ZKQT®, 2007, rom 131, Boim. 1, cTp. 180-188

© 2007

STEM CELL PROLIFERATION AND DIFFERENTIATION AND

STOCHASTIC BISTABILITY IN GENE EXPRESSION

V. P. Zhdanov®?

@ Department of Applied Physics, Chalmers University of Technology
S5-41296, Goteborg, Sweden

bBoreskov Institute of Catalysis, Russian Academy of Sciences
630090, Novosibirsk, Russia

Received 23 August 2006

The process of proliferation and differentiation of stem cells is inherently stochastic in the sense that the outcome
of cell division is characterized by probabilities that depend on the intracellular properties, extracellular medium,
and cell-cell communication. Despite four decades of intensive studies, the understanding of the physics behind
this stochasticity is still limited both in details and conceptually. Here, we suggest a simple scheme showing
that the stochastic behavior of a single stem cell may be related to (i) the existence of a short stage of decision
whether it will proliferate or differentiate and (ii) control of this stage by stochastic bistability in gene expression
or, more specifically, by transcriptional «bursts». Our Monte Carlo simulations indicate that this scheme may
operate if the number of mRNA (or protein) generated during the high-reactive periods of gene expression is
below or about 50. The stochastic-burst window in the space of kinetic parameters is found to increase with
decreasing the mRNA and/or regulatory-protein numbers and increasing the number of regulatory sites. For
mRNA production with three regulatory sites, for example, the mRNA degradation rate constant may change

in the range +10 %.
PACS: 87.16.-b, 05.40.-a, 05.65.+b

1. INTRODUCTION

Adult stem cells, possessing the ability for self-
renewal and generation of more specialized cells, were
first identified in the hematopoietic (blood-forming)
system in the early 1960s [1]. Later on, stem cell
niches were found to exist in the skin [2], gut [3] and
brain [4] (for general readership, see Ref. [5]). Despite
four decades of intensive studies and high current inter-
est in potential applications in treatment of numerous
severe diseases, tissue engineering, diagnostic purposes,
drug testing, etc. [6], the understanding of the mecha-
nism(s) of proliferation and differentiation of stem cells
is still limited both in details and conceptually [7].

One of the reasons of conceptual difficulties in this
area is that the process of proliferation and differenti-
ation of stem cells is inherently stochastic in the sense
that the outcome of cell division (whether it results in
two stem cell or a stem cell and a differentiated cell) is
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characterized by probabilities that depend on the intra-
cellular properties, extracellular medium, and cell—cell
communication. Whether these probabilities are deter-
mined by complex (e.g., chaotic) kinetics, which can be
described by deterministic equations, or by stochastic
kinetics due to a small number of reactants participat-
ing in some of the steps is still not clear.

To illustrate the last point more explicitly, it is in-
structive to briefly discuss the models used in describ-
ing the kinetics of proliferation and differentiation of
stem cells.

(i) The simplest approach is based on the use of
fixed probabilities for stem-cell self-renewal, differenti-
ation, and death. The corresponding stochastic models
have been widely used since the mid-60s (see the ear-
liest models [8] and recent reviews [9] containing nu-
merous relevant references). The advantage of this ap-
proach is that it allows one to easily perform analytical
and numerical calculations or Monte Carlo (MC) simu-
lations with the various factors (e.g., cell-cell commu-
nication or aggregation of cells due to adhesion [10])
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complicating the stem-cell kinetics taken into account.
But such models do not describe explicitly what hap-
pens inside cells.

(ii) To clarify general principles of proliferation and
differentiation, one can represent a cell by a set of non-
linear chemical reactions without specifying their bio-
chemical function. This strategy was realized in a se-
ries of papers by Kaneko and co-workers [11]. In their
models, the internal dynamics of a single cell typically
exhibits oscillations, chaos, and/or coexistence of mul-
tiple attractors, with only one attractor for randomly
chosen initial conditions. The emphasis is made on
the behavior of an ensemble of cells interacting via ex-
change of some of the reactants. With such interac-
tions, the models predict differentiation from a «stem»
cell to other cell types. Thus, differentiation is essen-
tially considered a collective feature of stem cells having
internal oscillatory dynamics.

(iii) Differentiation of stem cells was interpreted in
terms of a Boolean network model of genetic regula-
tory networks [12]. With prescribed rules of switches
of the gene states, this model predicts state circles or
attractors. Differentiation is viewed as resulting from
a transient or persistent perturbation that causes a cell
to «jump» from one attractor to another attractor. Al-
though the terminology and mathematics are here quite
different from those in item (ii), the general concept is
basically the same.

(iv) Recent kinetic models tend to utilize cell-spe-
cific data (see reviews [9, 13]). For example, the mean-
field kinetic models [14, 15] are focused on signal net-
works, based on the known components of epidermal
growth factor receptor signal pathways (this receptor
is often considered to play an important role in prolif-
eration and differentiation). In such models, the pro-
liferation or differentiation events are usually assumed
to occur if the concentration of some of the reactants
is higher or lower than the critical concentration (see,
e.g., Ref. [15]). Practically, this means that under fixed
external conditions, the fate of a cell is deterministic.
Under transient external conditions, e.g., due to cell-
cell communication, the models are able to describe
both proliferation and differentiation in an ensemble
of cells. (See Refs. [16, 17] for a discussion of various
aspects of bistability in cell signaling.)

In general, the proliferation and differentiation of
stem cells is usually believed to be related to gene ex-
pression. During the past decade, this process was
theoretically analyzed in numerous papers. The corre-
sponding models can be divided into three overlapping
groups, focused respectively on (i) general principles
of gene expression including stochastic effects [18-21]
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(see Ref. [22] for direct observation of stochastic bursts
in protein production during gene expression), (ii) ex-
pression of specific genes [19, 23, 24], and (iii) complex
genetic networks [20,21,23,25]. Although stem cells
are often mentioned in these studies, the details of how
differentiation is governed by genes are not discussed
there.

Stochastic effects in gene expression are common
because most genes exist in single or low copy num-
bers in a cell. The potential importance of such ef-
fects for proliferation and differentiation of stem cells
is often articulated in general discussions of these two
processes [21,26]. But the mechanistic details of the
interplay of stochasticity of gene expression and dif-
ferentiation and the quantitative criteria allowing one
to understand when this interplay is possible remain
vague.

To illustrate the points above explicitly, it is in-
structive to briefly present typical examples showing
the state of the art in studying the mechanisms of
differentiation of specific cells. We first mention the
comprehensive proliferation- and differentiation-related
studies of the gene-expression map in Arabidipsis [27].
Despite the analysis of the performance of 22000 genes
(90 % of the genome), the mechanisms of proliferation
and differentiation remain hidden in this case.

Another example is adult rat neural stem cells or,
more specifically, adult hippocampal progenitor cells
growing in culture [28]. Under appropriate conditions,
these multipotent cells are able to proliferate and/or
generate neurons and glial cells (astrocytes and oligo-
dendrocytes) daily for at least the first month of cul-
ture. The relative rates of these pathways are known
to depend on the growth factors (highly specific pro-
teins mostly required in low concentrations (107%-
10~ M)) [29]Y. A detailed analysis [30] of the changes
of gene expression during differentiation of these cells
is impressive. A clear mechanistic interpretation of the
results obtained is lacking, however.

To complement the theoretical works described
above and to guide experiments, we suggest (Sec. 2)
a simple conceptual scheme showing how stochastic
bistability in gene expression may result in stochastic
proliferation and differentiation of a single cell. In ad-
dition, we present (Sec. 3) MC simulations of stochastic
bistability in gene expression in order to quantify some
of the aspects of our general discussion or, more specif-
ically, to obtain criteria for clarifying the conditions of

1) Differentiation can be readily observed by immunocyto-
chemistry, i.e., by detection of expression of proteins, specific
to each type of differentiated cell.



V. P. Zhdanov

MWITP, Tom 131, BRm. 1, 2007

realization of the scheme suggested. Taken together,
the results in Secs. 2 and 3 extend the conceptual ba-
sis for the understanding of the likely role of stochastic
intracellular processes in proliferation and differentia-
tion of stem cells and may promote further steps in the
direction under consideration.

2. PROLIFERATION AND DIFFERENTIATION

The fate of stem cells is now believed (see the pre-
ceding section) to be determined by kinetic switches
related to gene expression and/or other biochemical
reactions. This general scheme admits various realiza-
tions. The scenario discussed here is based on two key
assumptions.

(i) The division of a stem cell results in the appear-
ance of two stem cells or a stem cell and a differen-
tiated cell. This means that the cell must come to a
decision whether it will proliferate or differentiate. In
our scheme, the decision stage is assumed to be narrow
compared with the duration of the cell cycle. Physi-
cally, it is clear that the decision can hardly be made
just after the cell birth, because the cell should grow af-
ter the birth, with the conditions inside the cell rapidly
changing during this phase. Therefore, the internal and
external control of the cell fate cannot be robust. The
decision can also hardly be made just before the cell di-
vision, because the cell needs time in order to develop
the machinery corresponding to the birth of either two
stem cells or a stem cell and a differentiated cell. Thus,
the decision is expected to be made somewhere in the
middle of the cell cycle?).

(ii) The decision whether to proliferate or differenti-
ate is assumed to be related to the stochastic expression
of one of the genes. In particular, the protein synthe-
sized due to the activity of this gene is considered to
govern the performance of a few other genes controlling
the cell fate. Specifically, the gene is assumed to op-
erate in the stochastic bistable regime and to exhibit
sequential periods of high and low expression (tran-
scriptional bursts) due to positive feedback between
the messenger ribonucleic acid (mRNA) and protein
production and a small number of mRNA and/or pro-
tein. These periods are assumed to be comparable to
or somewhat longer than the duration of the decision
stage and accordingly much shorter compared to the

2) We note that the proliferation, e.g., of differentiated mam-
malian cells is controlled by regulating the progression through
the G1 phase and entry into the S phase [31]. There are also
indications that this is an early period in differentiation of stem
cells [31].
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duration of the cell cycle. The fate of a cell depends
on whether the level of the gene expression during the
decision stage is high or low.

If assumptions (i) and (ii) are fulfilled, the differen-
tiation rate constant is given by

kaip = Raiw P1, (1)

where kg;, is the division rate constant, and

1

Py
T1 + T2
is the probability that the gene is in state 1 correspond-
ing to differentiation (7 and 7o are the respective aver-
age durations of the gene activity periods correspond-
ing to differentiation and proliferation). For the prolif-
eration rate constant, we have

kpr = kdivP27 (2)

where -
P,=1-P 2

T1 + T2
is the probability that the gene is in state 2 correspond-
ing to proliferation.

We note that Eqs. (1) and (2) do not imply that a
cell should somehow measure probabilities P; and Ps.
Instead, for each given cell, the corresponding stochas-
tic process of gene expression occurs, and the cell fate
depends on realization of this process. The probabil-
ities P, and P, and the rate constants kgp and kp,
are introduced for an ensemble of stem cells. In real-
ity, these probabilities and rate constants may depend
on the cell concentration if the gene expression and/or
other related intracellular processes are influenced by
communication between cells.

In general, a stem cell may generate specialized cells
of two or more types (e.g., a neural stem cell may gen-
erate neurons and glial cells). In such cases, a stem
cell is expected to make two or more decisions. The
first decision, e.g., should discriminate between prolif-
eration and differentiation, and if differentiation is the
choice, the second decision has to discriminate between
two types of the differentiated cell.

The special feature of the scenario outlined above is
that the average rate of expression of the gene(s) con-
trolling proliferation and differentiation of a stem cell
may be the same as that in differentiated cells. In ad-
dition, the stochastic bursts in gene expression may be
generated only during a part of the cell cycle includ-
ing the decision stage. This may hinder identification
of the mechanism of differentiation and simultaneously
explain why the identification of the genes responsible
for differentiation is often difficult.
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Although the scenario suggested is simple, to our
knowledge, it was not explicitly discussed in detail in
the literature. In this context, it is of interest to clar-
ify how low the number of mRNA or protein should be
in order to realize the scenario above and whether this
number depends on the details of the regulation of the
gene activity. The answers to these questions are given
in the next section.

3. STOCHASTIC BISTABILITY IN GENE
EXPRESSION

Expression of the information encoded in DNA is
known [32] to occur via a templated polymerization
called transcription, in which the genes (segments of
the DNA sequence) are used as templates to guide
the synthesis of shorter molecules of RNA. Later on,
many of these molecules (or, more specifically, messen-
ger RNA) serve to direct the synthesis of proteins on
ribosomes. The whole process of gene expression can be
regulated at all steps. In particular, the gene transcrip-
tion, performed by RNA polymerase, is often controlled
by master regulatory proteins. In the case of positive
feedback between the mRNA and protein production,
the gene expression may exhibit bistability [19]. (For
the general discussion of various aspects of bistability
in cellular systems with emphasis on cell signaling, see
Ref. [16].)

In our treatment, we analyze the situation where
the gene has a few regulatory sites. The mRNA (R)
production rate is considered to be high if all the reg-
ulatory sites are occupied by the protein (P). In this
case, the generic mean-field equations for the R and P
numbers are given by (cf., e.g., Ref. [19])

dNg Np "

—— =ky+ ki | =——) —krN

a ot 1<Kp+Np> e, ()
dN
d—tp = ksNR - kpr, (4)

where kg and k; are the rate constants of the basal
and protein-regulated gene transcription (n is the num-
ber of regulatory sites, Kp is the protein association—
dissociation constant, and (Np/(Kp + Np))" is the
probability that all the regulatory sites are occupied by
P), ks is the rate constant of protein synthesis, and kg
and kp are the respective rate constants of the mRNA
and protein degradation.

Equations (3) and (4) predict bistability if n > 2.
Our calculations below are performed for n = 2 or 3.
These lowest values of n are most natural. In addition,
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there are indications that the cell differentiation does
occur with participation of autoactivating transcription
factors like GATA-3 with n = 2 [19].

To illustrate the stochastic kinetics exhibiting tran-
scriptional bursts, we focus our attention on the case
where Npg is relatively small. To keep the analysis as
simple as possible, (i) Np is considered to be large, (ii)
the protein attachment to and detachment from mRNA
are assumed to be rapid, and (iii) the protein forma-
tion and degradation are assumed to be rapid as well.
Conditions (i) and (ii) guarantee that the effect of the
protein on the gene transcription can be described in
the mean-field approximation even if Ng is small. Con-
ditions (i) and (iii) guarantee in turn that Np is close
to a steady state, i.e.,

NR ~ k—sz,
both in the mean-field and stochastic regimes (the va-
lidity of this statement was verified and confirmed by
independent MC simulations). Substituting this rela-
tion between Np and Np in Eq. (4) yields

dNg Np  \"
— =ky+ki | ——— | —EkgrN 5
7t o+ 1<’CP+NR> RIVR, (5)
where Kok
Kp = ’IZSP.

To study fluctuations, we perform MC simulations
of the kinetics corresponding to Eq. (5). Specifically,
we use the standard MC algorithm [33] based on calcu-
lation of the total reaction rate. In our case (Eq. (5)),
there are two parallel processes, the mRNA production
and degradation, running with the rates

Npg n
Wi =ko+ ki | —————
1 0 1</CP+NR>
and
WQZkRNR.

The total rate of these processes is
Wy = Wi + Ws.

For a given number of mRNA, we generate a random
number p (0 < p < 1) and execute one of the pos-
sible processes (i.e., increase or decrease Nr by one)
if p < Wy /Wy and p > Wy /W;, respectively.  After
each MC trial, time is increased by |In x|/W, where x
(0 < x < 1) is another random number.

The time scales characterizing elementary biochem-
ical processes inside cells are about a minute or shorter.
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Fig.1. Rates of the mRNA production W (thick line)

and degradation Ws (thin lines), as functions of Ng

forn=2, ki =60 min~', Kp =15, and kr = 0.702,
0.9, and 1.04 min~"

In contrast, the time scale of division of stem cells is
typically about one day. Taking these restrictions on
the time scales into account, we use kp ~ 1 min—!
our simulations (kg is considered to be the governing
parameter). The constants k; and Kp are chosen in
order to ensure bistability with a relatively small num-
ber of mRNA. Typically, k is selected to be apprecia-
bly larger than unity. The dependence of the results
of simulations on kg is weak. To be specific, we set
ko = 0.01kq in all the examples. The duration of the
MC runs is 2000 min (this value is comparable to or
somewhat longer than the time scale of the division of
stem cells). We note that although the parameter val-
ues indicated above and chosen below are biologically
reasonable, the corresponding values are in reality dis-
tributed in a wide range (due to the diversity of cells)
and accordingly may of course be both smaller and/or
larger.

in

Figure 1 shows the mRNA production and degra-
dation rates as a function of Ny in the case of two
regulatory site (n = 2). The production rate is cal-
culated for & 60 min~! and Kp 15. The
degradation rate is shown for kg = 0.702, 0.9, and
1.04 min~'. The values kg = 0.702 and 1.04 min—!
correspond to the boundaries of the bistability win-
dow. The value kg 0.9 min~! is nearly at the
middle of the bistability window. With these param-
eters, the steady-state numbers of mRNA are low.
Typically, Nr is about 30 for the high-active gene-
expression regime and Np is about 5 for the low-active
regime. Although the bistability window is relatively
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Fig.2. The number of mRNA as a function of time

for kr = 0.85 (a), 0.90 (b), and 0.95 (c) min~'. The
other parameters are as in Fig. 1. The initial mRNA
number is 25

wide (0.702 < kg < 1.04 min~!), the stochastic os-
cillations with transitions between the high- and low-
active regimes can be observed at ¢ < 2000 min only
for 0.85 < kg < 0.95 min~!, as shown in Fig. 2. Out-
side the last window, the model predicts either high- or
low-active regime at t < 2000.

To illustrate what happens for higher values of Ng
during the high-active regime, we keep n = 2 and use
k1 = 180 min~! and Kp = 45. For these parameters,
the dependence of the mRNA production and degra-
dation rates on Np is similar to that shown in Fig. 1
except that the range of the values on the horizontal
axis is to be extended to 105. The Ng number for the
high-active regime is about 90. The bistability win-
dow (0.702 < kp < 0.104 min~!) is the same as in
the previous case. But the stochastic oscillations with
transitions between the high- and low-active regimes
can now be observed at ¢ < 2000 min in a very narrow
range of the kg values (from 0.93 to 0.95 min='). Ty-
pical kinetics generated inside and outside this range
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Fig.3. The number of mRNA as a function of time

for n =2, ki = 180 min™!, Kp = 45, kr = 0.92 (a),

0.94 (b), and 0.98 (¢) min~*. The initial MRNA num-
ber is 75

of kr are presented in Fig. 3.

Figure 4 shows the dependence of the mRNA pro-
duction and degradation rates on Ng in the case of
three regulatory sites (n = 3). The production rate
is calculated for k; = 50 min~—' and Kp = 10. The
degradation rate is shown for kg = 0.360, 0.660, and
0.766 min~!. With these parameters, Ny is about
40 for the high-active gene-expression regime. The
stochastic oscillations with transitions between the
high- and low-active regimes are observed (Fig. 5a—c)
at + < 2000 min for 0.58 < kp < 0.72 min—!
(this means that inside the stochastic-burst window,
the mRNA degradation rate constant is changed in
the range £10%). The probability of the high-active

regime as a function of kg is exhibited in Fig. 5d.
1

If we keep n 3 and use k; = 150 min~" and
Kp = 30, the dependence of the mRNA production
and degradation rates on Np is similar to that in Fig. 4
except that the range of the values on the horizontal
axis must to be extended to 135. With these param-
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Fig.4. Rates of the mRNA production W (thick line)

and degradation Ws (thin lines), as functions of Ng

for n =3, ky =50 min~', Kp = 10, and kr = 0.360,
0.660, and 0.766 min~"'

eters, the stochastic oscillations with transitions be-
tween the high- and low-active regimes are not observed
at t < 2000 min (see Fig. 6).

Comparing the results in Figs. 4 and 5 with those
in Figs. 1 and 2, we conclude that with increasing n
from 2 to 3, the bistability and stochastic-burst win-
dows become appreciably wider. With a further in-
crease in n (e.g., up to 5), the bistability window can
easily be increased. The stochastic-burst window can
also be increased, but only slightly. For the mRNA
production with five regulatory sites, for example, the
mRNA degradation rate constant can be changed in the
range 13 % [34]. For the conventional Hill expression
for the protein-regulated gene-transcription rate (this
model implies cooperative association of P with regu-
latory sites), the results are similar [34]. In both cases
(for the expression in Eq. (5) and for the Hill expres-
sion), further increase of the stochastic-burst window
is possible with decreasing the R and/or P numbers.
If, e.g., n = 5, the maximum R number is about 20 and
the mRNA degradation rate constant can be changed
in the range £15 % [34].

Finally, it is appropriate to note that the stochas-
tic bistable kinetics can be scrutinized by calculating
the distribution of the numbers of reactants (see, e.g.,
recent simulations in [35] and the references therein).
For the kinetics exhibiting bursts, the distribution is
well known to be bimodal. Using such distributions
allows compactifying the presentation of results. How-
ever, from the standpoint of the understanding of the
likely effects of the transcriptional bursts on differen-
tiation of stem cells, it is much more instructive (es-
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' ' i Fig.6. The number of mRNA as a function of time
for n =3, k1 = 150 min™*, Kp = 30, kr = 0.70 (a),
4 0.71 (b), and 0.72 (¢) min™!. The initial MRNA num-
ber is 75
| 4. CONCLUSION
We have proposed a simple scheme showing that
0.8 the stochastic behavior of a single stem cell may be
kg, min~" related to (i) the existence of a short stage of deci-

Fig.5. The number of mRNA as a function of time
for kr = 0.62 (a), 0.66 (b), and 0.70 (c) min™'). The
other parameters are as in Fig. 4 (the initial mRNA
number is 25). Panel (d) shows the probability of the
high-active gene-expression regime as a function of kg
for these parameters (each data point used to construct
the curve was obtained by using 5 MC runs executed
up to £ = 2000 min)

pecially for general readership) to explicitly show the
transcriptional kinetics.
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sion whether it will proliferate or differentiate and (ii)
control of this stage by stochastic bistability in gene
expression. OQur MC simulations of gene expression
with positive feedback between the mRNA and pro-
tein production indicate that this scheme can be re-
alized if the number of mRNA (or protein) generated
during the high-reactive periods of gene expression is
below or about 50. For the simplest models of gene
expression, the stochastic-burst window in the space of
kinetic parameters is found to be not too wide, how-
For example, the mRNA degradation rate con-
stant may be changed in the range narrower than or
about +15%. Thus, one may question the plausibility
of the suggested mechanism for cell fate determination,
because it depends critically on the values of the rate

ever.
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constants. For example, ks depends on the number of
ribosomes, and this parameter alone could easily vary
by a factor of 2 or more. But this variation is primarily
related to the growth of a cell. Specifically, the number
of ribosomes increases simultaneously with the increase
in the cellular volume. This results in the decrease of
the mRNA concentration, which in turn compensates
the increase in the number of ribosomes. Thus, the sit-
uation is not so dramatic as one could expect. On the
other hand, the changes related to the cellular growth
may of course influence the stochastic bistability of the
gene expression. For the applicability of the proposed
mechanism of differentiation, the stochastic bursts in
gene expression should be generated during the deci-
sion stage at least. At the late stages, the bursts may
disappear (if this is the case, the identification of the
mechanism of differentiation may be complicated).

Concerning the robustness of the suggested scheme
of the cell-fate determination, it is also appropriate to
note that our analysis of stochastic bistability in gene
expression is focused on the generic situation where the
positive feedback between the mRNA and protein pro-
duction occurs due to a few sites regulating the mRNA
production. In more specific situations, e.g., with addi-
tional steps in protein processing and/or the interplay
of two or more genes (for relevant mean-field models,
see [16, 36] and the references therein), the stochastic-
burst window may perhaps be wider and if this is the
case, it may help to realize the scheme under consider-
ation.

To relate our analysis to experiments, we repeat (cf.
Sec. 2) that the special feature of the suggested scenario
is that the average rate of expression of the gene(s) con-
trolling proliferation and differentiation of a stem cell
may be the same as that in differentiated cells. In ad-
dition, the stochastic bursts in gene expression may be
generated only during a part of the cell cycle includ-
ing the decision stage. This may hinder identification
of the mechanism of differentiation. Concerning more
constructive predictions, we note, e.g., that the degra-
dation of proteins usually occurs in special compart-
ments called lysosomes [32]. Thus, the corresponding
rate constant (in Eq. (4)) is proportional to the ratio of
the volume of lysosomes and the cell volume. Taking
into account that the duration of the transcriptional
bursts depends on this rate constant, one can try to
study correlations between this ratio (or other kinetic
parameters in Eqs. (3) and (4)) and the differentia-
tion probabilities. Although the observation of such
correlations cannot guarantee that the mechanism sug-
gested is operative, it might be interpreted in favor of
the mechanism.
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Finally, we can articulate that stochastic effects in
gene expression are common because most genes exist
in a single or low copy numbers in a cell. Although the
likely importance of such effects for proliferation and
differentiation of stem cells has often been emphasized
in general discussions of these two processes (see the
Introduction), the corresponding mechanistic schemes
illustrating in detail how the system may operate are
lacking. We have tried to scrutinize this problem.
Our analysis is speculative. The results obtained
nevertheless make it possible to deeper understand the
type of difficulties encountered here and to take further
steps to clarify the interplay between stochastic gene
expression and cell differentiation.

This work is a part of the FP6-project STREP
NANOCUES (Nanoscale surface cues to steer cellular
biosystems), funded by the European Commission, and
is partially funded by the Chalmers Bioscience Pro-
gram, the Swedish Science Council, and the Foundation
for Strategic Research.

REFERENCES

. J. E. Till and E. A. McClloch, Radiat. Res. 14, 213
(1961).

L. Alonso and E. Fuchs, Proc. Nat. Acad. Sci. USA
100 (Suppl. 1), 11830 (2003).

J. I. Gordon, G. H. Schmidt, and K. A. Roth, FASEB
J. 6, 3039 (1992).

C. Lois and A. Alvarezbuylla, Proc. Nat. Acad. Sci.
USA 90, 2074 (1993); C. Klein and G. Fishell, Dev.
Neurosci. 26, 82 (2004).

Nature Insight: Stem Cells, Nature 414, 87 (2001);
A. Spradling, D. Drummond-Barbosa, and T. Kai, Na-
ture 414, 98 (2001).

. N. L. Parenteau and J. H. Young, Ann. NY Acad. Sci.
961, 27 (2002); M. Sykes and B. Nikolic, Nature 435,
620 (2005); C. Zandonella, Nature 435, 877 (2005).

F. Ulloy-Montoya, C. M. Verfaillie, and W.-S. Hu,
J. Biosci. Bioing. 100, 12 (2005).

L. Siminovitch, E. A. McCulloch, and J. E. Till,
J. Cell. Compar. Physiol. 62, 327 (1963); J. E. Till,
L. Siminovitch, and E. A. McCulloch, Proc. Nat.
Acad. Sci. USA 51, 29 (1964).

S. Viswanathan and P. W. Zandstra, Cytotechn. 41,
75 (2003); A. O'Neill and D. V. Schaffer, Biotech.
Appl. Biochem. 40, 5 (2004).



V. P. Zhdanov KIT®, Tom 131, Beim. 1, 2007
10. V. P. Zhdanov and B. Kasemo, Phys. Chem. Chem. 25. H. de Jong, J. Comput. Biol. 9, 67 (2002); M. P. Sty-
Phys. 6, 138 (2004); ibid. 6, 4347 (2004); V. P. Zhda- czynski and G. Stephanopolos, Comp. Chem. Eng.
nov, D. Steel, B. Kasemo, and J. Gold, Phys. Chem. 29, 519 (2005); R. Guthke, U. Moller, M. Hoffmann,
Chem. Phys. 7, 3496 (2005). E. Thies, and S. Topfer, Bioinfor. 21, 1626 (2005);
K. Noto and M. Craven, Reg. Genom. Lect. Not.
11. K. Kaneko and T. Yomo, Bull. Math. Biol. 59, 139 Comp. Sci. 3318, 52 (2005); M. Lappe and L. Holm,
(1997); C. Furusawa and K. Kaneko, Bull. Math. Biol. Biochem. Soc. Trans. 33, 530 (2005); Y. Kaznessis,
60, 659 (1998); C. Furusawa and K. Kaneko, J. Theor. Chem. Eng. Sci. 61, 940 (2006).
Biol. 224, 413 (2003); H. Yoshida, C. Furusawa, and
K. Kaneko, J. Theor. Biol. 233, 501 (2005). 26. A. Paldi, Cell. Mol. Life Sci. 60, 1775 (2003); A. Ku-
rakin, Dev. Gen. Evol. 215, 46 (2005).
12. H. D. Preisler and S. Kauffman, Leuk. Res. 23, 685
(1999). 27. K. Birnbaum, D. E. Shasha, J. Y. Wang, J. W. Jung,
G. M. Lambert, D. W. Gabbraith, and P. N. Benfey,
13. S. Y. Shvartsman, AICHE J. 51, 1312 (2005). Science 302, 1956 (2003); M. Schmidt, T. S. Davi-
) ) son, S. R. Hertz, U. J. Pape, M. Demar, M. Vingron,
14. B."Schoeberl7 C. E.1chler-Jonsson7 E. D. Gillesl, and G. B. Scholkopf, D. Weigel, and J. U. Lohmann, Nature
Miiller, Nature Biotechn. 20, 370 (2002). Genet. 37, 501 (2005); B. J. DeYoung, K. L. Bickle,
K. J. Sch , P. Muskett, K. Patel, and S. E. Clark,
15. C. Athale, Y. Mansury, and T. S. Deisboeck, J. Theor. curage ke arel, A a
: Plant. J. 45, 1 (2006).
Biol. 233, 469 (2005).
. . 28. L. S. Campos, J. Neurosci. Res. 78, 761 (2004).
16. J. E. Ferrell, Trends Biochem. Sci. 23, 461 (1998);
J. E. Ferrell and W. Xiong, Chaos 11, 227 (2001). 29. R. E. Gross, M. F. Mehler, P. C Mabie, Z. Y. Zang,
L. Santschi, and J. A. Kessler, Neuron 17, 595
17. U. S. thal‘;la and R. I{Yenfarv Ci"ao? 1117 211 (2001); (1996); A. Bonni, Y. Sun, M. Nada-Vicens, A. Bhatt,
U. S. Bhalla, Progr. Biophys. Mol. Biol. 81, 45 (2003). D. A. Frank, I. Rozovsky, N. Stahl, G. D. Yancopou-
18. J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, los, and M. E. Greenberg, Science 278, 477 (1997);
. P. Rajan and R. D. G. McKay, J. Neuroci. 18,
Proc. Nat. Acad. Sci. USA 97, 2075 (2000); M. That- X . .
. . 3620 (1998); K. Nakashima, T. Takitawa, W. Ochiai,
tai and A. van Oudemaarden, Proc. Nat. Acad. Sci. MY . T. Hisat M. Nakafuku. K. M
USA 98, 8614 (2001); T. Shibata, Phys. Rev. E 67, - Yanagisawa, L. Hhsatsune, A%. akatuk, B. Viya-
. zono, T. Kishimoto, R. Kageyama, and T. Taga, Proc.
061906 (2003); Q. Liu and Y. Jan, Phys. Rev. E. 70, .
o . . Nat. Acad. Sci. USA 98, 5868 (2001); M.-Y. Chang,
041907 (2004); Y. Morishita, T. Kobayashi, and K. Ai- H Son. V.S L dS-H L Mol. Cell. N >
hara, J. Theor. Biol. 235, 241 (2005); V. P. Zhdanov, 0% ;’112 2‘603 €6, and -1l Lee, 2oL Letl. fetroct.
Chem. Phys. Lett. 424, 394 (2006). ’ ( )-
19. L. Mariani, M. Loéhning, A. Radbruch, and T. Hoéfer, 30. g SG1111r01;I; c. dS‘c[ellnioffﬁ ]?) Llpﬁox;;cz, H.-ﬂ.ziogggsé
Progr. Bipohys. Mol. Biol. 86, 45 (2004). - Charth, and L. A. Suber, 4. enroscl. 2%,
(2004).
20. g.ciz?cuels.;ir(l)’ E;;tl(lggoéfﬂ 415 (2004); S. Bornholdt, 31. T. Burdon, A. Smith, and P. Savatier, Trends Cell
’ ' Biol. 12, 432 (2002).
21. 1I:I/I.tKaerﬁ, T-GC- EiStgn’zlg.(‘;OOB;?ke’ and J. J. Collins, 32. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts,
ature Xev. Laenet. U, ' and P. Walter, Molecular Biology of the Cell, Garland,
22. J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, Science New York (2002).
811, 1600 (2006). 33. D. P. Landau and K. Binder, A Guide to Monte Carlo
23. Computational Modelling of Genetic and Biochemical szmulatwns in St(.ztzstzcal Physics, Cambridge Univer-
Networks, ed. by J. M. Bower and H. Bolouri, MIT sity Press, Cambridge (2000).
Press, London (2001). 34. V. P. Zhdanov, unpublished results.
24. f' Arklin’ J. 11053 and H. H'ycé*dafnzi ge?{eticsdl“g’ 35. M. Pineda, R. Imbihl, L. Schimansky-Geier, and
633 (1998); A. de Raniery, A. S. Virdi, S. Kuroda, S. Ch. Ziilicke, J. Chem. Phys. 124, 044701 (2006).
Shott, Y. Day, and D. R. Sunner, Bone 36, 931 (2005);
O. Kobiler, A. Rokney, N. Friedman, D. L. Court, 36. O. Cinquin and J. Demongeot, J. Theor. Biol. 233,

J. Stavans, and A. B. Oppenheim, Proc. Nat. Acad.
Sci. USA 102, 4470 (2005).

188

391 (2005).



