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Exact analytic solutions are presented for two 2 x 2 X oo Ising étagéres. The first model has a simple cubic lattice
with fully anisotropic interactions. The second model consists of two different types of linear chains and includes
noncrossing diagonal bonds on the side faces of the 2 x 2 x oo parallelepiped. In both cases, the solutions are
expressed through square radicals and obtained by using the obvious symmetry of the Hamiltonians, Z2 x Ca,,
and the hidden algebraic A\ symmetry of the transfer matrix secular equations. The solution found for the
second model is used to analyze the behavior of specific heat in a frustrated many-chain system.

PACS: 05.50.+q, 75.10.Hk, 75.40.Cx

1. INTRODUCTION

Models of interacting Ising chains play an impor-
tant role in many fields of physics (see, e.g., [1-5]).
Allowing an accurate mathematical description, they,
on the one hand, find numerous applications in the
interpretation of various collective phenomena in one-
dimensional and pseudo-one-dimensional systems. On
the other hand, the coupled Ising chains appearing as
clusters allow greatly improving the precision of cal-
culated characteristics of two- and three-dimensional
materials in the framework of general approaches such
as the mean-field theory or the renormalization-group
method. Moreover, the exact solutions quite often serve
as heuristic examples, and are also the good tests for
debugging of complicated computer code.

The problem of the Ising model on a 2 x 2 X o0
lattice with a simple cubic cell and under the condi-
tion of equality of the interactions in both transverse
directions was actually solved in the famous paper of
Onsager [6]. This paper is dedicated to the two-dimen-
sional Ising model, and as an intermediate result, the
expression for the largest eigenvalue A4, (and conse-
quently for the free energy) of the transfer matrix of
the model on a n x co cylinder was obtained:
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Amaz = [25h(2K1)]"/? x
1
X exp [5(’71 +y+...+ ’72n1)} , (1)

where v, (kK = 1,3,...,2n — 1) are the positive solu-
tions of the equation

ch(vz) = cth(2K;) ch(2K5) —

7k sh(2K,)
o8 < n > ek 2
Here,
o1 S e
K, = Eﬂt]h K, = 25J2, B = T

With the number of chains n equal to 4, formulas (1)
and (2) lead to the solution of the above 2 x 2 x oo Ising
system.

In this paper, simple analytic solutions are obtained
for two other 2 x 2 x oo Ising lattices. One lattice has
the cell in the form of a rectangular parallelepiped in
which the interactions are different along all three spa-
tial directions. The cells of the second lattice are paral-
lelepipeds with a rhombic base. Although the interac-
tions in the base plane are equal, uncrossing diagonal
couplings on the outside may be available and, more-
over, the intrachain interactions in the given model
must be equal only for chains situated in the 2 X 2 X o
system opposite each other. For both models, the lat-
tice symmetry Cs, together with the symmetry un-
der the spin inversion Z, permit reducing the origi-
nal transfer matrices to a block-diagonal form with the
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maximal size of subblocks 5 x 5. As the subsequent
analysis shows, the secular equations of subblocks are
virtually reciprocal, which allows reducing the solution
of these equations to a chain of algebraic equations of
at most second degree.

From the free energy of the second model in which
the next-nearest-neighbor interactions are present, the
expression for the specific heat is obtained and the pe-
culiarities of its temperature behavior near the struc-
ture instability point are examined.

2. THE EIGENVALUES OF TRANSFER
MATRICES

We consider the Ising models with the Hamiltonians

1
H1:—§X

X E [J2(01,i04,i402,;03;)+Jy(01,i02 i+03 ;04 ;) +
i
+ J (01,0141 + 02,09 41 +

+03,i03,i+1 + 04,i04,511)]  (3)

and

1
Hy = —— Z[JA(Sl,isl,i-H + 53,i83,i+1) +
i

2
+ JB(52,i82,i41 + 54,i4,i41) +
+ Jap(s1,i+ 83,i) (82, + 844) +

+ Jup(s2,i + 54,4)(s1,i01 + 83,041)]. (4)

The topologies of the couplings represented by these
Hamiltonians are illustrated in Figs. 1 and 2. The spin
variables o;,; and s;,; are located at the lattice sites and
take the values +1. Both lattices have the symmetry
planes o, and o). In the model given by Eq. (3), these

J u ,
Oy
|

' Oy

Fig.1. Fully anisotropic simple cubic 2 x 2 x oo Ising

lattice given by Eq. (3) and its profile. To not overload

the figure, the vertical symmetry planes o, and o, are
shown only on the cross section of the lattice

Ov

Fig.2. Lattice 2 x 2 x oo with a rhombic cross sec-
tion and diagonal interactions (the model given by

Eqa. (4))

planes pass through the middle of the opposite faces of
an infinitely long 2 x 2 x 0o parallelepiped having a rect-
angular cross section. In the model given by Eq. (4),
the symmetry planes pass through the opposite edges of
a 2 x 2 x oo parallelepiped, whose cross section is now a
rhombus. We note that with J, = J; and J, = J, = J»
or with J4 = Jgp = J1, Jap = Jo» and Jyz = 0 (or,
vise versa, with J4p = 0 and J5 = J2), we obtain a
2 x 2 x oo model described by Onsager’s formulas (1)
and (2), in which we should of course put n = 4.

The principal task in calculating the statistical me-
chanical characteristics of models (3) and (4) is to solve
the eigenvalue problem for the transfer matrices V; and
V, with the elements

<01-,0'2-,03,0'4|V1|0'i,0'é,0'{3-,0'2> =

1
= exp EKx(Ul(m + 0903 + 010y + ohoy) +

+ iKy((HUZ + 0304 + 0y0h + 0%0y) +
+K,(010] + 0205 + 0305 + 0407) (5)
and

<51-,527537S4|V2|5l17312',s,375£1> =
= exp {KA(sls'l + s355) + Kp(s28h + s48y) +
1
+§KAB[(31+53)(52+84)+(s'1+s§)(sf2+s’4)]+
+K' g(sa + s4)(s] + 3'3)} . (6)
Here,
. 1 . 1 R 1
K, = Eﬂjm, Ay = Eﬂ‘]ya K. = Eﬂt]z-,

1 1
Ky = iﬂJm Kp = EBJB-,
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. 1 . 1
I‘ABzi/BJAB, Iﬁi‘Bziﬂji‘B

We notice that the matrix Vy is symmetric and Vs is,
generally speaking, not.

To solve the eigenvalue problem of transfer matri-
ces (5) and (6), we use the invariance property of the
appropriate Hamiltonians with respect to the transfor-
mations of the group Z, x C,, where, as has already
been mentioned,

Zy = {E/R}

is the group of global reflections in the spin space (E is
the identity transformation and R is the spin inversion
operation) and

CQ'U = {E10270”U70’;}

is the point group generated by symmetry elements o,

and o/ (Cy = 0,0 is a second-order symmetry axis).
v v

2.1. Group-theoretical analysis

We construct representations of a group Zs x Cs,
in the transfer-matrix spaces. For the first model, we
set

(7)

R|0-170-270-370-4> = | - 0-17_0-27_0-37_0-4>7

(8)

UU‘0170’270’3704> = ‘02701704703>7

and

(9)

The remaining elements of the group are the corre-
sponding combinations of R, o,, and o), and their ac-
tion on the vector |0y, 09, 03,04) is easily found by us-
ing relation (7)-(9). Multiplying these equalities by
conjugated vectors from the left and taking the or-
thonormality condition

0-:)|0-170-270-370-4> = |0-470-370-270-1>-

<0170-2-,0-370-4|0-170-é-,0-,370-z,1> =
(10)

- 60'1 o} 602 ol 50’30’& 50’4 ol

into account, where 04, is the Kronecker delta, we can
calculate the matrix elements of the original represen-
tation I'y of the group Zs x C,, for the first model.
It is not difficult to verify that all matrices obtained
commute with V.

For the second model, the inversion transformation
in (7) preserves the analogous form and the reflections
o, and o) now act on a vector as

0y|81, 52,53, 84) = |s1,54, 53, 52) (11)
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and

0y l81,5 82, 83,84) = |83, 82,81, 84). (12)
Again multiplying the equations of type (11) and (12)
by conjugated vectors, we find a matrix set giving the
representation I's of the group for the second model.
These matrices commute with V.

In the subsequent analysis, we first find the char-
acters y of the representations I'y and I's. For I'y, we
obtain

X1(E) = (01,02,03,04|E|01,02,03,04) =

= <0-1702703704‘01702703704> =

= 5010'1 6020’2 6030’350404 = 247 (13)

Xl(%) = <01-,02703704‘0v‘01702703704> =
= 5010'2 6020'1 6030’45040'3 = 227 (14)
and similarly for other group elements. By analogy,

we can also calculate the characters for the repre-
sentation I's.  The characters found, together with
the known characters of the irreducible representations
(IRs) T ... ,T®) of Zy x Cs,, are collected in the
Table. Now, using the formula (see, e.g., [7])

o = L3O (@) (15)
9 G

(where g is the order of a group, x(G) is the charac-
ter of an element G in the considered representation,
x")(G) is the character of the same element in the vth
IR, and a*) is the multiplicity with which the vth IR
enters the original representation) we find

[, =5TM +2(0® 4106 4 0@ 4

+TO) 4 1® 41 476 (16)

and

[y =500 44r® 4
+2(0® 4106 470 40D L TG (17)

This implies that by transitions using similar transfor-
mations to the new basis in which the representations
I'; and Ty of the Abelian group Zy x Cs, are fully re-
ducible, the matrices V; and V5 take a block-diagonal
form, where the first matrix V; has one subblock of
size 5 x 5, four 2 x 2 subblocks, and three 1 x 1 “sub-
blocks”, and the second matrix V, consists of one 5 x 5
subblock, one 4 x 4 subblock, two 2 x 2 subblocks, and
again three ready-made eigenvalues.
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Character table of the group Zs x Ca,

Z> x Cay E Cs O o R RCs Ro, Ro,
r 1 1 1 1 1 1 1 1
r 1 1 1 1 -1 -1 -1 -1
re 1 -1 -1 1 -1 1 1 -1
r 1 1 -1 -1 -1 -1 1 1
r®) 1 -1 1 -1 -1 1 -1 1
r(®) 1 -1 -1 1 1 -1 -1 1
N 1 1 -1 -1 1 1 -1 -1
r®) 1 -1 1 -1 1 -1 1 -1
Iy 16 4 4 4 4 4 4
T 16 4 8 8 4 0 0

2.2. Basis vectors of irreducible representations

The next step is the quasi-diagonalization of trans-
fer matrices in practice. For this, we first construct the
basis vectors of IRs. In our case, this is easily done by
acting with the projection operator

pw) — Z MGN(ele (18)
a

(a normalizing coefficient is omitted) on the vectors of

the original basis. Let

61:‘1717171>1 62:|171711_1>1

19
616:|_11_11_11_1> ( )

be a basis in which the matrix V; is defined according
to Eq. (5). Applying operator (18) to vectors (19) suc-
cessively and taking equalities (7)—(9) and the charac-
ter Table into account, we obtain sets of basis vectors,
which should be normalized. In particular, we have for
the basis vectors of the identical IR

w(l) _&te
1 \/§ )
(1) _ext+es+es+eg+eg+entenqters
¢2 = )
2v2
(20)
¢(1) _tatens ¢(1) _tsten
3 \/§ 4 \/5 ’
(1) _ er+e1o
205 \/i
For the next IR T'®), we obtain
(2) €1 — €16
% \/i 3 (21)
¢(2) _ E2testesteg—es—€Cia—ery—ers
2 2\/5
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In an analogous way, we find basis vectors for all other
IRs in the original representation.

Knowing the basis functions, we directly calculate
the matrix elements of subblocks using Eq. (5):

and similarly for the second model.

(v

+ 14
vy, (22)

2.3. Using the A\ symmetry

Now the task is to solve the secular equations of sub-
blocks. Calculating the determinant of the first equa-
tion

det(VY —\) =0, (23)
we obtain that it has the structure
N — a M+ aX? — aax\? + ol ) — o’ =0, (24)
where
a; = 2[1+4ch(2K,;)ch(2K,)]ch(4K.) +6, (25)

ay = 32ch(2K,) ch(2K,)[ch(4K) ch® (2K ,)—1]+
+ 8[1 + ch(4K,) + ch(4K,)]sh®(4K.), (26)
and
a = 4sh’(2K.). (27)

According to Ref. [8], an algebraic equation like (24)
is reciprocal. One root of Eq. (24) coincides obviously



MITD, Tom 131, BRI 3, 2007

Ising models on the 2 x 2 x oo lattices

with a. After its extraction, we obtain a quartic equa-
tion that is again reciprocal:

M — (a1 — a)X\? + [as — ala; — a)]\? —
—a®(a; —a)A+a' =0. (28)

By the substitution

2

(6]
=4+ —, 2
r=A (29)

Eq. (28) is reduced to the quadric resolvent

r? —(ay —a)r +as —ala; +a) = 0. (30)

First solving Eq. (30) and then quadric Eqs. (29) for
each r;, we find the eigenvalues of the subblock Vgl).
The solution of secular equations of second-order sub-
blocks causes no difficulties. As a result, we can obtain
the complete set of eigenvalues of the transfer matrix
V. We note that all eigenvalues of V satisfy the A\
symmetry [9]: the eigenvalues A; can be divided into

pairs such that
A2 = A3hg = ... (31)

It is the A\ symmetry that reduces the Galois group
and leads to the reciprocal property for the secular
equations of the transfer matrix and its subblocks.
The largest eigenvalue of the transfer matrix always
lies in the subblock of the identical IR (this follows from
the Perron theorem [10]) and is in our case given by

1 1 1/2
A= 57"1 + <Zr% - a2> (32)
with
) . 1/2
r = 5(@1 — Oé) + |:Z(a1 + 04)2 + 042 - a2:| . (33)

We now return to the second model. The secular
equation of the subblock corresponding to the identical
IR is also reciprocal:

A — DA £ oA — b A+ A =45 =0, (34)
where

b1 = 12ch(2K 4) ch(2KpB) + 2exp[2(K 4 + KB)] x
x ch[4(Kap + K'y5)] +
+2exp[—2(K4 + Kg)|ch[4(Kag — K'y5)], (35)

by = 24 ch(2K 4) ch(2K g){exp[2(K 4 + Kp)] X
x ch[4(Kap + Kyg)] +
+exp[~2(K 4 + Kp)| ch[4(Kap — K45)|} —
— 4[24 exp(4K 4) + exp(4Kp)] x
x ch[4(Kap + K'y5)] —
— 4[24 exp(—4K ) + exp(—4Kp)] X
x ch[4(Kap — K)yp)] +
+8ch[4(K 4 + Kp)] + 4[ch(4K 4) + ch(4Kp)] +

+8sh?[2(K4 — Kg)] —

— 16[ch(4Kap) + ch(4Ky5)],  (36)
and
v = 4sh(2K ) sh(2K ). (37)

This permits us to find the largest eigenvalue of the
transfer matrix Vo, which is most important in appli-
cations,

1 1, )\
A=ghi+ (ghi—~ , (38)

where

1 1 . 1/2
h1=§(61—7)+ Z(b1+’7) +’}/ —b2 . (39)

The secular equation of the 4 x 4 subblock is also recip-
rocal. Therefore, it can be solved by square radicals.
As a result, we also determine all eigenvalues of the
transfer matrix V,. They again have the A\ symmetry
property.

To conclude this section, we note the following. It
is not possible to generalize Hamiltonians (3) and (4)
and at the same time preserve the above reduction of
the original problem: the attempts to include the ad-
ditional single (external field), pair or multiparticle in-
teractions in the Hamiltonians immutablely lead to the
destruction of the obvious or hidden symmetries.

3. SPECIFIC HEAT OF THE FRUSTRATED
CHAIN SYSTEM

Ising magnets with triangle lattices are an example
of frustrated systems [11]. We illustrate the peculiari-
ties of the specific heat behavior in such systems using
the solution obtained for model (4).

9*
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Fig.3. Specific heat behavior in the frustrated sys-
tems: 1 — Ja = Jp = Jap = Jyp = —1;
2— Ja=-1,Jp=-08, Jap = 0.9, Jhp = —1;
3 — Ja = -1, Jg = —0.85, Jap = —0.99,
Jhg =-0954— Js=—1,J =—1, Jap = —0.9,

Jip = —0.8

The free energy per site of an infinitely long chain

is given by
1
4
where A is the largest eigenvalue of the transfer matrix
V,. Taking the standard relations between the thermo-
dynamical quantities into account, we then have from

oA

(40) the specific heat
2
()

Substituting the expression for A found in the previous
section and performing the necessary differentiations,
we arrive at an analytic formula for the specific heat of
our system. From this formula, it follows that at high
temperatures, the specific heat behaves as

(T) kpTIn A, (40)

A 1

opr A

_ kpp?
C4A

. (41)

o(T) _ JA+J%+2(J35 + Tip)

T = oo,
ks S(kpT)? -

(42)

In the other limit, as 7" — 0, the specific heat, a contin-
ued function of temperature, tends to zero and ¢ = 0
at T'= 0. This agrees with the Nernst theorem [12]. In
an intermediate region (0 < T < 00), the specific heat
being a positive function, has one or more maxima in
accordance with the Rolle theorem.
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We have investigated the specific heat behavior as a
function of temperature numerically using the analytic
formula. For kpT/|J4| in the region [0, 1], we calcu-
lated the specific heat for a frustrated system with

JAZJBZJABZJ:43<O

and for systems in which these negative exchange inte-
grals are weakly disturbed (almost frustrated systems).
The results are shown in Fig. 3.

The specific heat in the frustrated chain (curve 1 in
Fig. 3) has one maximum. However, by any amount
of disturbance of the absolute equality between the an-
tiferromagnetic exchange constants, the second peak
arises on the specific heat curve in the low-temperature
region (curves 2-4). The additional peak is very sensi-
tive even to the smallest distortions of the equilateral
triangle structure and hence the low-temperature max-
imum can serve as their indicator.

4. CONCLUSIONS

In this paper, we have obtained two different solu-
tions of Ising model on the 2 x 2 x oo lattices using
the same obvious invariance, Zs x Cs,, and the hidden
A\ symmetry. But in one case, the symmetry planes
o, and o/ of the group C,, pass through the oppo-
site faces of a 2 X 2 x oo parallelepiped, and in other
case, those symmetry planes pass through the opposite
linear chains of a 2 X 2 X oo system.

Both solutions found are unique in that they can-
not be generalized with preservation of the combined
symmetry, Zs x Co, and AN.

We hope the presented solutions will be useful in
statistical mechanics and in the theory of many-chain
magnetic (and other) materials.

I thank L. A. Zhukova for her help in the work and
also the Russian Foundation for Basic Research (grant
Ne07-02-00444).

REFERENCES

1. K. I. Kugel’ and D. I. Khomskii, Uspekhi Fiz. Nauk
136, 621 (1982).

2. J. O. Indekeu, M. P. Nightingale, and W. V. Wang,
Phys. Rev. B 34, 330 (1986).

3. T. Yokota, Phys. Rev. B 39, 12312 (1989).



MITD, Tom 131, BRI 3, 2007

Ising models on the 2 x 2 x oo lattices

4. L. J. de Jongh and A. R. Miedema, Adv. Phys. 50, 947
2001).

5. M. A. Yurishchev, Zh. Eksp. Teor. Fiz. 128, 1227
(2005).

6. L. Onsager, Phys. Rev. 65, 117 (1944).

7. L. D. Landau and E. M. Lifshits, Quantum Mechan-
ics. Nonrelativistic Theory, Nauka, Moskva (1989),
Chap. XII.

517

8.

10.

11.

12.

I. S. Sominskii, Elementarnaya Algebra. Dopolnitel’ny
Kurs, Nauka, Moskva (1967).

M. A. Yurishchev, Phys. Stat. Sol. (b) 153, 703 (1989).

F. R. Gantmacher, The Theory of Matrices (4th ed.),
Nauka, Moscow (1988); Chelsea, New York (1959).

R. Liebmann, Statistical Mechanics of Periodic Frust-
rated Ising Systems, Springer-Verlag, Berlin (1986).

L. D. Landau and E. M. Lifshits, Statistical Physics.
Part 1, Fizmatlit, Moskva (2001).



