УСИЛЕНИЕ ЗОННОГО МАГНЕТИЗМА И ОСОБЕННОСТИ МАГНИТОУПОРЯДОЧЕННОГО СОСТОЯНИЯ В СОЕДИНЕНИИ СеВ₆ С СИЛЬНЫМИ ЭЛЕКТРОННЫМИ КОРРЕЛЯЦИЯМИ

Н. Е. Случанко^а^{*}, А. В. Богач^{а,b}, В. В. Глушков^{а,b}, С. В. Демишев^{а,b}, В. Ю. Иванов^а, М. И. Игнатов^{а,b}, А. В. Кузнецов^{а,c}, Н. А. Самарин^а, А. В. Семено^а, Н. Ю. Шицевалова^d

> ^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> > ^b Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^с Московский инженерно-физический институт 115409, Москва, Россия

^d Институт проблем материаловедения Национальной академии наук Украины 03680, Киев, Украина

Поступила в редакцию 7 июля 2006 г.

В диапазоне температур $1.8{-}300~{
m K}$ выполнены прецизионные измерения транспортных и магнитных характеристик монокристаллических образцов СеВ6 высокого качества. Показано, что при $5~{
m K}\,<\,T\,<\,T^{*}\,pprox\,80~{
m K}$ удельное сопротивление подчиняется не логарифмической зависимости, характерной для кондовского механизма рассеяния носителей заряда, а закону $ho \propto T^{-1/\eta}$, отвечающему режиму слабой локализации с критическим индексом $1/\eta = 0.39 \pm 0.02$. Для магнитной восприимчивости ${\sf CeB}_6$ вместо кюри-вейссовской зависимости в диапазоне $15\text{--}300~{\sf K}$ найдена асимптотика $\chi(T) \propto T^{-0.8}.$ Исследования полевых зависимостей намагниченности, магнитосопротивления и коэффициента Холла в парамагнитной и магнитоупорядоченных фазах CeB₆, а также сопоставление с результатами измерений коэффициента термоэдс, неупругого рассеяния нейтронов и ЭПР-спектроскопии позволяют сделать вывод о неприменимости моделей кондо-решетки и асимметричного рассеяния к описанию транспортных и термодинамических характеристик этого соединения с сильными электронными корреляциями. На основе детального анализа экспериментальных данных предложен альтернативный подход к интерпретации свойств СеВ₆, основанный на 1) предположении о зонном парамагнетизме и существенной перенормировке с понижением температуры плотности электронных состояний в окрестности энергии Ферми, связанной с образованием тяжелых фермионов (спин-поляронных состояний) в металлической матрице CeB $_6$ в окрестности Ce-центров; 2) формировании из спиновых поляронов при $3.3~{
m K} < T < 7~{
m K}$ ферромагнитных областей наноразмера и переходе в состояние с волной спиновой плотности (ВСП) при $T_Q~pprox$ 3.3 K; 3) реализации сложной магнитной фазовой $H{-}T{-}$ диаграммы СеВ $_6$, обусловленной возрастанием в магнитном поле амплитуды ВСП и конкуренцией между ВСП и антиферромагнетизмом локализованных магнитных моментов ионов церия.

PACS: 72.15.Qm

1. ВВЕДЕНИЕ

Начиная с 60-х годов (см., например, [1]), соединение CeB_6 вызывает значительный интерес исследователей, поскольку считается классическим примером концентрированной кондо-системы (dense Kondo system) с практически равными значениями концентраций магнитных Се-центров n_{4f} и электронов проводимости n_e [2]. На температурной зави-

^{*}E-mail: nes@lt.gpi.ru

симости удельного сопротивления ρ этого соединения наблюдается протяженный участок его роста с понижением температуры, который принято считать кондовским: $\rho(T) \propto \ln T$ [3,4], сменяющийся резким уменьшением сопротивления при переходе к когерентному режиму зарядового транспорта при гелиевых температурах. Кроме того, утверждается, что наряду с механизмом кондо-компенсации локализованных магнитных моментов ионов Ce³⁺ в CeB_6 при $T_Q \approx 3.3$ К возникает необычное антиферроквадрупольное (АФК) орбитальное упорядочение, сменяющееся с понижением температуры при $T_N \approx 2.3 \text{ K}$ антиферромагнитной (АФМ) модулированной структурой [2-5]. Подчеркнем, что, несмотря на продолжительную историю вопроса [1-17], магнитная структура и характер магнитных взаимодействий в магнитоупорядоченных фазах СеВ₆ вплоть до настоящего времени являются предметом активных дискуссий. Так, недавно в работе [17] для описания результатов экспериментов по рассеянию нейтронов и µSR-спектроскопии в АФМ-фазе была предложена модель двойной (**k** – **k**') поперечной синусоидально модулированной магнитной структуры с чередованием слоев локализованных магнитных моментов церия. Исследования дифракции поляризованных нейтронов и µSR-измерения в АФК-фазе обнаружили возникновение индуцированных магнитным полем областей магнитной поляризации как в непосредственной окрестности, так и внутри октаэдров В₆ в матрице гексаборида церия [14-16]. Недавние эксперименты по рентгеновской дифракции [18] и анализ рассеяния поляризованных нейтронов [19] в АФК-фазе позволили зарегистрировать рефлексы магнитной структуры с $\mathbf{k}_{13} = (2\pi/a)[1/2, 1/2, 1/2]$ в отсутствие внешнего магнитного поля, противоречащие стандартной модели АФК-упорядочения, что может указывать на взаимосвязь указанных особенностей и зонного магнетизма 5*d*-электронов ионов церия [19]. В то же время результаты нейтронных исследований в сильных магнитных полях (40-50 кЭ), выполненных для магнитоупорядоченных фаз CeB₆, привели авторов работы [12] к выводу о локализации спин-поляризованных состояний исключительно на Се-центрах.

Достаточно неопределенно и противоречиво выглядят также известные к настоящему времени результаты исследований магнитных характеристик CeB₆. Так, данные измерений магнитной восприимчивости в интервале температур 150–600 К описываются [20] кюри-вейссовской зависимостью

$$\chi = \frac{N}{V} \frac{\mu_{eff}^2}{3k_B(T + \Theta_n^M)} \tag{1}$$

с эффективным магнитным моментом $\mu_{eff} \approx 2.34 \mu_B$ на ион церия и парамагнитной температурой Кюри $\Theta_p^M \approx -62$ К, тогда как в работе [21] для μ_{eff} найдено значение $2.44 \mu_B$ при T > 100 К и $\mu_{eff} \approx \mu_B$, $\Theta_p^M \approx -6$ К при $T \leq 30$ К. При анализе данных магнитных измерений CeB₆ при $T \geq 100$ К были получены [22] отличающиеся от приведенных выше значения $\mu_{eff} \approx 2.5 \mu_B$ и $\Theta_p^M \approx -175$ К.

Достаточно противоречивым представляется описание результатов измерений низкотемпературной намагниченности СеВ₆. В АФК-фазе гексаборида церия найдено значение, сравнимое с магнитным моментом насыщения свободного иона Ce^{3+} (2.14 μ_B [7]), тогда как в работах [9, 20] магнитный момент обсуждается в терминах локализованных магнитных моментов Г7-состояния Ce^{3+} (0.71 μ_B), а в работах [3, 23] он считается обусловленным основным квартетным Г8-состоянием Ce^{3+} . В последнем случае величина μ_{eff} зависит от ориентации поля в ОЦК-решетке гексаборида церия и изменяется в пределах $\mu_{eff} \approx (1.29 - 1.57) \mu_B$ [3,23]. В то же время важно отметить, вслед за авторами работы [9], очевидное противоречие между полученным из измерений статической магнитной восприимчивости при T > 100 K значением $\mu_{eff} \approx 2.32 \mu_B$ и найденной в экспериментах по рассеянию нейтронов в CeB₆ величиной $\mu_{eff} \approx 1.0 \mu_B$, практически не зависящей от температуры в интервале 5-220 K.

Учитывая изложенное выше, для выяснения природы необычного низкотемпературного магнетизма CeB_6 и описания его магнитных свойств представляет интерес проведение прецизионных измерений магнитных характеристик при низких и промежуточных температурах, отвечающих парамагнитной и магнитоупорядоченным $A\PhiM$ - и $A\Phi$ K-фазам, на монокристаллических образцах высокого качества и сопоставление их результатов с предсказаниями существующих теоретических моделей. С учетом предложенного в работах [24–26] подхода к количественному описанию отрицательного магнитосопротивления $\Delta \rho / \rho = f(T, H)$ в интерметаллидах на основе церия в терминах локальной магнитной восприимчивости

$$\chi_{loc}(T,H) = \sqrt{-\frac{1}{H} \frac{d(\Delta \rho / \rho)}{dH}},$$

дополнительная информация о локальных магнитных характеристиках χ_{loc} и M_{loc} может быть получена из детальных исследований эффекта отрицательного магнитосопротивления в гексабориде церия. Поскольку несомненно важным является установление взаимосвязи между аномалиями магнитных и транспортных характеристик в CeB₆, в число задач настоящего исследования включены также прецизионные измерения эффекта Холла при различных ориентациях измерительного тока и магнитного поля.

Вслед за Введением, в разд. 2 приводится информация об особенностях используемых экспериментальных методик. В п. 3.1. показано, что изменения с температурой удельного сопротивления и магнитной восприимчивости в СеВ₆ не могут быть описаны с помощью соответственно модели кондо-решетки и кюри-вейссовской зависимости. Найдено, что наиболее адекватной является интерпретация в терминах слабой локализации носителей заряда (асимптотика $\rho(T) \propto T^{-0.39}$), причем в парамагнитной фазе вместо закона Кюри-Вейсса (1) наблюдается зависимость вида $\chi(T) \propto T^{-0.8}$. Представленные исследования полевых зависимостей намагниченности (п. 3.2) и магнитосопротивления (п. 3.3) в сочетании с данными холловских измерений (п. 3.4) и результатами исследований коэффициента термоэдс [27] приводят к выводу (разд. 4) о зонной природе магнетизма в парамагнитной и АФК-фазах СеВ₆. В разд. 4 показано, что с понижением температуры в гексабориде церия происходит перенормировка плотности электронных состояний, связанная, по-видимому, с возникновением спин-поляронного резонанса в окрестности уровня Φ ерми E_F . Подробно обсуждаются особенности переходов из парамагнитной в АФК-фазу при $T_Q\,\approx\,3.3$ К и, далее, при $T_N \approx 2.3$ К в АФМ-фазу в СеВ₆. На основании полученных экспериментальных результатов и выполненных оценок показано, что вместо общепринятой интерпретации в терминах АФК-фазы наиболее вероятным сценарием является возникновение состояния типа волны спиновой плотности (ВСП) из сформированных в парамагнитной фазе тяжелых фермионов — наноразмерных областей спиновой поляризации носителей заряда. В разд. 5 приводятся основные выводы настоящего исследования.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

В работе выполнены детальные исследования намагниченности, магнитосопротивления и холловского сопротивления монокристаллических образцов высокого качества в широком диапазоне температур

1.8-300 К в магнитном поле вплоть до 70 кЭ, приложенном вдоль различных кристаллографических направлений в ОЦК-структуре гексаборида церия. Используемые для измерений монокристаллы выращены методом вертикального бестигельного индукционного зонного плавления в атмосфере инертного газа на установке, подробно описанной в работе [28]. Измерения намагниченности M(H, T) проводились на модернизированном вибрационном магнитометре LDJ-1500 (США) и СКВИД-магнитометре оригинальной конструкции [29]. Для исследований магнитосопротивления и эффекта Холла применялась экспериментальная установка, аналогичная использовавшейся в работе [30]. Измерения холловского сопротивления проводились методом вращения с пошаговой фиксацией положения образца в магнитном поле постоянных магнитов. Необходимая для выполнения численного дифференцирования экспериментальных кривых $\Delta \rho / \rho = f(H, T)$ точность стабилизации температуры (0.01-0.02 К) измерительной ячейки с образцом достигалась при использовании температурного контроллера оригинальной конструкции на цифровых сигнальных процессорах в схеме с эталонным термометром сопротивления фирмы Lake Shore Cryotronics модели CERNOX 1050.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

1. Температурные зависимости удельного сопротивления $\rho(T)$ и магнитной восприимчивости $\chi(T)$ исследуемых образцов CeB₆ представлены на рис. 1, где также показан магнитный вклад в сопротивление, $\rho_m(T) = \rho_{\text{CeB}_6}(T) - \rho_{\text{LaB}_6}(T)$, полученный вычитанием из исходной кривой $\rho(T)$ для CeB₆ удельного сопротивления немагнитного аналога — соединения LaB₆. Как видно из используемого на рис. 1 представления данных в двойных логарифмических координатах, в интервале температур 7–80 К поведение сопротивления $\rho_m(T)$ достаточно хорошо описывается степенной зависимостью вида

$$\rho_m(T) \propto T^{-\alpha} \tag{2}$$

с индексом $\alpha = 0.39 \pm 0.01$. Отметим, что такое изменение удельного сопротивления с температурой обычно связывают с возникновением режима слабой локализации носителей заряда (например, $\alpha \approx 4/11$ [31]). Как будет показано ниже, подобная интерпретация, в отличие от объяснения в рамках модели кондо-решетки, оказывается наиболее предпочтительной при описании других характеристик

Рис.1. Температурные зависимости магнитной восприимчивости $\chi(T)$ (VSM — данные, полученные на вибрационном магнитометре, SM — на СКВИД-магнитометре при H || $\langle 111 \rangle$) и удельного сопротивления $\rho(T)$ (кривая 1, Δ — измерительный ток I || $\langle 100 \rangle$, \circ — I || $\langle 111 \rangle$), а также магнитный вклад $\rho_m(T) = \rho_{CeB_6}(T) - \rho_{LaB_6}(T)$ в сопротивление (кривая 2). Штрихпунктирной кривой показана зависимость $\chi \propto (T + \Theta_p)^{-\beta}$, где $\beta = 0.77 \pm 0.01$, $\Theta_p = 2.35 \pm 0.09$ K; I, II и III — соответственно парамагнитная (см. текст), АФК- и АФМ-фазы

зарядового транспорта в гексабориде церия при промежуточных температурах 7 К $\leq T \leq T^* \approx 80$ К (для термоэдс см. также работу [27]). Использование двойного логарифмического масштаба при анализе данных измерений магнитной восприимчивости $\chi(T)$ позволяет выявить степенную зависимость вида

$$\chi(T) \propto T^{-\beta} \tag{3}$$

с индексом $\beta \approx 0.78 \pm 0.02$, которая, в отличие от широко используемого для CeB₆ соотношения Кюри–Вейсса (1), является хорошим приближением для экспериментальной кривой $\chi(T)$ в интервале температур 15–1000 К. Наиболее наглядно последний вывод может быть проиллюстрирован сравнением на рис. 2*a* и 2*б* данных настоящей работы и результатов измерений [20], представленных соответственно в двойных логарифмических и кюри-вейссовских координатах. Незначительное расхождение в значениях индекса β представленных солютной погрешности магнитных измерений. Аппроксимация экспериментальных данных зависимостью $\chi(T) \propto (\Theta_p + T)^{-\beta}$, учитывающей формирование в системе низкотемпературного магнитного порядка, дает немного меньшую величину показателя степени, $\beta = 0.77 \pm 0.01$, и температуру $\Theta_p = 2.35 \pm 0.09$ К, в пределах погрешности равную температуре АФМ-перехода. Как видно из рис. 1, такая зависимость хорошо описывает экспериментальные данные во всем температурном интервале вплоть до магнитного фазового перехода при T_Q . Отметим также, что использование для аппроксимации экспериментальной кривой $\chi(T)$ соотношения Кюри-Вейсса (1) (см. рис. 26) представляется возможным лишь в ограниченной области температур 80—300 К и приводит к значения
м $\mu_{eff}\,\approx\,2.46\mu_B$ и $\Theta_p^M \approx -57 \pm 2$ К, сравнимым с найденными в работах [20-22]. В рамках такого анализа экспериментальных данных представляется очевидным ограничение применимости кюри-вейссовской зависимости (1) для интерпретации магнитных свойств гексаборида церия. Очевидно также, что при формальном использовании соотношения (1) для описания зависимости $\chi(T)$ в CeB₆ разброс в значениях параметров μ_{eff} и Θ_p^M , полученных в работах [20–22] и в настоящей работе, оказывается преимущественно обусловленным погрешностью в определении абсолютной величины намагниченности в сочетании с различным выбором температурного интервала при аппроксимации зависимостью Кюри-Вейсса экспериментальных кривых $\chi(T)$. Таким образом, как видно из представления данных $\rho(T)$ и $\chi(T)$ на рис. 1 и рис. 2а, 2б, наиболее адекватным подходом к описанию кривых удельного сопротивления и магнитной восприимчивости CeB₆ при промежуточных температурах являются степенные зависимости (2) и (3) с индексами $\alpha = 0.39 \pm 0.01 \approx 0.4$ и $\beta \approx 0.78 \pm 0.02 \approx 0.8.$

на рис. 2а зависимостей находится в пределах аб-

2. Рассмотрим далее особенности низкотемпературного поведения магнитных характеристик гексаборида церия в широком диапазоне магнитных полей H < 60 кЭ. Температурные зависимости $\chi(T)$ и $\chi^{-1}(T)$, измеренные в слабом поле при T < 25 К, показаны соответственно на рис. 26 и 2г. Как видно из рис. 2г, в интервале 5–25 К кривая $\chi(T)$ может быть аппроксимирована кюри-вейссовской зависимостью (1) с параметрами $\mu_{eff} \approx 1.9\mu_B$ и $\Theta_p^M \approx -8 \pm 0.5$ К, которые, однако, существенно отличаются от найденных авторами работы [21] в этой области температур. Очевидно, что столь заметный разброс параметров μ_{eff} и Θ_p^M , зависящих от тем-

Рис.2. Температурные зависимости магнитной восприимчивости χ в двойных логарифмических (a) и кюривейссовских (б) координатах. Низкотемпературные участки кривых χ(T), измеренные для различных ориентаций магнитного поля, представлены в полулогарифмических (b) и кюривейссовских (c) координатах; также показаны зависимости локальной восприимчивости χ_{loc}(T) (см. текст). Приведены значения параметров, полученные из аппроксимации оригинальных данных кюривейссовской зависимостью (1) при промежуточных (б) и низких (c) температурах. VSM — данные, полученные при измерениях на вибрационном магнитометре, SM — на СКВИД-магнитометре, MR — из измерений магнитосопротивления в ориентации I || (111), H || (110)

пературного интервала аппроксимации экспериментальных данных, является аргументом против применения кюри-вейссовской зависимости для описания экспериментальной кривой $\chi(T)$ в гексабориде церия. С понижением температуры вблизи перехода в АФК-фазу при $T \leq T_Q \approx 3.3$ К наблюдается значительный (в четыре-пять раз) рост магнитной восприимчивости, который при переходе в АФМ-фазу с $T_N \approx 2.3$ К сменяется резким уменьшением значений $\chi(T)$ с возникновением в окрестности T_N пика на кривой $\chi(T)$ (рис. 2*в*). Указанные особенности на зависимости $\chi(T)$ при T_N и T_Q могут быть сопоставлены магнитным фазовым переходам в СеВ₆ и использованы далее при построении магнитной фазовой *H*-*T*-диаграммы этого соединения. Следует отметить, что в пределах погрешности эксперимента найденные в работе значения T_N и T_Q совпадают с результатами работ [1-22].

Полевые зависимости намагниченности $M(H, T_0)$ монокристаллических образцов гексаборида церия, полученные при измерениях на вибрационном магнитометре (данные VSM на рис. 1, 2) для двух ориентаций внешнего магнитного поля вдоль кристаллографических направлений (110) и (111), представлены на рис. 3 и 4. В парамагнитной фазе при $T > T_Q(H)$ регистрируется близкая к линейной зависимость M(H), тогда как с увеличением напряженности магнитного поля в непосредственной окрестности перехода из парамагнитной в АФК-фазу на кривых $M(H, T_0 > 3.4 \text{ K})$ наблюдается излом, сопровождающийся существенно более быстрым ростом намагниченности в магнитоупорядоченном состоянии (на кривых M(H) на рис. 3, 4 стрелками отмечены особенности, связанные с магнитными фазовыми переходами в СеВ₆). С дальнейшим увеличением напряженности

Рис. 3. Полевые зависимости намагниченности, измеренные при различных значениях температуры T_0 для кристаллографического направления $\mathbf{H} \parallel \langle 111 \rangle$

внешнего магнитного поля на зависимостях M(H)появляется тенденция к насыщению, однако при используемых в работе полях H < 60 кЭ насыщение намагниченности не достигается. При температурах $T < T_N$ на кривых M(H) наблюдается дополнительная аномалия в виде «ступеньки» (рис. 36, 46), отвечающая переходу в магнитном поле из $A\Phi$ M-фазы в $A\Phi$ K-фазу. Отметим, что возникновение указанной особенности сопровождается значительным гистерезисом намагниченности. В качестве примера на рис. 36 и 46 для температур соответственно $T_0 = 2.2$ К и $T_0 = 2.3$ К приведены кривые, отвечающие возрастанию и убыванию поля (область гистерезиса заштрихована).

Следует отметить также, что как по форме кривых намагничивания, так и по абсолютной величине эффекта представленные на рис. 3, 4 данные в целом находятся в хорошем согласии с полученными ранее результатами [6, 9, 20–22]. В то же время, достигнутая в настоящей работе высокая точность стабилизации температуры позволяет выполнить численное дифференцирование и перейти далее к анализу поведения температурных и полевых зависимостей дифференциальной магнитной восприимчивости $\chi(T, H) = dM/dH$. Примеры таких зависимостей $\chi(T, H)$ представлены на рис. 5, 6. Как видно из представленных на этих рисунках данных, при переходах с ростом напряженности внешнего магнитного поля в АФК-фазу как из парамагнитного состояния ($T = T_0 > T_Q \approx 3.3$ K, рис. 5), так и из АФМ-фазы ($T = T_0 < T_N \approx 2.3$ K, рис. 6) на кривых $\chi(H, T_0)$ наблюдаются аномалии заметной амплитуды, позволяющие установить целый ряд особенностей магнитной фазовой H–T-диаграммы гексаборида церия.

В парамагнитной фазе намагниченность изотропна, при $T > T_Q$ абсолютная величина M(H, T) и отвечающие магнитным фазовым переходам характерные особенности кривых $\chi(T, H)$ практически не различаются при сравнении результатов измерений вдоль кристаллографических направлений (110) и (111) в ОЦК-структуре СеВ₆. В качестве примера поведения магнитной восприимчивости в этой области температур на рис. 5 представлено семейство кривых $\chi(H, T_0) = dM/dH$, полученное в работе для направления **H** || (111) для значений T_0 в интервале $T_Q \leq T_0 \leq 24$ К.

Напротив, в АФК- и АФМ-фазах ($T < T_Q$)

Рис. 4. Полевые зависимости намагниченности, измеренные при различных значениях температуры T_0 для кристаллографического направления $\mathbf{H} \parallel \langle 110 \rangle$

наблюдается заметная анизотропия магнитных характеристик. Для примера на рис. 6 показаны полевые зависимости $\chi(H, T_0)$ для направлений $\mathbf{H} \parallel \langle 111 \rangle$ и $\mathbf{H} \parallel \langle 110 \rangle$, а на вставке к рис. 7 угловые зависимости магнитного момента, полученные при вращении вектора напряженности магнитного поля Н в плоскости [001]. Амплитуда анизотропного вклада в намагниченность в АФМ-фазе, $\Delta M(\varphi) \approx (0.07 \pm 0.01) \mu_B$ (см. рис. 7), сохраняется практически неизменной в магнитных полях H < 12 кЭ, причем значение ΔM находится в соответствии с найденным в работах [5,8] из ЯМР-исследований параметром $\Delta M \approx (0.08 \pm 0.05) \mu_B$, определяющим амплитуду модуляции магнитной структуры в АФМ-фазе ${
m CeB_6}$. Отметим также, что при $T < T_Q$ регистрируются как заметные различия амплитуд особенностей на зависимости $\chi(H, T_0)$ в окрестности магнитных фазовых переходов (см., например, рис. 66 и 6г), так и дополнительные особенности на кривых $\chi(H, T_0 < 2.3 \text{ K})$ в магнитных полях $H \approx 1-5$ кЭ (рис. 6г). Кроме того, сопоставление кривых $\chi(H, T_0 \approx 2-2.2 \text{ K})$ для направлений (111) и (110) (рис. 66 и 6г) свидетельствует об анизотропии фазовой границы на H-T-диаграмме, разделяющей АФМ- и АФК-фазы в СеВ₆. На рис. 7 представлена магнитная фазовая H-T-диаграмма гексаборида церия, построенная на основе данных рис. 1–6. Кроме хорошо известных из литературы [1–22] фазовых границ при $T_Q(H)$ и $T_N(H)$, на рис. 7 показана также кривая $H_p(T)$ в АФК-фазе СеВ₆, отвечающая положению максимума полевых зависимостей восприимчивости $\chi(H)$ (см. рис. 6*a* и 6*b*) или, соответственно, точке перегиба на кривых M(H) (см. рис. 3, 4).

Следует подчеркнуть, что подобное поведение дифференциальной восприимчивости хорошо известно для состояния с ВСП в металле в присутствии локализованных магнитных моментов, взаимодействующих с полем ВСП (для сплавов Cr:Fe см., например, работы [33–34]). При этом аналогично результату, полученному нами для CeB₆ (см. рис. 7), для Cr:Fe величина $H_p(T)$ заметно возрастает при приближении к температуре магнитного перехода [33, 34]. По мнению авторов работы [34], причина возникновения подобной зависимости $\chi(H)$ с максимумом при $H_p(T)$ обусловлена различной эффективностью взаимодействия ВСП с

Рис. 5. Полевые зависимости магнитной восприимчивости, полученные для значений температуры в интервале 3.3–24 К для кристаллографического направления H || (111)

локализованными магнитными моментами, располагающимися в матрице зонного антиферромагнетика. В такой ситуации возрастание амплитуды ВСП оказывается связанным с ростом магнитного поля, в результате чего меняется доля локализованных магнитных моментов, ориентированных вследствие взаимодействия с ВСП.

3. Переходя к описанию результатов измерений магнитосопротивления CeB₆, отметим, что для удобства сопоставления магнитных и транспортных характеристик магниторезистивный эффект также исследовался в интервале температур 1.8–24 К в магнитных полях до 70 кЭ. На рис. 8 представлено семейство кривых поперечного магнитосопротивления $\Delta \rho / \rho = f(H, T_0)$, полученное при измерениях в магнитном поле **H** || (110) для направления тока **I** || (111). Результаты рис. 8 в целом согласуются с данными работ [2, 35]. Достигнутая в настоящей работе высокая точность измерений поперечного магнитосопротивления и стабилизации температуры позволила выполнить численное дифференцирование кривых $\Delta \rho / \rho = f(H, T_0)$ и, далее, в рамках

подхода, развитого Иосидой [26], оценить для гексаборида церия характер изменения локальной намагниченности M_{loc} и магнитной восприимчивости

$$\chi_{loc}(H,T_0) \equiv \sqrt{-\frac{1}{H} \frac{d(\Delta \rho/\rho)}{dH}}$$

Ранее было показано [24, 25], что в интерметаллидах на основе церия соотношение [26]

$$-\Delta\rho/\rho \propto M_{loc}^2 \propto \chi_{loc}^2 H^2 \tag{4}$$

применимо для описания магнитосопротивления как классических систем CeAl₃, CeCu₆ с тяжелыми фермионами и соединения CeCu_{5.9}Au_{0.1} с квантовым критическим поведением, так и магнитных систем CeAl₂, CeCu_{5.8}Au_{0.2} и др. с сильными электронными корреляциями. В то же время, в соответствии с результатом работ [24, 25], локальная намагниченность M_{loc}, оцененная из соотношения (4), в случае соединений с тяжелыми фермионами на основе церия определяется не локализованными магнитными моментами ²F_{5/2}-состояния церия, а магнитным откликом спин-поляронных состояний, формирующихся в зоне проводимости в режиме быстрых спиновых 4*f*-5*d*-флуктуаций на Се-центрах. При этом было установлено [24, 25], что характерный пространственный размер области магнитного рассеяния, связанный с радиусом локализации $a_{sp} \approx 6-16$ Å [24, 25, 30] спинового полярона, оказывается сопоставимым с постоянной решетки кристаллической структуры цериевых соединений, $a \approx 5-10$ Å. Полученные в работе результаты анализа экспериментальных данных рис. 8 в рамках соотношения (4) представлены на рис. 9. Выше на рис. 2в и 2г показаны температурные зависимости $\chi_{loc}(T)$ в пределе малых магнитных полей (MR-данные на рис. 2). Результаты, полученные при исследовании магнитосопротивления, будут обсуждаться в разд. 4 вместе с данными измерений магнитных характеристик и коэффициента Холла.

4. Остановимся далее на результатах прецизионных измерений холловского сопротивления в гексабориде церия, выполненных в работе для трех характерных направлений электрического тока через образец: I || $\langle 100 \rangle$, I || $\langle 110 \rangle$ и I || $\langle 111 \rangle$, сонаправленных с осью вращения образца в магнитном поле (см. вставку на рис. 10*a*). На рис. 10 для примера представлено семейство угловых зависимостей холловского сопротивления, полученных при вращении образца в магнитном поле $H_0 \approx 3.8$ кЭ. Как видно из рис. 10*a*, в области температур, отвечающей парамагнитной фазе CeB₆ (см. рис. 7), наблюдаются синусоидальные угловые зависимости холловско-

Рис.6. Полевые зависимости магнитной восприимчивости, полученные для значений температуры в интервале 1.85–3.2 К для кристаллографических направлений Н $\parallel \langle 111 \rangle$ и Н $\parallel \langle 110 \rangle$. Стрелки указывают на максимумы при $H = H_p$ на зависимости $\chi(H)$

го сопротивления вида $\rho_H(\varphi) = \rho_{H0} + \rho_{H1} \cos \varphi$. Такое поведение $\rho_H(\varphi)$ в эксперименте при изменении угла между вектором нормали **n** к плоскости образца и магнитным полем **H** является следствием изменения нормальной составляющей вектора **H**, в свою очередь обусловливающей изменение холловского сигнала по гармоническому закону. При переходе в AФK-фазу ($T < T_Q$) на кривых $\rho_H(\varphi)$ становится заметным вклад в холловский сигнал от четных гармоник (см. на рис. 106 кривые для T = 2.6 К и T = 2.4 K). В результате зависимости $\rho_H(\varphi)$ описываются соотношением вида

$$\rho_H(\varphi) = \rho_{H0} + \rho_{H1} \cos \varphi + \rho_{H2} \cos(2\varphi - \varphi_0). \quad (5)$$

Отметим, что соотношение (5) успешно применялось ранее для разделения вкладов в эффект Холла в АФМ-фазе соединения CeAl₂ с тяжелыми фермионами [30]. Следует подчеркнуть также, что используемая в работе поперечная конфигурация холловского эксперимента (ось вращения образца параллельна вектору I и перпендикулярна вектору H, см.

вставку на рис. 10а) минимизирует вклад поперечного магнитосопротивления в холловский сигнал [30]. Наряду с этим для независимой оценки сверху магниторезистивной составляющей в амплитуде сигнала четной гармоники $\rho_{H2}(\varphi)$ в эффекте Холла в работе одновременно регистрировались угловые зависимости холловского сопротивления и магнитосопротивления и был выполнен анализ амплитуды магниторезистивного вклада в $\rho_{H2} \cos \varphi$, возникающего вследствие возможной «неэквипотенциальности» в расположении холловских контактов к образцу. Выполненные исследования позволяют сделать вывод об отсутствии сколько-нибудь заметного влияния магниторезистивной составляющей на холловский сигнал в магнитных полях вплоть до 70 кЭ, значительно превосходящих поля $H_0 \approx 3-5$ кЭ, используемые при измерениях эффекта Холла в настоящей работе.

Отметим далее, что наиболее значительные изменения характера угловых зависимостей холловского сопротивления $\rho_H(\varphi)$ наблюдаются при переходе в

Рис.7. Магнитная фазовая диаграмма гексаборида церия, построенная по результатам измерений намагниченности (1 и 2 — VSM-данные соответственно для H || $\langle 111 \rangle$ и H || $\langle 110 \rangle$, V — данные работы [32] для H || $\langle 110 \rangle$) и магнитосопротивления (Δ — H || $\langle 110 \rangle$, I || $\langle 111 \rangle$). На вставке приведены угловые зависимости намагниченности $M(\varphi)$ для $T_0 = 1.85$ K (\Box — H = 3.7 кЭ; I — H = 9.4 кЭ) и $T_0 = 4.2$ K (\circ — H = 3.7 кЭ; • — H = 9.4 кЭ). Штриховые и пунктирные линии соответствуют кристаллографическим направлениям $\langle 110 \rangle$ и $\langle 100 \rangle$

АФМ-фазу ($T < T_N \approx 2.3$ К на рис. 10б). При этом на кривых $\rho_H(\varphi)$ появляются протяженные участки $\rho_H(\varphi) = \text{const}$ с резкими (шириной менее 5°) переходами между ними, отвечающими ориентации магнитного поля **H** вдоль диагоналей граней в кристаллической ОЦК-структуре CeB₆. Подобные зависимости $\rho_H(\varphi)$ в форме меандра наблюдались ранее при исследованиях моносилицида железа в низкотемпературной миктомагнитной фазе, отвечающей взаимодействующим ферромагнитным областям наноразмера, расположенным в парамагнитной матрице FeSi [36]. Подчеркнем также взаимосвязь особенностей на кривых холловского сопротивления $\rho_H(\varphi)$, отвечающих процессам перемагничивания аномаль-

Рис. 8. Полевые зависимости магнитосопротивления $\Delta \rho / \rho$, измеренные при различных значениях температуры для кристаллографической ориентации $\mathbf{H} \parallel \langle 110 \rangle$, $\mathbf{I} \parallel \langle 111 \rangle$

ной компоненты в матрице СеВ₆ (рис. 106, кривая для T = 2 K), и появления в АФМ-фазе заметного анизотропного вклада в намагниченность $\Delta M(\varphi)$ (рис. 7, кривые для $T \le 2$ К). Анализ угловых зависимостей холловского сопротивления в рамках соотношения (5) в интервале температур 2.2-300 К позволяет разделить вклады основной (ρ_{H1}) и четной (ρ_{H2}) составляющих в эффекте Холла и определить вид кривой $R_H(T) = \rho_H(T)/H$. На рис. 11, наряду с зависимостью $R_H(T)$, представлена также кривая $\mu_H(T) = R_H(T)/\rho(T)$, отвечающая холловской подвижности в приближении одной группы носителей заряда. В диапазоне 5-300 К коэффициент Холла R_H отрицателен и практически не зависит от температуры (рис. 11). Такое поведение с хорошей точностью совпадает с результатами работ [37, 38], где отмечалось постоянное отрицательное $(R_H = -(4.5 \pm 0.7) \cdot 10^{-4} \text{ см}^3/\text{Кл}$ [38]) значение коэффициента Холла в гексабориде церия, которое в пределах точности эксперимента соответствует величине $R_H(\text{LaB}_6) = -4.5 \cdot 10^{-4} \text{ см}^3/\text{Kл},$ найденной [39] для немагнитного аналога — соединения LaB₆. Вслед за авторами работ [37, 38] подчеркнем, что полученное для CeB_6 отрицательное и постоянное в диапазоне 5–300 К значение $R_H(T)$ (рис. 11) не находит объяснения в рамках моделей кондо-решетки и асимметричного рассеяния носителей заряда [40, 41]. Действительно, согласно предсказаниям работ [40, 41], в кондо-решетке следует ожидать возникновения максимума коэффициента Холла положительной полярности вблизи температуры Кондо $T_K(\text{CeB}_6) = 1-2$ К [37], амплитуда которого должна значительно превосходить значение $R_H(T)$ в немагнитном аналоге — соединении LaB₆. Более того, совпадение значений постоянной Холла для гексаборидов церия (магнитная $4f^{1}$ -конфигурация) и лантана $(4f^{0})$, по-видимому, свидетельствует об определяющей роли зонных состояний в условиях сильного электрон-электронного взаимодействия, приводящего к возникновению режима слабой локализации в СеВ6 при неизменной концентрации носителей заряда.

С понижением температуры в интервале $T < 7 {
m K}$ коэффициент Холла $R_H(T)$ резко возрастает, достигая максимальных значений вблизи $T~\approx~3~{\rm K}$ (рис. 11). Возникновение на угловых зависимостях $\rho_H(\varphi)$ вклада четных гармоник и, далее, переход к зависимости типа меандра в АФМ-фазе СеВ₆ (см. рис. 10б) сопровождаются заметным уменьшением абсолютных значений коэффициента Холла $R_H(T)$ (см. рис. 11). В заключение настоящего раздела отметим также существенное отличие поведения холловской подвижности в гексабориде церия (см. рис. 11) от типичного вида кривых $\mu_H(T)$ для систем с тяжелыми фермионами на основе церия. Так, согласно результатам, полученным для классических соединений с тяжелыми фермионами CeAl₃ [42], CeCu₆ [43], CeAl₂ [30] и др., подвижность заметно растет с понижением температуры, следуя, согласно предсказаниям работ [40,41], кюри-вейссовской зависимости $\mu_H(T)\propto \chi(T)\propto (T+\Theta_p^M)^{-1}.$ Напротив, для ${\rm CeB}_6$ в интервале температур от азотной до гелиевой наблюдается заметное (примерно в три раза) уменьшение подвижности при практически не меняющейся концентрации $(R_H(T) \approx \text{const})$ носителей заряда (см. рис. 11).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Отметим прежде всего, что совокупность результатов измерений транспортных и магнитных характеристик гексаборида церия (рис. 1–11) вместе с данными исследований коэффициента термоэдс [27] не находит объяснения в рамках модели кондо-решетки.

1) Поведение магнитного вклада в удельное сопротивление в интервале 7–80 К подчиняется степенной зависимости (2) (область Іа на рис. 1), отвечающей режиму слабой локализации носителей заряда в условиях сильного электрон-электронного взаимодействия носителей, имеющих в CeB₆ преимущественно 5*d*-характер [13–23].

2) Отрицательное значение постоянной Холла R_H (7 K $\leq T \leq 300$ K) \approx const < 0, а также возникновение особенности на зависимости $R_H(T)$ отрицательной полярности при гелиевых температурах (см. рис. 11), как отмечалось выше, свидетельствуют против описания особенностей формирования основного состояния в терминах кондо-компенсации локализованных магнитных моментов ионов церия в этом соединении.

3) Найденная в работе степенная асимптотика (3) магнитной восприимчивости $\chi(T)$ в интервале 15–1000 К (см. рис. 2*a*), очевидно, также не укладывается в рамки традиционно используемого общепринятого кюри-вейссовского описания. Действительно, в модели кондо-решетки при высоких температурах $T > T_K$ (CeB₆) $\approx 1-2$ К, отвечающих для CeB₆ всему используемому в работе интервалу 2–300 К, намагниченность определяется слабо взаимодействующими локализованными магнитными моментами, величина которых оказывается обусловленной исключительно структурой ${}^2F_{5/2}$ -состояния Ce³⁺, расщепленного кристаллическим полем кубической (OЦК) симметрии.

4) Выполненный в работе [27] анализ экспериментальных данных измерений коэффициента термоэдс S(T) также приводит к выводу о неприменимости модели кондо-решетки к описанию его температурного поведения в гексабориде церия.

Сопоставление результатов, приведенных на рис. 26 и 2г, а также полевых зависимостей магнитных восприимчивостей $\chi(H, T_0)$ и $\chi_{loc}(H, T_0)$, представленных на рис. 5, 6 и 9, на наш взгляд, позволяет сделать заключение в пользу применимости подхода, аналогичного модели Иосиды [26], для описания поведения магнитосопротивления в гексабориде церия вместо традиционно используемой модели кондо-решетки (см., например, [44, 45]). При этом в соответствии с выводами работ [24, 25, 30] необходимо принять во внимание, что эффективное магнитное рассеяние с переворотом спина носителей заряда происходит не на локализованных магнитных моментах 4f-оболочки ионов Ce^{3+} ,

Рис. 9. Полевые зависимости локальной восприимчивости $\chi_{loc}(H)$ (см. текст) в двойных логарифмических координатах. Измерения выполнены для различных значений температуры $T_0 > T_Q$ (*a*) и $T_0 < T_Q$ (*b*) для кристаллографической ориентации $\mathbf{H} \parallel \langle 110 \rangle$, $\mathbf{I} \parallel \langle 111 \rangle$

а на спин-поляронных состояниях наноразмера (6-16 Å), формирующихся в матрице цериевых соединений с сильными электронными корреляциями в окрестности Се-центров. Отметим, что в целом подобный характер изменения параметров χ и χ_{loc} с температурой (см. рис. 2в и 2г) наблюдается как в парамагнитной, так и в магнитоупорядоченных фазах СеВ₆. В то же время рассеяние носителей заряда на межфазных границах и неоднородностях в окрестностях температур T_N и T_Q приводит к заметному уширению особенностей на кривой $\chi_{loc}(T)$, связанных с магнитными фазовыми переходами в этом соединении. По тем же причинам значительно уширенными по сравнению с аномалиями объемной магнитной восприимчивости (см. рис. 5, 6) оказываются также особенности на кривых $\chi_{loc}(H)$ (см. рис. 9) в окрестностях *T_N* и *T_Q*. Как отмечалось ранее, аппроксимация температурной зависимости восприимчивости при T < 30 К соотношением (1) является в достаточной мере условной. При этом формальное применение кюри-вейссовской зависимости (1) для анализа локальной восприимчивости $\chi_{loc}(T)$, полученной из измерений магнитосопротивления, приводит

к существенно меньшим значениям парамагнитной температуры Кюри $\Theta_p^{MR}\approx -3.8\pm 0.4$ К по сравнению с $\Theta_p^M\approx -8\pm 0.5$ К, найденным из объемных магнитных измерений при T < 30 K (см. рис. 2г). По всей видимости, столь значительное уменьшение по абсолютной величине параметра Θ_p , отвечающего приближению молекулярного поля, в рамках такого подхода можно было бы связать с существованием в широкой окрестности вблизи локализованных магнитных моментов церия областей неоднородной магнитной поляризации наноразмера, на которых происходит рассеяние зонных носителей заряда в металлической матрице СеВ₆. Следует отметить также, что, согласно результатам исследований [19, 46], зона проводимости в CeB₆ сформирована преимущественно 5*d*-состояниями церия, в небольшой степени гибридизованными с 2*p*-орбиталями бора. В результате можно предположить, что отмеченная выше неоднородная спиновая поляризация зонных носителей заряда в 5*d*-полосе, обусловленная быстрыми спиновыми флуктуациями вследствие межконфигурационных 4f-5d-переходов, по-видимому, носит локальный характер и формируется в каждой элементарной

Рис. 10. Угловые зависимости холловского сопротивления ρ_H , измеренные при различных значениях температуры $T_0 = 3.5-300$ K (a) и $T_0 = 2.0-3.4$ K (b) для кристаллографического направления I || $\langle 100 \rangle$ в поле $H_0 = 3.8$ кЭ

ячейке в окрестности Се-центров.

Переходя к анализу полевых зависимостей намагниченности при низких температурах, подчеркнем еще раз внешние различия в поведении магнитных характеристик в парамагнитной фазе, отмеченные в работе для температурных диапазонов T > 15 K и 5 K $\leq T \leq 25$ K. При T > 15 K для CeB₆ вместо кюри-вейссовской зависимости (1) найдена степенная зависимость магнитной восприимчивости вида $\chi \propto T^{-0.8}$ (рис. 2*a*). В интервале 5–25 K экспериментальные кривые $\chi(T)$ и $\chi_{loc}(T)$ в CeB₆ формально могут быть аппроксимированы кюри-вейссовской зависимостью (1) (см. рис. 2*s*). В то же время использование при описании данных $M(H, T_0 \leq 25$ K) (см. рис. 3, 4) функции Бриллюэна

$$M(H, T_0) = Ng\mu_B m_J^z B_J(x) = Ng\mu_B m_J^z \times \left[\frac{2J+1}{2J}\operatorname{cth}\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J}\operatorname{ctg}\frac{x}{2J}\right], \quad (6)$$

где g — g-фактор, J и m_J^z — квантовые числа,

$$B_J(x) - функция Бриллюэна,$$

$$x = \frac{g\mu_B JH}{k_B (T + \Theta_p^{M,MR})},$$

не позволяет ни при каких значениях g и J аппроксимировать экспериментальные кривые намагниченности в парамагнитной фазе. Указанное обстоятельство, очевидно, является наиболее веским аргументом против использования кюри-вейссовской зависимости (1) при анализе поведения магнитной восприимчивости ${\rm CeB}_6$. Для примера семейства кривых $M(H/(T+\Theta_p^M))$ и $M_{loc}(H/(T+\Theta_p^{MR}))$ в парамагнитной и магнитоупорядоченных фазах представлены на рис. 12. Парамагнитной фазе отвечает линейная вплоть до максимально достижимых значений аргумента $H/(T + \Theta_n^{M,MR})$ зависимость магнитного момента (рис. 12), которую с учетом приведенных выше экспериментальных результатов, по-видимому, следует сопоставить парамагнитному отклику (паулиевская парамагнитная восприимчивость) перенормированных 5*d*-зонных состояний в СеВ₆. Для сравнения на рис. 12 а вместе с экспериментальными данными представлены также бриллюэновские зависи-

10 ЖЭТФ, вып. 1

Рис. 11. Температурные зависимости коэффициента Холла R_H и холловской подвижности μ_H . На вставке представлена температурная зависимость отношения χ/R_H

мости вида $M = f(H/(T + \Theta_p^M))$, полученные для g = 1.62 [32], J = 1/2 и $\mu_{ef} = 1\mu_B$ [9,47], J = 5/2. Выполненное на рис. 12 сопоставление бриллюэновских кривых с результатами экспериментов позволяет сделать вывод о том, что, как и в случае промежуточных температур (область T > 15 K), в интервале 5–25 К магнитные свойства CeB₆ не могут быть корректно описаны в терминах системы слабовзаимодействующих локализованных магнитных моментов ² $F_{5/2}$ -состояния церия.

Подчеркнем еще раз, что весьма важным, с нашей точки зрения, аргументом против формирования магнитной структуры локализованных магнитных моментов и в пользу зонной природы магнетизма в гексабориде церия является значение эффективного магнитного момента $\mu_{eff} \approx 1.0\mu_B$, найденное в экспериментах по рассеянию нейтронов [9, 47] в парамагнитной фазе CeB₆. Авторы работ [9, 47] подчеркивают очевидное противоречие между величиной $\mu_{eff} \approx 2.32\mu_B$, полученной с использованием соотношения (1) из статических магнитных измерений, и найденным из измерений динамической восприимчивости значением $\mu_{eff} \approx 1.0 \mu_B$, сохраняющимся неизменным в широком интервале 5–220 К и отвечающим магнитному моменту зонных электронов.

Как уже отмечалось ранее, переход в $A\Phi K$ -фазу в CeB_6 сопровождается ростом магнитной восприимчивости (см. рис. 26 и рис. 5) и намагниченности (см. рис. 3, 4), однако и в этом случае совокупность экспериментальных результатов, представленных на рис. 1–7, не получает адекватного описания в рамках соотношения (6) с фиксированным значением аргумента x (см. формулу (6) и рис. 12). Отметим, кроме того, что в предположении присутствия нескольких аддитивных составляющих в намагниченности для достижения согласия с экспериментальными данными требуется предположить также существование меняющегося с температурой множителя при B_J для магнитного вклада в M(H,T) в гексабориде церия.

Основываясь на приведенных выше аргументах в пользу зонной природы парамагнитного отклика (парамагнетизм Паули) в CeB₆, выполним далее оценки параметров носителей заряда в 5*d*-полосе и проведем сопоставление транспортных и магнитных характеристик гексаборида церия. Для оценок воспользуемся также результатами исследований рассеяния нейтронов в CeB₆ [9, 47], в частности найденной в работах [9, 47] температурной зависимостью полуширины $\Gamma(T)/2$ квазиупругого пика в спектрах магнитного рассеяния нейтронов. Использование простых соотношений для эффективного времени релаксации $\tau_{eff}(T)$,

$$\Gamma(T)/2 = \hbar/\tau_{eff}(T), \tag{7}$$

и эффективной массы $m^*(T)$ носителей

$$m^*(T) = e\tau_{eff}(T)/\mu_H(T), \qquad (8)$$

позволяет на основании данных для $\mu_H(T)$ (см. рис. 11) оценить характер изменения $m^*(T)$ в режиме слабой локализации носителей заряда (7 К $\leq T \leq 80$ К). Полученная в результате зависимость $m^*(T)$ представлена на рис. 13, где показано также изменение с температурой магнитной восприимчивости χ , коэффициента термоэдс S(по данным работы [27]) и аддитивного параметра $S\sigma$ ($\sigma = 1/\rho$ — проводимость) в парамагнитной и магнитоу порядоченных фазах CeB₆.

Анализируя совместно поведение параметров $m^*(T)$ и $\chi(T)$ (рис. 13), прежде всего отметим практически одинаковый характер изменения с

Рис.12. Полевые зависимости объемной M (a) и локальной $M_{loc} = -\Delta \rho / \rho$ (б) намагниченностей в кюривейссовских координатах $M(H/(T + \Theta_p))$, построенные по результатам измерений для различных значений температуры в кристаллографических ориентациях $\mathbf{H} \parallel \langle 110 \rangle$ (a) и $\mathbf{H} \parallel \langle 110 \rangle$, $\mathbf{I} \parallel \langle 111 \rangle$ (б). Для сравнения приведены также бриллюэновские кривые намагниченности для J = 1/2 и J = 5/2 (см. текст)

температурой магнитной восприимчивости $\chi(T) \propto \propto T^{-0.78\pm0.02}$ и эффективной массы $m^*(T) \propto T^{-0.8}$. В такой ситуации, воспользовавшись выражением для паулиевской магнитной восприимчивости вида

$$\chi_P(T) = \frac{1}{2}g^2\mu_B^2 N(E_F) \approx \frac{1}{4}g^2\mu_B^2 \frac{m^*k_F}{\pi^2\hbar^2} \qquad (9)$$

(см., например, работу [48]), где $N(E_F)$ — плотность электронных состояний, k_F — импульс Ферми, изменение параметра $\chi_P(T)$ в парамагнитной фазе следует связать с перенормировкой плотности электронных состояний на уровне Ферми E_F . Действительно, найденные из независимых экспериментов параметры $\chi_P(T)$ и $m^*(T)$ с учетом условия $k_F \approx \text{const}$ оказываются линейно связанными в рамках соотношения (9).

Еще одним независимым параметром, который представляется важным при оценке эффектов перенормировки плотности электронных состояний в металле, является коэффициент термоэдс S(T). Для диффузионной термоэдс проводника в соответствии с формулой Мотта [49] имеем

$$S_d(T) = \frac{\pi^2 k_B^2}{3e} T\left(\frac{\partial \ln \sigma(E)}{\partial E}\right)_{E_F}.$$
 (10)

Учитывая в приближении линейного отклика связь между проводимостью и характеристиками носителей заряда вида

$$\sigma(E) = \frac{1}{3} e^2 v_F^2 \tau(E) N(E), \qquad (11)$$

где v_F — скорость Ферми, τ — время релаксации, для $S_d(T)$ получаем [49]

$$S_d(T) \approx \frac{\pi^2 k_B^2}{3e} T \left(\frac{\partial \ln N(E)}{\partial E} + \frac{\partial \ln \tau(E)}{\partial E} \right)_{E_F}.$$
 (12)

Первое слагаемое в соотношении (12) определяет влияние на термоэдс эффектов перенормировки плотности электронных состояний $N(E_F)$ на уровне Ферми. Второе зависит от скорости изменения времени релаксации с энергией в окрестности E_F и

 10^{*}

Рис.13. Температурные зависимости магнитной восприимчивости χ , приведенной эффективной массы m^* (m_0 — масса свободного электрона), коэффициента термоэдс S и аддитивного параметра $S\sigma$ ($\sigma = 1/\rho$ — проводимость). На вставке схематически представлена перестройка плотности электронных состояний при возникновении многочастичного спин-поляронного резонанса при E_p в окрестности энергии Ферми E_F

достигает заметных положительных значений, когда пик плотности состояний $N(E_p)$ располагается несколько ниже уровня Ферми. В такой ситуации (см. вставку на рис. 13) для энергий вблизи максимума величины N(E) преобладает резонансное рассеяние носителей, тогда как с ростом $E > E_p$ можно ожидать заметного возрастания $\tau(E)$. Следует подчеркнуть, что положительный знак коэффициента S(T) в CeB₆ при $T > T_N$ (см. рис. 13) отвечает расположению резонанса при $E_p < E_F$. При этом с понижением температуры в интервале $T < T^* \approx 80~{\rm K}$ рост плотности состояний и эффективности резонансного рассеяния в CeB_6 при $E_p < E_F$ должен приводить к резкому возрастанию амплитуды обоих вкладов в S(T), определяемых слагаемыми в правой части выражения (12).

Рассмотрим более детально полученные в работе экспериментальные результаты, характеризующие поведение транспортных и магнитных свойств CeB₆

148

в парамагнитной фазе в непосредственной окрестности магнитного перехода при $T_Q \approx 3.3$ К. На рис. 14 температурные зависимости магнитной восприимчивости χ и коэффициента Холла R_H пр
и $T<10~{\rm K}$ представлены в полулогарифмических и обратных логарифмических координатах. На рис. 14а также показаны данные исследований рассеяния поляризованных нейтронов в СеВ₆ [19]. Приведенная по результатам работы [19] на рис. 14а температурная зависимость интенсивности рассеяния поляризованных нейтронов, по мнению ее авторов, отвечает возникновению заметной спиновой поляризации в 5*d*-полосе CeB₆ уже в парамагнитной фазе при T < 7 К. Как видно из представления данных в обратных логарифмических координатах (рис. 146), возрастания как магнитной восприимчивости $\chi_p(T)$, так и коэффициента Холла $R_H(T)$, соответствую-

ЖЭТФ, том **131**, вып. 1, 2007

щие возникновению спин-поляризованных состояний в парамагнитной фазе в интервале 3.3–7 К (область Ib на рис. 1, 11), оказываются скоррелированными между собой (см. также поведение параметра $\chi(T)/R_H(T)$ на вставке к рис. 11) и с хорошей точностью описываются соотношением вида

$$\chi(T) \propto R_H(T) \propto \exp(E_{sp}/k_B T), \tag{13}$$

определяющим активационное поведение указанных параметров с энергией $E_{sp}/k_B \approx 3.3$ К $\approx T_Q$. Таким образом, по-видимому, формированию в парамагнитной фазе областей спиновой поляризации в окрестности Се-центров в 5*d*-полосе CeB₆ отвечает характерная энергия связи образующихся спин-поляронных состояний, $E_{sp}/k_B \approx 3.3$ К. Следует подчеркнуть, что предположение аддитивности вкладов в зарядовый транспорт в CeB₆, которое ранее успешно применялось при анализе составляющих в проводимости, коэффициентах Холла и термоэдс соединения CeAl₂ [29] в рамках соотношений

$$\sigma = \sum_{i} \sigma_{i}, \quad S\sigma = \sum_{i} \sigma_{i}S_{i}, \tag{14}$$

может быть использовано также для выделения низкотемпературного вклада $S_2(T)$ в термоэдс CeB₆. Действительно, используя в диапазоне 7–80 К для одного из вкладов найденные асимптотики $\sigma_1(T) \propto T^{0.39}$ и $S_1(T) \propto \ln T$ и экспериментальные зависимости для проводимости $\sigma(T)$ и произведения $S(T)\sigma(T)$ (см. кривые на рис. 13, а также работу [27]), мы можем оценить поведение низкотемпературной составляющей коэффициента термоэдс $S_2(T)$. Как видно из данных, представленных на рис. 146, полученная таким образом кривая $S_2(T)$

Рис.14. Температурные зависимости магнитной восприимчивости χ и коэффициента Холла R_H при T < 10 К и $H_0 = 3.8$ кЭ в полулогарифмических (a) и обратных логарифмических (b) координатах. Представлены также данные работы [19], полученные по результатам исследований рассеяния поляризованных нейтронов (a, нижняя кривая) и низкотемпературная составляющая коэффициента термоэдс $S_2(T)$ (b, E_{sp} — энергия активации спин-поляронного состояния). На вставке схематически показано спиновое расщепление резонанса вблизи E_F

в интервале 3.3–7 К также может быть описана активационной зависимостью вида

$$S_2(T) \approx \frac{k_B}{e} \frac{E_{sp}}{k_B T}$$

Отметим, что найденное в работе активационное поведение $R_H(T)$ в целом аналогично наблюдавшемуся недавно для других соединений с тяжелыми фермионами на основе церия: CeAl₂ [30], CeAl₃ и CeCu₆ [43]. Воспользовавшись соотношением для радиуса локализации многочастичных состояний [30, 43],

$$a_{sp}^* = \frac{\hbar}{\sqrt{2E_{sp}m^*}}\,,\tag{15}$$

и используя найденные в работе для CeB₆ в интервале 3.3–7 К значения параметров $E_{sp}/k_B \approx 3.3$ К и $m^* \approx 400m_0$ (см. рис. 13), оценим значение $a_{sp}^* \approx 5.4$ Å. Полученная оценка достаточно хорошо согласуется с характерным размером многочастичных спин-поляронных (a_{sp}^*) и экситон-поляронных в рамках соотношения $H_{sp} \approx E_{sp}/\mu_B$ приводит к значению $H_{sp} \approx 45$ к^Э. В свою очередь, величина H_{sp} определяет снятие вырождения по спину и расщепление многочастичного резонанса при E_p в плотности состояний в окрестности энергии Ферми (см. вставку на рис. 146). Следствием возникновения спиновой структуры многочастичного резонанса при E_p вблизи E_F является активационный рост магнитной восприимчивости в парамагнитной фазе с понижением температуры в интервале

 (a_{ep}^{*}) состояний других известных соединений с сильными электронными корреляциями:

$$a_{sp}^{*}(\text{CeAl}_{2}) \approx 6-10 \text{ A } [30],$$

 $a_{sp}^{*}(\text{CeAl}_{3}, \text{CeCu}_{6}) \approx 1.4-16 \text{ Å } [42, 43],$
 $a_{ep}^{*}(\text{SmB}_{6}) \approx 6 \text{ Å } [50], \quad a_{sp}^{*}(\text{FeSi}) \approx 5 \text{ Å } [36].$

Возникновение спин-поляронных многочастич-

ных состояний малого радиуса в зоне проводимо-

сти CeB_6 может быть связано с «внутренним» об-

менным полем H_{sp} . Грубая оценка величины H_{sp}

3.3-7 К в гексабориде церия (см. рис. 146). В такой ситуации скоррелированное активационное изменение параметров $\chi(T) \propto R_H(T) \propto \exp(E_{sn}/k_BT)$ (см. рис. 14б и вставку на рис. 11), по-видимому, следует связать с появлением дополнительного вклада в эффект Холла — возникновением аномальной компоненты вида $R_H(T) - R_0 \propto M(T)$. Переход к когерентному режиму спиновых флуктуаций в интервале 3.3-7 К и возникновение обменного поля $H_{sp} \approx 45$ кЭ, как нам представляется, следует рассматривать как ферромагнитный переход в системе спиновых поляронов малого радиуса. При этом с ростом плотности электронных состояний (см. вставку на рис. 13) при выполнении критерия, аналогичного стонеровскому, $UN(E_F) \ge 1 (U - \text{энер-}$ гия кулоновского расталкивания), для каждого многочастичного комплекса можно ожидать возникновения в металлической матрице гексаборида церия ферромагнитного домена наноразмера (феррона по терминологии Нагаева [51]). Отметим далее, что в рамках развитого подхода магнитный переход при $T_Q \approx 3.3$ К можно рассматривать как переход в состояние с ВСП, возникающей в результате «включения взаимодействия» в системе ферромагнитных доменов наноразмера в матрице СеВ₆. Поскольку переход к коллективному состоянию зонных электронов качественно меняет характер экранирования магнитного момента 4f-оболочки ионов Ce^{3+} , при температурах $T < T_Q \approx 3.3$ К можно ожидать возникновения и усиления магнитного отклика локализованных магнитных моментов, связанных непосредственно с $^2F_{5/2}$ -оболочкой и
онов церия. По всей видимости, подобное поведение и наблюдается вблизи $T_Q(H)$ (см. рис. 1, 2, 14), когда магнитная восприимчивость в интервале температур 2.3-3.3 К возрастает в четыре-пять раз.

При анализе магнитных характеристик СеВ₆ необходимо учитывать также результаты измерений микроволнового магнитопоглощения [32]. Применение ЭПР-спектроскопии к исследованию низкотемпературного магнитного отклика в CeB₆ привело к обнаружению необычного магнитного резонанса, возникающего и усиливающегося по амплитуде с понижением температуры при переходе из парамагнитной в АФК-фазу [32]. Найденный бесщелевой характер частотной зависимости резонансного поля позволил авторам работы [32] сделать заключение о возникновении при переходе в АФК-фазу ЭПР-подобной моды, связанной с независимой прецессией отдельных локализованных магнитных моментов во внешнем магнитном поле, очевидно противоречащее модели кондовской экранировки. Полученное значение g-фактора $g \approx 1.62$, отвечающее резонансной моде, сохраняется постоянным в широком частотном интервале 40–100 ГГц, соответствующем изменению резонансного поля H_{res} в пределах 16–42 кЭ. В связи с этим выскажем предположение о том, что обнаруженный [32] необычный магнитный резонанс в CeB₆, по-видимому, может быть связан с прецессией неэкранированных локализованных магнитных моментов ионов церия во внешнем магнитном поле $H < H_{sp}$. В пользу справедливости подобного предположения может свидетельствовать также величина g-фактора $g \approx 1.6$, определяющая значение $\mu_{eff} \approx 0.8 \mu_B$ [32], близкое к эффективному моженту состояния Γ_7 иона Ce³⁺.

С ростом напряженности внешнего магнитного поля при выполнении обратного неравенства $H \ge H_{sp}$ можно ожидать заметного возрастания амплитуды ВСП и связанного с этим усиления взаимодействия ВСП и локализованных магнитных моментов ионов церия. Вследствие этого должно наблюдаться заметное ухудшение условий для наблюдения резонансного магнитопоглощения в АФК-фазе СеВ₆. Выполненные нами измерения показали, что возрастание резонансного поля от $H_{res} \approx 24$ кЭ (резонансная частота примерно 60 ГГц) до 42 кЭ (примерно 100 ГГц) действительно приводит к значительному уменьшению амплитуды резонансной особенности в спектре магнитопоглощения СеВ₆.

Переход в АФМ-фазу при H < 20 кЭ (см. рис. 7), на наш взгляд, может быть связан с «включением взаимодействия» в металлической матрице между локализованными магнитными моментами ионов церия, которое в условиях конкуренции с ВСП обусловливает возникновение сложного антиферромагнитного (область III на рис. 7) состояния в CeB₆. Напротив, с ростом магнитного поля ослабление антиферромагнитного взаимодействия между локализованными магнитными моментами и возрастание амплитуды ВСП приводят к быстрому подавлению антиферромагнитного состояния на локализованных магнитных моментах ионов Се³⁺ и к переходу в ВСП-фазу в гексабориде церия. При этом появление отмеченной ранее аномальной компоненты в эффекте Холла (см. рис. 10б) и анизотропной составляющей намагниченности $\Delta M(\varphi)$ в АФМ-фазе (см. вставку на рис. 7), на наш взгляд, следует интерпретировать как изменение ориентации (перемагничивание) связанной антиферромагнитной структуры ферронов (ВСП) и локализованных магнитных моментов между эквивалентными направлениями в ОЦК-решетке гексаборида церия.

При обсуждении необычной магнитной струк-

туры АФМ-фазы CeB₆ особо отметим результаты экспериментов по магнитной дифракции нейтронов [9, 47]. В частности, в работах [9, 47] было показано, что наряду с основными рефлексами, отвечающими элементарной ячейке магнитной структуры с размерами (2a, 4a, 4a) (a(CeB₆) ≈ 4.14 Å), в спектрах магнитного рассеяния нейтронов появляется дополнительная интенсивность, которая, по мнению авторов работы [9], может быть связана с ферромагнитной компонентой магнитной структуры CeB₆.

С представленным выше сценарием усиления зонного магнетизма и с формированием сложного магнитоупорядоченного состояния, возникающего в матрице ${\rm CeB_6}$ при температурах $T \ll T^* \approx 80~{\rm K}$ в результате взаимодействия тяжелых носителей заряда — спиновых поляронов и локализованных магнитных моментов ионов Ce³⁺, — на наш взгляд, находится в согласии необычная фазовая диаграмма гексаборида церия. Так, фазовая граница, разделяющая парамагнитную (область I) и антиферроквадрупольную (область II) фазы CeB₆, характеризуется положительной производной, $(dH/dT)_{T_c} > 0$ (см. рис. 7). Подобное поведение критической температуры $T_c(H)$ было теоретически предсказано [52,53] для проводников с ВСП-неустойчивостью, причем фазовая диаграмма, практически идентичная приведенной на рис. 7, наблюдалась [53] для квазидвумерного органического проводника α -(BEDT-TTF)₂KHg(SCN)₄ с ВСП.

Среди металлов, кристаллизующихся в ОЦК-структуре, наиболее известным примером зонного антиферромагнетика с ВСП-неустойчивостью является хром (см., например, [54]), для которого при описании перехода в состояние с ВСП наиболее часто используется модель экситонного диэлектрика, впервые предложенная в работах [55, 56]. Следует также отметить, что в случае легированных редкоземельными атомами гексаборидов щелочно-земельных элементов La_xCa_{1-x}B₆ И $La_xSr_{1-x}B_6$ [57,58], а также для соединения SmB_6 с промежуточной валентностью [50] наиболее адекватная интерпретация аномалий транспортных и термодинамических характеристик основывается на возникновении режима экситонной неустойчивости, сопровождающейся частичной либо полной диэлектризацией спектра в этих соединениях. В такой ситуации нам представляется обоснованным предположить реализацию подобного сценария и в случае СеВ₆. Топология поверхности Ферми соединения CeB₆, как и LaB₆ и PrB₆ [59, 60], для ряда направлений удовлетворяет условию конгруэнтности (нестинга) электронных и дырочных участков, необходимого для формирования волн зарядовой и спиновой плотности (ВЗП/ВСП-состояния) [54–56].

В соответствии с подходом, развитым в работах Волкова с соавторами [61, 62] и сравнительно недавно получившим дальнейшее развитие применительно к гексаборидам $La_x Ca_{1-x} B_6$ и $La_x Sr_{1-x} B_6$ [57, 58], для гексаборида церия можно предположить, что при $T = T^* \approx 80$ К реализуется переход в состояние с ВЗП и частичной диэлектризацией спектра. В свою очередь, при низких температурах в рамках данной модели можно ожидать перехода в состояние с ВСП [54], в фазу экситонного ферромагнетика [61, 62], либо в неоднородное многодоменное магнитное состояние с электронным фазовым расслоением [57, 58]. При рассмотрении подобного сценария вследствие развития электронной неустойчивости (ВЗП вдоль ряда направлений) ожидается появление в образце случайного потенциального рельефа, приводящего к возникновению режима слабой локализации в гексабориде церия при промежуточных температурах. В такой ситуации особый интерес для выяснения природы перехода при $T^* \approx 80 \; {\rm K}$ и необычного низкотемпературного магнитоупорядоченного состояния ${\rm CeB_6}$ при $T < T_Q \approx 3.3 \, {\rm K}$ должны представлять комплексные прецизионные рентгеноструктурные исследования в сочетании с детальными измерениями шумовых, транспортных и термодинамических характеристик гексаборида церия при гелиевых и промежуточных температурах.

5. ЗАКЛЮЧЕНИЕ

Гексаборид церия представляется одним из наиболее сложных и необычных объектов в классе соединений с сильными электронными корреляциями. В условиях, когда концентрация n_e зонных носителей, имеющих преимущественно 5*d*-характер, оказывается практически равной концентрации n_{4f} 4f-центров, вплоть до настоящего времени считалось, что это соединение с металлической проводимостью является классическим примером кондо-решетки (dense Kondo system). Кроме того, среди особенностей ${}^2F_{5/2}$ -состояния церия в этом соединении достоверно установленным считалось необычное квартетное основное состояние Γ_8 иона Ce^{3+} , с которым в соответствии с общепринятым подходом связывалось формирование при $T_Q \approx 3.3$ К магнитоупорядоченного состояния орбитальных магнитных моментов 4*f*-оболочки церия (антиферроквадрупольная фаза), сменяющегося, в свою очередь, антиферромагнитной модулированной структурой

локализованных магнитных моментов ионов церия при $T_N \approx 2.3$ К. В то же время неоднократно отмечавшийся исследователями и рассмотренный выше во Введении набор противоречий в поведении физических характеристик этого соединения в сравнении с предсказаниями традиционно используемых теоретических моделей стимулировал продолжение комплексных всесторонних исследований CeB₆.

Для выяснения природы парамагнитной и магнитоупорядоченных фаз гексаборида церия в настоящей работе выполнены прецизионные измерения транспортных и магнитных характеристик при гелиевых и промежуточных температурах в магнитных полях до 70 кЭ на монокристаллических образцах CeB₆ высокого качества. Анализ полученных результатов в совокупности с данными измерений термоэдс [27], спектров неупругого рассеяния нейтронов [9, 17, 19, 47] и ЭПР [32] позволяет предложить альтернативное общепринятому описание формирования и перестройки многочастичных состояний, определяющих свойства этого соединения с сильными электронными корреляциями.

В рамках предложенной в работе интерпретации в парамагнитной фазе СеВ₆ температурной зависимости магнитной восприимчивости вида $\chi(T) \propto T^{-\beta}$ с индексом $\beta \approx 0.8$ отвечает паулиевский парамагнетизм зонных состояний, перенормируемых в условиях сильного электрон-электронного взаимодействия. Зонным парамагнетизмом определяется также линейный отклик намагниченности на внешнее поле в парамагнитной фазе CeB₆ во всем используемом в работе интервале магнитных полей. С уменьшением температуры в окрестности азотной температуры ($T^* \approx 80$ K) наблюдается переход к асимптотике слабой локализации для удельного сопротивления $\rho_m(T) \propto T^{-\alpha}$ с показателем степени $\alpha \approx 0.4$, которая, по-видимому, отвечает возникновению ВЗП вдоль ряда направлений в ОЦК-решетке CeB₆ в 5*d*-полосе. Перенормировка с понижением температуры плотности электронных состояний, обусловленная образованием и дальнейшим возрастанием амплитуды спин-поляронного резонанса при $E_p < E_F$ в окрестности энергии Ферми, вызывает в интервале 3.3 К $\leq T \leq 7$ К (область Ib на рис. 1, 11) перестройку структуры многочастичных состояний. При выполнении критерия, аналогичного стонеровскому, из спин-поляронных состояний возникают ферромагнитные области наноразмера (ферроны, $a_{sp}^* \approx 5 \,\text{\AA}$) и обусловленные этим активационные зависимости коэффициента Холла и магнитной восприимчивости вида $\chi_p(T) \propto R_H(T) \propto \exp(E_{sp}/k_BT)$ с энергией активации $E_{sp}/k_B \approx 3.3~{
m K} \approx T_Q.~{
m B}$

рамках предложенного подхода при температуре T_Q происходит фазовый переход в ВСП-состояние в системе взаимодействующих ферронов, причем в результате формирования коллективного состояния зонных носителей заряда «размороженными» оказываются локализованные магнитные моменты, связанные с 4*f*-оболочкой ионов церия. Появление этих моментов обусловливает рост магнитной восприимчивости в четыре-пять раз и возникновение бесщелевой моды магнитного резонанса в АФК-фазе СеВ₆. Отметим, что выполненный в настоящей работе анализ магнитной фазовой диаграммы гексаборида церия (см. рис. 7) также свидетельствует в пользу предложенного нами подхода к интерпретации транспортных и термодинамических характеристик СеВ₆. В то же время для проверки сделанных предположений требуется проведение целого ряда дополнительных исследований, в том числе прецизионного анализа электронной структуры, изучения шумовых характеристик СеВ₆ при гелиевых и промежуточных температурах, а также исследования магнитного резонанса при ориентации магнитного поля вдоль различных кристаллографических направлений. Сравнение анизотропии «резонансной составляющей» с анизотропией магнитных свойств гексаборида церия позволит ответить на вопрос о природе спинового и зарядового упорядочения в этом соединении с сильными электронными корреляциями.

Работа выполнена в рамках проектов РФФИ (№ 04-02-16721) и INTAS (№ 03-51-3036), а также при финансовой поддержке программы ОФН РАН «Сильнокоррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах» и Фонда содействия отечественной науке.

ЛИТЕРАТУРА

- 1. Ю. Б. Падерно, Г. В. Самсонов, ДАН 137, 646 (1961).
- C. Marcenat, D. Jaccard, J. Sierro et al., J. Low Temp. Phys. 78, 261 (1990).
- N. Sato, S. Kunii, I. Oguro et al., J. Phys. Soc. Jpn. 53, 3967 (1984).
- N. Sato, S. B. Woods, T. Komatsubara et al., J. Magn. Magn. Mat., 31-34, 417 (1983).
- J. M. Effantin, J. Rossat-Mignod, P. Burlet et al., J. Magn. Magn. Mat. 47–48, 145 (1985).

- N. B. Brandt, V. V. Moshchalkov, S. N. Pashkevich et al., Sol. St. Comm. 56, 937 (1985).
- 7. K. Winzer and W. Felsch, J. Phys. C6-39, 838 (1978).
- M. Takigawa, H. Yasuoka, T. Tanaka, and Y. Ishizawa, J. Phys. Soc. Jpn. 52, 728 (1983).
- S. Horn, F. Steglich, M. Loewenhaupt et al., Z. Phys. B 42, 125 (1981).
- И. Ю. Данилов, С. В. Малеев, Письма в ЖЭТФ 61, 137 (1985).
- D. Hall, Z. Fisk, and R. G. Goodrich, Phys. Rev. B 62, 84 (2000).
- 12. F. Givord, J. X. Boucherle, P. Burlet et al., J. Phys.: Condens. Matter 15, 3095 (2003).
- M. Sera, H. Ichikawa, T. Yokoo et al., Phys. Rev. Lett. 86, 1578 (2001).
- 14. M. Saitoh, N. Okada, E. Nishibori et al., J. Phys. Soc. Jpn. 71, 2369 (2002).
- A. Schenck, F. N. Gygax, and S. Kunii, Phys. Rev. Lett. 89, 037201 (2002).
- 16. A. Schenck, F. N. Gygax, G. Solt et al., Phys. Rev. Lett. 93, 257601 (2004).
- 17. O. Zacharko, P. Fischer, A. Schenk et al., Phys. Rev. B 68, 214401 (2003).
- 18. F. Yakhou, V. Plakhty, H. Suzuki et al., Phys. Lett. A 285, 191 (2001).
- V. Plakhty, L. P. Regnault, A. V. Goltsev et al., Phys. Rev. B 71, R11510 (2005).
- 20. M. Kawakami, S. Kunii, T. Komatsubara, and T. Kasuya, Sol. St. Comm. 36, 435 (1980).
- 21. T. Komatsubara, N. Sato, S. Kunii et al., J. Magn. Magn. Mat. 31-34, 368 (1983).
- 22. C. Terzioglu, D. A. Browne, R. G. Goodrich et al., Phys. Rev. B 63, 235110 (2001).
- 23. K. Hanzawa and T. Kasuya, J. Phys. Soc. Jpn. 53, 1809 (1984).
- 24. N. E. Sluchanko, A. V. Bogach, G. S. Burkhanov et al., Physica B 359-361, 308 (2005).
- N. E. Sluchanko, A. V. Bogach, G. S. Burkhanov et al., E-print archives, cond-mat/0511600.
- 26. K. Yosida, Phys. Rev. 107, 396 (1957).
- 27. M. I. Ignatov, A. V. Bogach, V. V. Glushkov et al., Physica B 378–380, 780 (2006).

- 28. Н. Ю. Шицевалова, Дисс. ... канд. физ.-матем. наук, Институт низких температур и структурных исследований Польской академии наук, Вроцлав (2001).
- 29. V. N. Trofimov, Cryogenics 32, 513 (1992).
- 30. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 125, 906 (2004).
- **31**. W. L. McMillan, Phys. Rev. B **24**, 2739 (1981).
- 32. S. V. Demishev, A. V. Semeno, Yu. B. Paderno et al., Phys. Stat. Sol. (b) 242, R27 (2005); S. V. Demishev, A. V. Semeno, A. V. Bogach et al., J. Magn. Magn. Mat. 300, e534 (2006).
- 33. V. Yu. Galkin, W. A. Ortiz, E. Fawcett et al., J. Phys.: Condens. Matter 10, 4911 (1998).
- 34. R. S. Fishman, V. Yu. Galkin, and W. A. Ortiz, J. Phys.: Condens. Matter 10, 6347 (1998).
- 35. A. Takase, K. Kojima, T. Komatsubara, and T. Kasuya, Sol. St. Comm. 36, 461 (1985).
- 36. В. В. Глушков, И. Б. Воскобойников, С. В. Демишев и др., ЖЭТФ 126, 444 (2004); Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., ЖЭТФ 119, 359 (2001).
- 37. N. Sato, A. Sumiyama, S. Kunii et al., J. Phys. Soc. Jpn. 54, 1923 (1985).
- 38. Y. Onuki, A. Umezawa, W. K. Kwok et al., Phys. Rev. B 40, 11195 (1989).
- 39. T. Tanaka, E. Bannai, S. Kawai, and T. Yamani, J. Cryst. Growth 30, 193 (1975).
- 40. P. Coleman, P. W. Anderson, and T. V. Ramakrishnan, Phys. Rev. Lett. 55, 414 (1985).
- 41. M. Hadzic-Leroux, A. Hamzic, A. Fert et al., Europhys. Lett. 1, 579 (1986).
- 42. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Physica B 378-380, 773 (2006); N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., E-print archives, cond-mat/0505386.
- 43. D. N. Sluchanko, V. V. Glushkov, S. V. Demishev et al., J. Magn. Magn. Mat. 300, e288 (2006); N. E. Sluchanko et al., E-print archives, cond-mat/0506502.
- 44. P. Schlottman, Phys. Rep. 181, 1 (1989).
- 45. Chun Chen, Zheng-Zhong Li, and Wang Xu, J. Phys.: Condens. Matter 5, 95 (1993).
- 46. Yu. S. Grushko, Yu. B. Paderno, K. Ya. Mishin et al., Phys. Stat. Sol. (b) 128, 591 (1985).

- 47. M. Loewenhaupt, J. M. Carpenter, and C. K. Loong, J. Magn. Magn. Mat. 52, 245 (1985).
- 48. Р. Уайт, Квантовая теория магнетизма, Мир, Москва (1985), с. 105.
- **49**. Дж. Займан, *Принципы теории твердого тела*, Мир, Москва (1974), с. 270.
- 50. N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov et al., Phys. Rev. B 61, 15, 9906 (2000); N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Phys. Rev. B 64, 153103 (2001).
- 51. Э. Л. Нагаев, Физика магнитных полупроводников, Наука, Москва (1979), с. 208.
- 52. G. Montambaux, Phys. Rev. B 38, 4788 (1988).
- 53. T. Sasaki, A. Lebed', T. Fukase, and N. Toyota, Phys. Rev. B 54, 12969 (1996).
- 54. Н. И. Куликов, В. В. Тугушев, УФН 144, 643 (1984).

- **55**. Л. В. Келдыш, Ю. В. Копаев, ФТТ **6**, 2791 (1964).
- **56**. А. Н. Козлов, Л. А. Максимов, ЖЭТФ **48**, 1184 (1965)
- 57. V. Barzykin and L. P. Gor'kov, Phys. Rev. Lett. 84, 2207 (2000).
- 58. L. Balents and C. M. Varma, Phys. Rev. Lett. 84, 1264 (2000).
- 59. H. D. Langford and W. M. Temmerman, J. Magn. Magn. Mat. 76–77, 43 (1988).
- H. Harima, O. Sakai, T. Kasuya, and Y. Yanase, Sol. St. Comm. 66, 603 (1988).
- 61. Б. А. Волков, Ю. В. Копаев, А. И. Русинов, ЖЭТФ
 68, 1849 (1975).
- 62. Б. А. Волков, А. И. Русинов, Р. Х. Тимеров, ЖЭТФ
 70, 1130 (1976).