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ISING MODELS ON THE 2� 2�1 LATTICESM. A. Yurish
hev *Institute of Problems of Chemi
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaRe
eived 19 O
tober 2006Exa
t analyti
 solutions are presented for two 2�2�1 Ising étagères. The �rst model has a simple 
ubi
 latti
ewith fully anisotropi
 intera
tions. The se
ond model 
onsists of two di�erent types of linear 
hains and in
ludesnon
rossing diagonal bonds on the side fa
es of the 2� 2�1 parallelepiped. In both 
ases, the solutions areexpressed through square radi
als and obtained by using the obvious symmetry of the Hamiltonians, Z2 �C2v ,and the hidden algebrai
 �� symmetry of the transfer matrix se
ular equations. The solution found for these
ond model is used to analyze the behavior of spe
i�
 heat in a frustrated many-
hain system.PACS: 05.50.+q, 75.10.Hk, 75.40.Cx1. INTRODUCTIONModels of intera
ting Ising 
hains play an impor-tant role in many �elds of physi
s (see, e. g., [1�5℄).Allowing an a

urate mathemati
al des
ription, they,on the one hand, �nd numerous appli
ations in theinterpretation of various 
olle
tive phenomena in one-dimensional and pseudo-one-dimensional systems. Onthe other hand, the 
oupled Ising 
hains appearing as
lusters allow greatly improving the pre
ision of 
al-
ulated 
hara
teristi
s of two- and three-dimensionalmaterials in the framework of general approa
hes su
has the mean-�eld theory or the renormalization-groupmethod. Moreover, the exa
t solutions quite often serveas heuristi
 examples, and are also the good tests fordebugging of 
ompli
ated 
omputer 
ode.The problem of the Ising model on a 2 � 2 � 1latti
e with a simple 
ubi
 
ell and under the 
ondi-tion of equality of the intera
tions in both transversedire
tions was a
tually solved in the famous paper ofOnsager [6℄. This paper is dedi
ated to the two-dimen-sional Ising model, and as an intermediate result, theexpression for the largest eigenvalue �max (and 
onse-quently for the free energy) of the transfer matrix ofthe model on a n�1 
ylinder was obtained:*E-mail: yur�itp.a
.ru

�max = [2 sh(2K1)℄n=2 �� exp�12(
1 + 
3 + : : :+ 
2n�1)� ; (1)where 
k (k = 1; 3; : : : ; 2n � 1) are the positive solu-tions of the equation
h(
k) = 
th(2K1) 
h(2K2)�� 
os��kn � sh(2K2)sh(2K1) : (2)Here, K1 = 12�J1; K2 = 12�J2; � = 1kBT :With the number of 
hains n equal to 4, formulas (1)and (2) lead to the solution of the above 2�2�1 Isingsystem.In this paper, simple analyti
 solutions are obtainedfor two other 2� 2�1 Ising latti
es. One latti
e hasthe 
ell in the form of a re
tangular parallelepiped inwhi
h the intera
tions are di�erent along all three spa-tial dire
tions. The 
ells of the se
ond latti
e are paral-lelepipeds with a rhombi
 base. Although the intera
-tions in the base plane are equal, un
rossing diagonal
ouplings on the outside may be available and, more-over, the intra
hain intera
tions in the given modelmust be equal only for 
hains situated in the 2�2�1system opposite ea
h other. For both models, the lat-ti
e symmetry C2v together with the symmetry un-der the spin inversion Z2 permit redu
ing the origi-nal transfer matri
es to a blo
k-diagonal form with the511



M. A. Yurish
hev ÆÝÒÔ, òîì 131, âûï. 3, 2007maximal size of subblo
ks 5 � 5. As the subsequentanalysis shows, the se
ular equations of subblo
ks arevirtually re
ipro
al, whi
h allows redu
ing the solutionof these equations to a 
hain of algebrai
 equations ofat most se
ond degree.From the free energy of the se
ond model in whi
hthe next-nearest-neighbor intera
tions are present, theexpression for the spe
i�
 heat is obtained and the pe-
uliarities of its temperature behavior near the stru
-ture instability point are examined.2. THE EIGENVALUES OF TRANSFERMATRICESWe 
onsider the Ising models with the HamiltoniansH1 = �12 ��Xi [Jx(�1;i�4;i+�2;i�3;i)+Jy(�1;i�2;i+�3;i�4;i)++ Jz(�1;i�1;i+1 + �2;i�2;i+1 ++ �3;i�3;i+1 + �4;i�4;i+1)℄ (3)andH2 = �12Xi [JA(s1;is1;i+1 + s3;is3;i+1) ++ JB(s2;is2;i+1 + s4;is4;i+1) ++ JAB(s1;i + s3;i)(s2;i + s4;i) ++ J 0AB(s2;i + s4;i)(s1;i+1 + s3;i+1)℄: (4)The topologies of the 
ouplings represented by theseHamiltonians are illustrated in Figs. 1 and 2. The spinvariables �l;i and sl;i are lo
ated at the latti
e sites andtake the values �1. Both latti
es have the symmetryplanes �v and �0v . In the model given by Eq. (3), these
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Fig. 1. Fully anisotropi
 simple 
ubi
 2� 2�1 Isinglatti
e given by Eq. (3) and its pro�le. To not overloadthe �gure, the verti
al symmetry planes �v and �v areshown only on the 
ross se
tion of the latti
e
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Fig. 2. Latti
e 2 � 2 � 1 with a rhombi
 
ross se
-tion and diagonal intera
tions (the model given byEq. (4))planes pass through the middle of the opposite fa
es ofan in�nitely long 2�2�1 parallelepiped having a re
t-angular 
ross se
tion. In the model given by Eq. (4),the symmetry planes pass through the opposite edges ofa 2�2�1 parallelepiped, whose 
ross se
tion is now arhombus. We note that with Jz = J1 and Jx = Jy = J2or with JA = JB = J1, JAB = J2 and J 0AB = 0 (or,vise versa, with JAB = 0 and J 0AB = J2), we obtain a2 � 2 �1 model des
ribed by Onsager's formulas (1)and (2), in whi
h we should of 
ourse put n = 4.The prin
ipal task in 
al
ulating the statisti
al me-
hani
al 
hara
teristi
s of models (3) and (4) is to solvethe eigenvalue problem for the transfer matri
esV1 andV2 with the elementsh�1; �2; �3; �4jV1j�01; �02; �03; �04i == exp�12Kx(�1�4 + �2�3 + �01�04 + �02�03) ++ 12Ky(�1�2 + �3�4 + �01�02 + �03�04) ++Kz(�1�01 + �2�02 + �3�03 + �4�04)� (5)andhs1; s2; s3; s4jV2js01; s02; s03; s04i == exp�KA(s1s01 + s3s03) +KB(s2s02 + s4s04) ++12KAB [(s1+s3)(s2+s4)+(s01+s03)(s02+s04)℄++K 0AB(s2 + s4)(s01 + s03)� : (6)Here, Kx = 12�Jx; Ky = 12�Jy; Kz = 12�Jz ;KA = 12�JA; KB = 12�JB ;512
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esKAB = 12�JAB ; K 0AB = 12�J 0AB :We noti
e that the matrix V1 is symmetri
 and V2 is,generally speaking, not.To solve the eigenvalue problem of transfer matri-
es (5) and (6), we use the invarian
e property of theappropriate Hamiltonians with respe
t to the transfor-mations of the group Z2 � C2v where, as has alreadybeen mentioned, Z2 = fE;Rgis the group of global re�e
tions in the spin spa
e (E isthe identity transformation and R is the spin inversionoperation) and C2v = fE;C2; �v ; �0vgis the point group generated by symmetry elements �vand �0v (C2 = �v�0v is a se
ond-order symmetry axis).2.1. Group-theoreti
al analysisWe 
onstru
t representations of a group Z2 �C2vin the transfer-matrix spa
es. For the �rst model, weset Rj�1; �2; �3; �4i = j � �1;��2;��3;��4i; (7)�v j�1; �2; �3; �4i = j�2; �1; �4; �3i; (8)and �0v j�1; �2; �3; �4i = j�4; �3; �2; �1i: (9)The remaining elements of the group are the 
orre-sponding 
ombinations of R, �v , and �0v and their a
-tion on the ve
tor j�1; �2; �3; �4i is easily found by us-ing relation (7)�(9). Multiplying these equalities by
onjugated ve
tors from the left and taking the or-thonormality 
onditionh�1; �2; �3; �4j�01; �02; �03; �04i == Æ�1�01Æ�2�02Æ�3�03Æ�4�04 (10)into a

ount, where Æ��0 is the Krone
ker delta, we 
an
al
ulate the matrix elements of the original represen-tation �1 of the group Z2 � C2v for the �rst model.It is not di�
ult to verify that all matri
es obtained
ommute with V1.For the se
ond model, the inversion transformationin (7) preserves the analogous form and the re�e
tions�v and �0v now a
t on a ve
tor as�v js1; s2; s3; s4i = js1; s4; s3; s2i (11)

and �0v js1; s2; s3; s4i = js3; s2; s1; s4i: (12)Again multiplying the equations of type (11) and (12)by 
onjugated ve
tors, we �nd a matrix set giving therepresentation �2 of the group for the se
ond model.These matri
es 
ommute with V2.In the subsequent analysis, we �rst �nd the 
har-a
ters � of the representations �1 and �2. For �1, weobtain�1(E) = h�1; �2; �3; �4jEj�1; �2; �3; �4i == h�1; �2; �3; �4j�1; �2; �3; �4i == Æ�1�1Æ�2�2Æ�3�3Æ�4�4 = 24; (13)�1(�v) = h�1; �2; �3; �4j�v j�1; �2; �3; �4i == Æ�1�2Æ�2�1Æ�3�4Æ�4�3 = 22; (14)and similarly for other group elements. By analogy,we 
an also 
al
ulate the 
hara
ters for the repre-sentation �2. The 
hara
ters found, together withthe known 
hara
ters of the irredu
ible representations(IRs) �(1); : : : ;�(8) of Z2 � C2v, are 
olle
ted in theTable. Now, using the formula (see, e.g., [7℄)a(�) = 1gXG �(G)�(�)�(G) (15)(where g is the order of a group, �(G) is the 
hara
-ter of an element G in the 
onsidered representation,�(�)(G) is the 
hara
ter of the same element in the �thIR, and a(�) is the multipli
ity with whi
h the �th IRenters the original representation) we �nd�1 = 5�(1) + 2(�(2) + �(3) + �(4) ++ �(5)) + �(6) + �(7) + �(8) (16)and�2 = 5�(1) + 4�(2) ++ 2(�(3) + �(5)) + �(6) + �(7) + �(8): (17)This implies that by transitions using similar transfor-mations to the new basis in whi
h the representations�1 and �2 of the Abelian group Z2 �C2v are fully re-du
ible, the matri
es V1 and V2 take a blo
k-diagonalform, where the �rst matrix V1 has one subblo
k ofsize 5� 5, four 2 � 2 subblo
ks, and three 1� 1 �sub-blo
ks�, and the se
ond matrix V2 
onsists of one 5�5subblo
k, one 4� 4 subblo
k, two 2� 2 subblo
ks, andagain three ready-made eigenvalues.9 ÆÝÒÔ, âûï. 3 513



M. A. Yurish
hev ÆÝÒÔ, òîì 131, âûï. 3, 2007Chara
ter table of the group Z2 �C2vZ2 �C2v E C2 �v �0v R RC2 R�v R�0v�(1) 1 1 1 1 1 1 1 1�(2) 1 1 1 1 �1 �1 �1 �1�(3) 1 �1 �1 1 �1 1 1 �1�(4) 1 1 �1 �1 �1 �1 1 1�(5) 1 �1 1 �1 �1 1 �1 1�(6) 1 �1 �1 1 1 �1 �1 1�(7) 1 1 �1 �1 1 1 �1 �1�(8) 1 �1 1 �1 1 �1 1 �1�1 16 4 4 4 0 4 4 4�2 16 4 8 8 0 4 0 02.2. Basis ve
tors of irredu
ible representationsThe next step is the quasi-diagonalization of trans-fer matri
es in pra
ti
e. For this, we �rst 
onstru
t thebasis ve
tors of IRs. In our 
ase, this is easily done bya
ting with the proje
tion operatorP (�) =XG �(�)�(G)G (18)(a normalizing 
oe�
ient is omitted) on the ve
tors ofthe original basis. Lete1 = j1; 1; 1; 1i; e2 = j1; 1; 1;�1i; : : :: : : ; e16 = j � 1;�1;�1;�1i (19)be a basis in whi
h the matrix V1 is de�ned a

ordingto Eq. (5). Applying operator (18) to ve
tors (19) su
-
essively and taking equalities (7)�(9) and the 
hara
-ter Table into a

ount, we obtain sets of basis ve
tors,whi
h should be normalized. In parti
ular, we have forthe basis ve
tors of the identi
al IR (1)1 = e1 + e16p2 ; (1)2 = e2 + e3 + e5 + e8 + e9 + e12 + e14 + e152p2 ; (1)3 = e4 + e13p2 ;  (1)4 = e6 + e11p2 ; (1)5 = e7 + e10p2 : (20)
For the next IR �(2), we obtain (2)1 = e1 � e16p2 ; (2)2 = e2+e3+e5+e9�e8�e12�e14�e152p2 : (21)

In an analogous way, we �nd basis ve
tors for all otherIRs in the original representation.Knowing the basis fun
tions, we dire
tly 
al
ulatethe matrix elements of subblo
ks using Eq. (5):�V(�)1 �ij =  (�)+i V1 (�)j ; (22)and similarly for the se
ond model.2.3. Using the �� symmetryNow the task is to solve the se
ular equations of sub-blo
ks. Cal
ulating the determinant of the �rst equa-tion det(V(1)1 � �) = 0; (23)we obtain that it has the stru
ture�5 � a1�4 + a2�3 � �a2�2 + �3a1�� �5 = 0; (24)wherea1 = 2[1 + 4 
h(2Kx) 
h(2Ky)℄ 
h(4Kz) + 6; (25)a2 = 32 
h(2Kx) 
h(2Ky)[
h(4Kz) 
h2(2Kz)�1℄++ 8[1 + 
h(4Kx) + 
h(4Ky)℄ sh2(4Kz); (26)and � = 4 sh2(2Kz): (27)A

ording to Ref. [8℄, an algebrai
 equation like (24)is re
ipro
al. One root of Eq. (24) 
oin
ides obviously514
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eswith �. After its extra
tion, we obtain a quarti
 equa-tion that is again re
ipro
al:�4 � (a1 � �)�3 + [a2 � �(a1 � �)℄�2 �� �2(a1 � �)�+ �4 = 0: (28)By the substitution r = �+ �2� ; (29)Eq. (28) is redu
ed to the quadri
 resolventr2 � (a1 � �)r + a2 � �(a1 + �) = 0: (30)First solving Eq. (30) and then quadri
 Eqs. (29) forea
h ri, we �nd the eigenvalues of the subblo
k V(1)1 .The solution of se
ular equations of se
ond-order sub-blo
ks 
auses no di�
ulties. As a result, we 
an obtainthe 
omplete set of eigenvalues of the transfer matrixV1. We note that all eigenvalues of V1 satisfy the ��symmetry [9℄: the eigenvalues �i 
an be divided intopairs su
h that �1�2 = �3�4 = : : : (31)It is the �� symmetry that redu
es the Galois groupand leads to the re
ipro
al property for the se
ularequations of the transfer matrix and its subblo
ks.The largest eigenvalue of the transfer matrix alwayslies in the subblo
k of the identi
al IR (this follows fromthe Perron theorem [10℄) and is in our 
ase given by�1 = 12r1 +�14r21 � �2�1=2 (32)withr1 = 12(a1 � �) + �14(a1 + �)2 + �2 � a2�1=2 : (33)We now return to the se
ond model. The se
ularequation of the subblo
k 
orresponding to the identi
alIR is also re
ipro
al:�5 � b1�4 + b2�3 � 
b2�2 + 
3b1�� 
5 = 0; (34)whereb1 = 12 
h(2KA) 
h(2KB) + 2 exp[2(KA +KB)℄�� 
h[4(KAB +K 0AB)℄ ++ 2 exp[�2(KA +KB)℄ 
h[4(KAB �K 0AB)℄; (35)

b2 = 24 
h(2KA) 
h(2KB)fexp[2(KA +KB)℄�� 
h[4(KAB +K 0AB)℄ ++ exp[�2(KA +KB)℄ 
h[4(KAB �K 0AB)℄g �� 4 [2 + exp(4KA) + exp(4KB)℄�� 
h[4(KAB +K 0AB)℄�� 4 [2 + exp(�4KA) + exp(�4KB)℄�� 
h[4(KAB �K 0AB)℄ ++ 8 
h[4(KA +KB)℄ + 4[
h(4KA) + 
h(4KB)℄ ++ 8 sh2[2(KA �KB)℄�� 16[
h(4KAB) + 
h(4K 0AB)℄; (36)and 
 = 4 sh(2KA) sh(2KB): (37)This permits us to �nd the largest eigenvalue of thetransfer matrix V2, whi
h is most important in appli-
ations, � = 12h1 +�14h21 � 
2�1=2 ; (38)whereh1 = 12(b1 � 
) + �14(b1 + 
)2 + 
2 � b2�1=2 : (39)The se
ular equation of the 4�4 subblo
k is also re
ip-ro
al. Therefore, it 
an be solved by square radi
als.As a result, we also determine all eigenvalues of thetransfer matrix V2. They again have the �� symmetryproperty.To 
on
lude this se
tion, we note the following. Itis not possible to generalize Hamiltonians (3) and (4)and at the same time preserve the above redu
tion ofthe original problem: the attempts to in
lude the ad-ditional single (external �eld), pair or multiparti
le in-tera
tions in the Hamiltonians immutablely lead to thedestru
tion of the obvious or hidden symmetries.3. SPECIFIC HEAT OF THE FRUSTRATEDCHAIN SYSTEMIsing magnets with triangle latti
es are an exampleof frustrated systems [11℄. We illustrate the pe
uliari-ties of the spe
i�
 heat behavior in su
h systems usingthe solution obtained for model (4).515 9*
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Fig. 3. Spe
i�
 heat behavior in the frustrated sys-tems: 1 � JA = JB = JAB = J 0AB = �1;2 � JA = �1, JB = �0:8, JAB = �0:9, J 0AB = �1;3 � JA = �1, JB = �0:85, JAB = �0:99,J 0AB = �0:95; 4 � JA = �1, JB = �1, JAB = �0:9,J 0AB = �0:8The free energy per site of an in�nitely long 
hainis given by f(T ) = �14kBT ln �; (40)where � is the largest eigenvalue of the transfer matrixV2. Taking the standard relations between the thermo-dynami
al quantities into a

ount, we then have from(40) the spe
i�
 heat
 = kB�24� "�2���2 � 1� ������2# : (41)Substituting the expression for � found in the previousse
tion and performing the ne
essary di�erentiations,we arrive at an analyti
 formula for the spe
i�
 heat ofour system. From this formula, it follows that at hightemperatures, the spe
i�
 heat behaves as
(T )kB � J2A + J2B + 2(J2AB + J 02AB)8(kBT )2 ; T !1: (42)In the other limit, as T ! 0, the spe
i�
 heat, a 
ontin-ued fun
tion of temperature, tends to zero and 
 = 0at T = 0. This agrees with the Nernst theorem [12℄. Inan intermediate region (0 < T < 1), the spe
i�
 heatbeing a positive fun
tion, has one or more maxima ina

ordan
e with the Rolle theorem.

We have investigated the spe
i�
 heat behavior as afun
tion of temperature numeri
ally using the analyti
formula. For kBT=jJAj in the region [0, 1℄, we 
al
u-lated the spe
i�
 heat for a frustrated system withJA = JB = JAB = J 0AB < 0and for systems in whi
h these negative ex
hange inte-grals are weakly disturbed (almost frustrated systems).The results are shown in Fig. 3.The spe
i�
 heat in the frustrated 
hain (
urve 1 inFig. 3) has one maximum. However, by any amountof disturban
e of the absolute equality between the an-tiferromagneti
 ex
hange 
onstants, the se
ond peakarises on the spe
i�
 heat 
urve in the low-temperatureregion (
urves 2�4 ). The additional peak is very sensi-tive even to the smallest distortions of the equilateraltriangle stru
ture and hen
e the low-temperature max-imum 
an serve as their indi
ator.4. CONCLUSIONSIn this paper, we have obtained two di�erent solu-tions of Ising model on the 2 � 2 � 1 latti
es usingthe same obvious invarian
e, Z2�C2v, and the hidden�� symmetry. But in one 
ase, the symmetry planes�v and �0v of the group C2v pass through the oppo-site fa
es of a 2 � 2 �1 parallelepiped, and in other
ase, those symmetry planes pass through the oppositelinear 
hains of a 2� 2�1 system.Both solutions found are unique in that they 
an-not be generalized with preservation of the 
ombinedsymmetry, Z2 �C2v and ��.We hope the presented solutions will be useful instatisti
al me
hani
s and in the theory of many-
hainmagneti
 (and other) materials.I thank L. A. Zhukova for her help in the work andalso the Russian Foundation for Basi
 Resear
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