of the |f) state takes the minimum value, see
Fig. 2a), Af = 10° Hz, and A = 0.5um, we obtain the
power of light 1.2-10~? W. This light flux power is too
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low to ensure the observation of the |3) state with a
success probability acceptable in experiment and with
a small value of the parameter a. Thus, resonance
nonlinear three-photon processes leading to huge va-
lues of the y(?)-nonlinearity must be used to increase
the success probability of the |3) state generation with
a small value of a. As regard a possible strategy to
study this problem, we note that if we successfully gen-
erated the |3) state with a sufficiently large value of a,
we can pass the light before detection through a linear
absorber with some intensity transmission coefficient.
The |3) state is a nonclassical state, which is confirmed
by the calculation of the squeezing degree and anti-bun-
ching of photocounts, the characteristics being the best
known and the simplest criterion of nonclassicality. It is
well known that nonclassical light remains nonclassical
even after an arbitrarily strong linear absorption [24]:
as consequence, nonclassical light gives a rise to entan-
glement [25]. The study of the nonclassical properties
of the |3) state, its possible applications, and improve-
ment of the initial scheme in Fig. 1 deserves further
investigations.

In conclusion, we have studied a mechanism of gen-
eration of a nonclassical |3) state using the x(*)-nonli-
nearity. For this, an all-optical scheme of the nonlin-
ear y(?) Mach - Zehnder interferometer consisting of a
source of single photons and a Mach —Zehnder interfer-
ometer with a crystal with the second-order suscepti-
bility inserted into one arm is proposed. We identify
the |3) state through the single photon in the forbidden
Ds route of the Mach —Zehnder interferometer.
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