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WAVE FUNCTIONS OF HELIUM-LIKE SYSTEMSIN LIMITING REGIONSE. G. Drukarev a, M. Ya. Amusia b;
, E. Z. Liverts b*, R. Krive
 d, V. B. Mandelzweig baKonstantinov Petersburg Nu
lear Physi
s Institute, Russian A
ademy of S
ien
es188300, Gat
hina, St. Petersburg, RussiabRa
ah Institute of Physi
s, The Hebrew University91904, Jerusalem, Israel
Io�e Physi
al-Te
hni
al Institute194021, St. Petersburg, RussiadDepartment of Theoreti
al Physi
s, Josef Stefan Institute1001, Ljubljana, SloveniaRe
eived 12 June, 2006We �nd an approximate analyti
 forms for the solutions 	(r1; r2; r12) of the S
hrödinger equation for a systemof two ele
trons bound to a nu
leus in the spatial regions r1 = r2 = 0 and r12 = 0 that are of great impor-tan
e for a number of physi
al pro
esses. The forms are based on the well-known behavior of 	(r1; r2; r12)near the singular triple 
oales
en
e point. The approximate fun
tions are 
ompared to the lo
ally pre
ise onesobtained earlier by the 
orrelation fun
tion hyperspheri
al harmoni
 (CFHH) method for the helium atom, lighthelium-like ions, and the negative ion of hydrogen H�. The fun
tions are shown to determine a natural basisfor the expansion of CFHH fun
tions in the 
onsidered spatial region. We demonstrate how these approximatefun
tions simplify 
al
ulations of high-energy ionization pro
esses.PACS: 32.80.Fb, 31.15.Ja1. INTRODUCTIONThe ground states of systems 
omprising two ele
-trons bound by a nu
leus are des
ribed by radial wavefun
tions that depend on three variables. These 
anbe the distan
es between the ele
trons and the nu
leusr1, r2 and the interele
tron distan
e r12. Here, we �ndanalyti
 expressions that approximate the solutions ofthe S
hrödinger equation 	(r1; r2; r12) in the spe
ial
ases where r1 = r2 = 0 and r12 = 0:F (R) � 	(0; R;R); �(R) � 	(R;R; 0): (1)We 
onsider the ground states of the helium atom andof the light helium-like ions, in
luding the negative ionof hydrogen H�. In this paper, we treat the groundstates only. Therefore, the total spin of the two-ele
tronsystem is equal to zero.*E-mail: liverts�phys.huji.a
.il

We note that this problem is essentially di�erentfrom the traditional problem of approximating the to-tal wave fun
tion 	(r1; r2; r12) [1℄. There are numerouswave fun
tions of this kind, with the approximate fun
-tions usually given by 
ertain 
ombinations of expo-nentials and polynomials, while a set of �tting parame-ters is found by minimization of the energy fun
tional.Thus, the quality of su
h fun
tions is determined bythe a

ura
y of reprodu
ing the binding energy value.Be
ause the averaged value of the Hamiltonian is de-termined by the distan
es of the order of the size ofthe atom, su
h fun
tions provide very good approxi-mations at these distan
es. However, as was alreadyemphasized in [2℄, they are not ne
essarily as pre
ise inthe limit 
ases r1 = r2 = 0 and r12 = 0.The motivation for our study is that in a number ofdynami
al problems, one needs the bound state wavefun
tions in regions of these variables where one ofthe distan
es is mu
h smaller than the others. Thisis the 
ase with those pro
esses involving bound ele
-796
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ally forbidden for free ele
-trons. For example, the high-energy asymptoti
 form ofthe photoionization 
ross se
tion is expressed in termsof the two-ele
tron fun
tion 	(0; R;R), where r1 or r2is zero [1℄. The same is 
orre
t for the nonrelativisti
high-energy asymptoti
 form of double photoionizationand for the energy distribution of Compton s
atteringat su�
iently small energies of the outgoing ele
trons.Some of the 
hara
teristi
s of double photoionizationare expressed in terms of the two-ele
tron fun
tion withzero interele
tron distan
e 	(R;R; 0) [3℄. The straight-forward way to obtain the fun
tions F (R) and �(R) isto 
al
ulate them from 	(r1; r2; r12) that is derived nu-meri
ally. This is a rather 
ompli
ated pro
edure.Of 
ourse, one 
an use numerous a

urate approx-imations of the fun
tions 	(r1; r2; r12) by superposi-tions of analyti
 fun
tions depending on a large num-ber of variational parameters (see [1℄ and more re
entpapers [4℄ and [5℄). However, it would be useful toalso have simple (although less pre
ise) wave fun
tionswith a small number of parameters expli
itly depend-ing on the physi
al 
hara
teristi
s of the system. Thisis in
reasingly true be
ause, as dis
ussed in [6℄ and [3℄,there is no 
ommon view yet on the relative role of thepossible me
hanisms of ionization pro
esses. It wouldtherefore be reasonable to have tools not only for a

u-rate 
omputations but also for rapid and expli
it esti-mations.Here, we build approximate wave fun
tions FA(R)and �A(R) based on the known behavior of the exa
twave fun
tion only near the triple 
oales
en
e pointR = 0. The only free parameter in our approa
h is thevalue of the wave fun
tion at the 
oordinate origin,N = 	(0; 0; 0): (2)Our approa
h was initiated and motivated by the im-portant role played by the proper treatment of thetwo-parti
le 
oales
en
e point in earlier 
al
ulations.For example, the binding energies 
an usually be re-produ
ed with a good a

ura
y by approximate wavefun
tions that are 
ertain 
ombinations of exponentialand polynomial fa
tors [1℄. Approximate wave fun
-tions based on exponential and polynomial fa
tors areadequate representations at distan
es of the order oftypi
al atomi
 dimensions. However, it was understoodlong ago that the analyti
 dependen
e on R is more
omplex and that the dependen
e is logarithmi
 in thevi
inity of the origin [7℄. Later, it was found that as r1,r2 or r12 tend to zero, the solution of the S
hrödingerequation satis�es spe
i�
 Kato 
onditions [8℄. In
lu-sion of the logarithmi
 terms [9℄ or a

ounting for theKato 
onditions [10℄ (or both [11℄) does not in�uen
e

the energy value mu
h, but strongly improves the 
on-vergen
e of the 	(r1; r2; r12) 
al
ulations. This en
our-aged us to try a rather simple approa
h.As is shown in this paper, the approximate fun
-tions for (1) are given byFA(R) = N exp ���Z � 12�R� ;�A(R) = N exp(�2ZR): (3)They have to be 
ompared with pre
ise or highly a
-
urate lo
ally 
orre
t fun
tions FLC(R) and �LC(R).For the latter, we use the fun
tions obtained by the
orrelation fun
tion hyperspheri
al harmoni
 (CFHH)method [12℄. These nonvariational wave fun
tions ofthe two-ele
tron system in the s-state bound to a lightnu
leus have been obtained by dire
t solution of thethree-body S
hrödinger equation [13℄, without addi-tional approximations. They require 
ompli
ated 
om-puter 
odes for solution.The way we 
onstru
t the approximate wave fun
-tions insures that they reprodu
e the CFHH fun
tionsFLC(R) and �LC(R) with good a

ura
y at su�
ientlysmall values of R. The question is how long 
an thislast as R in
reases? In other words, we must 
al
u-late the 
hara
teristi
s of the pro
esses determined byF (R) and �(R) at R being of the order of the size ofthe atom, and 
ompare the results obtained with (3)and with the CFHH fun
tions.The answer is that the relative dis
repan
y betweenfun
tions (3) and the CFHH fun
tions does not ex
eedseveral per
ent at 
hara
teristi
 distan
es 1=(Z � 1=2)and 1=2Z. The same is the a

ura
y of experimentaldete
tion of the photoionization 
hara
teristi
s.Of 
ourse, this a

ura
y would not have been suf-�
ient for the 
al
ulation of stati
 atomi
 
hara
teris-ti
s, e.g., of energy levels. However, there was quali-tative 
ontroversy in theoreti
al results on the doublephotoionization energy distribution until re
ently [6℄,with quantitative results di�ering by orders of magni-tude. Thus, it would be unjusti�ed to aim for too higha

ura
y in any 
ase. On the other hand, good a

u-ra
y of fun
tions (2) prompts a basis for expansion ofthe CFHH fun
tions. Be
ause fun
tions (3) have theradial dependen
e of the 1s-fun
tions in the Coulomb�elds with the respe
tive 
harges (Z � 1=2) and 2Z,we 
an represent the numeri
al CFHH fun
tions as lin-ear 
ombinations of the fun
tions of this �eld with thedominant 
ontribution 
oming from the 1s-terms.We build our approximate wave fun
tions and dis-
uss their relation to other approa
hes in Se
. 2. Weanalyze the expansion of the CFHH fun
tions at two-797



E. G. Drukarev, M. Ya. Amusia, E. Z. Liverts et al. ÆÝÒÔ, òîì 130, âûï. 5 (11), 2006parti
le 
oales
en
e points in series of the single-par-ti
le eigenfun
tions of Coulomb �elds in Se
. 3. We
onsider the appli
ations in Se
. 4, and summarize inSe
. 5. The atomi
 system of units is used throughoutthis paper. 2. WAVE FUNCTIONSIt is known that at small distan
es r1;2 � Z�1,the solution of the S
hrödinger equation 
an be writ-ten as [14, 15℄	(r1; r2; r12) == N �1� Z(r1 + r2) + 12r12 +O(r2; r2 ln r)� ; (4)with r =pr21 + r22 . The expli
it form of the quadrati
terms was found in [14℄. Equation (4) is 
onsistent withthe more general Kato 
onditions [8℄�	(r1; r2; r12)�r1 ����r1=0 = �Z	(0; r2; r2);�	(r1; r2; r12)�r2 ����r2=0 = �Z	(r1; 0; r1);�	(r1; r2; r12)�r12 ����r12=0 = 12 	(r1; r1; 0); (5)whi
h are satis�ed for the CFHH fun
tions. UsingEq. (4), we �nd that at r1; r2 � Z�1,F (R) = N �1��Z � 12�R+ : : : � ;�(R) = N (1� 2ZR+ : : : ) ; (6)with the dots denoting higher-order terms. Therefore,limR!0 1F (R) dF (R)dR = �Z + 12 (7)and limR!0 1�(R) d�(R)dR = �2Z: (8)We require Eqs. (7) and (8) to be satis�ed by ourapproximate fun
tions FA(R) and �A(R) for all R.This leads to Eq. (3).The fun
tions in (3) 
orrespond to a very simplephysi
al pi
ture. We note that Eqs. (3) look like the1s-fun
tions in the Coulomb �elds with the 
hargesZ � 1=2 and 2Z, whi
h serve in fa
t as a sort of ad-justable parameters. The R-dependen
e is the one of

the 1s-ele
tron, while the small probability of the three-parti
le 
oales
en
e is 
ontained in the fa
tor N deter-mined by Eq. (2). We 
al
ulate it using the CFHHfun
tions.To 
hara
terize the quality of our approximate fun
-tions, we introdu
ey1(R) = lg ����FA(R)� FCFHH (R)FCFHH (R) ���� ;y2(R) = lg �����A(R)��CFHH (R)�CFHH(R) ���� ; (9)were the subs
ript CFHH denotes the wave fun
tionsobtained in [13℄.The a

ura
y of fun
tions (3) in
reases rapidly within
reasing the nu
lear 
harge Z. However, even forthe negative ion H� (Z = 1), the a

ura
y is ratherhigh. At 
hara
teristi
 values R � (Z � 1=2)�1 andR � (2Z)�1, the error of the fun
tion �A for H� isabout 6%, but only about 1% for the fun
tion FA.The errors in
rease at larger values of R. They ex-
eed 10% at the distan
es at whi
h the wave fun
tionsare already very small. The fun
tions yi(R) de�ned byEqs. (9), whi
h des
ribe the R-dependen
e of the er-rors, are presented in Fig. 1. We show the results forhelium (Z = 2) be
ause most of the studies of two-ele
tron systems are 
arried out for this 
ase. We alsogive results for Z = 4 to illustrate the Z-dependen
e.The 
urve for H� (Z = 1) is also presented, be
ausethis 
ase is most di�
ult for investigations. The dipin the graph in Fig. 1a is a result of the logarithmi
s
ale, be
ause the logarithm of the absolute value ofthe di�eren
e of the two fun
tions tends to �1 at thepoints where the di�eren
e 
hanges sign. The overalla

ura
y of the solution 
an therefore be inferred onlyat the values of R not too 
lose to the dip.One 
an see that as R approa
hes the order of thesize of the atom, the dis
repan
y with the CFHH fun
-tions be
omes mu
h greater than that at smaller R.However, the pre
ision is still good enough for obtain-ing results with the a

ura
y of several per
ent.The values of N de�ned by Eq. (2) are presented inTable 1. At large Z, the single-parti
le hydrogen-likemodel is expe
ted to be
ome in
reasingly true, be
ausethe intera
tion between the ele
trons is Z times weakerthan their intera
tion with the nu
leus. Hen
e, in thelimit Z � 1, N = N
 = Z3� : (10)The results in Table 1 illustrate this tenden
y. As ex-pe
ted, deviations from the limit law (10) are of the798
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Fig. 1. The fun
tions y1(R) and y2(R) de�ned by Eq. (9), for the negative ion H�(Z = 1) (a), for atomi
 helium(Z = 2) (b), and for the ion Be++(Z = 4) (
)order of Z�1. The a
tual results are smaller than pre-di
ted by (10) be
ause Eq. (10) does not in
lude theele
tron repulsion, whi
h diminishes this value.Of 
ourse, there are numerous simple approximatewave fun
tions of the type 	A(r1; r2; r12) = 
 (exp(�ar1�br2)+ exp(�ar2�br1)) ;whi
h are built in order to 
al
ulate the ground-stateenergy values [1℄ and approximate the solutions of theS
hrödinger equation at r1 and r2 of the order of Z�1(in the 
ase of H�, they must also reprodu
e the very799
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 with N
 de�nedby Eq. (10) illustrates the 
onvergen
e to the high-ZlimitZ 1 2 3 4 5 6N 0.071 1.37 5.77 15.2 31.6 56.8~r = NN
 0.22 0.61 0.67 0.74 0.79 0.83

R, a.u.0.250.200.150.100.050

1.5

1.0

0.5

Wave fun
tion

Fig. 2. The exa
t and approximate helium wave fun
-tions at the ele
tron�ele
tron 
oales
en
e line. Ex-a
t 
urve (solid line), N exp(�4R) (dashed line),(�3=�) exp(�2�R), � = 27=16 (dotted line)existen
e of the bound state). Te
hni
ally, they turnto the single-exponential forms at r1 = r2 = R and areindependent of r12. These fun
tions 
an be 
omparedwith our fun
tions �(R) de�ned by Eq. (3). But theydo not approximate the lo
ally 
orre
t CFHH fun
-tions �A(R), and, as argued in [2℄, are not supposedto. In Fig. 2, we illustrate this statement by present-ing the CFHH fun
tion �(R), our fun
tion (3), and thes
reened Coulomb wave fun
tion�s(R) = �3� e�2�Rwith � = 27=16 for helium [1℄.In Ref. [16℄, the fun
tion F (R) for H�, He, and Li+was approximated by a hydrogen-like fun
tion with thee�e
tive 
harge Zeff treated as a variational parame-ter. The respe
tive values of Zeff for Z = 1; 2; 3 havebeen found to be 0.58, 1.53 and 2.52. In Ref. [17℄, thefun
tion F (R) for the ion H� was analyzed at largedistan
es. We do not 
laim our fun
tions to be a
-


urate in this R-region, whi
h is not essential be
ausethe R-domain within the atomi
 radius is of primaryimportan
e.3. EXPANSION OF THE CFHH FUNCTIONSIN SERIES IN THE COULOMB FIELDEIGENFUNCTIONSThe R-dependen
e of the approximate wave fun
-tions FA(R) and �A(R) in (3) is the same as that of1s-fun
tions in the Coulomb �elds of the nu
lei with therespe
tive 
hargesZ1 = Z�1=2 and Z2 = 2Z. The highpre
ision of these fun
tions suggests that the eigenfun
-tions of the S
hrödinger equations in these �elds form
onvenient series for expansion of the CFHH fun
tionsF (R) and �(R).With the 
ommon notation X(R) for the fun
tionsF (R) and �(R), we introdu
e the normalized fun
tionsXN (R) = 1C1=2X X(R);where CX = 1Z0 R2X2(R) dR:Thus, 1Z0 R2X2N (R) dR = 1:In the expansions over the 
omplete sets of someeigenfun
tions, XN(R) 
an be represented asFN (R) =Xi aifi(R); �N (R) =Xi bi'i(R); (11)where Pi denotes summation over the dis
rete-spe
t-rum states and integration over the 
ontinuum, andai = 1Z0 R2FN (R)f�i (R) dR;bi = 1Z0 R2�N (R)'�i (R) dR: (12)For fi(R) and 'i(R) normalized to unity, we haveXi a2i =Xi b2i = 1: (13)Choosing the solutions of the S
hrödinger equations inthe Coulomb �elds with the 
harges Z1 = Z � 1=2 andZ2 = 2Z as the respe
tive fun
tions fi(R) and 'i(R),800
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tions of helium-like systems : : :Table 2. The 
oe�
ients of the two lowest termsin expansions (11) of the CFHH fun
tions in termsof the Coulomb fun
tions. The 
oe�
ients of thenext terms are limited by the 
onditions jaij < ~a,jbij < ~b, while the values of ~a = (1 � a21s � a22s)1=2and ~b = (1 � b21s � b22s)1=2 are presented in the twobottom linesZ 1 2 3 4a1s 0.98482 0.99970 0.99991 0.99996b1s 0.99067 0.99807 0.99918 0.99955a2s �0:144 �0:020 �0:010 �0:007b2s �0:108 �0:046 �0:030 �0:022~a 0.097 0.015 0.008 0.005~b 0.082 0.041 0.028 0.021we �nd the values a1s and b1s given in Table 2. Foratomi
 helium, a1s = 0:9997 and b1s = 0:998. Higha

ura
y of fun
tions (3) 
orresponds to domination ofthe terms a21s and b21s in sums (13).The pre
ision of 
al
ulations 
an be improved byadding the 
ontributions of the higher states in a

or-dan
e with Eq. (12). Of 
ourse, only the s-states areinvolved in our 
ase. For example, a2s = �0:02 andb2s = �0:05 in the 
ase of atomi
 helium. The resultsfor other values of Z are given in Table 2. This pro
e-dure allows a
hieving any desired a

ura
y, 
ontrolledby Eq. (13).4. EXAMPLES OF APPLICATIONAs mentioned above, one of the possible appli
a-tions of fun
tions (3) is given by high-energy photoion-ization pro
esses. We start with single photoionization.The high-energy nonrelativisti
 asymptoti
 form of theK-shell ionization 
ross se
tion 
an be written as [1℄� = 211=2�e2Z2C23m
!7=2 ; (14)wherem is the ele
tron mass and 
 is the speed of light.The properties of the ionized states are 
ontained in thefa
tor C = 1Z0 R2F (R) K(R) dR; (15)where F (R) is determined by Eq. (1) and  K(R) is thesingle-parti
le fun
tion of the K-ele
tron in the resid-ual ion. In our 
ase,  K(R) is just the 1s-fun
tion ofthe Coulomb �eld with the 
harge Z.

In the single-parti
le approximation, C is simplythe value of the single-parti
le wave fun
tion at the 
o-ordinate origin. To illustrate the quality of fun
tions(3), we 
ompare the results for the fa
tor C 
al
ulatedusing the CFHH fun
tions and fun
tions (3). In thelatter 
ase, we �nd the analyti
 expressionC = 2NZ3=2p�(2Z � 1=2)3 ; (16)yielding C = 0:102 for atomi
 helium. Numeri
al 
al-
ulations with the CFHH fun
tions give C = 0:103 inthis 
ase. Hen
e, using approximate fun
tion (3) leadsto an error of 1%. Earlier, the authors of [18℄ foundthat the value of C obtained by using the Hylleraas-ty-pe variational fun
tion is well approximated by using ahydrogen-like fun
tion with Zeff = Z � 0:53.We now turn to the 
ase of double photoionization.The shape of the spe
trum 
urve of double photoioniza-tion 
hanges as the photon energy in
reases. The me
h-anisms that 
ause these 
hanges are explained in [3℄.While the photon energy ! is smaller than a 
ertainvalue !1, the energy distribution approa
hes its min-imum at the 
entral point, with the equal energies ofthe outgoing ele
trons, i.e., "1 = "2. There is a peak atthe 
entral point for ! > !1, whi
h splits into two for! > !2. Thus, there is a lo
al minimum at "1 = "2 for! > !2.The values of !1 and !2 were obtained in [19℄ usingthe CFHH fun
tions. We do not repeat the deriva-tion of the 
orresponding equations here. Instead, weexplain their origin and formulate them in order to il-lustrate how fun
tions (3) allow obtaining approximatesolutions.The values of !1 and !2 
an be given as solutionsof the following equation, whi
h involves the fun
tionsF (R) and �(R) [19℄:�� = !9=2A(!); (17)where � is a numeri
al 
oe�
ient,� = 1Z0 drjF (r)j2 ; (18)and the fun
tion A depends on ! in a more 
ompli
atedway, A(!) = +1Z�1 dt t2(1� 2t2)D(!2t2); (19)with D(q2) = ������ 1Z0 sin(qr)qr �(r)r2dr������2 : (20)39 ÆÝÒÔ, âûï. 5 (11) 801
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. 4) in keVfor the ground states of the lightest helium-like sys-tems, 
al
ulated using the CFHH fun
tions [13℄ andfun
tions (3)Z 1 2 3 4!1, this work 0.67 2.11 3.92 6.14!1, [13℄ 0.55 1.93 3.70 5.89!2, this work 4.86 9.71 14.5 19.3!2, [13℄ 3.97 8.89 13.7 18.5Using the exa
t CFHH fun
tions requires tedious
omputations. However, approximate wave fun
-tions (3) allow obtaining analyti
 expressions for bothleft-hand side and right-hand side of Eq. (17). SettingF (r) = FA(r) and �(r) = �A(r), we obtain� = 12Z � 1andA(!) = 1!6 ���6a6 + 13a4 + 2a2 + 36a2(a2 + 1)3 + 1� 2a22a3 ar
tg 1a� (21)with a = 2Z=!.The values of !1 and !2 obtained by using theCFHH fun
tions and fun
tions (3) are presented in Ta-ble 3. It 
an be seen that the dis
repan
y between thetwo sets of results de
reases rapidly with in
reasing Z.Being 22% for H� and 9% for He, it be
omes 4% forZ = 4. 5. SUMMARYWe have built very simple analyti
al approxima-tions (3) for the wave fun
tions F (R) and �(R) de-s
ribing ground states of two-ele
tron systems boundby the Coulomb �eld of a nu
leus in the spatial regionsr1 = r2 = 0 and r12 = 0. The presentation is based onthe behavior of the exa
t solution of the S
hrödingerequation near the three-parti
le 
oales
en
e singularity.Comparing our fun
tions (3) with the lo
ally 
orre
tCFHH fun
tions for the ion H�, atomi
 helium, andlight helium-like ions (relativisti
 
orre
tions, whi
h areof the order of (Z=137)2, are not in
luded), we foundgood agreement in a large interval of the values of R.As is evident, the pre
ision of the approximate fun
-tions in
reases with in
reasing the nu
lear 
harge Z.

We have shown that the solutions of the single-par-ti
le S
hrödinger equations in Coulomb �elds with
harges Z1 = Z � 1=2 and Z2 = 2Z provide natu-ral bases for the expansion of the fun
tions F (R) and�(R) with dominant 1s-terms. The tenden
y for theirdomination in
reases with Z. The approa
h is morepre
ise for F (R) than for �(R).Examples presented in Se
. 4 show that even for thelightest helium-like systems, su
h as H� and He, wavefun
tions (3) 
an be used for estimations of the physi
alparameters at least.The high pre
ision of su
h a simple approximationthat properly treats singularities in the wave fun
tionis in agreement with the 
onventional belief thatsingularities determine important physi
al 
hara
teris-ti
s su
h as high-energy photoionization 
ross se
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