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ENTROPY, FREE ENERGY AND PHASE TRANSITIONSIN THE LATTICE LOTKA�VOLTERRA MODELO. A. Chi
higina *Lomonosov Mos
ow State University119992, Mos
ow, RussiaG. A. Tsekouras, A. ProvataInstitute of Physi
al ChemistryNational Center for S
ienti�
 Resear
h �Demokritos�15310, Athens, Gree
eRe
eived April 3, 2006A thermodynami
 approa
h is developed for rea
tive dynami
 models restri
ted to substrates of arbitrary di-mensions, in
luding fra
tal substrates. The thermodynami
 formalism is su

essfully applied to the latti
eLotka �Volterra (LLV) model of auto
atalyti
 rea
tions on various latti
e substrates. Di�erent regimes ofrea
tions des
ribed as phases, and phase transitions are obtained using this approa
h. Predi
tions of the ther-modynami
 theory 
on�rm extensive numeri
al kineti
 Monte Carlo simulations on square and fra
tal latti
es.Extensions of the formalism to multispe
ies LLV models are also presented.PACS: 82.60.-s, 05.45.Df, 82.65.+r1. INTRODUCTIONNonlinear rea
tive pro
esses restri
ted to low-dimensional supports have been under intensive inves-tigation for the last thirty years, be
ause of their im-portan
e for appli
ations in physi
s, 
hemistry, biolo-gy, and e
ology [1�13℄. Low-dimensional systems areespe
ially important in heterogeneous 
atalyti
 pro-
esses where rea
tions 
an only take pla
e if the re-a
tive spe
ies are adsorbed on the surfa
e of the 
at-alyst. They also give the possibility to answer fun-damental questions about the behavior of open sys-tems and about me
hanisms of self-organization. Toinvestigate the me
hanisms of produ
ing 
omplexityand self-organization in rea
tive dynami
s, several ab-stra
t models have been developed, whi
h retain onlythe most important features for produ
ing 
omplex-ity [14�22℄.The latti
e Lotka �Volterra (LLV) model has at-tra
ted attention during the past years due to the largevariety of patterns that it generates on low-dimensionalsupport under variations of parameters and boundary*E-mail: 
hi
higina�hotmail.
om, 
hi
higina1�yandex.ru


onditions [21�26℄. The LLV model involves two kindsof rea
ting mole
ules (X1 and X2) and empty latti
esites S. When two rea
tants X1 and X2 o

upy twonearest-neighbor sites, X1 
an be transformed into X2with a probability ks,X1 +X2 ks! 2X2: (1)The rea
tant X2 
an desorb from the surfa
e with aprobability k1 provided that there is a se
ond emptysite S in the neighborhood,X2 + S k1! 2S: (2)X1 may adsorb on the surfa
e from a bulk phase witha probability k2 provided that another X1 is alreadyadsorbed on a neighboring site,S +X1 k2! 2X1: (3)In this s
heme, the parti
les rea
t when they are at-ta
hed to the latti
e and do not di�use to nearest neigh-bor empty sites. In the traditional mean-�led (MF)approa
h, the LLV system 
an be des
ribed by the dy-nami
al system [22, 23℄715
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)where the variables x1(t); x2(t), and s are the par-tial 
on
entrations of parti
les X1; X2, and empty sitesS. The notation hereafter follows Ref. [23℄. Di�usionterms are not in
luded in Eq. (4) be
ause the parti-
les are not allowed to di�use. The LLV 
onstru
tionimmediately implies that there is a 
onstant of motion:C = x1 + x2 + s = 1: (5)This 
onstant C 
orresponds to the total 
overageof ea
h latti
e site, whi
h either 
ontains parti
les (X1or X2) or is empty (S). We 
an set C = 1. UsingEq. (5), we 
an redu
e the number of variables to two,x1 and x2:dx1(t)dt = k2x1 �1� x1 � k2 + ksk2 x2� ; (6a)dx2(t)dt = �k1x2 �1� x2 � k1 + ksk1 x1� : (6b)The behavior of this system is 
losely related to thebehavior of the original Lotka �Volterra system, de-veloped for the des
ription of predator�prey dynam-i
s [1, 2℄, but the latter system is not suitable forrealization on a latti
e be
ause it does not take thespatial 
onstraints into a

ount (
onstant number oftotal, empty, and o

upied latti
e sites). The dyna-mi
al system in (6a) has four �xed points, three ofwhi
h are saddle points and one is a 
enter. The sad-dle points are (0; 0), (0; 1), (1; 0), and the 
enter is(k1=(k1+k2+ks); k2=(k1+k2+ks)). The 
enter is sur-rounded by a 
ontinuum of 
losed traje
tories, whoseamplitudes depend solely on the initial 
onditions [22℄.Equations (4) and (6a) des
ribe an idealisti
 modelwhere ea
h parti
le rea
ts with the mean �eld of allother parti
les in the system. This is not the 
ase inheterogeneously 
atalyzed systems, where the parti
lesare atta
hed to the substrate sites and 
an only rea
twith their nearest neighbors. These lo
al intera
tionsindu
e important spatiotemporal �u
tuations that 
an-not be adequately des
ribed by the MF equations. Tostudy su
h minimal-
omplexity models, to explore thespatiotemporal stru
tures they demonstrate when re-stri
ted to low-dimensional substrates, and to under-stand the qualitative and quantitative deviations from

the mean-�eld behavior, 
omputer simulations havebeen extensively used in re
ent years [10�12; 14�20℄.Although the MF equations predi
t os
illatory be-havior for all values of the kineti
 parameters, kineti
Monte Carlo (KMC) simulations of the LLVmodel havedemonstrated either os
illatory behavior or poisoningby one of the three spe
ies, depending on the substratedimension D and the kineti
 
onstants ks; k1, and k2[23℄. The main purpose of this work is to des
ribe thetransitions of the LLV system from os
illatory to poi-soning regimes and ba
k as a kind of phase transitions,a

ording to the laws of thermodynami
s. To developthe thermodynami
 approa
h, we �rst need to intro-du
e the e�e
tive temperature T , energy U , and en-tropy S as fun
tions of D; ks; k1; k2. Then we 
ande�ne the free energy F and analyze its dependen
e onthe dimension and kineti
 
onstants as order parame-ters.In the next se
tion, we introdu
e the thermody-nami
 approa
h to rea
tive dynami
s and de�ne thepotential and kineti
 energy, the e�e
tive temperature,the entropy, and the free energy. In Se
. 3, we presentthermodynami
 
al
ulations for the LLV system at var-ious parameter values. In Se
. 4, we 
ompare the ther-modynami
s with numeri
al KMC results on the LLVsystem. In Se
. 5, we generalize the thermodynami
formalism to multispe
ies LLV systems. Finally, in the
on
luding se
tion, we re
apitulate our main resultsand dis
uss open problems.2. THERMODYNAMIC FORMALISMA. The energyTo develop the thermodynami
 formalism, we �rstdes
ribe the qualitative di�eren
e between the threespe
ies by a quantitative di�eren
e of three energystates. We 
onsider a Brownian parti
le that 
an movein three potential wells under the in�uen
e of thermalnoise. Ea
h potential well 
orresponds to one of thespe
ies as illustrated in Fig. 1 and the whole system
orresponds to one latti
e site. Thus, one latti
e site
an 
hange its state from X1 to X2 and S as depi
tedin Fig. 1.The potential energy of a well is 
onne
ted with thees
ape probability for one time step (or kineti
 
on-stant) by the Kramers formula [27℄:k2 = exp UskT ; (7)k1 = exp U2kT ; (8)716
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Fig. 1. The LLV model represented as a Brownian par-ti
le transition from one potential well to anotherks = exp U1kT ; (9)where k is the Boltzmann 
onstant. From Eqs. (7)�(9), the energies Us; U1, and U2 
an be expressed asfun
tions of the ki and the temperature.B. Steady statesTo �nd the average energy, we 
al
ulate the steadyprobability distribution Ps; P1, and P2 under the nor-malization 
onditionPs + P1 + P2 = 1: (10)We 
onsider the Markov matrix of transitions for onestep, B̂ = fbijg, were bij is the probability of transitionto state i from state j, asB̂ = 0B� bss bs1 bs2b1s b11 b12b2s b21 b22 1CA : (11)These probabilities are de�ned in terms of the kineti

onstants asB̂ = 0B� 1� k2 0 k1k2 1� ks 00 ks 1� k1 1CA : (12)The eigenvalues � may be obtained from the equationB̂0B� PsP1P2 1CA = �0B� PsP1P2 1CA : (13)

With 1� � = �, Eq. (13) transforms into the equationdet Ĉ = 0; (14)where the matrix Ĉ isĈ = 0B� � � k2 0 k1k2 � � ks 00 ks � � k1 1CA : (15)From Eq. (14), we �nd three eigenvalues: �0 = 1,whi
h 
orresponds to the steady state, and �1;2 < 1.Substituting �0 in Eq. (13), we obtain the steady prob-ability distribution asP2 = �k1 ; Ps = �k2 ; P1 = �ks ; (16)where � = ksk1k2ksk1 + k1k2 + k2ks : (17)C. Average energy and temperatureUsing Eqs. (7)�(9) and (16), we 
an �nd the averagepotential energy for one Brownian parti
le, whi
h rep-resents one latti
e site �jumping� between the statesX1, X2, and S, ashUi =Xi UiPi = kT�� ln k2k2 + ln k1k1 + ln ksks � == kT�Xj ln kjkj : (18)The average kineti
 energy is equal to kT=2, in a

or-dan
e with the theorem on equal distribution of energyamong the degrees of freedom, be
ause the motion ofthe imaginary parti
le is one-dimensional.The temperature in our des
ription is not a realtemperature, but an e�e
tive one. It 
hara
terizes theintensity of the Brownian parti
le motion, whi
h is re-garded as a di�usion-like pro
ess. Here, it is not possi-ble to de�ne the temperature in the usual way throughthe entropy [28; 29℄, be
ause the state is not equilib-rium [30℄. However, its dependen
e on the kineti
 
on-stants 
an be assumed to be approximately linear dueto the di�usive 
hara
ter of motion, and 
an be de-s
ribed by the Einstein formula hx2i = 2Dt [31℄. It isknown that hx2i is proportional to the probability of a�xed step in a �xed time, while the di�usion 
oe�
ientD is proportional to the temperature. Therefore, thetemperature 
an be assumed dire
tly proportional tothe sum of the transition probabilities:T = �(ks + k1 + k2): (19)The 
onstant � is de�ned in terms of time steps.717
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h is useful in 
omplex systems andgives good agreement with experiments [32�34℄. Theun
ertainty of one transition with a probability kj isI(kj) = kj ln kj + (1� kj) ln (1� kj): (20)The entropy for one intera
tion is de�ned by the sumof all transitional un
ertainties, all of whi
h are mul-tiplied by two probabilities: the probability that theparti
le under 
onsideration is in the state to open thistransition for a neighbor parti
le, and the probabilitythat this neighboring parti
le is in the state for thistransition. Then the entropy for one site in the latti
eis equal to the entropy for one intera
tion multipliedby the number of all possible 
ombinations of parti
lesintera
ting with the parti
le under 
onsideration. It isnn!, where nn is the average number of nearest neigh-bors. The parti
les are not indistinguishable, they aremarked by the spe
ial pla
e they o

upy on the latti
e.It is not easy to �nd the number of nearest neigh-bors, or 
oordination number, nn [35℄. In the �rst-order approximation and for hyper
ubi
 latti
es of di-mension D, the average number of nearest neighborsis 2D. It varies for other types of latti
es: triangu-lar, polygonal, et
. It also varies signi�
antly due to�u
tuations around the average for random and fra
-tal latti
es. In latti
e dynami
s in general, the 
oordi-nation number also has lo
al �u
tuations, whi
h may
ontribute signi�
antly to the 
reation of patterns andlo
al stru
tures.In the �rst-order approximation, however, we 
anwrite the entropy for all kinds of latti
es asS = �nn!k[I(k1)P2Ps+I(k2)PsP1+I(ks)P1P2℄; (21)where nn = 2D for hyper
ubi
 latti
es and is 
al
ulatednumeri
ally for fra
tal latti
es.E. Free energyWe 
an now de�ne the free energy as the sum of thepotential, kineti
, and entropy terms:F (k1; k2; ks; D) = hUi+ kT=2� ST: (22)In the 
ase whereD = 2 (square latti
e), the free energydependen
e on one of the kj has a maximum, whi
hde�nes two phases: os
illations and poisoning. Thisinterpretation, as des
ribed above, is semiphenomeno-logi
al.

3. THERMODYNAMIC CALCULATIONS OFTHE LLV MODELUsing the thermodynami
 formalism developedabove, we now attempt to des
ribe the phase transition(from poisoned to nonpoisoned states) of the LLV sys-tem. To validate our low-dimensional results, we 
om-pare them with Monte Carlo simulations in Ref. [23℄.In this referen
e, the authors show that small values,e.g., of k2 lead to poisoning by X1. The me
hanism de-s
ribed in Ref. [23℄ is as follows: be
ause of small k2, theX1 parti
les are produ
ed very infrequently; as a result,X2 attains a very low 
on
entration and at a 
ertainpoint, S 
an almost dominate the latti
e by destroyingall X2. At the same time, the remaining 
lusters of X1start to grow and gradually invade the entire latti
e.By the same me
hanism, when low k1 are 
onsidered,the S states poison the latti
e, and similarly for low ks,the X2 states dominate. In intermediate 
ases, wherek2 is small but ks is also su�
iently small, the small
luster of X2 
an be left inside X1-dominated regions.Only small 
lusters (when ks is small) 
an survive anddo not rea
h the S-region. Then X2 grows and we haveX2-poisoning.Be
ause the kineti
 
onstants kj are related to poi-soning by the 
orresponding parti
les, we 
an 
onsiderthe kineti
 
onstants as order parameters. A phasetransition o

urs when the free energy, whi
h is a fun
-tion of the kj , passes a maximum. Low values of kj(at the left-hand side of the maximum) 
orrespond topoisoning by the respe
tive parti
les, while large val-ues of kj 
orrespond to os
illations. This way, we 
ande�ne the �nal, steady-state behavior of the system forall values of the kineti
 
onstants.Figure 2 illustrates the free energy F (k2) at k1 = 0:8
0.05 0.10 0.15 0.20

k2

−6

−5

−4

F

Fig. 2. The free-energy dependen
e on k2 for a two-dimensional latti
e at k1 = 0:8 and ks = 0:1, 0:3, 0:5,0:7, 0:9 from top down718
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Fig. 3. The free-energy dependen
e on ks for a two-dimensional latti
e at k2 = 0:05 and k1 = 0:5, 0:6,0:7, 0:8, 0:9 from top downand di�erent values of ks = 0:1, 0.3, 0.5, 0.7, 0.9 fromtop down, for a square latti
e. We 
an see that fork2 = 0:05, whi
h is 
onsidered in the next se
tion,X1-poisoning o

urs for ks > 0:2. The higher the val-ues of k2, the less poisoning is observed. At k2 = 0:075,we have poisoning only for ks > 0:8, and there is nopoisoning at k2 = 0:1.To de
ide whether X2-poisoning is possible, we 
on-sider F (ks), presented in Fig. 3 for the same latti
e,k2 = 0:05, and di�erent values of k1. Poisoning is onlyobserved at ks = 0:1 and for large values of k1 > 0:6.These results are also presented in Fig. 8 for 
ompari-son with numeri
al KMC results.The dimensionality also de�nes the shape of thefree-energy dependen
e, and we therefore analyze thein�uen
e of the substrate dimensionality in auto
at-alyti
 pro
esses. As the substrate dimensionality de-
reases, the free-energy maximum moves right and�nally disappears, su
h that more poisoning statesemerge. This is partly due to the dependen
e of thenumber of neighbors on the dimensionality.Figure 4 presents the free energy F (ks) for the samekineti
 
onstants and for di�erent numbers of near-est neighbors nn; nn = 2 
orresponds to the one-dimensional 
ase and nn = 4 to the two-dimensionallatti
e. For small dimensions, the system is poisonedfor all values of the kineti
 
onstants.In parti
ular, in D = 1, os
illations are impossible.This be
omes obvious from the shape of the free en-ergy, whi
h has no turning (maximum) points for anyvalues of k1, k2 or ks. This is shown in Fig. 5 for F (ks)at k2 = 0:6 and di�erent values of k1. Some os
illa-tions 
ould have been possible only for very small k1,in whi
h 
ase we expe
t poisoning by X2. But if we

0:2 0:4 0:6 0:8 1:0ks�2�4�6�8F
0

Fig. 4. The free-energy dependen
e on ks for di�erentnumbers of nearest neighbors nn = 2, 2:5, 3, 3:5, 4from top down at k1 = 0:6, k2 = 0:4

�3:5�3:0�2:5�2:0�1:5�1:0�0:5 0:2 0:4 0:6 0:8 1:0ks
F 123

450

Fig. 5. The free-energy dependen
e on ks for a one-dimensional latti
e at k2 = 0:6 and k1 = 0:1 (1 ),0:3 (2 ), 0:5 (3 ), 0:7 (4 ), 0:9 (5 )
onsider F (k1), this small k1 is on the left-hand side ofthe maximum showing poisoning by S. The same re-sults, for D = 1, were also obtained in [22℄ using KMCsimulations and theoreti
al arguments.4. COMPARISON WITH KINETIC MONTECARLO SIMULATIONSIn [23℄, a set of LLV simulations was performed withvery low values of k2 (k2 = 0:05 and k2 = 0:075) atdi�erent values of k1 and ks for fra
tal (D = 1:893)and two-dimensional square latti
e substrates. In thiswork, we produ
ed new sets of results for k2 = 0:05 andk2 = 0:1 using a speeded version of the KMC algorithmin [23℄. The KMC s
heme used here is as follows.719
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x2Fig. 6. Numeri
al results. Poisoning states fork2 = 0:05. The simulations were performed on a two-dimensional square latti
e substrate
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x2Fig. 7. Numeri
al results. Poisoning states fork2 = 0:05. The simulations were performed on a ran-dom fra
tal substrate with D = 1:8931. At ea
h elementary time step (ETS) of the KMCpro
edure, one site of the latti
e is 
hosen at random.2. One of the nearest neighbors is also sele
ted.3. If the originally 
hosen site is X1 and the se-le
ted neighbor is X2, then the 
hosen site 
hanges toX2 with the probability ps = ks=max(k1; k2; ks). Ifthe originally 
hosen site is X2 and the sele
ted neigh-bor is S, then the 
hosen site 
hanges to S with theprobability p1 = k1=max(k1; k2; ks). If the originally
hosen site is S and the sele
ted neighbor is X1, thenthe 
hosen site 
hanges to X1 with the probabilityp2 = k2=max(k1; k2; ks). Otherwise, the system re-mains un
hanged.4. The algorithm returns to step 1.This parti
ular 
hoi
e of the probabilities 
onsiderably
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x2Fig. 8. Thermodynami
 results. Poisoning states fork2 = 0:05 on a two-dimensional square latti
e sub-strate
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x2Fig. 9. Thermodynami
 results. Poisoning statesfor k2 = 0:05 on a random fra
tal substrate withD = 1:893speeds the algorithm be
ause at least one of the threepro
esses takes pla
e with probability 1, while the othertwo have relative probability weights. One Monte Carlostep (MCS) is �nished after the numberN of ETS stepsequal to the number of substrate (a
tive) latti
e sites.Thus, at ea
h MCS, ea
h latti
e site has rea
ted on
eon average. We note that due to the di�eren
e in thisspeeded version of the algorithm, the results in Figs. 6and 7 do not 
orrespond to those in Ref. [23℄.Comparison of Fig. 6 with Fig. 8 and Fig. 7 withFig. 9 demonstrates qualitative agreement of the KMCresults with the 
orresponding thermodynami
 approx-imation, for small values of k2 = 0:05. The sameKMC simulations were performed for k2 = 0:1 (Figs. 10and 12). Here, mu
h less poisoning is observed both720
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x2Fig. 10. Numeri
al results. Poisoning states fork2 = 0:1. The simulations were performed on a two-dimensional square latti
e substrate
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k1x1x2Fig. 11. Thermodynami
 results. Poisoning states fork2 = 0:1 on a two-dimensional square latti
e sub-stratethermodynami
ally and numeri
ally, ex
ept for poison-ing at relatively high values of k1 and ks in the randomfra
tal substrate (thermodynami
 results).From Figs. 6�13, both approa
hes show that theX1-poisoning states are more favored on fra
tal latti
esfor identi
al kineti
 
onstants. As ks and k1 in
rease,more poisoning states emerge for both fra
tal and two-dimensional latti
es. The thermodynami
 formula 
analso predi
t X2-poisoning for small ks and large k1 val-ues, the me
hanism of whi
h is des
ribed in Se
. 3.For the fra
tal support with Df = 1:893, theaverage number of nearest neighbors was 
al
u-lated numeri
ally as nn = 3:315, whi
h is lessthan the number obtained using the approximation
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k1x1x2Fig. 12. Numeri
al results. Poisoning states fork2 = 0:1. The simulations were performed on a randomfra
tal substrate with D = 1:893
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x2Fig. 13. Thermodynami
 results. Poisoning statesfor k2 = 0:1 on a random fra
tal substrate withD = 1:893nn = 2D = 2 � 1:893 = 3:786. This leads to morepoisoning in the thermodynami
 approa
h, and weused the numeri
ally 
al
ulated nn as more pre
ise.This �rst approa
h to thermodynami
 modeling of
hemi
al dynami
s a
hieves good agreement with nu-meri
al data. Some disagreement 
an be explained bythe following phenomenologi
al approximations usedin the thermodynami
s approa
h: a) We have 
al
u-lated the average energy and entropy using steady-stateprobability distributions, whi
h do not 
orrespond topoisoning but are nevertheless used to �nd poisoningstates as well as os
illatory regimes. b) For the energy
al
ulations, we did not take into a

ount that transi-tions depend on neighboring sites. Instead, we assumed10 ÆÝÒÔ, âûï. 4 (10) 721



O. A. Chi
higina, G. A. Tsekouras, A. Provata ÆÝÒÔ, òîì 130, âûï. 4 (10), 2006that intera
tions in�uen
e only the entropy. 
) Forfra
tal substrates, we used the approximate (numeri-
ally 
al
ulated) average number of neighbors. d) Allthermodynami
 parameters in our model are e�e
tiveand 
annot therefore be measured experimentally. In-stead, they are introdu
ed as fun
tions of the kineti

onstants using phenomenologi
al interpretations.Another sour
e of disagreement between the ther-modynami
 approa
h and the KMC simulations is thestatisti
al �u
tuations in the simulations, whi
h is es-pe
ially important for fra
tal substrates. For example,some poisoning states 
an be a
hieved only asymptoti-
ally, after very long simulations times, while numeri
alexperiments have a �nite time of 
al
ulation. Some ad-ditional poisoning is possible be
ause of limited latti
esizes (�nite-size e�e
ts).In the 
ase of one-dimensional systems, both ther-modynami
 and KMC approa
hes agree, predi
tingpoisoning for all values of the kineti
 
onstants [22℄.5. GENERALIZATION FOR MULTISPECIESLLV SYSTEMSThe entire formalism presented in Se
. 2 
an be gen-eralized to the 
ase of M spe
ies. We 
onsider the setof M transitionsXi +Xi+1 ki! 2Xi+1; i = 1; : : : ;M (23)with the 
orresponding kineti
 
onstants ki. All pa-rameters have the 
y
li
 symmetry: AM+j = Aj .The potential energies 
onsidered as fun
tions of theki and the temperature are given byUi = kT ln ki < 0: (24)The steady probability distribution 
orresponds toPi = �ki ; (25)where � =  MXi=1 1ki!�1 : (26)The average potential energy for one parti
le is esti-mated as hUi =Xi UiPi = kT�Xi ln kiki : (27)The temperature 
an be generalized asT = �Xi ki; (28)

while the entropy takes the formS = �nn!kXi I(ki)PiPi+1; (29)where I(ki) is de�ned in Eq. (20).In the 
ase of many spe
ies, the dependen
e on theinitial 
onditions be
omes more important. Poisoningby several spe
ies is possible in this 
ase. But the maintenden
y indi
ated by numeri
al simulations is an in-
rease in poisoning states. This 
an also be obtainedqualitatively from our thermodynami
 theory. The en-tropy is bilinear in the probabilities, Eq. (29), and theaverage energy is linear, Eq. (27). As the number ofspe
ies M in
reases, the steady-state probabilities de-
rease due to normalization. Thus, the e�e
t of higherM is the same as de
reasing the dimensionalityD, lead-ing to poisoning.6. CONCLUSIONSThe thermodynami
 approa
h 
an be useful in non-linear rea
tive systems restri
ted to low-dimensionalsupports, be
ause it allows 
onsidering transitions from
hemi
al os
illations to poisoning regimes and ba
k asphase transitions indu
ed by the presen
e of the sup-port. The main idea is to introdu
e an imaginaryBrownian parti
le whose energies 
orrespond to dif-ferent kinds of rea
ting spe
ies. The potential energy
an be de�ned through the kineti
 
onstants using theKramers formula. The average kineti
 energy 
an beobtained from the theorem on equal distribution of en-ergy among all degrees of freedom. The temperature
an be estimated a

ording to the Einstein di�usionequation. The entropy 
an be written as a measureof un
ertainty in its informational interpretation. In-trodu
ing e�e
tive thermodynami
al parameters allowsde�ning the free energy in terms of the kineti
 
on-stants. The maximum of this free energy fun
tion sep-arates the poisoning and os
illatory regimes. Takingrelatively small values of a kineti
 
onstant leads topoisoning by the 
orresponding spe
ies.The new thermodynami
 approa
h allows dire
t in-vestigation of the in�uen
e of the substrate dimen-sions. Within this formalism, the behavior of the LLVmodel was 
onsidered when realized on square-latti
eand fra
tal substrates. For the LLV model, it wasshown that the lower the dimensionality of the sub-strate, the higher the possibility of poisoning. For one-dimensional systems, there are no os
illatory regimes.All thermodynami
 results have been 
on�rmed by nu-meri
al kineti
 Monte Carlo simulations.722



ÆÝÒÔ, òîì 130, âûï. 4 (10), 2006 Entropy, free energy and phase transitions : : :Generalizations of this theory 
an give new predi
-tions of rea
tive phenomena that have not been stud-ied yet, su
h as more 
omplex dynami
al me
hanisms,higher or lower (fra
tal) dimensions, and me
hanismswith many spe
ies involved.All thermodynami
 results qualitatively 
onformwith 
omputer simulations. Thus, the proposed ther-modynami
 approa
h 
an be 
onsidered a �rst ap-proximation and a �rst step towards elaborating athermodynami
 theory of nonlinear dynami
al systemsrestri
ted to low-dimensional supports.O. Ch. gratefully a
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