ФОТОПОГЛОЩЕНИЕ В СТАТИСТИЧЕСКОЙ МОДЕЛИ АТОМА. МОДЕЛЬ НЕЗАВИСИМЫХ ЭЛЕКТРОНОВ И ВЛИЯНИЕ ПОЛЯРИЗАЦИИ

С. Ф. Гаранин^{*}, Е. М. Палагина

Российский федеральный ядерный центр, Всероссийский научно-исследовательский институт экспериментальной физики 607190, Саров, Нижегородская обл., Россия

Поступила в редакцию 14 августа 2006 г.

Рассмотрены два подхода к описанию фотопоглощения многоэлектронного атома: квазиклассический метод решения кинетического уравнения с помощью нахождения компонент Фурье дипольного момента электронов без учета поляризации атома (модель независимых электронов, МНЭ) и метод расчета сечения фотопоглощения на сложных атомах, основанный на решении кинетического уравнения методом частиц с учетом поляризации (прямой метод частиц, ПМЧ). В ходе разработки метода МНЭ была одновременно решена задача о классическом излучении заряженной частицы при движении в произвольном центрально-симметричном потенциале. С использованием методов МНЭ и ПМЧ было вычислено распределение сил осцилляторов $df/d\omega$ нейтрального атома Томаса – Ферми для всего томас-фермиевского диапазона частот 27 эВ $\ll \hbar\omega \ll 27Z^2$ эВ. Сравнение результатов, полученных этими методами, позволило оценить величину эффектов поляризации. Влияние поляризации заметно сказывается только на низких частотах, а на средние характеристики, в том числе на логарифмическую среднюю энергию возбуждения, поляризация влияет не сильно. При учете поляризации эта величина получается равной I = 7.95Z эВ и находится вблизи экспериментально найденного диапазона. Проведено сравнение результатов расчетов $df/d\omega$ с экспериментальными данными.

PACS: 31.15.Bs, 32.70.Cs, 32.80.Fb

1. ВВЕДЕНИЕ

Попытки решения задачи об использовании модели Томаса – Ферми для описания оптических характеристик многоэлектронного атома начались с работы Блоха [1], предложившего гидродинамический подход к описанию вырожденного электронного газа атома. Однако для применимости гидродинамического подхода требовалось бы, чтобы расстояния, которые проходят электроны во время колебаний пространственного заряда (эффективный пробег), были малы по сравнению с характерными расстояниями (расстояние от ядра). Но область частот, в которую дают вклад электроны, находящиеся на некотором расстоянии r от ядра, как раз определяется соотношением $\omega \sim v/r$ (v — скорость электронов), и, таким образом, их путь порядка характерного расстояния. Тем не менее, основываясь на этом подходе, в работе [2], использующей дополнительные модельные представления о локальном отклике электронной плотности на действующее поле, и работе [3], последовательно для всего атома проводящей подход Блоха, проводились расчеты динамических свойств атома, которые в случае атома Томаса – Ферми представляются в универсальной форме, пригодной для любых тяжелых атомов.

Одновременно развивался подход, не учитывающий автомодельность характеристик тяжелых атомов и использующий статическое приближение, т. е. предполагающий, что потенциал, в котором движутся электроны, является постоянным, и пренебрегающий динамической поляризацией атома. Каждый из электронов описывался при этом своей волновой функцией, которая определялась с помощью численного решения уравнения Шредингера в потенциале Томаса – Ферми или Хартри – Фока – Слэтера (см.,

^{*}E-mail: sfgar@vniief.ru

например, [4] и ссылки там). При этом для частот ω , меньших или порядка характерной частоты обращения электронов в тяжелых атомах Zme^4/\hbar^3 [5] (Z -атомный номер), ошибка составляет величину порядка единицы, хотя в задаче имеется малый параметр Z^{-1} , используемый для приближения Томаса-Ферми или Хартри-Фока.

В работе [6] был предложен метод расчета сечения фотопоглощения на сложных атомах, основанный на решении кинетического уравнения методом частиц (прямой метод частиц, ПМЧ) с учетом поляризации. Используя последовательный, основанный на параметре малости Z^{-1} квазиклассический подход, мы нашли низкочастотную и высокочастотную асимптотики сечения фотопоглощения на атоме Томаса–Ферми. В настоящей работе мы разовьем подход, представленный в работе [6], что позволит рассчитывать сечение фотопоглощения не только в низкочастотном пределе, но и во всем томас-фермиевском диапазоне частот.

В разд. 2 предложен квазиклассический метод описания динамического отклика многоэлектронного атома (или любой многоэлектронной системы: иона, сжатого атома и т.д.) на действие электромагнитной волны без учета поляризации атома (модель независимых электронов, МНЭ). В ходе разработки этого метода, основанного на рассмотрении движения электронов по поверхности Ферми в заданном потенциале, была одновременно решена задача о классическом излучении заряженной частицы при движении в произвольном центрально-симметричном потенциале. Сравнение результатов, найденных этим методом, с результатами, полученными с учетом поляризации, позволяет оценить величину эффектов поляризации.

В разд. 3 мы учли поляризацию атома и вычислили сечение фотопоглощения на атоме Томаса-Ферми, решая кинетическое уравнение методом частиц (ПМЧ), для произвольной частоты излучения.

Проведенный нами анализ позволяет универсальным образом описывать сечения для любых тяжелых элементов, хотя в конкретных случаях точность описания сечений может оказаться не очень высокой. Оценки точности нашего подхода для томас-фермиевского интервала частот приведены в работе [6] и не превышают величину порядка $Z^{-5/9}$, а фактически для некоторых диапазонов частот расчетные значения сечений могут значительно отличаться от экспериментальных. Тем не менее для понимания общих зависимостей и примерных величин сечений необходимо иметь общую основу описания сечений, опираясь на которую можно было бы изучать конкретные детали. Полученные результаты могут помочь в оценках эффектов поляризации, поскольку их учет в прямых квантовомеханических расчетах довольно затруднителен и, насколько нам известно, в настоящее время нет работ, где бы он проводился. Кроме того, для интегральных по спектру величин, таких как логарифмическая средняя энергия возбуждения (см. п. 3.3) или интенсивность излучения плотного вещества [6], конкретные детали электронной структуры элементов будут усредняться, и можно ожидать обычной квазиклассической точности описания порядка $Z^{-2/3}$.

На протяжении всей работы, кроме некоторых окончательных формул, мы будем использовать атомные единицы $e = \hbar = m = 1$. Для характеристики динамических свойств атомов будем рассматривать сечение фотопоглощения $\sigma(\omega)$ или распределение сил осцилляторов $df/d\omega$. Эти величины связаны соотношением (в обычных единицах)

$$\sigma = \frac{2\pi^2 e^2}{mc} \frac{df}{d\omega}.$$
 (1)

2. СЕЧЕНИЕ ФОТОПОГЛОЩЕНИЯ НА АТОМЕ ТОМАСА – ФЕРМИ БЕЗ УЧЕТА ПОЛЯРИЗАЦИИ

2.1. Общие формулы

Задачу расчета сечения фотопоглощения на тяжелых атомах можно значительно упростить, если не учитывать поляризацию атома под воздействием падающей электромагнитной волны. В данном разделе мы разработаем метод решения этой задачи, последовательно используя квазиклассическое приближение, основанное на больших квантовых числах многоэлектронной системы и, соответственно, на использовании параметра малости $N^{-1/3}$, где N — количество электронов в атоме или ионе (в случае нейтрального атома N = Z).

Пусть на атом падает электромагнитная волна с частотой ω . Кванты с энергией ω могут вырывать атомные электроны, находящиеся на уровнях энергии ε , не более глубоких, чем ω (предполагаем, что энергия Ферми $\varepsilon_F = 0$). Поскольку для больших квантовых чисел n можно считать $\omega \approx \varepsilon_{TF}/n \ll \varepsilon_{TF}$ (ε_{TF} — характерная энергия электрона в томас-фермиевском атоме), число вырываемых электронов в единичном объеме фазового пространства будет определяться разностью функций распределения электронов после и до поглощения квантов

$$f_0(\varepsilon - \omega) - f_0(\varepsilon) \approx -\omega \frac{\partial f_0}{\partial \varepsilon},$$
 (2)

где f_0 — равновесная функция распределения электронов в атоме. Величина f_0 для распределения Ферми равна [5]

$$f_0 = \frac{\eta(-\varepsilon)}{4\pi^3} \tag{3}$$

 $(\eta(-\varepsilon)-$ функция Хевисайда) с учетом того, что в ячейке фазового пространства может находиться по два электрона, а

$$\varepsilon = \frac{p^2}{2} + U(r)$$

— полная энергия электрона с импульсом p и потенциальной энергией U(r). Таким образом, согласно формуле (2) в соответствии с результатами работы [6] в фотопоглощении будут принимать участие электроны, лежащие на ферми-поверхности.

После интегрирования по импульсам получим число электронов в единице объема:

$$-\omega \int \frac{\partial f_0}{\partial \varepsilon} \, d\mathbf{p} = \frac{\omega p_F}{\pi^2}$$

где p_F — граничный импульс распределения Ферми.

В каждой точке пространства электроны равномерно распределены по направлениям скорости, поэтому легко получить их функцию распределения по моментам:

где

$$M_m(r) = r\sqrt{-2U(r)}$$

 $\frac{M}{\sqrt{M_m^2(r) - M^2}} \frac{dM}{M_m} \,,$

— максимальный момент, который может иметь электрон с нулевой энергией, находящийся на радиусе r. Таким образом, число вырываемых электронов в объеме dV с моментом M равно

$$\frac{\omega p_F}{\pi^2} \frac{M}{\sqrt{M_m^2(r) - M^2}} \frac{dM}{M_m(r)} dV.$$

Сечение фотопоглощения на электроне, движущемся во внешнем поле, связано с интенсивностью его излучения формулой [7]

$$\sigma(\omega) = \frac{\pi^2 c^2}{\omega^3} I_{\omega},$$

где I_{ω} — компонента Фурье интенсивности дипольного излучения электрона,

$$I_{\omega} = \frac{4\omega^4}{3c^3} |\mathbf{d}_{\omega}|^2,$$

d — дипольный момент электрона.

Распределение сил осцилляторов, связанное с сечением фотопоглощения соотношением (1), определяется с помощью интегрирования вкладов от всех электронов:

$$\frac{df}{d\omega} = \frac{2\omega^2}{3\pi^2} \times \int d_\omega^2(M) p_F \frac{M}{\sqrt{M_m^2(r) - M^2}} \frac{dM}{M_m(r)} \, dV. \quad (4)$$

При расчете $df/d\omega$ следует учесть, что движение электронов с энергией $\varepsilon = \varepsilon_F$ в потенциале Томаса – Ферми финитно, хотя их траектории не являются замкнутыми линиями. Поэтому величина d_{ω}^2 в формуле (4) может быть представлена в виде

$$d_{\omega}^{2} = \sum_{n=0}^{\infty} d_{n}^{2} \delta(\omega - \omega_{n}), \qquad (5)$$

где d_n^2 — квадрат компоненты Фурье дискретной гармоники с частотой ω_n , и формулу (4) можно переписать в виде

$$\frac{df}{d\omega} = \frac{2\omega^2}{3\pi^2} \int \sum_{n=0}^{\infty} d_n^2(M) \delta(\omega - \omega_n) p_F \times \frac{M}{\sqrt{M_m^2(r) - M^2}} \frac{dM}{M_m(r)} dV. \quad (6)$$

Таким образом, задача нахождения $df/d\omega$ сводится к определению компонент Фурье d_n классического излучения электронов, движущихся в потенциале Томаса – Ферми.

Можно показать, что при вычислении $df/d\omega$ по формуле (6) выполняется правило сумм:

$$\int_{0}^{\infty} \frac{df}{d\omega} \, d\omega = N$$

2.2. Излучение электрона при движении в центральном поле

Рассмотрим общую задачу излучения классического электрона при финитном движении в произвольном центральном поле. Решение этой задачи для движения электронов в потенциале Томаса – Ферми позволит найти компоненты Фурье интенсивности излучения, необходимые для вычисления $df/d\omega$ с помощью формулы (6).

Введем в плоскости движения электрона декартову x, y и полярную r, ϕ системы координат. Запишем координату x электрона следующим образом:

$$x(t) = r(t)\cos\phi(t) = r(t)\cos\left(\overline{\phi}t + \widetilde{\phi}(t)\right), \quad (7)$$

где $\dot{\phi}$ — средняя скорость изменения угла электрона, а функция

$$\tilde{\phi}(t) \equiv \phi(t) - \overline{\dot{\phi}t}$$

является периодической функцией времени. Величина $\overline{\phi}$ равна

 $\overline{\dot{\phi}} = \frac{\Delta\phi}{T} \,,$

где T — период функции r(t),

$$T(M) = 2 \int_{r_{min}(M)}^{r_{max}(M)} \frac{dr}{v_r(M)} = 2 \int_{r_{min}(M)}^{r_{max}(M)} \frac{r \, dr}{\sqrt{M_m^2(r) - M^2}} , \quad (8)$$

 $\Delta \phi$ — изменение угла за период *T*. Перепишем выражение (7) в виде фурье-разложения:

$$x(t) = \frac{1}{2} e^{i\vec{\phi}t} \sum_{n=-\infty}^{\infty} a_n e^{-i\omega_0 nt} + \frac{1}{2} e^{-i\vec{\phi}t} \sum_{n=-\infty}^{\infty} b_n e^{-i\omega_0 nt}.$$
 (9)

В этом выражении частота $\omega_0 = 2\pi/T$, а коэффициенты a_n и b_n находятся по формулам

$$a_n = \frac{1}{T} \int_0^T r(t) e^{i\bar{\phi}t} e^{i\omega_0 nt} dt,$$

$$b_n = \frac{1}{T} \int_0^T r(t) e^{-i\bar{\phi}t} e^{i\omega_0 nt} dt.$$
(10)

Нетрудно показать, что коэффициенты a_n и b_n вещественны и связаны соотношением

$$a_{-n} = b_n. \tag{11}$$

Из формул (9), (10) следует, что в разложении в ряд координат и, следовательно, дипольного момента $\mathbf{d}(t)$ присутствуют частоты из двух наборов частот,

$$\omega_{n-} = \omega_0 n - \overline{\phi}, \quad \omega_{n+} = \omega_0 n + \overline{\phi},$$

с соответствующими для каждого набора частот коэффициентами разложения. Используя (9), (10), с учетом (11) находим величины d_n^2 и $|\omega_n|$ ($df/d\omega$ определяется для положительных частот ω , поэтому записываем модули частот ω_n), необходимые для вычислений по формуле (6):

$$d_{0\pm}^{2} = \frac{1}{2}a_{0}^{2} = \frac{1}{2}b_{0}^{2}, \quad |\omega_{0\pm}| = \overline{\phi},$$

$$d_{n-}^{2} = \frac{1}{2}a_{n}^{2}, \quad |\omega_{n-}| = |\omega_{0}n - \overline{\phi}|,$$

$$d_{n+}^{2} = \frac{1}{2}b_{n}^{2}, \quad |\omega_{n+}| = \omega_{n+} = \omega_{0}n + \overline{\phi}.$$
(12)

Таким образом, в случае движения в произвольном центральном поле частоты, присутствующие в разложении в ряд интенсивности излучения, являются целыми кратными основной частоты, сдвинутыми на некоторую величину. Сдвиг частот появляется из-за незамкнутости траектории. Используя формулу (12), можно найти интенсивность излучения электрона с частотой $\omega_{n\pm}$ [8]:

$$I_{n\pm} = \frac{4}{3c^3} \,\omega_{n\pm}^4 d_{n\pm}^2.$$

2.3. Распределение сил осцилляторов нейтрального атома Томаса – Ферми

Запишем формулу (4) в виде, универсальном для атомов с любым зарядом Z ядра. Для этого введем новые величины: частоту $\Omega = \omega/Z$, радиус $\tilde{r} = Z^{1/3}r$ и время $\tilde{t} = Zt$. Момент в этом случае станет равным $\tilde{M} = M/Z^{1/3}$, импульс $\tilde{p} = p/Z^{2/3}$, а квадрат компоненты Фурье дипольного момента $\tilde{d}_{\Omega}^2 = Z^{5/3} d_{\omega}^2$ (или $\tilde{d}_n^2 = Z^{2/3} d_n^2$ для дискретных гармоник). После подстановки новых переменных в формулу (4) получим:

$$\frac{df}{d\omega} = \frac{8\Omega^2}{3\pi} \int_0^{\bar{M}_0} \tilde{M} \tilde{d}_\Omega^2(\tilde{M}) \times \\
\times \int_{\bar{r}_{min}(\bar{M})}^{\bar{r}_{max}(\bar{M})} \frac{\tilde{r} d\tilde{r}}{\sqrt{\tilde{M}_m^2(\tilde{r}) - \tilde{M}^2}} d\tilde{M}. \quad (13)$$

Из формулы (13) видно, что $df/d\omega$ для любых атомов зависит только от переменной $\Omega = \omega/Z$.

В последующих рассуждениях текущего раздела будем использовать новые величины \tilde{r} , \tilde{t} и т. д., но знак « \sim » над буквами будем опускать.

Используя выражение (8) для периода T и формулы (5) и (12) в выражении (13) и интегрируя затем его по моментам, найдем:

Рис. 1. Траектории электронов с нулевой энергией с моментами M=0.630 и $M_0=0.928$ в потенциале Томаса – Ферми

$$\frac{df}{d\omega} = \frac{2}{3\pi} \Omega^2 \left[\left(\frac{MT(M)a_0^2(M)}{d\bar{\phi}/dM} \right) \Big|_{M(\bar{\phi}=\Omega)} + \sum_{n=1}^{\infty} \left(\left(\frac{MT(M)a_n^2(M)}{d\Omega_{n-}/dM} \right) \Big|_{M(\Omega_{n-}=\Omega)} + \left(\frac{MT(M)b_n^2(M)}{d\Omega_{n+}/dM} \right) \Big|_{M(\Omega_{n+}=\Omega)} \right) \right]. \quad (14)$$

В данной работе мы вычисляли $df/d\omega$ нейтрального атома Томаса–Ферми, в котором $\varepsilon_F = 0$, поэтому мы рассматривали траектории электронов с энергией $\varepsilon = 0$, движущихся в потенциале Томаса–Ферми. При движении частицы в центральном поле зависимости радиуса r и полярного угла ϕ от времени определяются уравнениями [9]

$$\frac{dr}{dt} = \pm \sqrt{2\left(\varepsilon - U(r)\right) - \frac{M^2}{r^2}},\qquad(15)$$

$$\frac{d\phi}{dt} = \frac{M}{r^2} \,. \tag{16}$$

Совокупность уравнений (15), (16) определяет траекторию электрона. В потенциале Томаса – Ферми эти траектории для произвольного момента представляют собой незамкнутые розетки (рис. 1). В этом поле существует также траектория электронов с максимальным моментом $M_0 = 0.928$, для которой сила $-\partial U/\partial r$, действующая на электрон, равна центробежной, и поэтому электроны с этим момен-

Рис.2. Распределение сил осцилляторов $df/d\omega$ и величины $(df/d\omega)_0$, $(df/d\omega)_{1+}$, $(df/d\omega)_{1-}$, $(df/d\omega)_{2+}$. Штриховой линией показана асимптотика (17) при высоких частотах

том движутся по замкнутой круговой траектории с радиусом $r_0 = 1.863$.

2.4. Результаты численного расчета

Искомое распределение $df/d\omega$ находилось суммированием вкладов от каждой из гармоник $(df/d\omega)_{n\pm}$ по формулам, полученным из (14). Кроме того, для описания излучения высоких гармоник электронами с небольшими моментами мы использовали формулу для интенсивности высоких гармоник при движении в кулоновском поле по близкой к параболе орбите [8].

Результаты численного расчета представлены на рис. 2, который показывает, что в области $\Omega \approx 0.1$ –0.4 величина $df/d\omega$ имеет несколько особенностей. Имеется скачок при частоте $\Omega = 0.267$, а также максимум при частоте $\Omega = 0.35$ и минимум при частоте $\Omega = 0.13$. Такое поведение функции $df/d\omega$ объясняется влиянием нескольких первых гармоник, которые дают основной вклад в $df/d\omega$ в указанной области частот. Это поведение значительно отличается от поведения монотонных плавных кривых $df/d\omega$, получаемых в различных модельных подходах: подходе [3], в котором электронный газ считается упругой поляризуемой средой, и плазменной модели [10], в которой атом описывается с помощью зависящей от радиуса диэлектрической проницаемости однородного электронного газа. Сложное поведение $df/d\omega$, полученное в нашем решении, указывает на то, что и при учете поляризации особенности $df/d\omega$ могут иметь место, хотя, как можно предположить, они могут быть несколько сглажены за счет поляризации.

На рис. 2 показана также высокочастотная асимптотика, к которой стремится функция $df/d\omega$ в области $\Omega \gg 1$ [6]:

$$\frac{df}{d\omega}(\Omega \to \infty) = \frac{8}{3\sqrt{3}\pi} \frac{1}{\Omega^2}, \qquad (17)$$

найденная с учетом того, что при Ω ≫ 1 влияние поляризации несущественно.

3. СЕЧЕНИЕ ФОТОПОГЛОЩЕНИЯ НА АТОМЕ ТОМАСА – ФЕРМИ С УЧЕТОМ ПОЛЯРИЗАЦИИ

3.1. Основные уравнения

Для вычисления сечения фотопоглощения на сложных атомах в работе [6] был предложен кинетический квазиклассический подход. Поскольку движение электронов в тяжелом атоме квазиклассично, их можно описывать классической функцией распределения f и применять для их описания уравнения Власова.

Электрическое поле падающей электромагнитной волны считаем малым. Линеаризуем уравнения Власова относительно поля падающей волны $\mathbf{E} = \mathbf{E}_0 g(t)$ (мы возвращаемся к обычным величинам r, p, t и т. д., которые использовались в разд. 2 до их переобозначения на автомодельные величины в п. 2.3). В результате получаем

$$\frac{\partial f_1}{\partial t} + \mathbf{v} \cdot \frac{\partial f_1}{\partial \mathbf{r}} + \nabla \varphi_0 \cdot \frac{\partial f_1}{\partial \mathbf{p}} = -\nabla \varphi_1 \cdot \frac{\partial f_0}{\partial \mathbf{p}}, \qquad (18)$$

$$\Delta \varphi_1 = -4\pi \rho_1, \tag{19}$$

$$\rho_1 = -\int f_1 d\mathbf{p},\tag{20}$$

где φ — потенциал электрического поля, индекс «0» относится к равновесным величинам, «1» — к возмущенным. Поскольку длина волны падающего излучения велика по сравнению с размерами атома, на бесконечности считаем поле **E** постоянным.

Для реализации численного расчета кинетического уравнения (18) методом частиц можно использовать следующую его интерпретацию: левая часть (18) описывает движение частиц в томас-фермиевском потенциале, а правая соответствует рождению частиц — электронов (если $f_1 > 0$) и дырок (если $f_1 < 0$). Подставляя в правую часть (18) f_0 из формулы (3), легко увидеть, что частицы рождаются с нулевой энергией, с ламбертовским распределением по углам вылета, дырки — вдоль поля, а электроны — против. Поскольку потенциал φ_1 в нашей задаче может зависеть только от двух векторов, **E** и **r**, а вектор **E** должен входить в выражение для φ_1 линейно, потенциал φ_1 должен иметь вид

$$\varphi_1 = -(\mathbf{E}_0 \cdot \mathbf{r})\psi(r).$$

При этом $\psi(r \to \infty) = g(t)$, поскольку электрическое поле на бесконечности равно $\mathbf{E}_0 g(t)$. Величина ψ' связана с суммарным дипольным моментом P частиц внутри некоторой области радиуса r соотношением [6]

$$P(r) = \frac{E_0}{3} r^4 \psi'(r).$$
 (21)

Интересующее нас сечение фотопоглощения можно найти как отношение поглощенной в атоме энергии q [6],

$$q = \int E \, dP,\tag{22}$$

к потоку энергии, прошедшему через единицу площади:

$$\sigma = \frac{q}{\int \frac{cE^2}{4\pi} dt} \,. \tag{23}$$

Зависимость электрического поля от времени, g(t), для заданной частоты имеет синусоидальный характер, а интеграл в знаменателе и числитель следует, вообще говоря, рассматривать за сколь угодно большой промежуток времени, включающий бесконечное число периодов колебаний. Зная зависимость дипольного момента атома от времени, можно с помощью формул (22), (23) вычислить сечение фотопоглощения.

3.2. Метод численного расчета

Кинетическое уравнение (18) интегрируется методом частиц. Из (18) находится связь между числом частиц, рождающихся в единицу времени, и функцией $\psi(r)$ [6].

Уравнения движения частиц с энергией $\varepsilon = 0$ в потенциале Томаса – Ферми обсуждались в разд. 2. При решении кинетического уравнения (18) по начальным координатам и углам вылета дырок и электронов относительно поля, полученным в результате розыгрыша вероятностей с помощью генератора случайных чисел, определялась плоскость движения частиц. Положения дырки и электрона в плоскости их движения в произвольный момент времени *t* находились интегрированием уравнений (15) и (16). Таким образом вычислялись координаты частиц в трехмерном пространстве, необходимые для нахождения дипольного момента P(r). Для численного расчета потенциала использовалась сетка по радиусу с шагом, величина которого выбиралась в зависимости от частоты внешнего поля ω . Суммарный дипольный момент P(r) частиц внутри данного радиуса вычислялся так же, как было описано в работе [6]. Интегрируя уравнение (19) с граничным условием $\psi(r \to \infty) = g(t)$, находили зависимость $\psi(r)$ во всем пространстве.

Поскольку в численных расчетах решалась динамическая задача отклика атома на действие электрического поля падающей волны, для определения сечения фотопоглощения на частоте ω необходимо было задавать фиксированную гармонику и рассматривать ее действие в течение достаточно большого времени. В расчетах, однако, для наименьшего искажения спектра воздействующего поля по сравнению с монохроматическим синусоидальное поле включалось и выключалось постепенно, чтобы спектр воздействующего поля был сосредоточен вблизи несущей частоты и не имел далеких высокочастотных крыльев. При этом задаваемое в расчетах число периодов поля N_T давало для $df/d\omega$ погрешность процентного уровня.

3.3. Результаты численных расчетов

Для численных расчетов мы использовали переменные $\Omega = \omega/Z$, $\tilde{r} = Z^{1/3}$, $\tilde{t} = Zt$ и т. д., введенные в п. 2.3. В последующих рассуждениях будем использовать величины \tilde{r} , \tilde{t} и т. д., но, как и раньше, знак «~» над буквами будем опускать.

Расчеты показывают, что с уменьшением веса частиц и переходом к более тонкой сетке (при фиксированной частоте внешнего поля) происходит уменьшение флуктуаций и уточнение результатов. Результаты расчетов $df/d\omega$ для различных частот излучения представлены в таблице и на рис. 3. Указанные в таблице погрешности определялись с помощью сравнения результатов различных расчетов, они включают в себя как статистическую неопределенность, обусловленную методом Монте-Карло, так и систематическую погрешность из-за таких факторов, как конечное число периодов колебаний поля N_T , использованное в расчетах разрешение сетки и т. д.

Как и в случае отсутствия поляризации (рис. 2), $df/d\omega$ является немонотонной функцией частоты излучения. Сравнение рис. 2 и рис. 3 показывает, что поляризация сказывается только на низких частотах. Кроме того, особенности функции $df/d\omega$, которые видны на рис. 2, несколько размываются при учете поляризации. При высоких частотах, $\Omega \gg 1$, функция $df/d\omega$ стремится к асимптотике (17).

Ω	$df/d\omega$
0.001	10.0 ± 0.2
0.01	5.5 ± 0.1
0.03	3.50 ± 0.03
0.05	2.62 ± 0.08
0.07	2.06 ± 0.07
0.1	1.34 ± 0.04
0.12	0.63 ± 0.01
0.15	0.24 ± 0.02
0.2	0.57 ± 0.01
0.25	0.95 ± 0.02
0.28	0.732 ± 0.015
0.3	0.58 ± 0.02
0.34	0.630 ± 0.012
0.5	0.453 ± 0.010
1	0.200 ± 0.005
2	0.071 ± 0.004
5	0.0148 ± 0.0007
8	0.0062 ± 0.0003
10	0.0041 ± 0.0003
15	0.0018 ± 0.0003

Используя теоретические степенные зависимости $df/d\omega$ атома Томаса – Ферми при низких и высоких частотах, мы подобрали интерполяционную формулу, позволяющую вычислять $df/d\omega$ при любой частоте излучения. Численные коэффициенты, входящие в эту формулу, находились методом наименьших квадратов так, чтобы значения $df/d\omega$, вычисленные с помощью интерполяции, в пределах погрешностей согласовывались со значениями из таблицы. Результаты расчета $df/d\omega$ по этой формуле также представлены на рис. 3.

Интеграл, определяющий правило сумм, при подстановке в подынтегральное выражение интерполяционной формулы для $df/d\omega$ равен

$$\int_{0}^{\infty} \frac{df}{d\omega} \, d\Omega = 1.008.$$

Рис. 3. Распределение сил осцилляторов $df/d\omega$, полученное в численных расчетах (точки) и по интерполяционной формуле (сплошная линия). Линия проведена через точки с учетом погрешностей численных расчетов. Пунктирная линия — распределение $df/d\omega$, полученное при усреднении экспериментальных данных [12]

Таким образом, правило сумм выполняется с точностью 0.8 %.

Логарифмическая средняя энергия возбуждения, фигурирующая в задачах об ионизационных потерях заряженных частиц [5],

$$\ln I = \ln Z + \int_{0}^{\infty} \frac{df}{d\omega} \ln \Omega \, d\Omega, \qquad (24)$$

при подстановке в (24) интерполяционной формулы для $df/d\omega$ получается равной I = 7.95Z эВ. Это значение в 1.2 раза больше величины I = 6.62Z эВ, вычисленной в случае отсутствия поляризации. Таким образом, поляризация, оказывая заметное влияние на $df/d\omega$ при низких частотах, на логарифмическую среднюю энергию возбуждения влияет несильно. Сама же величина I = 7.95Z эВ находится довольно близко к экспериментально найденному диапазону I/Z = 9.5-16 эВ [11]. Здесь надо иметь в виду, что величина I/Z уменьшается с ростом Z. Поэтому нижняя граница экспериментально найденного диапазона I/Z = 9.5 эВ соответствует самым тяжелым элементам и разница между нашим значением I/Zи экспериментальными данными для них составляет около 20 %. Использование нашего значения I/Zкак асимптотического при $Z \to \infty$ может позволить уточнить значения I/Z при конечных Z, если считать, что при больших Z величина I/Z ведет себя как

$$I/Z = 7.95 \text{ sB} + C/Z^{2/3},$$

и с помощью экспериментальных данных вычислить константу *C*.

На рис. З наряду с результатами расчетов представлена также функция $df/d\omega$, полученная усреднением экспериментальных значений [12] $df/d\omega$ для ряда элементов (Cu, Xe, Au, Rn, U). Из рис. 3 видно, что функция $df/d\omega$, полученная в расчетах, в общем согласуется с усредненными экспериментальными значениями. Однако минимум функции $df/d\omega$ при частоте $\Omega = 0.15$ и максимумы при $\Omega = 0.25$ и $\Omega = 0.35$, полученные в расчетах, не видны в экспериментальных данных. Таким образом, наши результаты позволяют описывать $df/d\omega$ тяжелых атомов, хотя особенности этой функции для атома Томаса – Ферми в области частот $\Omega \approx 0.1$ –0.4 не имеют места в реальных веществах. Причина этого состоит в том, что даже для самых тяжелых элементов квантовые числа все еще остаются не слишком большими. Например, для атома урана максимально возможный орбитальный момент у связанных электронов равен $M_{max} = 3$ [5] (это соответствует движению электронов по орбите, близкой к круговой, чем определяется максимум при $\Omega \approx 0.25$ на кривых рис. 2, 3). Однако для следующего момента $M_{max} + 1 = 4$ эффективная потенциальная энергия с учетом центробежной [5] уже не имеет минимума (который в квазиклассическом подходе должен был бы быть, поскольку малые изменения моментов не должны сильно менять потенциал). Следовательно, невозможен переход электрона с $M = M_{max}$ на близкий квазистационарный уровень с $M = M_{max} + 1$, это привело бы к увеличению сечения фотопоглощения.

4. ЗАКЛЮЧЕНИЕ

Рассмотрено два подхода к описанию динамического отклика многоэлектронного атома на действие электромагнитной волны: квазиклассический метод решения кинетического уравнения с помощью нахождения компонент Фурье дипольного момента электронов без учета поляризации атома (МНЭ) и предложенный в работе [6] метод расчета сечения фотопоглощения на сложных атомах, основанный на прямом, зависящем от времени, решении кинетического уравнения методом частиц (ПМЧ) с учетом поляризации.

В ходе разработки метода МНЭ, основанного на рассмотрении движения электронов по поверхности Ферми в заданном потенциале, была одновременно решена задача о классическом излучении заряженной частицы при движении в произвольном центрально-симметричном потенциале. С использованием этого метода была вычислена функция $df/d\omega$ нейтрального атома Томаса – Ферми. Найдено, что эта функция имеет несколько особенностей, а именно, минимум при частоте $\Omega = 0.13$, скачок при частоте $\Omega = 0.267$ и небольшой максимум при частоте $\Omega = 0.35$.

Используя метод ПМЧ, мы нашли $df/d\omega$ для нейтрального атома Томаса – Ферми. Вычисленная функция $df/d\omega$ удовлетворяет правилу сумм с точностью 0.8 %. Получено, что особенности функции $df/d\omega$ несколько размываются при учете поляризации. Влияние поляризации заметно сказывается только на низких частотах, в частности, низкочастотный предел без учета поляризации

$$\frac{df}{d\omega}(\Omega=0)=36.2$$

в 2.1 раза больше значения, вычисленного в работе [6] с учетом поляризации. Найдено, что на логарифмическую среднюю энергию возбуждения поляризация влияет несильно. Без учета поляризации эта величина равна I = 6.62Z эВ, а при учете поляризации она получается равной I = 7.95Z эВ. Вычисленное значение I находится вблизи экспериментально найденного диапазона. Сравнение результатов расчетов $df/d\omega$ с экспериментальными данными показывает, что полученные результаты позволяют описывать $df/d\omega$ тяжелых атомов, хотя особенности на расчетной кривой $df/d\omega$ атома Томаса – Ферми в области частот $\Omega \sim 0.1$ –0.4 не имеют места в реальных веществах.

ЛИТЕРАТУРА

- 1. F. Bloch, Z. Phys. 81, 363 (1933).
- W. Brandt and S. Lundqvist, Phys. Rev. A 139, 612 (1965).
- J. A. Ball, J. A. Wheeler, and E. L. Firemen, Rev. Mod. Phys. 45, 333 (1973).
- А. Ф. Никифоров, В. Г. Новиков, В. Б. Уваров, Квантовостатистические модели высокотемпературной плазмы, Наука, Москва (2000).
- 5. Л. Д. Ландау, Е. М. Лифшиц, *Квантовая механика*, Наука, Москва (1974).
- 6. С. Ф. Гаранин, Е. М. Палагина, ЖЭТФ 125, 1258 (2004).
- 7. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинамика*, Физматлит, Москва (2001).
- Л. Д. Ландау, Е. М. Лифшиц, *Теория поля*, Наука, Москва (1967).
- 9. Л. Д. Ландау, Е. М. Лифшиц, *Механика*, Наука, Москва (1973).
- 10. А. В. Виноградов, О. Н. Толстихин, ЖЭТФ 96, 1204 (1989).
- 11. U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
- 12. B. L. Henke, P. Lee, T. J. Tanaka et al., Atom. Data Nucl. Data Tables 27, 1 (1982).