КРИТИЧЕСКИЕ СВОЙСТВА ВЫСОКОСПИНОВЫХ МОДЕЛЕЙ ИЗИНГА НА АНИЗОТРОПНОЙ РЕШЕТКЕ

М. А. Юрищев*

Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 6 апреля 2006 г.

Рассчитаны координаты критических точек S-спиновых $(1/2 \leq S \leq 13/2)$ моделей Изинга на двумерной прямоугольной решетке с константами взаимодействия J и J'. Вычисления при различных S и $\Delta \equiv J'/J$ проведены двумя независимыми способами: в рамках феноменологической ренормгруппы и с использованием (приближенной) дуальной симметрии. Расчеты (численные и, дополнительно, в приближении среднего поля) показывают, что при $\Delta \sim 1$ (слабоанизотропная решетка) критическое взаимодействие $K_c^{(S)}(\Delta) = K_c^{(S)}(1) \left[1 + a(1-\Delta)\right]$, причем a = (d-1)/d не зависит от S (d — размерность пространства). В критических точках найдены свободная и внутренняя энергии. Обнаружено существование экстремума на зависимости критической внутренней энергии при $\Delta^* \in (0,1)$. Предложено использовать параметр Δ^* в качестве критерия квазиодномерности — порога, до которого простирается квазиизотропная ($\Delta^* < \Delta \leq 1$) область и ниже которого начинается квазиодномерный ($\Delta < \Delta^*$) режим поведения системы. Оценены величины критических конечно-размерных скейлинговых амплитуд A_s и A_e обратных корреляционных длин корреляционных функций соответственно спин–спин и энергия—энергия. Расчеты свидетельствуют, что в пределах погрешностей использованных приближений амплитуды A_s и A_e не зависят от величины спина S, а их отношение A_e/A_s , кроме того, не зависит от степени анизотропии Δ решетки. Это подтверждает гипотезу универсальности.

PACS: 05.50.+q, 05.70.Jk, 64.60.Fr, 75.10.Hk

1. ВВЕДЕНИЕ

В настоящее время модель Изинга является одной из наиболее активно изучаемых систем статистической физики. Эта модель привлекает внимание исследователей тем, что в ней могут происходить фазовые переходы, которые по своим характеристикам идентичны (если, конечно, верна гипотеза универсальности) переходам, присущим совершенно различным, на первый взгляд, субстанциям и объектам от легкоосных магнетиков и простых жидкостей до, возможно, Вселенной на этапе ее ранней эволюции после Большого взрыва (см., например, обзор [1] и имеющиеся там ссылки).

Модель Изинга на прямоугольной решетке со спинами S = 1/2 была решена Онсагером [2]. Предпринятые многочисленные попытки распространить точное аналитическое решение на системы с S > 1/2 остаются безуспешными и по сей день. Известен,

правда, ряд высокоспиновых моделей Изинга, которые сводятся к проблеме свободных фермионов и для которых благодаря этому получены точные результаты [3, 4]. Однако в данных моделях константы взаимодействий различных типов должны удовлетворять жестким искусственным взаимосвязям, которые исключают физически интересные случаи, например обычную модель с чисто двухчастичными связями ближайших узлов решетки.

Исследования высокоспиновых моделей проводят сейчас приближенными методами. Наибольшие успехи достигнуты для S = 1 и S = 3/2. Модели со спинами S = 1 в поле одноионной анизотропии и с учетом билинейных и биквадратичных взаимодействий известны как модели Блюме-Каппеля и Блюме-Эмери-Гриффитса [5, 6]; помимо прочего они позволяют описывать влияние вакансий и обладают фазовыми переходами не только с критическими, но и с трикритическими точками. Модель с S = 3/2, первоначально рассмотренная в прибли-

^{*}E-mail: yur@itp.ac.ru

жении молекулярного поля с целью качественного описания критических явлений в ванадате диспрозия (DyVO₄) [7], теперь интенсивно изучается с помощью методов ренормгруппы, моделирования Монте-Карло, кластерного вариационного подхода и т. д. (см., например, работы [8, 9]).

Изинговские модели с еще более высокими значениями спинов (S > 3/2) исследованы намного слабее из-за нарастания вычислительных сложностей при увеличении спина. Лишь в последние годы методами разложения в низко- и высокотемпературные ряды удалось найти относительно качественные оценки критических точек и некоторых других параметров для моделей Изинга с парными связями на изотропных решетках со спинами до S = 3 [10, 11].

Следует отметить, что высокоспиновые модели интересны не только с чисто теоретических позиций (например, для проверки гипотезы универсальности). Они важны также и для физики магнитных явлений, поскольку высокоспиновыми системами являются многие органические магнитные материалы, соединения переходных металлов и особенно редкоземельных элементов.

В настоящей работе представлены результаты для двумерных моделей Изинга на анизотропной прямоугольной решетке со спинами вплоть до S = 13/2. Наряду с локализацией критических точек найдены значения свободной и внутренней энергий при фазовом переходе в бесконечной по всем направлениям решетке $\infty \times \infty$ и рассчитаны критические конечно-размерные скейлинговые амплитуды обратных корреляционных длин для подсистем в форме полосок $L \times \infty$ с периодическими граничными условиями в поперечном направлении.

Статья построена по следующему плану. В разд. 2 сформулирована модель и изложены применяемые методы ее приближенного решения. В разд. 3 представлены расчеты (обратных) критических температур, а также дана интерпретация результатов. Разделы 4 и 5 посвящены изучению соответственно критических энергий (свободной и внутренней) и скейлинговых амплитуд. В заключительном разделе подведены итоги проделанной работы.

2. ИСХОДНЫЕ ОПРЕДЕЛЕНИЯ, БАЗОВЫЕ УРАВНЕНИЯ И МЕТОДЫ РЕШЕНИЯ

Гамильтониан интересующей нас модели Изинга представим в виде

$$H = -\frac{1}{S^2} \sum_{i,j} S_{ij} (JS_{i+1,j} + J'S_{i,j+1}), \qquad (1)$$

где спиновые переменные S_{ij} локализованы в узлах прямоугольной решетки и принимают целые или полуцелые значения $S, S - 1, \ldots, -S$; всего 2S + 1 состояний для каждого узла при заданной величине спина $S = 1/2, 1, 3/2, \ldots$ Нормированный магнитный момент системы равен

$$M = \frac{1}{S} \sum_{i,j} S_{ij}.$$
 (2)

Для расчета статистических характеристик модели используем трансферматричную технику [12, 13]. Такой подход дает возможность получать точные численные данные для частично конечных подсистем. Из этих данных будем извлекать информацию о бесконечной системе, привлекая теорию конечно-размерного скейлинга [14, 15] или опираясь на приближенную дуальную симметрию [16].

Трансфер-матрицу V подсистемы в форме полоски $L \times \infty$ с периодическими граничными условиями в поперечном направлении ($L = 2, 3, \ldots$ — ширина полоски, измеренная в единицах постоянной решетки) определяем элементами

$$\langle \tilde{S}_{1}, \dots, \tilde{S}_{L} | V | \tilde{S}_{1}', \dots, \tilde{S}_{L}' \rangle =$$

$$= \exp \left\{ \frac{1}{4S^{2}} \left[K \sum_{i=1}^{L} \tilde{S}_{i} \tilde{S}_{i}' + \frac{1}{2} K' \sum_{i=1}^{L} (\tilde{S}_{i} \tilde{S}_{i+1} + \tilde{S}_{i}' \tilde{S}_{i+1}') \right] \right\}.$$
(3)

Здесь переменные \tilde{S}_i — удвоенные спины — пробегают лишь целые значения (это удобно при программировании) от 2S до -2S с шагом 2, $\tilde{S}_{L+1} = \tilde{S}_1$ (циклические граничные условия), $K = J/k_BT$ и $K' = J'/k_BT$, где k_B — постоянная Больцмана, T — температура.

Матрица V является вещественной, симметричной и имеет размеры $(2S+1)^L \times (2S+1)^L$. Основная задача состоит в том, чтобы для этой матрицы решить задачу на собственные значения λ_i и соответствующие им собственные векторы F_i . Наибольшее собственное значение λ_1 трансфер-матрицы, как и всякой конечной матрицы с положительными элементами, невырождено (теорема Перрона [17]).

Плотность приведенной свободной энергии подсистемы равна

$$f_L = \frac{1}{L} \ln \lambda_1. \tag{4}$$

Обратная корреляционная длина спин-спиновой корреляционной функции есть (см., например, [18])

$$\kappa_L^s = \ln \frac{\lambda_1}{\lambda_2},\tag{5}$$

где λ_2 — второе по величине собственное значение трансфер-матрицы. Для обратной корреляционной длины корреляционной функции энергия-энергия аналогично имеем

$$\kappa_L^e = \ln \frac{\lambda_1}{\lambda_3},\tag{6}$$

где λ_3 — третье по величине собственное значение трансфер-матрицы V.

Наконец, при заданном отношении констант взаимодействия, $\Delta = K'/K = J'/J$, плотность приведенной внутренней энергии $u \equiv \partial f/\partial K$ равна

$$u = \frac{1}{S^2} (\langle S_{ij} S_{i+1,j} \rangle + \Delta \langle S_{ij} S_{i,j+1} \rangle).$$
(7)

Для расчета е
е трансферматричным методом для полоски $L\times\infty$ служит формула

$$u_{L} = \frac{1}{4S^{2}} \times \left[\frac{1}{\lambda_{1}} (\hat{S}_{1}F_{1})^{+} V(\hat{S}_{1}F_{1}) + \Delta(\hat{S}_{1}F_{1})^{+} (\hat{S}_{2}F_{1}) \right].$$
(8)

Здесь

$$\hat{S}_1 = 2S^z \times 1 \times 1 \times \ldots \times 1, \tag{9}$$

$$\hat{S}_2 = 1 \times 2S^z \times 1 \times \ldots \times 1, \tag{10}$$

где 1 — единичная матрица порядка 2S + 1, а S^z — обычная диагональная матрица *z*-компоненты спина:

$$2S^{z} = \operatorname{diag}[2S, 2S - 2, \dots, -2S].$$
(11)

Расчет критического взаимодействия $K_c = J/k_B T_c$ (T_c — температура фазового перехода) будем проводить двумя независимыми способами. Оба они являются, в сущности, методами пересечения [1] и базируются на трансферматричных данных для одних и тех же полосок $L \times \infty$, но с различной последующей обработкой этих данных.

Во-первых, используем ренормгрупповое уравнение

$$L\kappa_L^s(K_c) = (L+1)\kappa_{L+1}^s(K_c),$$
(12)

которое служит для локализации критической точки в стандартном подходе феноменологической ренормгруппы [14, 18]. Во-вторых, наряду с (12) будем использовать «дуальное» уравнение

$$u_L(K_c) = u_{L+1}(K_c).$$
(13)

Вывод этого уравнения основан на факте дуальной симметрии какого-либо представителя класса универсальности и на свойстве универсальности скейлинговых амплитуд (см. работу [16] и имеющиеся там ссылки). Уравнение (13) привлекательно тем, что для 1/2-спиновой изотропной модели оно дает точный результат.

Определив положение критической точки, получаем возможность находить по формулам (4) и (8) оценки для свободной и внутренней энергий системы при фазовом переходе — соответственно f_c и u_c .

Согласно упомянутой выше теории конечно-размерного скейлинга, в точке фазового перехода полной системы обратные корреляционные длины частично конечной подсистемы с характерным линейным размером L обратно пропорциональны L. Поэтому при достаточно больших L для оценок критических конечно-размерных скейлинговых амплитуд (коэффициентов пропорциональности в этих зависимостях) можно использовать формулы

$$A_s = L\kappa_L^s|_{T=T_c},\tag{14}$$

$$A_e = L\kappa_L^e|_{T=T_c},\tag{15}$$

где A_s и A_e — амплитуды обратных корреляционных длин соответственно корреляционных функций спин-спин и энергия-энергия.

Будет показано, что эти амплитуды не зависят от величины спина S. Кроме того, как следует из общих функциональных соотношений Привмана и Фишера [19] (см. также [20–22]), они зависят от Δ через один и тот же геометрический фактор G_{Δ} :

$$A_s(\Delta) = A_s(1)G_\Delta,\tag{16}$$

$$A_e(\Delta) = A_e(1)G_{\Delta}.$$
 (17)

Если это так, то комбинация амплитуд A_e/A_s не должна зависеть от анизотропии решетки. Ниже мы подвергнем проверке данное следствие.

Таблица 1 представляет результаты расчета характеристик модели с S = 1/2 и $\Delta = 1$ (S и Δ это два входных параметра для нашей компьютерной программы). Из таблицы хорошо виден процесс сходимости всех характеристик к точным значениям по мере увеличения ширин полосок. С трех последних кластерных пар мы делали экстраполяцию на

(L, L+1)	$K_c, (10)$	$K_c, (12)$	${f_c}$	u_c	A_s	A_e	A_e/A_s
(2, 3)	0.422361	0.440687	1.005053	1.414214	0.871169	4.396663	5.046856
(3, 4)	0.430884	0.440687	0.961173	1.414214	0.830994	5.531392	6.656356
(4, 5)	0.435953	0.440687	0.946784	1.414214	0.810043	5.982555	7.385480
(5, 6)	0.438258	0.440687	0.940445	1.414214	0.800185	6.085979	7.605715
(6, 7)	0.439310	0.440687	0.937095	1.414214	0.795205	6.144318	7.726712
(7, 8)	0.439831	0.440687	0.935105	1.414214	0.792405	6.180281	7.799400
(8, 9)	0.440116	0.440687	0.933825	1.414214	0.790673	6.203953	7.846416
(9, 10)	0.440286	0.440687	0.932951	1.414214	0.789523	6.220336	7.878605
(10, 11)	0.440393	0.440687	0.932330	1.414214	0.788703	6.232134	7.901751
Экстр.	0.440579	0.440687	0.930795	1.414214	0.786675	6.262484	7.960992
Точно	0.44068	0.440687	0.9296	1.4142	0.7853	6.2831	8

Таблица 1. Изотропная (J' = J) решетка Изинга со спинами S = 1/2. Оценки K_c (из уравнений (10) и (12)), f_c , u_c , критических амплитуд A_s , A_e и отношения A_e/A_s при различных размерах кластеров. Нижние строки — экстраполяция на бесконечную решетку и, для сравнения, точные значения

бесконечные ширины по схеме Шанкса, когда исходная последовательность $\{a_l\}$ преобразуется в новую последовательность $\{a_l^{(1)}\}$ по формуле [14]

$$a_l^{(1)} = \frac{a_{l-1}a_{l+1} - a_l^2}{a_{l-1} + a_{l+1} - 2a_l}.$$
 (18)

Это преобразование служит первым шагом в таких признанных схемах экстраполяции, как альтернирующий ε -алгоритм [14] или метод Ван дер Брока и Шварца (см., например, [23]).

Порядок трансфер-матрицы растет катастрофически быстро — по закону $(2S + 1)^L$. Поэтому при $S \ge 2$ число кластерных пар у нас сначала уменьшилось до двух, а начиная с S = 7/2, вообще до одной. Экстраполяцию здесь мы уже, естественно, не проводили, а в качестве оценок параметров модели брали значения по последней доступной паре кластеров.

3. КООРДИНАТЫ КРИТИЧЕСКИХ ТОЧЕК

В табл. 2 и 3 сведены результаты наших расчетов обратных критических температур $K_c = J/k_BT_c$ двумерных решеток Изинга при различных значениях спина S и анизотропии решетки Δ . Для каждого выбора входных параметров S и Δ мы вычисляли K_c двумя способами: по стандартному ренормгрупповому уравнению (12) и по дуальному уравнению (13). Оба рассчитанных значения K_c расположены в табл. 2 и 3 друг под другом: сверху стоит «ренормгрупповая» оценка, а ниже — «дуальная» оценка. Экстраполяцию на $S = \infty$ мы делали по методу Шанкса (18) с трех последних точек (S = 11/2, 6, 13/2).

Уже беглый взгляд на табл. 2 и 3 позволяет обнаружить, что оба способа расчета дают близкие между собой оценки K_c . Поскольку методы разные, такая близость свидетельствует о правильности полученных результатов.

3.1. Изотропная решетка

Перейдем к более детальному анализу данных. Начнем с полностью изотропного случая (строки для $\Delta = 1$ в табл. 2 и 3).

Для 1/2-спиновой квадратной решетки Изинга положение критической точки установлено еще Крамерсом и Ванье [24]:

$$K_c^{(1/2)}(\Delta = 1) = \frac{1}{2} \ln \left(1 + \sqrt{2} \right) =$$

= 0.4406867... $\approx 0.440687.$ (19)

Из табл. 2 следует, что ренормгрупповое уравнение (12) дает нижнюю оценку. С другой стороны, дуальное уравнение (13) с использованием тех же самых подсистем дает точное значение (19). Это предопределено тем, что 1/2-спиновая изотропная модель Изинга на цилиндре $L \times \infty$ самодуальна при любом значении L [16, 25].

Δ	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 3	S = 7/2
1	$\left\{\begin{array}{c} 0.440579\\ 0.440687\end{array}\right.$	$0.590122 \\ 0.590418$	$0.681573 \\ 0.683351$	$0.743638 \\ 0.747000$	$0.790698 \\ 0.793904$	$0.826454 \\ 0.829591$	$0.853133 \\ 0.861018$
0.5	$\left\{\begin{array}{c} 0.609291\\ 0.609166\end{array}\right.$	$0.809254 \\ 0.808852$	$0.935133 \\ 0.934783$	$1.018060 \\ 1.016260$	$1.081506 \\ 1.079549$	$1.129803 \\ 1.127739$	$1.162460 \\ 1.160518$
0.1	$ \left\{\begin{array}{c} 1.103826\\ 1.103065 \end{array}\right. $	$1.379087 \\ 1.377110$	$1.559562 \\ 1.554790$	$1.683630 \\ 1.671714$	$1.778768 \\ 1.766770$	$1.852085 \\ 1.839963$	$1.900335 \\ 1.876509$
0.01	$ \left\{\begin{array}{c} 1.964883 \\ 1.964229 \end{array}\right. $	2.264736 2.260485	2.470575 2.459796	2.620713 2.591690	2.740418 2.711233	2.835287 2.805862	2.899093 2.840262
0.001	$ \left\{\begin{array}{c} 2.917874 \\ 2.912951 \end{array}\right. $	3.224418 3.218836	$3.431069 \\ 3.416457$	3.588473 3.548833	$3.718962 \\ 3.679191$	$3.825488 \\ 3.785507$	3.900279 3.817645

Таблица 2. Оценки критического взаимодействия $K_c = J/k_B T_c$ для *S*-спиновой анизотропной квадратной решетки Изинга, полученные из решения ренормгруппового и дуального уравнений

Таблица 3. То же, что в табл. 2, для спинов от S=4 до S=13/2 и экстраполяция на $S=\infty$

Δ	S = 4	S = 9/2	S = 5	S = 11/2	S = 6	S = 13/2	$S = \infty$
1	$\begin{cases} 0.875901 \\ 0.883885 \end{cases}$	$0.894636 \\ 0.902714$	$0.910323 \\ 0.918487$	$0.923650 \\ 0.931890$	$0.935111 \\ 0.943421$	$0.945073 \\ 0.953446$	$1.011278 \\ 1.020179$
0.5	$\left\{\begin{array}{c} 1.193188\\ 1.191204\end{array}\right.$	$1.218495 \\ 1.216479$	$1.239699 \\ 1.237656$	$1.257722 \\ 1.255658$	$1.273231 \\ 1.271147$	1.286717 1.284617	$1.376619 \\ 1.374484$
0.1	$\left\{ \begin{array}{c} 1.947544 \\ 1.923456 \end{array} \right.$	$1.986648 \\ 1.962317$	$2.019564 \\ 1.995012$	2.047651 2.022897	2.071896 2.046959	2.093037 2.067934	$2.237026 \\ 2.210451$
0.01	$ \left\{\begin{array}{c} 2.962388\\ 2.903046 \end{array}\right. $	3.015473 2.955640	$3.060609 \\ 3.000315$	3.099442 3.038722	$3.133197 \\ 3.072083$	$3.162803 \\ 3.101328$	$3.374062 \\ 3.309120$
0.001	$\begin{cases} 3.974332 \\ 3.891160 \end{cases}$	$4.037308 \\ 3.953598$	$\begin{array}{c} 4.091458 \\ 4.007228 \end{array}$	$\begin{array}{c} 4.138480 \\ 4.053755 \end{array}$	$\begin{array}{c} 4.179670\\ 4.094480\end{array}$	$\begin{array}{c} 4.216035 \\ 4.130411 \end{array}$	$\begin{array}{c} 4.490110 \\ 4.399714 \end{array}$

В случае спинов S > 1/2 координаты критических точек известны лишь приближенно. Из высокотемпературных рядов недавно удалось извлечь оценки [10]

$$K_c^{(S)} = \{0.590473(5), 0.684255(6), \\ 0.748562(8), 0.79541(1), 0.83106(2)\}$$
(20)

соответственно для S = 1, 3/2, 2, 5/2, 3. Сравнение данных из табл. 2 со значениями (20) показывает, что наши оценки являются нижними, а также, что

дуальное уравнение дает более точные результаты, чем ренормгрупповое соотношение.

Для классической модели Изинга [26] авторы работы [10] приводят значение

$$K_c^{(\infty)}(1) = 1.09315(2).$$
 (21)

Соответствующие наши оценки 1.011 и 1.020 (табл. 3) находятся в разумном согласии со значением (21), причем оценка по дуальному уравнению снова оказывается лучше.

3.2. Анизотропная решетка

Обсудим теперь анизотропную модель. Здесь наши результаты являются новыми, начиная с S > 1/2.

Чтобы сделать привязку и тестирование получаемых результатов, рассмотрим сначала 1/2-спиновую модель. Для спинов S = 1/2 положения критических точек прямоугольной решетки Изинга удовлетворяют уравнению Онсагера [2]

$$\operatorname{sh}(2K_c)\operatorname{sh}(2K_c\Delta) = 1.$$
(22)

Проводя численное решение этого трансцендентного уравнения, находим, что наши оценки в столбце S = 1/2 табл. 2 являются нижними границами. Однако теперь более точные результаты дает ренормгрупповое уравнение. Такое изменение можно объяснить тем, что в анизотропном случае модель не является самодуальной: соотношение дуальности связывает между собой лишь дуально-сопряженные точки на критической линии [27].

Для слабоанизотропной решетки из уравнения (22) получаем разложение по малому параметру 1 — Δ :

$$\begin{aligned} K_c^{(1/2)}(\Delta \to 1) &= \frac{1}{2} \ln \left(1 + \sqrt{2} \right) \times \\ &\times \left[1 + \frac{1}{2} (1 - \Delta) \right] + O\left((1 - \Delta)^2 \right). \end{aligned} \tag{23}$$

Наоборот, для модели с сильной анизотропией взаимодействий ($\Delta \rightarrow 0$) исходное соотношение (22) переходит в уравнение вида

$$w e^w = x \tag{24}$$

 $(w = 2K_c$ и $x = 2/\Delta)$. Решение трансцендентного уравнения (24) может быть осуществлено с помощью теории сингулярных интегральных уравнений [28], записано через W-функцию Ламберта [29], выражено в виде цепной дроби [30] или представлено итерационным рядом [31]

$$w = \ln x - \ln \ln x + O(\ln \ln x / \ln x), \quad x \to \infty.$$
 (25)

Последнее дает [32–34]

$$K_c^{(1/2)}(\Delta \to 0) = \frac{1}{2} \left(\ln \frac{2}{\Delta} - \ln \ln \frac{2}{\Delta} \right).$$
 (26)

Итак, критическое взаимодействие в сильноанизотропной системе логарифмически медленно зависит от Δ .

Обсудим, что происходит в решетке при бо́льших значениях спинов (S>1/2). На рис. 1 представлены

Рис.1. Нормированные критические взаимодействия прямоугольной решетки Изинга как функции $\Delta = J'/J$ при S = 1/2, 1, 3/2 и экстраполяция на $S = \infty$

полученные нами нормированные критические взаимодействия в зависимости от Δ при различных S. С увеличением спина наблюдаем процесс сходимости. Так, уже при S = 11/2, 6, 13/2 графики в пределах разрешимости рисунка слиты в одну линию, с которой мы и отождествляем соответствующую зависимость для модели с классическими изинговскими спинами $S = \infty$.

Далее, наши расчеты свидетельствуют о том, что при малых анизотропиях решетки, $\Delta \to 1$, нормированные критические взаимодействия, как и в случае S = 1/2, подчинены линейному закону

$$\frac{K_c^{(S)}(\Delta)}{K_c^{(S)}(1)} = 1 + a(1 - \Delta), \quad \Delta \to 1.$$
 (27)

Мы нашли, что коэффициент *а* в этом соотношении не зависит от величины спина:

$$a = 1/2 \tag{28}$$

для всех $S=1/2,\ 1,\ 3/2,\ \ldots$ Это хорошо видно на рис. 1: все кривые при $\Delta\sim 1$ имеют один и тот же наклон.

Свойство независимости относительного критического взаимодействия в квазиизотропной области от величины спина может быть подтверждено в рамках простейшей теории среднего поля. Действительно, для одиночного спина S в молекулярном поле, которое заменяет собой взаимодействия выделенного спина с остающейся частью решетки с координационным числом z, такая теория с учетом используемой нами нормировки гамильтониана и магнитного момента, равенства (1) и (2), дает [13, 35]

$$k_B T_c = \frac{1}{3} (J_1 + J_2 + \dots + J_z) \frac{S+1}{S}.$$
 (29)

Поэтому критическое взаимодействие d-мерной (z = 2d) гиперкубической частично анизотропной решетки $(J_1 = J_2 = J, J_3 = J_4 = \ldots = J_z = J')$ равно

$$K_c^{(S)}(\Delta) = \frac{3S}{2(S+1)[1+(d-1)\Delta]}.$$
 (30)

Отсюда следует

$$\frac{K_c^{(S)}(\Delta)}{K_c^{(S)}(1)} = 1 + \frac{d-1}{d}(1-\Delta) + O((1-\Delta)^2).$$
(31)

Таким образом, закон линейный, коэффициент пропорциональности в нем не зависит от S и равен $^{1)}$

$$a = \frac{d-1}{d}.\tag{32}$$

В случае двумерного пространства (d = 2) возвращаемся к (28).

Для классической модели Изинга $(S = \infty)$ на двумерной изотропной решетке теория среднего поля (равенство (30)) предсказывает, что $K_c = 0.75$; это на 31 % меньше численного значения (21).

В другой области ($\Delta \rightarrow 0$) критическое взаимодействие модели со спинами S > 1/2 по-прежнему ведет себя логарифмическим образом. Это следует из данных табл. 2 и 3 и достаточно хорошо видно на рис. 1.

Кроме того, дополнительные подтверждения в пользу логарифмического поведения можно найти, снова опираясь на теорию среднего поля. Теперь, однако, нужно применить идеи среднего поля не к отдельному спину, а к целой цепочке спинов. В рамках такой модифицированной теории среднего поля имеет место уравнение [37] (это же уравнение вытекает и из приближения хаотических фаз [38, 39])

$$z'J'\chi(K_c) = 1, (33)$$

где z' есть число ближайших цепочек (z' = 2 в двумерном случае), а χ — магнитная восприимчивость линейной цепочки. Таким образом, в приближении

среднего поля задача о локализации критической точки системы сводится к расчету восприимчивости подсистемы.

Восприимчивость линейной 1/2-спиновой цепочки Изинга равна [13]

$$\chi = \frac{1}{k_B T} \exp\left(\frac{2J}{k_B T}\right). \tag{34}$$

В таком случае равенство (33) для двумерной решетки переходит в уравнение

$$K_c \exp(2K_c) = \frac{1}{2\Delta},\tag{35}$$

асимптотическое решение которого при $\Delta \to 0$, в согласии с общими соотношениями (24) и (25), имеет вид

$$K_c^{(1/2)} \approx \frac{1}{2} \left(\ln \frac{1}{\Delta} - \ln \ln \frac{1}{\Delta} \right).$$
 (36)

Полученный результат отличается от (26) лишь отсутствием коэффициента 2 под знаками логарифма, что, как отмечено в работе [33], обусловлено пренебрежением поперечными флуктуациями в используемой модифицированной теории среднего поля. Несмотря на такое различие, выражение (36) по-прежнему является асимптотически точным, но при заданном Δ дает уже более грубые, чем (26), оценки.

Для магнитных восприимчивостей одномерных цепочек Изинга с S = 1 и S = 3/2 тоже выведены аналитические формулы [40, 41]. К сожалению, они громоздки. Но поскольку нас интересует асимптотическое поведение системы при малых Δ , когда малы и критические температуры, для восприимчивости линейной цепочки Изинга можно использовать имеющееся низкотемпературное разложение, справедливое для произвольного спина $S \neq \infty$ [40]:

$$\chi = \frac{1}{2Sk_BT} \exp\left(\frac{2J}{k_BT}\right), \quad T \to 0.$$
 (37)

Тогда из уравнения (33) находим, что

$$K_c^{(S)}(\Delta \to 0) = \frac{1}{2} \left(\ln \frac{4S}{z'\Delta} - \ln \ln \frac{4S}{z'\Delta} \right).$$
(38)

Таким образом, как и в 1/2-спиновой модели, критическое взаимодействие в квазиодномерной решетке с S > 1/2 подчинено логарифмическому закону.

4. СВОБОДНАЯ И ВНУТРЕННЯЯ ЭНЕРГИИ В КРИТИЧЕСКОЙ ТОЧКЕ

Определив положения критических точек, можем приступить к расчету различных параметров

¹⁾ Для трехмерной модели (d = 3) коэффициент пропорциональности в формуле (41) работы автора [36] ошибочно занижен в 10 раз. В действительности же данные, представленные в табл. 3 работы [36], для этого коэффициента дают величину, которая в пределах погрешностей согласуется со значением a = 2/3.

системы в точке фазового перехода. Начнем с характеристик, которые непрерывны при фазовом переходе второго рода.

В табл. 4 и 5 собраны полученные нами оценки для критических свободной и внутренней энергий прямоугольной решетки Изинга при различных анизотропиях взаимодействий Δ и величинах спинов S от 1/2 до 13/2.

В случае 1/2-спиновой модели Изинга критические свободная и внутренняя энергии известны в точном аналитическом виде [2]:

$$f_{c}^{(1/2)}(\Delta) = \frac{1}{2}\ln 2 + \frac{2}{\pi}G + \left(\frac{1}{2} - \frac{2}{\pi}\alpha\right)\ln(\operatorname{ctg}\alpha) + \frac{2}{\pi}\int_{\alpha}^{\pi/4}\ln(\operatorname{tg} x)\,dx,\quad(39)$$

$$u_c^{(1/2)}(\Delta) = \frac{2}{\pi} \left[\operatorname{gd}(2K_c) \operatorname{cth}(2K_c) + \Delta \operatorname{gd}(2K_c\Delta) \operatorname{cth}(2K_c\Delta) \right]. \quad (40)$$

В этих соотношениях

$$\alpha = \mathrm{gd}(2K_c\Delta),\tag{41}$$

функция

$$gd(x) = 2 \operatorname{arctg}(e^x) - \pi/2 \tag{42}$$

— гудерманиан (гиперболическая амплитуда) [42] и *G* — постоянная Каталана,

$$G = \sum_{n=0}^{\infty} (-1)^n (2n+1)^{-2} = 0.915965594\dots$$
 (43)

4.1. Изотропная решетка

Обсудим полностью изотропный случай. Сначала проведем тестирование наших результатов в точках, для которых значения энергий известны из литературы.

При $\Delta = 1$ из формул (39) и (40) следует, что

$$f_c^{(1/2)}(1) = \frac{2}{\pi} G + \frac{1}{2} \ln 2 = 0.929695398\dots, \quad (44)$$

$$u_c^{(1/2)}(1) = \sqrt{2} = 1.414213562\dots$$
 (45)

Соответствующая оценка f_c в табл. 4 завышает истинное значение (44) на 0.1 %. Для внутренней энергии наш конечно-размерный расчет дает точный результат (45).

Согласно вычислениям [43], внутренняя критическая энергия изотропной квадратной решетки Изинга со спинами S = 1 равна

$$u_c^{(1)}(1) = 1.16094(5). \tag{46}$$

Наше значение (см. табл. 4) отличается от приведенной величины всего только на 0.02 %.

Далее, в работе [11] (табл. I) представлены значения критических парных корреляторов ближайших соседей в квадратной изотропной решетке Изинга со спинами от S = 1/2 до S = 2 и $S = \infty$; расчеты выполнены методом высокотемпературных рядов. В соответствии с выражением (7) нормированные корреляционные функции при $\Delta = 1$ равны половине внутренней энергии. Поэтому, удваивая указанные в работе [11] значения корреляторов, получаем оценки для критической внутренней энергии:

$$u_c^{(S)}(1) = \{1.4142(2), 1.1612(6), \\ 1.034(2), 0.962(2), 0.676(2)\}$$
(47)

соответственно при S = 1/2, 1, 3/2, 2, ∞ . Обращаясь к табл. 4, обнаруживаем, что наши оценки для S от 1/2 до 2 с высокой точностью (ошибка меньше 0.8%) совпадают с данными (47).

Таким образом, хорошее согласие наших расчетов со всей совокупностью результатов других авторов в случае спинов от S = 1/2 до S = 2 дает основание считать верными наши данные в табл. 4 и 5 для значений спина от S = 5/2 до S = 13/2.

4.2. Анизотропная решетка

Для спинов S = 1/2 свободная и внутренняя энергии решетки Изинга $\infty \times \infty$ в критической точке описываются выражениями (39) и (40). Численные расчеты по этим формулам дают

$$f_c^{(1/2)}(\Delta) = \{0.959240, 1.238745, \\ 1.989750, 2.922078\}, \quad (48)$$

$$u_c^{(1/2)}(\Delta) = \{1.092008, 0.945809, \\ 0.982109, 0996938\}$$
(49)

соответственно при $\Delta = 0.5, 10^{-1}, 10^{-2}, 10^{-3}$. Оценки в табл. 4 (колонка для S = 1/2) с хорошей точностью воспроизводят значения (48) и (49). Это позволяет считать правильными наши расчеты и для спинов S > 1/2, для которых в случае анизотропных решеток нам не удалось найти в литературе ни аналитических, ни численных данных.

Δ	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 3
1	$\left\{\begin{array}{c} 0.930795\\ 1.414214\end{array}\right.$	$1.321151 \\ 1.160711$	1.615377 1.030189	$\frac{1.849582}{0.955026}$	$2.030541 \\ 0.906621$	$2.183882 \\ 0.872360$
0.5	$\left\{\begin{array}{c} 0.959698\\ 1.091017\end{array}\right.$	$1.345404 \\ 0.900821$	$1.629948 \\ 0.805528$	1.860217 0.736673	$2.041005 \\ 0.699820$	$2.194235 \\ 0.673641$
0.1	$\left\{ \begin{array}{c} 1.238205 \\ 0.944773 \end{array} \right.$	$1.592084 \\ 0.836250$	$1.859188 \\ 0.761908$	$2.070256 \\ 0.705859$	$2.247979 \\ 0.674404$	$2.399342 \\ 0.651435$
0.01	$\left\{ \begin{array}{c} 1.989120 \\ 0.981977 \end{array} \right.$	$2.300288 \\ 0.955350$	$2.531797 \\ 0.917862$	$2.709500 \\ 0.880149$	$2.877324 \\ 0.853899$	$3.022425 \\ 0.832803$
0.001	$\left\{\begin{array}{c} 2.916694\\ 0.996807\end{array}\right.$	$3.224627 \\ 0.993034$	$3.431926 \\ 0.980758$	$3.584312 \\ 0.963016$	$3.741187 \\ 0.946416$	$3.878811 \\ 0.931198$

Таблица 4. Значения свободной и внутренней (нижние значения) энергий (соответственно f_c и u_c) для S-спиновой анизотропной квадратной решетки Изинга

Таблица 5. То же, что в табл. 4, но для спинов от S = 7/2 до S = 13/2

Δ	S = 7/2	S = 4	S = 9/2	S = 5	S = 11/2	S = 6	S = 13/2
1	$ \left\{\begin{array}{c} 2.364679\\ 0.854785 \end{array}\right. $	$2.482271 \\ 0.835260$	$2.587497 \\ 0.819672$	$2.682710 \\ 0.806943$	$2.769648 \\ 0.796352$	$2.849635 \\ 0.787403$	$2.923698 \\ 0.779742$
0.5	$ \left\{\begin{array}{c} 2.353633\\ 0.646761 \end{array}\right. $	$2.471170 \\ 0.632017$	$2.576357 \\ 0.620242$	$2.671539 \\ 0.610622$	$2.758453 \\ 0.602616$	$2.838421 \\ 0.595850$	$2.912470 \\ 0.590058$
0.1	$\left\{\begin{array}{c} 2.528327\\ 0.619305\end{array}\right.$	$2.645041 \\ 0.605920$	$2.749636 \\ 0.595145$	$2.844379 \\ 0.586288$	$2.930959 \\ 0.578881$	$3.010666 \\ 0.572598$	$3.084507 \\ 0.567201$
0.01	$ \left\{\begin{array}{c} 3.117795\\ 0.805280 \end{array}\right. $	$3.231676 \\ 0.791252$	$3.334219 \\ 0.779592$	$3.427430 \\ 0.769770$	$3.512836 \\ 0.761395$	$3.591625 \\ 0.754176$	$3.664735 \\ 0.747894$
0.001	$\left\{\begin{array}{c} 3.950219\\ 0.913510\end{array}\right.$	$\begin{array}{c} 4.060342 \\ 0.901611 \end{array}$	$4.160103 \\ 0.891272$	$4.251203 \\ 0.882262$	4.334973 0.874370	$4.412469 \\ 0.867420$	$\frac{4.484541}{0.861265}$

нами S = 1/2 координаты минимума функции $u_c^{(1/2)}$ (1 – Δ) равны (0.893, 0.9457), т. е. $\Delta^* = 1.07 \cdot 10^{-1}$.

Обнаруженному поведению внутренней энергии мы даем следующую интерпретацию. При небольшой анизотропии взаимодействий критические корреляторы ближайших узлов практически не меняются. (Для S = 1/2 в этом нетрудно убедиться, если извлечь выражения для корреляторов в *J*- и *J'*-направлениях, используя соотношения (7) и (40); для S > 1/2 можно воспользоваться трансфер-матричными расчетами корреляторов.) Поэто-

Рассмотрим закономерности поведения обсуждаемых величин при изменении пространственной анизотропии системы. На рис. 2 показано, как происходит изменение критической внутренней энергии с увеличением параметра $1 - \Delta$ от нуля до единицы (система при этом трансформируется от полностью изотропной решетки до набора независимых линейных цепочек). Общей чертой поведения для всех значений спина является линейный спад величины u_c при малых анизотропиях решетки, прохождение через плавный минимум при некотором значении $\Delta^*(S)$ и затем подъем к $u_c = 1$. Для модели со спи-

Рис.2. Критическая внутренняя энергия в зависимости от анизотропии $1 - \Delta$ решетки при значениях спина S = 1/2 (сплошная кривая), 1 (кружки), 3/2(крестики) и 13/2 (ромбы)

му основное уменьшение внутренней энергии происходит за счет уменьшения величины Δ , которая стоит в суперпозиции (7). В результате имеем

$$u_c^{(S)}(\Delta) = [1 - (1 - \Delta)/2] u_c^{(S)}(1), \quad \Delta \to 1.$$
 (50)

Данные, приведенные в табл. 4 и 5 для $\Delta = 0.5$, согласуются с этой формулой.

Наоборот, при сильной анизотропии взаимодействий ($\Delta \rightarrow 0$) вторым членом в правой части равенства (7) можно пренебречь, а для остающегося коррелятора использовать выражение для корреляционной функции линейной цепочки Изинга, беря при этом в качестве K_c главный асимптотический член (см. разд. 3). В результате для 1/2-спиновой модели получаем

$$u_c^{(1/2)}(\Delta \to 0) = \operatorname{th} K_c^{(1/2)}(\Delta) \approx 1 - \Delta.$$
 (51)

Итак, подход при $\Delta \rightarrow 0$ к точке $u_c = 1$ (полное ферромагнитное упорядочение цепочек при температуре абсолютного нуля) происходит снова по линейному закону. Оценки (49) и данные в табл. 4 подтверждают наши рассуждения, которые привели к соотношению (51).

Опираясь на полученный численный материал и учитывая, что внутренняя энергия, в соответствии с выражением (7), есть суперпозиция продольного и поперечного корреляторов, разумно брать возникший в теории новый параметр Δ^* в качестве естественной точки раздела между квазиизотропным и квазиодномерным режимами поведения модели.

Обратимся теперь к свободной энергии. Как следует из данных табл. 4 (S от 1/2 до 3), критическая свободная энергия монотонно возрастает по мере роста пространственной анизотропии модели. При малых Δ в выражении (4) в качестве λ_1 можно использовать наибольшее собственное значение трансфер-матрицы линейной цепочки Изинга. В случае решетки с S = 1/2 это дает

$$f_c^{(1/2)}(\Delta \to 0) = \ln[2 \operatorname{ch} K_c^{(1/2)}(\Delta)].$$
 (52)

Возрастание, таким образом, в сильноанизотропной области идет по (квази)логарифмическому закону.

Отметим наконец, что для решеток со спинами $S \geq 7/2$ наши расчеты свидетельствуют о появлении минимума у функции $f_c^{(S)}(\Delta)$. Из данных табл. 5 следует, что значения свободной критической энергии при $\Delta = 0.5$ меньше, чем в соседних точках (при $\Delta = 1$ и $\Delta = 0.1$).

5. КРИТИЧЕСКИЕ АМПЛИТУДЫ

Об исследовании фазового перехода в полной мере можно говорить лишь при возможности проникновения в критическую область, т.е. когда экспериментальному или теоретическому изучению становятся доступны критические индексы и амплитуды системы. В случае конечно-размерного подхода для этого необходимо, чтобы размеры аппроксимирующих подсистем были достаточно велики.

Как известно [44], критические конечно-размерные скейлинговые амплитуды обратных корреляционных длин корреляционных функций спин-спин и энергия-энергия в случае 1/2-спиновых изотропных полосок Изинга $L \times \infty$ с периодическими граничными условиями равны соответственно

$$A_s = \frac{\pi}{4} = 0.785398\dots,$$
(53)

$$A_e = 2\pi = 6.283185\dots$$
 (54)

Следовательно, $A_e/A_s = 8$.

Оценки из табл. 1 с достаточно высокой степенью точности привязаны к точным значениям (53) и (54). Действительно, относительные погрешности для A_s , A_e и A_e/A_s ($\Delta = 1$, S = 1/2) равны соответственно 0.16 %, 0.33 % и 0.5 %.

Далее, проведенные нами расчеты для $S \leq 3/2$ свидетельствуют о независимости амплитуд от величины спина при фиксированном Δ . Более того,

Рис. 3. Геометрический фактор G_{Δ} в зависимости от Δ при S = 1/2 (сплошная кривая), S = 1 (кружки) и S = 3/2 (крестики)

при переходе от одного значения Δ к другому обе амплитуды, A_s и A_e , меняются в одинаковое число раз. Это говорит об универсальности геометрического фактора G_{Δ} в выражениях (16) и (17) и, как следствие, универсальности комбинации A_e/A_s .

С целью прояснения этого важного вопроса на рис. 3 показаны зависимости $G_{\Delta}(\Delta)$ при различных значениях спина. Для модели со спинами S = 1/2геометрический фактор известен в точном аналитическом виде (см. работы [20, 21] и имеющиеся там ссылки):

$$G_{\Delta} = \left[\frac{\operatorname{sh}(2K_c\Delta)}{\operatorname{sh}(2K_c)}\right]^{1/2},\tag{55}$$

где K_c — решение уравнения Онсагера (22). Для спинов $S \neq 1/2$ значения G_{Δ} мы определяли из соотношения

$$G_{\Delta} = A_s(\Delta) / A_s(1). \tag{56}$$

Из рис. 3 видно, что точки для моделей с S = 1 и S = 3/2 фактически лежат на кривой для S = 1/2. Это наглядно свидетельствует о независимости геометрического фактора от величины спинов в решетке.

Отметим, что концепция независимости инвариантов класса универсальности от величины спина берет свое начало с работы [45] (см. также [46]), где была обнаружена независимость критического индекса восприимчивости от S. С тех пор такая независимость была подтверждена не только для индексов, но и для критических амплитуд при выходе из критической точки по температуре (см. работы [10, 11] и приведенные в них ссылки). Представленный нами материал по конечно-размерным амплитудам также убеждает в справедливости гипотезы универсальности.

6. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В работе выполнено исследование критических свойств двумерных моделей Изинга с рекордно большими значениями спинов — вплоть до S = 13/2. Кроме того, наше исследование включает в себя анизотропные решетки.

Мы провели расчеты и изучили поведение в зависимости от Δ и S трех групп характеристик модели: 1) критического взаимодействия (обратной критической температуры); 2) свободной и внутренней энергий в точке фазового перехода; 3) критических амплитуд обратных корреляционных длин.

Для критических взаимодействий мы показали, что при изменении величины анизотропии Δ от единицы до нуля в системе есть два существенно различных режима поведения. При малых анизотропиях решетки ($\Delta \sim 1$) функция $K_c^{(S)}(\Delta)$ возрастает по линейному закону. Численные данные и расчеты в приближении среднего поля свидетельствуют о том, что для нормированного критического взаимодействия коэффициент при линейном члене в этом законе (амплитуда поля анизотропии $1 - \Delta$) не зависит от величины спина:

$$\frac{\partial \ln K_c^{(S)}(\Delta)}{\partial \Delta} \bigg|_{\Delta=1} = \frac{1-d}{d} .$$
 (57)

(См. равенства (27), (28) и (31), (32).) На языке критических температур это означает, что

$$\left. \frac{T_c'(\Delta)}{T_c(\Delta)} \right|_{\Delta=1} = \frac{d-1}{d} \ . \tag{58}$$

C другой стороны, в квазиодномерном режиме $(\Delta \to 0)$ критическое взаимодействие зависит от S/Δ логарифмически медленным образом.

Рассчитанные зависимости $K_c^{(S)}(\Delta)$ могут быть на практике применены для оценки отношения констант взаимодействия, $\Delta = J'/J$, по измерениям критической температуры вещества. Из нашего исследования вытекает, что существование у этих зависимостей двух разных режимов поведения приводит либо к сохранению, либо к резкому возрастанию ошибок определения параметра J'/J по сравнению с ошибками измерений температуры. Ясно, что линейный закон, имеющий место в пространственно-слабоанизотропных системах, не меняет относительных погрешностей входных и выходных параметров. Экспоненциальный же закон, возникающий при обращении соответствующей логарифмической зависимости, ведет в случае квазиодномерных материалов к большим погрешностям при таких способах оценки параметра J'/J модели. Обсуждение этих трудностей и возможных путей выхода из них можно найти на примере 1/2-спиновых систем в работе [47].

Мы показали, что приведенная внутренняя энергия $u_c(\Delta)$ имеет минимум в точке Δ^* , расположенной в интервале (0,1). Параметр Δ^* можно интерпретировать как разделитель квазиизотропного и псевдоодномерного характеров поведения системы.

Наконец, в работе представлены новые данные, свидетельствующие о справедливости гипотезы универсальности для высокоспиновых моделей. Мы показали независимость критических конечно-размерных скейлинговых амплитуд A_s и A_e от величины спина при фиксированной пространственной анизотропии Δ и универсальность отношения A_e/A_s по обоим параметрам, S и Δ .

Автор благодарит Е. И. Кузнецову за помощь в работе и Л. Н. Щура за полезные обсуждения. Работа выполнена при финансовой поддержке РФФИ (грант № 04-03-32528).

ЛИТЕРАТУРА

- A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002); E-print archives, cond-mat/0012164.
- 2. L. Onsager, Phys. Rev. 65, 117 (1944).
- **3**. N. Sh. Izmailian, Письма в ЖЭТФ **63**, 270 (1996).
- N. S. Amanikian, R. G. Ghulghazaryan, N. Sh. Izmailian, and R. Shcherbakov, Phys. Rev. E 60, 5106 (1999).
- M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4, 1071 (1971).
- J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University, Cambridge (1997).
- J. Sivardiere and M. Blume, Phys. Rev. B 5, 1126 (1972).
- 8. S. Grollan, Phys. Rev. E 65, 056130 (2002).
- W. Jang, G.-Z. Wei, and Q. Zhang, Physica A 329, 161 (2003).

- P. Butera, M. Comi, and A. J. Guttmann, Phys. Rev. B 67, 054402 (2003).
- 11. P. Butera and M. Comi, Phys. Rev. B 69, 174416 (2004).
- 12. К. Хуанг, *Статистическая механика*, Мир, Москва (1966).
- Г. Стенли, Фазовые переходы и критические явления, Мир, Москва (1973).
- M. N. Barber, in *Phase Transitions and Critical Phenomena*, ed. by C. Domb and J. L. Lebowitz, Acad. Press, London (1983), Vol. 8, p. 145.
- 15. V. Privman, in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. by V. Privman, World Sci., Singapore (1990), p. 1.
- M. A. Yurishchev, Nucl. Phys. B (Proc. Suppl.) 106, 917 (2002); E-print archives, hep-lat/0109025.
- **17**. Ф. Р. Гантмахер, *Теория матриц*, Наука, Москва (1988).
- M. P. Nightingale, in *Finite Size Scaling and Numeri*cal Simulation of Statistical Systems, ed. by V. Privman, World Sci., Singapore (1990), p. 287.
- 19. V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).
- 20. M. A. Yurishchev, Phys. Rev. B 50, 13533 (1994).
- 21. M. A. Yurishchev, Phys. Rev. E 55, 3915 (1997).
- **22**. M. A. Yurishchev, ЖЭТФ **126**, 619 (2004).
- 23. M. Henkel, J. Phys. A 20, 3969 (1987).
- 24. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).
- **25**. М. А. Юрищев, ЖЭТФ **118**, 380 (2000).
- 26. G. S. Joyce, Phys. Rev. Lett. 19, 581 (1967); Errata, Phys. Rev. Lett. 19, 684 (1967).
- 27. M. A. Yurishchev, ЖЭТФ 120, 1282 (2001).
- 28. C. E. Siewert and E. E. Burniston, J. Math. Anal. Appl. 43, 262 (1973).
- 29. А. Е. Дубинов, И. Д. Дубинова, С. К. Сайков, W-функция Ламберта: таблица интегралов и другие математические свойства, СГФТИ, Саров (2004).
- M. Steiner, J. Villain, and C. G. Windsor, Adv. Phys. 25, 87 (1976).
- 31. Н. Г. де Брейн, Асимптотические методы в анализе, Изд-во иностр. лит., Москва (1961).

- 32. C.-Y. Weng, R. B. Griffiths, and M. E. Fisher, Phys. Rev. 162, 475 (1967); M. E. Fisher, Phys. Rev. 162, 480 (1967).
- 33. D. J. Scalapino, Y. Imry, and P. Pincus, Phys. Rev. B 11, 2042 (1975).
- 34. Ю. А. Изюмов и Ю. Н. Скрябин, Статистическая механика магнитоупорядоченных систем, Наука, Москва (1987).
- 35. J. R. Faleiro Ferreira and N. P. Silva, Phys. Stat. Sol. (b) 114, 47 (1982); 116, 155 (1983).
- **36**. М. А. Юрищев, ЖЭТФ **125**, 1349 (2004).
- 37. J. W. Stout and R. C. Chisholm, J. Chem. Phys. 36, 979 (1962).
- 38. B. Pedrini, J. L. Gavilano, D. Rau et al., E-print archives, cond-mat/0402482.
- 39. C. Yasuda, S. Todo, K. Hukushima et al., Phys. Rev. Lett. 94, 217201 (2005).

- 40. M. Suzuki, B. Tsujiyama, and S. Katsura, J. Math. Phys. 8, 124 (1967).
- 41. T. Obokata and T. Oguchi, J. Phys. Soc. Jpn. 25, 322 (1968).
- 42. Е. Янке, Ф. Эмде, Ф. Лёш, Специальные функции. Формулы, графики, таблицы, Наука, Москва (1968).
- 43. H. W. J. Blöte and M. P. Nightingale, Physica A 134, 274 (1985).
- 44. V. Privman, P. C. Hohenberg, and A. Aharony, in *Phase Transitions and Critical Phenomena*, Vol. 14, ed. by C. Domb and J. L. Lebowitz, Acad. Press, London (1991), p. 1.
- 45. C. Domb and M. E. Fisher, Phys. Rev. 128, 168 (1962).
- 46. W. J Camp and J. P. Van Dyke, Phys. Rev. B 11, 2579 (1975).
- **47**. М. А. Юрищев, ЖЭТФ **128**, 1227 (2005).