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We use the brick-wall method to investigate thermodynamical quantities around a static Gibbons—Maeda dila-
ton black hole and show that each of these quantities contains an additional spin-dependent term and that the
usual result that the entropy density, energy density, and pressure take the same forms as in flat space-time
holds only for the leading term. Our results are compatible with the early conclusions that the black hole entropy
is not exactly proportional to the horizon area and that Hawking radiation is not to be purely thermal.

PACS: 04.70.Dy, 97.60.Lf

In theoretical physics, the thermodynamics of black
holes remains an enigma; it turns out to be a junction
of general relativity, quantum mechanics, and statis-
tical physics. Logarithmic corrections to the Beken-
stein — Hawking entropy due to spin fields have been
extensively investigated [1-5]. The Hawking radiation
via tunneling from the black hole has also been studied
widely and was proved not to be exactly thermal [6-
10]. This implies that other information in addition
to temperature could be preserved in formation and
evaporation of a black hole, as argued by Hawking in
Ref. [11].

It is generally assumed that the entropy density, the
energy density, and the pressure of an ideal relativis-
tic gas in curved space—time have the same forms as
in Minkowski space—time [12], where they are indepen-
dent of the spin of the field, except that different fields
obey different statistics. The physical reason can be
traced back to the equivalence principle [13].

Applying the quantization procedure referred to as
the Boulware vacuum state and Killing time ¢, Li [14,
15] studied the thermodynamical quantities around the
Schwarzschild black hole and the Reissner — Nordstrom
black hole and found that the corrected expressions
for these quantities include additional spin-dependent
terms. Obviously, these results are important and help-
ful for further investigation in related subjects such as
black hole entropy and black hole radiation. Our pur-
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pose in this paper is to extend this method to the Gib-
bons—Maeda dilaton black hole and to investigate the
influence of spin on the thermodynamical quantities by
the brick-wall method [16]. Doubts regarding the va-
lidity of the brick-wall method are expressed in some
references [17, 18], but these objections are shown to be
overcome [19] when the ground state is correctly iden-
tified and the local description of the statistical me-
chanics is equivalent to that of a quantized field in the
curved background, which is defined globally and whose
ground state is the Boulware state [20].
The metric of static Gibbons—Maeda dilaton black
hole is given by [21, 22]
4 — (r—r;)(r—r,) PRI -D?
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where

re =M ++/M?2+ D2 - P2 Q2

are the outer and inner horizons. Here, M, P, @, and
D are the mass, electric charge, magnetic charge, and
dilaton parameter, related by

P2 _ Q2

2M
In space—time (1), the area of the spherical surface at
a point r outside the horizon is

A(r) = 4n(r* — D?).

D=

We introduce the null tetrad vectors
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The nonvanishing spin coefficients and the only non-
vanishing component of the Weyl tensor can then be
obtained using the Newman — Penrose formula [23] as
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Equations (3) tell us that metric (1) is of the Petrov
type D. Using the result of Teukolsky [24], the field

equations for the neutrino (s = 1/2), electromagnetic
(s = 1), and gravitational (s = 2) fields in the source-

free case can be combined into the equations

{[D = 2p+ Dpl[A = 2py + p] -

— [0+ 2(p—1)a][d — 2sa] —
—(2s—1)(s — 1)U}, =0,
{la=2(p+1)y+ 1 =2p)ul[D - p] -
— [0 =2(p+1)a][d — 2sa] —
—(2s—1)(s —1)T,}0, =0,

(4)

where D, A, and § are the directional derivatives given
by D = I*0,, A = n*0,, and 6 = m#d,, Q, are the
mode functions, and ¢ represents the set of quantum
numbers. The first equation is for spin states p = s
and the other is for p = —s.

In the quantization procedure referred to as the
Boulware vacuum state and Killing time ¢, the mode
functions of these fields in the vicinity of the Gibbons —
Maeda dilaton black hole can be written as

Qq = QE‘lmp = ,rp—sp RlE(T)valm(ev (fo)e_iEt‘ (5)

Substituting Eqs. (3) and (5) in Eqs. (4), we obtain
the radial equation
(’1“2 _ D2)2E2

ot
(=20 =)

iEC(r,p) + B(r,p) — X2 _
0 1) }pRlE(T) =0, (6)
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where

_2pD? = 2p(dp = 5)r* + (4p* + 3)(ry + 7 )r + 2p+ Vryr N

B(r,p) = 7
r—ry)(r—r- . .
( (r2+_)(D2)2 : [(4p” +3p +7)r* + (20" = 3p+ )D?], (7)
C(r,p) = dpr — p(r* —D*)(2r —ry 1) stant A satisfies the relation
| G-
N =(1-pl+p+1), (9)

and the angular equation

L E(SIHG)E + L 8_2+
sinf 00 90 sin?f 0p?
2ipcosf 0
S0 9 ? ctg? 0—p+A* | pYim(0,¢) = 0. (8)

Equation (8) shows that ,Y;,,(0,¢) is a spin-
weighted spherical harmonic, and the separation con-
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where | and m are integers satisfying the inequalities

[>s and —-I1<m<lL. (10)

Writing

pRlE(r) = exp[iS(r,p., l'/ E)]
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and using the Wentzel - Kramers - Brillouin (WKB)
approximation, we obtain the radial wave number

k=0,S:

2 _ D2 2E2
k= | ) +
r—r)2(r—r_)?
B(r.p) = (L=p)(I +p+1)]"
+ (11)
(r=ra)(r—7-)
under the brick-wall boundary conditions
Q=0 at r=ry+e and r=ry+c+1L,

where ¢ is the distance of the brick wall from the hori-
zon, 0 < ¢ < r4, and L is the thickness of the brick
wall. Then the constraint of the semiclassical quantum
condition imposed on k is

rg+e+L
kdr = nm, (12)

rH+E

where n is a nonnegative integer, and the number of
eigenstates with the energy smaller than F is given by
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Here, l;nqz is determined by Eq. (11) and

n(r,p) = B(r,p) — s +p. (14)
The free energy at the inverse Hawking temperature

B is given by

_BgF =+ Z]n (1+exp(=PuEs)).  (15)

The «+» sign in Eq. (15) corresponds to the Fermi
case and the «—» sign corresponds to the Bose case.
Using Eq. (13) to determine the density of states, we
obtain the free energy

F= :FﬂiHO/dEdZ(]f) In (1 + exp(—By E)) =
w3 et (r? — D?)3dr m TH+E+L(1“2 — D?)n(r,p) dr 1
~iE /+ PP 6 [ e ern R
_ (16)
_twr? 7+ (- Ddr ”’7“@2 - Dpdr
L 18053% W (r—ry)2(r—r-)?  1253% I (r—ry)r—r_) ° 7

where w = Z 1 (w = 2 for the gravitational and elec-

P
tromagnetic fields and w = 1 for the neutrino field).

Using the formulas

OF
5= Pirggy

and

I(BuF)
Bu

U=

we can obtain the entropy and energy as
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rH+E
rateth ) ) where T'(r) is the local temperature determined by the
= / p(r)dr(r® — D7)dr, (21)  Tolman relation [17]
rH+E

where we have taken a spherical shell as the volume
element. The factor

1 _\/ r2 — D2
Vaoo |\ (r=r)(r—ro)

does not appear in the integral for the total energy of
the thermal excitations [18]. Comparing Eqgs. (20) and
(21) with Eqs. (17) and (18), we obtain the entropy
density and energy density
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1 1 r2 — D?
NWWW%_Ew“mWJJ'M)
The pressure is given by [25]
P(r) = o(r)T(r) = p(r). (25)

Substituting Eqs. (22) and (23) in Eq. (25), we obtain
the pressure
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P(r) =
Wﬂ-2 4 1 * 2
o9 () + 5" (NT7(r), s=1,2,
= o (26)
LT+ (T, s =1/2.
The equation of state is
1 * 2
— ST OT0), 5 =1,2
o) =3P =4 (21)
o (T0), 5 =172

In summary, we have evaluated the entropy den-
sity, energy density, and pressure for the perfect rela-
tivistic gases of massless particles with spins s = 1/2,
1, and 2 in the vicinity of the static Gibbons—Maeda
dilaton black hole by the WKB approximation, which
are given by Eqgs. (22), (23), and (26), respectively.
Our results show that any one of these quantities for
a spin field includes an additive spin-dependent term.
These additional terms cannot be neglected at suffi-
ciently low temperature, for example, in the vicinity of
a near-extremal black hole, and lead to the equations
of state (27) being also spin-dependent. The usual re-
sult for any spin field that the entropy density, energy
density, and pressure take the same forms as in a flat
space—time holds only for the leading term in powers
of the temperature. Of course, when r is sufficiently
large, the space—time becomes a Minkowski one, the
spin-dependent terms decrease as 1/r% or more rapidly
and can be neglected, and therefore the result is con-
sistent with that in Minkowski space—time.
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