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e+e� PAIR PRODUCTION IN ULTRARELATIVISTIC HEAVY-IONCOLLISIONS AT INTERMEDIATE IMPACT PARAMETERSR. N. Lee *, A. I. Milstein **Budker Institute of Nulear Physis, Siberean Branh of the Russian Aademy of Sienes630090, Novosibirsk, RussiaReeived 4 Otober 2006Using the semilassial Green's funtion in the Coulomb �eld, we analyze the probabilities of single and multiplee+e� pair prodution at a �xed impat parameter b between olliding ultrarelativisti heavy nulei. We performalulations in the Born approximation with respet to the parameter ZB� and exatly in ZA�, where ZAand ZB are the harge numbers of the orresponding nulei. We also obtain the approximate formulas for theprobabilities valid for ZA�, ZB� . 1.PACS: 12.20.Ds, 95.30.Cq1. INTRODUCTIONThe ross setion of the e+e� pair prodution inultrarelativisti heavy-ion ollisions is very large, andthis proess an be a serious bakground for many ex-periments. Besides, it is also important in the problemof beam lifetime and luminosity of hadron olliders.This means that various orretions to the Born rosssetion for one-pair prodution, as well as the ross se-tion for n-pair prodution (n > 1), are very important.Reently, the proess was disussed in numerous pa-pers, see reviews [1�3℄, but some important aspets ofthe problem are not yet entirely understood, and weeluidate them in the present paper.For our purpose, it is onvenient to onsider a ol-lision of nulei A and B with the orresponding hargenumbers ZA and ZB in the rest frame of nuleus A.Nuleus B is assumed to move in the positive diretionof the z axis having the Lorentz fator . For  � 1,it is possible to treat the nulei as soures of the exter-nal �eld and alulate the probability Pn(b) of n-pairprodution in the ollision of two nulei at a �xed im-pat parameter b. The orresponding ross setion �nis obtained by integrating over the impat parameter,�n = Z d2b Pn(b): (1)*E-mail: R.N.Lee�inp.nsk.su**E-mail: A.I.Milstein�inp.nsk.su

The average number of the produed pairs at a given bis given by W (b) = 1Xn=1nPn(b): (2)The funtion W (b) de�nes the number-weighted rosssetion �T = Z d2bW (b) = 1Xn=1n�n: (3)A losed expression for �T was obtained in Refs. [4�6℄,although the orret meaning of this expression wasreognized later in Ref. [7℄.The ross setion �T an be represented as�T = �0T + �CT + �CCT ; (4)where �0T is the Born ross setion, i.e., the rosssetion alulated in the lowest-order perturba-tion theory with respet to the parameters ZA;B �(�0T / (ZB�)2(ZA�)2, � = e2 is the �ne-strutureonstant, e is the eletron harge, ~ =  = 1), �CT is theCoulomb orretion with respet to one of the nulei(ontaining the terms proportional to (ZB�)2(ZA�)2nor (ZB�)2n(ZA�)2, n > 2), and �CCT is the Coulomborretion with respet to both nulei (ontaining theterms proportional to (ZB�)n(ZA�)l with n; l > 2).The ross setion �0T oinides with the Born rosssetion of one-pair prodution, whih was alulatedmany years ago in Refs. [8, 9℄.472



ÆÝÒÔ, òîì 131, âûï. 3, 2007 e+e� pair prodution in ultrarelativisti heavy-ion : : :The expression for W (b) derived in Refs. [4�6℄ re-quires regularization. The orret regularization wasmade in Refs. [10, 11℄, where the expressions for �CTand �CCT were obtained in the leading logarithmi ap-proximation:�CT = � 289� �m2 L2 [f(ZB�) + f(ZA�)℄;�CCT = 569� �m2 Lf(ZB�)f(ZA�);� = (ZA�)2(ZB�)2;  (x) = �0(x)=�(x);L = ln ; f(x) = Re[ (1 + iZA�) + C℄; (5)where m is the eletron mass and C = 0:577 : : : isthe Euler onstant. The expression for �CT oinideswith that obtained in Ref. [12℄ by means of theWeizsäker �Williams approximation. The auray ofexpression (4) with �CT and �CCT given in (5) and �0T inRefs. [8, 9℄ is determined by the relative order of theomitted terms � (ZA;B�)2=L2. This auray is betterthan 0.4% for the RHIC and LHC olliders. In reentpapers [13, 14℄, the Coulomb orretions were alu-lated numerially for a few values of . We emphasizethat the auray of the results in Refs. [13, 14℄ is thesame as in (5). The unertainty is related to the ontri-bution of the region where the energies of the eletronand the positron are of the order of the eletron massin the rest frame of one of the nulei.It was laimed in Refs. [15�18℄ that the fatorizationof the multiple pair prodution probability is valid witha good auray, resulting in the Poisson distributionfor multipliities:Pn(b) = Wn(b)n! exp(�W (b)): (6)The fator exp(�W ) is nothing but the vauum�to�vauum transition probabilityP0 = 1� 1Xn=1Pn:Stritly speaking, the fatorization does not take plaedue to interferene between the diagrams orrespond-ing to the permutation of the eletron (or positron)lines (see, e.g., [7℄). Nevertheless, one an show thatthis interferene makes the ontribution that ontainsat least one power of L less than that of the amplitudesquared. Therefore, in the leading logarithmi approx-imation, one an use expression (6). Thus, to obtainPn, it su�es to know the funtion W (b).In Refs. [19�23℄, the funtion W0(b) (the Born ap-proximation for W (b)) was alulated numerially formb . 1 and a few partiular values of . The orret

dependene of W0(b) on b at mb� 1 was obtained an-alytially in Ref. [24℄ by two di�erent methods. Bothmethods give the resultW0(b) = 289�2 �(mb)2 [2 ln  � 3 ln (mb)℄ ln (mb) (7)in the region 1� mb � p andW0(b) = 289�2 �(mb)2 �ln mb�2 (8)in the region p � mb � . We note that the fun-tion W0(b) given by Eqs. (7) and (8) is ontinuous atmb = p together with its �rst derivative. Certainly,the integration of W0(b) over b, b = jbj, gives the lead-ing term (/ L3) in �0T . In the reent paper [23℄, anansatz for W0(b) was suggested that has a quite di�er-ent dependene ofW0(b) on  and b for 1� mb� p.In the present paper, we on�rm the result (7) onemore and unambiguously disprove the ansatz suggestedin Ref. [23℄.The one-pair prodution ross setion �1 an be rep-resented as�1 = �T + �unit = Z dbW (b)�� Z dbW (b) (1� exp(�W (b))) : (9)Therefore, the di�erene between �1 and �T is due tothe unitarity orretion �unit. The leading ontributionto the term �T omes from b� 1=m. It was shown inRef. [24℄ that the leading ontribution to the seondterm, �unit, as well as the leading ontribution to theross setions for the n-pair prodution (n � 2), omesfrom b � 1=m. As shown in Ref. [24℄, in this region,the funtion W (b) has the formW (b) = �LF(mb) ; (10)where the funtion F(mb) depends on the parametersZB� and ZA� and is independent of . We representF(x) asF(x) = F0(x) +FA(x) +FB(x) +FAB(x); (11)where F0(x) is independent of ZA and ZB (theBorn term), FA(x) ontains terms / (ZA�)n>0(ZB�)0(Coulomb orretions with respet to nuleus A),FB(x) ontains terms / (ZA�)0(ZB�)n>0 (Coulomborretions with respet to nuleus B), and FAB(x)ontains terms / (ZA�)n>0(ZB�)l>0 (Coulomb or-retions with respet to both nulei).In the present paper, we alulate the funtion F(x)for ZB� � 1, ZA� . 1, and x . 1. In this limit, we473



R. N. Lee, A. I. Milstein ÆÝÒÔ, òîì 131, âûï. 3, 2007an neglet the terms FB(x) and FAB(x) in Eq. (11).Although ZB�� 1, we annot expand the exponentialin (6) if �L � 1. Our method is based on the use of thesemilassial Green's funtion of the Dira equation inthe Coulomb �eld.2. GENERAL DISCUSSIONIn the leading order in ZB�, the matrix element Mof the e+e� pair prodution has the formM = �e Z dt dr exp[�i("p + "q)t℄��	p�(r) Â(t; r)	�p+(r); (12)where A�(t; r) is the four-vetor potential of the mov-ing nuleus B, 	p� and 	�p+ are the positive- andnegative-energy solutions of the Dira equation in theCoulomb �eld of nuleus A and p� = ("p;p) andp+ = ("q ;q) are the four-momenta of the eletron andpositron, respetively.We then use the Fourier transform A�k of the vetorpotential A�(t; r),A�k = � 4�eZBk2? + (k0=�)2 �� exp(�ik? � b)2�Æ �k0 � �kz�u�; (13)where u� = (; 0; 0; �) is the four-veloity of nuleusB and b is the impat parameter. Taking the integralsover t, k0, and kz, we obtainM = �4�ZB�� Z dk?(2�)2 exp(�ik? � �)k2? + (E=�)2 �� Z dr exp �ik? � �+ iEz� �	p�(r)û	�p+(r) ; (14)where E = "p + "q; r = (�; z):In alulating the probabilities integrated over theangles of the �nal partiles, it is onvenient to use theGreen's funtions of the Dira equation in an external�eld. Using the relations (see, e.g., [25℄)X� Z d
q 	�p+(r2)	�p+(r1) == �i (2�)2q "q ÆG (r2; r1j � "q);X� Z d
p	p�(r1)	p�(r2) == i (2�)2p "p ÆG (r1; r2j"p) ; (15)

where ÆG (r; r0j") is the disontinuity of the Green'sfuntion on the ut and the summation is performedover spin states, we obtain the total probabilityW (b) =X�� jM j2 dp dq(2�)6 = �2ZB�� �2 �� Z d"qd"pdk1?dk2?(2�)4 �� exp [i(k1? � k2?) � b℄[k21? + (E=�)2℄ [k22? + (E=�)2℄ Z dr1dr2 �� exp �ik2? � �2�ik1? � �1 + iE� (z2 � z1)��� Sp [û ÆG(r2; r1j � "q)ûÆG(r1; r2 j"p)℄ : (16)Using gauge invariane and the ondition  � 1, it ispossible to make the replaementSp [û ÆG(r2; r1j � "q)ûÆG(r1; r2 j"p)℄! 2E2 �� Sp hk̂2? ÆG(r2; r1j � "q) k̂1?ÆG(r1; r2 j"p)i (17)in Eq. (16).In the leading logarithmi approximation, the lead-ing ontribution to the probability W (b) omes fromthe region "� � m, where the semilassial approxi-mation is appliable. Besides, it is onvenient to per-form the alulations in terms of the Green's funtionD(r; r0j") of the squared Dira equation [25, 26℄. Us-ing the transformations similar to those in Ref. [26℄, weobtainW (b) = 4 (ZB�)2 Z d"qd"pdk1?dk2?E2 (2�)4 �� exp [i(k1? � k2?) � b℄[k21? + (E=�)2℄ [k22? + (E=�)2℄ Z dr1dr2 �� exp�ik2? � �2 � ik1? � �1 + iE� (z2 � z1)��� Spnh[�2ik2? � r2 + k̂2k̂2?℄D(r2; r1j � "q)i �� h[�2ik1? � r1 � k̂1k̂1?℄ D(r1; r2 j"p)io ; (18)where k1 = (E;k1?; E); k2 = (E;k2?; E):In the semilassial approximation, the funtion D isgiven by [25℄474



ÆÝÒÔ, òîì 131, âûï. 3, 2007 e+e� pair prodution in ultrarelativisti heavy-ion : : :D(r2; r1j") = i� exp(i�r)8�2r1r2 �� Z dq exp �i�r(q+ f)22r1r2 ��4r1r2q2 �iZA�� �� �1 + �r2r1r2� � (q+ f)� ; (19)� =p"2 �m2; � = "�; � = 0;f = [r1 � r2℄� rr2 ; r = r1 � r2 ;where q is a two-dimensional vetor in the plane per-pendiular to r. The expliit form (19) of the semilas-sial Green's funtion is very onvenient for analytialinvestigation of high-energy proesses in the Coulomb�eld. 3. ANALYTIC RESULTSFor mb . 1, the leading ontribution to the inte-grals in Eq. (18) is given by the region of small an-gles between the vetors r1 and �r2 and the z axis.Using these onditions and the semilassial Green'sfuntion (19), we obtain the following representationfor F(mb) = F0(mb) +FA(mb)(details of the alulation are presented in the Ap-pendix):F(mb) = 1�4 (ZA�)2 1Z0 dx Z d2Q�� Z d2��2 "1�� jR+ xQjjR� �xQj�2iZA�#��*4px�x (x��x)� �Q K21( ~Q)~Q2 �� K1(Q)K1( ~Q)Q ~Q !++ hK0( ~Q)�K0(Q)i2 + 4x�x�2 �� K21( ~Q)~Q2 + Q2 � 4x�x (� �Q)2�2 !�� "K1( ~Q)~Q � K1(Q)Q #2+ ;~Q2 = Q2+�2; R=px�x�+mb; �x = 1�x;
(20)

where Kn(x) is a modi�ed Bessel funtion of the thirdkind. The form (20) is suitable for investigation of the

asymptoti behavior of F(mb). For numerial evalua-tion, it is onvenient to pass from the integration overthe angle � of the vetor Q to the integration over theparameter v using the identitiesZ d�2� "1��1 + a os�1� b os��i�#8><>: 1os�os 2� 9>=>; == � sh��� limÆ!0 1Z0 dvv1�Æ �v1�Æ �v�v��i� ��8>>>>>>><>>>>>>>: ln 1 +p1� s22s1 +p1� s2�12 � s1 +p1� s2�2
9>>>>>>>=>>>>>>>; ;�v = 1� v ; s = a v � b �v : (21)Making the substitutionv = uu+ ��u;where �u = 1� u ; � = R2 + �x2Q2R2 + x2Q2 ;and taking the symmetry of the integrand under thesubstitution u! �u, x! �x into aount, we obtainF(mb) = 4sh(�ZA�)�4ZA� 1Z0 dx 1Z0 dQQ Z d2��2 �� 1=2Z0 duu �u os�ZA� ln u�u�*ln s+ps2 � t2g �� 8<:(1� 2x�x)"QK1( ~Q)~Q �K1(Q)#2 ++ hK0( ~Q)�K0(Q)i2 + 4x�xK21( ~Q)�2~Q2 9=;++ x�x "2�� �R�R �2 � 1#"� ts+ps2 � t2�2�� �RQ�xg �2#"QK1( ~Q)~Q �K1(Q)#2 �475



R. N. Lee, A. I. Milstein ÆÝÒÔ, òîì 131, âûï. 3, 2007�4px�x (�x�x) � �RR � ts+ps2�t2+RQ�xg ��� "QK21 ( ~Q)~Q2 � K1(Q)K1( ~Q)~Q #+ ;~Q2 = Q2 + �2 ; g = max(R2; Q2�x2) ;t = 2QR (xu��x�u) ; s = R2+Q2 �x2u+�x2�u� : (22)We onsider the asymptoti form of Eq. (20). Formb � 1, there are two regions of integration over �giving the leading logarithmi ontribution to F(mb):1� jpx�x� +mbj � mb and 1� � � mb:These regions give equal ontributions, and the �nalresult is F(mb) = 569�2(mb)2 ln (mb): (23)Thus, the leading logarithmi ontribution is given bythe Born term F0(mb). This asymptoti expressionagrees with Eq. (7) under the onditionln(mb)� L:The leading ontribution to FA(mb) omes from theregion jpx�x� +mbj � 1and has the formFA(mb) = � 289�2(mb)2 f(ZA�); (24)where the funtion f(x) is de�ned in Eq. (5). Again,this asymptoti expression is valid under the onditionln(mb) � L. For the Coulomb orretions to W (b)with respet to nuleus A, WA(b), similarly to thederivation of Eq. (7) based on the equivalent photonapproximation (see Ref. [24℄), it is possible to obtainthe expression valid in the wider region ln(mb) . L(but still 1� mb� ). We haveWA(b) = � 289�2 �(mb)2 f(ZA�) ln mb: (25)Equation (24) evidently agrees with Eq. (25).We onsider the asymptoti regime of small impatparameters. For mb � 1, the leading logarithmi on-tribution omes from the region mb � � � Q � 1.Taking the integrals over this region, we obtainF(mb) = 83�2(ZA�)2 ln 1mb ��Re � (1 + iZA�) + C � (ZA�)2 ++iZA�(1 + (ZA�)2) 0(1 + iZA�)� : (26)

This asymptoti expression is obtained for a zero nu-lear radius Rn. To obtainW (b) for extended nulei, itis su�ient, within the logarithmi auray, to makethe substitutionln (mb)! ln (mb+mRn)in (26). For b � Rn, the �nite-nulear-size orretionto W (b) is negligible.4. NUMERICAL RESULTSUsing Eq. (18), we tabulated the funtion F(mb)for a few values of ZA. The orresponding results arepresented in the left plot in Fig. 1 and in the Table.We reall that these results are obtained in the Bornapproximation with respet to nuleus B. For most ex-periments, ZA = ZB, and it is neessary to know thefuntion F(mb) beyond the Born approximation withrespet to nuleus B. If we assume that the term FABin Eq. (11) is numerially small, then we an approx-imate the funtion F as F0 + 2FA in this ase. Thisfuntion is shown in the right plot in Fig. 1. It is seenthat the Coulomb orretions in the region mb . 1are very important for the experimentally interestingase ZA = ZB = 79. The assumption of smallnessof the ontribution FAB is supported by the ompar-ison of our results for W (b) with those obtained inRefs. [27, 14℄ for ZA = ZB = 79 and  = 2 � 104(:m: = 100).As we have already pointed out, Eq. (10) has a loga-rithmi auray, whih an be su�ient for very large. To go beyond the logarithmi auray, we representW (b) in the formW (b) = � [L�G(mb)℄F(mb) ; (27)where G(mb) is some funtion of mb and, generallyspeaking, of the parameters ZA� and ZB�. Theasymptoti form of G(mb) for 1� mb� p is known,see Eqs. (7) and (25). However, the alulation of thefuntion G(mb) atmb . 1 is a rather ompliated prob-lem. Instead, we use the results of numerial alula-tions performed for a few values of  in Refs. [19, 27℄ inthe Born approximation. We have found that the formG(mb) = 32 ln(mb+ 1) + 1:9 (28)provides good agreement of Eq. (27) with the numerialresults in Refs. [19, 28, 27℄ in a wide region of mb, seeFig. 2. The form (28) of G(mb) is obtained by �ttingthe Born results and is therefore independent of ZA;B .It provides the orret asymptoti expression forW0(b),476
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Fig. 1. The funtion F(x) in Eq. (22) for ZA = 92 (dash-dotted line), 79 (dotted line), 47 (dashed line), and the Bornapproximation (solid line). a � Born approximation in ZB�, Eq. (22). b � Results obtained from Eqs. (11) and (22) forZB = ZA with the term FAB(x) omitted

10 100 1000 b, fm0

0.1

0.2

0.3

0.4

0.5
P1

12
Fig. 2. The one-pair prodution probability P1(b) orre-sponding to the funtion W (b) in Eq. (27),  = 2 �104,and ZA = ZB = 79. 1 � the funtion F is takenin the Born approximation, F = F0; 2 � Coulomborretions are taken into aount, F = F0 + 2FA.Dots show the orresponding results of numerial al-ulations in Ref. [27℄Eq. (7). It turns out that formula (27) with G(mb) inEq. (28) also has a high auray for ZA�; ZB� . 1in the region mb . 1, where the Coulomb orretions

are large. We have heked this fat by omparing ourresults with those in Ref. [27℄ obtained numerially forZA = ZB = 79, see Fig. 2. We note that the tabulationofW (b) and PN (b) performed in Refs. [13; 14; 19; 27; 28℄for a few values of  required the evaluation of a nine-fold integral and was therefore very laborious. Thealulation of F in Eq. (22) is essentially simpler. Be-sides, beause this funtion is independent of , onean easily obtain preditions for W (b) at any  � 1using Eqs. (27) and (28).5. CONCLUSIONIn the present paper, we have found a simple repre-sentation for the funtion W (b) for mb . 1, ZB�� 1,and arbitrary ZA� in the leading logarithmi approx-imation. Using the results of numerial alulation ofW (b) performed for a few values of  and ZA;B , wehave obtained the approximate formula for W (b) validin a wide region of parameters:mb . p; ZA� . 1; ZB� . 1;  � 1:We estimate the auray of this formula to be a fewperent. The results obtained learly demonstrate thedependene of W (b), as well as of Pn(b), on the rela-tivisti fator  and the parameters ZA;B�.This work was supported in part by the RFBR477



R. N. Lee, A. I. Milstein ÆÝÒÔ, òîì 131, âûï. 3, 2007The funtion F(x) in Eq. (22) alulated in the Born approximation (ZA� ! 0) and exatly in the parameter ZA� forAu, Pb, and Ux Born Au Pb U x Born Au Pb U0:0100 3:420 2:760 2:71 2:560 1:26 0:391 0:347 0:343 0:3320:0126 3:260 2:650 2:59 2:450 1:58 0:304 0:273 0:27 0:2620:0158 3:110 2:520 2:47 2:340 2:00 0:231 0:209 0:207 0:2020:0200 2:960 2:400 2:35 2:220 2:51 0:171 0:156 0:155 0:1520:0251 2:800 2:280 2:24 2:110 3:16 0:124 0:114 0:114 0:1110:0316 2:650 2:160 2:12 2:000 3:98 8:78 � 10�2 8:20 � 10�2 8:15 � 10�2 8:01 � 10�20:0398 2:500 2:040 2:0 1:890 5:01 6:14 � 10�2 5:78 � 10�2 5:75 � 10�2 5:66 � 10�20:0501 2:340 1:920 1:88 1:780 6:31 4:25 � 10�2 4:02 � 10�2 4:00 � 10�2 3:95 � 10�20:0631 2:190 1:800 1:76 1:670 7:94 2:91 � 10�2 2:77 � 10�2 2:76 � 10�2 2:73 � 10�20:0794 2:040 1:680 1:64 1:560 10:00 1:99 � 10�2 1:90 � 10�2 1:89 � 10�2 1:87 � 10�20:1000 1:880 1:550 1:52 1:450 12:60 1:35 � 10�2 1:29 � 10�2 1:29 � 10�2 1:28 � 10�20:1260 1:730 1:430 1:41 1:340 15:80 9:07 � 10�3 8:75 � 10�3 8:72 � 10�3 8:64 � 10�30:1580 1:580 1:310 1:29 1:230 20:00 6:09 � 10�3 5:89 � 10�3 5:87 � 10�3 5:83 � 10�30:2000 1:430 1:190 1:17 1:120 25:10 4:07 � 10�3 3:95 � 10�3 3:94 � 10�3 3:91 � 10�30:2510 1:280 1:070 1:06 1:010 31:60 2:71 � 10�3 2:64 � 10�3 2:63 � 10�3 2:61 � 10�30:3160 1:140 0:961 0:941 0:898 39:80 1:80 � 10�3 1:75 � 10�3 1:75 � 10�3 1:74 � 10�30:3980 0:993 0:842 0:829 0:793 50:10 1:19 � 10�3 1:16 � 10�3 1:16 � 10�3 1:15 � 10�30:5010 0:856 0:731 0:72 0:690 63:10 7:90 � 10�4 7:71 � 10�4 7:69 � 10�4 7:65 � 10�40:6310 0:725 0:625 0:616 0:591 79:40 5:21 � 10�4 5:09 � 10�4 5:08 � 10�4 5:05 � 10�40:7940 0:603 0:524 0:517 0:498 100:00 3:43 � 10�4 3:35 � 10�4 3:34 � 10�4 3:33 � 10�41:0000 0:491 0:431 0:426 0:411(Grant � 05-02-16079) and by the grant for young si-entists of SB RAS (R. N. L.).
APPENDIXCalulation of the integralsIn this Appendix, we present some details of thederivation of Eq. (20) from Eq. (18). The leading on-tribution to the integrals omes from the region of smallangles between the vetors r1 and �r2 and the z axis.Using this fat, we take the integrals over the anglesof r1 and r2, make the substitution r1;2 ! E r1;2, andhange the variables as "p = Ex, "q = E�x = E(1� x).Taking the integral over E in the logarithmi approxi-mation with  � 1 and mb . 1, we obtain

dW (b) = (ZB�)2(2�)6 ln  Z dk1?k21? dk2?k22? �� Z dx x�xdr1r1 dr2r2 Z dQ dq� jq+Qjjq�Qj�2iZA� �� exp �� i2m2(r1 + r2)� i� � ��� i2x�x(r1k21? + r2k22?) + i(r1 + r2)Q22r1r2 ����2 (�x� x)�k21?k2? �Qr2 � k22?k1? �Qr1 ���4x�xk21?k22? � 4 (k1? �Q) (k2? �Q)r1r2 �� (k1? � k2?)�m2(r1 + r2)22x�xr1r2 + r1k21?2r2 ++ r2k22?2r1 �� ; (A.1)� = k1? � k2?; � = q=2 + (�x� x)Q=2� b :478
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