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A thermodynamic approach is developed for reactive dynamic models restricted to substrates of arbitrary di-

mensions, including fractal substrates.

The thermodynamic formalism is successfully applied to the lattice
Lotka—Volterra (LLV) model of autocatalytic reactions on various lattice substrates.

Different regimes of

reactions described as phases, and phase transitions are obtained using this approach. Predictions of the ther-
modynamic theory confirm extensive numerical kinetic Monte Carlo simulations on square and fractal lattices.
Extensions of the formalism to multispecies LLV models are also presented.

PACS: 82.60.-s, 05.45.Df, 82.65.+r
1. INTRODUCTION

Nonlinear reactive processes restricted to low-
dimensional supports have been under intensive inves-
tigation for the last thirty years, because of their im-
portance for applications in physics, chemistry, biolo-
gy, and ecology [1-13]. Low-dimensional systems are
especially important in heterogeneous catalytic pro-
cesses where reactions can only take place if the re-
active species are adsorbed on the surface of the cat-
alyst. They also give the possibility to answer fun-
damental questions about the behavior of open sys-
tems and about mechanisms of self-organization. To
investigate the mechanisms of producing complexity
and self-organization in reactive dynamics, several ab-
stract models have been developed, which retain only
the most important features for producing complex-
ity [14-22].

The lattice Lotka—Volterra (LLV) model has at-
tracted attention during the past years due to the large
variety of patterns that it generates on low-dimensional
support under variations of parameters and boundary
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conditions [21-26]. The LLV model involves two kinds
of reacting molecules (X; and X5) and empty lattice
sites S. When two reactants X; and X, occupy two
nearest-neighbor sites, X; can be transformed into X,
with a probability kg,
X; + X, 552X, (1)
The reactant X5 can desorb from the surface with a
probability %k provided that there is a second empty
site S in the neighborhood,
X, + S Mg (2)
X7 may adsorb on the surface from a bulk phase with
a probability ks provided that another X is already
adsorbed on a neighboring site,
S+X; 5Bo2x,. (3)
In this scheme, the particles react when they are at-
tached to the lattice and do not diffuse to nearest neigh-
bor empty sites. In the traditional mean-filed (MF)

approach, the LLV system can be described by the dy-
namical system [22, 23]
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dzq (t
x;t( ) = ]{225618 — ksévll‘g, (4&)
de(t) = ]{23562331 — kléﬂzs, (4b)
dt
ds(t
d(t) = k1228 — ko118, (4c)

where the variables w1 (t),22(t), and s are the par-
tial concentrations of particles X, X», and empty sites
S. The notation hereafter follows Ref. [23]. Diffusion
terms are not included in Eq. (4) because the parti-
cles are not allowed to diffuse. The LLV construction
immediately implies that there is a constant of motion:

C=z1+22+s5=1 (5)

This constant C' corresponds to the total coverage
of each lattice site, which either contains particles (X}
or X») or is empty (S). We can set C = 1. Using
Eq. (5), we can reduce the number of variables to two,
x1 and xa:

d$1 (t)

ko + ks
T ko <1 -z — ng 502) ; (6a)
dxo (t ki + ks
;t( ) = —k‘lxg <]. — Ty — L kl $1> . (Gb)

The behavior of this system is closely related to the
behavior of the original Lotka—Volterra system, de-
veloped for the description of predator—prey dynam-
ics [1, 2], but the latter system is not suitable for
realization on a lattice because it does not take the
spatial constraints into account (constant number of
total, empty, and occupied lattice sites). The dyna-
mical system in (6a) has four fixed points, three of
which are saddle points and one is a center. The sad-
dle points are (0,0), (0,1), (1,0), and the center is
(k1/(k1+ko+Ekg), ka/ (k1 + ko +ks)). The center is sur-
rounded by a continuum of closed trajectories, whose
amplitudes depend solely on the initial conditions [22].

Equations (4) and (6a) describe an idealistic model
where each particle reacts with the mean field of all
other particles in the system. This is not the case in
heterogeneously catalyzed systems, where the particles
are attached to the substrate sites and can only react
with their nearest neighbors. These local interactions
induce important spatiotemporal fluctuations that can-
not be adequately described by the MF equations. To
study such minimal-complexity models, to explore the
spatiotemporal structures they demonstrate when re-
stricted to low-dimensional substrates, and to under-
stand the qualitative and quantitative deviations from

the mean-field behavior, computer simulations have
been extensively used in recent years [10-12, 14-20].

Although the MF equations predict oscillatory be-
havior for all values of the kinetic parameters, kinetic
Monte Carlo (KMC) simulations of the LLV model have
demonstrated either oscillatory behavior or poisoning
by one of the three species, depending on the substrate
dimension D and the kinetic constants ks, ki, and ko
[23]. The main purpose of this work is to describe the
transitions of the LLV system from oscillatory to poi-
soning regimes and back as a kind of phase transitions,
according to the laws of thermodynamics. To develop
the thermodynamic approach, we first need to intro-
duce the effective temperature 7', energy U, and en-
tropy S as functions of D, kg, ki, ks. Then we can
define the free energy F' and analyze its dependence on
the dimension and kinetic constants as order parame-
ters.

In the next section, we introduce the thermody-
namic approach to reactive dynamics and define the
potential and kinetic energy, the effective temperature,
the entropy, and the free energy. In Sec. 3, we present
thermodynamic calculations for the LLV system at var-
ious parameter values. In Sec. 4, we compare the ther-
modynamics with numerical KMC results on the LLV
system. In Sec. 5, we generalize the thermodynamic
formalism to multispecies LLV systems. Finally, in the
concluding section, we recapitulate our main results
and discuss open problems.

2. THERMODYNAMIC FORMALISM

A. The energy

To develop the thermodynamic formalism, we first
describe the qualitative difference between the three
species by a quantitative difference of three energy
states. We consider a Brownian particle that can move
in three potential wells under the influence of thermal
noise. Each potential well corresponds to one of the
species as illustrated in Fig. 1 and the whole system
corresponds to one lattice site. Thus, one lattice site
can change its state from X; to Xo and S as depicted
in Fig. 1.

The potential energy of a well is connected with the
escape probability for one time step (or kinetic con-
stant) by the Kramers formula [27]:

Us

kg = exp k‘—T., (7)
U-

ki = exp ﬁ, (8)
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Fig.1. The LLV model represented as a Brownian par-
ticle transition from one potential well to another

ks = exp ﬁ7 (9)
where k is the Boltzmann constant. From Egs. (7)-
(9), the energies Uy, Uy, and Us can be expressed as
functions of the k; and the temperature.

B. Steady states

To find the average energy, we calculate the steady
probability distribution Ps, P;, and P, under the nor-
malization condition

P,+P +P,=1. (10)

We consider the Markov matrix of transitions for one
step, B = {b;; }, were b;; is the probability of transition
to state i from state j, as

bss bsl bs2
B=| by b1 bio (11)
bQS b21 b22

These probabilities are defined in terms of the kinetic
constants as
1— ko
B= (12)
1—Fk

The eigenvalues A may be obtained from the equation

P, P,
Bl P |=Xx| P (13)
P P
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With 1 — X = 3, Eq. (13) transforms into the equation

det C' =0, (14)
where the matrix C' is
B — ko 0 k1
C = ky B—ks O (15)
0 ks B —kq
From Eq. (14), we find three eigenvalues: \g = 1,

which corresponds to the steady state, and Ao < 1.
Substituting Ag in Eq. (13), we obtain the steady prob-
ability distribution as

9 9 9
P=—>, P=>, P=-— 1
Tk ks’ ! s (16)
where
kokik
£ — (17)

T ki + kiko + Kok,

C. Average energy and temperature

Using Eqs. (7)—(9) and (16), we can find the average
potential energy for one Brownian particle, which rep-
resents one lattice site «jumping» between the states
X1, X5, and S, as

_ B Inky Ink; Inkg)
<U>—ZilePl—ka< b b >_
Ink;
= kT Lo (1
k fzjj o (19

The average kinetic energy is equal to kT/2, in accor-
dance with the theorem on equal distribution of energy
among the degrees of freedom, because the motion of
the imaginary particle is one-dimensional.

The temperature in our description is not a real
temperature, but an effective one. It characterizes the
intensity of the Brownian particle motion, which is re-
garded as a diffusion-like process. Here, it is not possi-
ble to define the temperature in the usual way through
the entropy [28,29], because the state is not equilib-
rium [30]. However, its dependence on the kinetic con-
stants can be assumed to be approximately linear due
to the diffusive character of motion, and can be de-
scribed by the Einstein formula (2?) = 2Dt [31]. It is
known that (z2) is proportional to the probability of a
fixed step in a fixed time, while the diffusion coefficient
D is proportional to the temperature. Therefore, the
temperature can be assumed directly proportional to

the sum of the transition probabilities:
T:T(k‘s-l-kl-l-kQ). (19)

The constant 7 is defined in terms of time steps.
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D. The entropy

To define the entropy, we use the information in-
terpretation, which is useful in complex systems and
gives good agreement with experiments [32-34]. The
uncertainty of one transition with a probability k; is

I(k]‘)ijlnkj+(1—kj)1n(1—kj). (20)
The entropy for one interaction is defined by the sum
of all transitional uncertainties, all of which are mul-
tiplied by two probabilities: the probability that the
particle under consideration is in the state to open this
transition for a neighbor particle, and the probability
that this neighboring particle is in the state for this
transition. Then the entropy for one site in the lattice
is equal to the entropy for one interaction multiplied
by the number of all possible combinations of particles
interacting with the particle under consideration. It is
nn!, where nn is the average number of nearest neigh-
bors. The particles are not indistinguishable, they are
marked by the special place they occupy on the lattice.

It is not easy to find the number of nearest neigh-
bors, or coordination number, nn [35]. In the first-
order approximation and for hypercubic lattices of di-
mension D, the average number of nearest neighbors
is 2D. Tt varies for other types of lattices: triangu-
lar, polygonal, etc. It also varies significantly due to
fluctuations around the average for random and frac-
tal lattices. In lattice dynamics in general, the coordi-
nation number also has local fluctuations, which may
contribute significantly to the creation of patterns and
local structures.

In the first-order approximation, however, we can
write the entropy for all kinds of lattices as

S = —nnlk[I(k\) P Ps+I(ks) Py Pi+1(ks) P Ps], (21)

where nn = 2D for hypercubic lattices and is calculated
numerically for fractal lattices.

E. Free energy

We can now define the free energy as the sum of the
potential, kinetic, and entropy terms:
F(ky, ko, ks, D) =(U) + kT /2 — ST. (22)
In the case where D = 2 (square lattice), the free energy
dependence on one of the k; has a maximum, which
defines two phases: oscillations and poisoning. This
interpretation, as described above, is semiphenomeno-
logical.
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3. THERMODYNAMIC CALCULATIONS OF
THE LLV MODEL

Using the thermodynamic formalism developed
above, we now attempt to describe the phase transition
(from poisoned to nonpoisoned states) of the LLV sys-
tem. To validate our low-dimensional results, we com-
pare them with Monte Carlo simulations in Ref. [23].
In this reference, the authors show that small values,
e.g., of ks lead to poisoning by X;. The mechanism de-
scribed in Ref. [23] is as follows: because of small ks, the
X, particles are produced very infrequently; as a result,
X, attains a very low concentration and at a certain
point, S can almost dominate the lattice by destroying
all X5. At the same time, the remaining clusters of X
start to grow and gradually invade the entire lattice.
By the same mechanism, when low k; are considered,
the S states poison the lattice, and similarly for low kg,
the X, states dominate. In intermediate cases, where
ko is small but ks is also sufficiently small, the small
cluster of X5 can be left inside X;-dominated regions.
Only small clusters (when ks is small) can survive and
do not reach the S-region. Then X5 grows and we have
X,-poisoning.

Because the kinetic constants k; are related to poi-
soning by the corresponding particles, we can consider
the kinetic constants as order parameters. A phase
transition occurs when the free energy, which is a func-
tion of the k;, passes a maximum. Low values of k;
(at the left-hand side of the maximum) correspond to
poisoning by the respective particles, while large val-
ues of k; correspond to oscillations. This way, we can
define the final, steady-state behavior of the system for
all values of the kinetic constants.

Figure 2 illustrates the free energy F'(k2) at k; = 0.8

—_

0.10

! 0.20
ko

0.05 0.15

Fig.2. The free-energy dependence on ks for a two-
dimensional lattice at k1 = 0.8 and ks, = 0.1, 0.3, 0.5,
0.7, 0.9 from top down
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Fig.3. The free-energy dependence on ks for a two-
dimensional lattice at k2 = 0.05 and k1 = 0.5, 0.6,
0.7, 0.8, 0.9 from top down

and different values of ks = 0.1, 0.3, 0.5, 0.7, 0.9 from
top down, for a square lattice. We can see that for
ko = 0.05, which is considered in the next section,
Xy -poisoning occurs for ks > 0.2. The higher the val-
ues of ko, the less poisoning is observed. At ko = 0.075,
we have poisoning only for ks > 0.8, and there is no
poisoning at ke = 0.1.

To decide whether X,-poisoning is possible, we con-
sider F(ks), presented in Fig. 3 for the same lattice,
ko = 0.05, and different values of k;. Poisoning is only
observed at ks = 0.1 and for large values of k; > 0.6.
These results are also presented in Fig. 8 for compari-
son with numerical KMC results.

The dimensionality also defines the shape of the
free-energy dependence, and we therefore analyze the
influence of the substrate dimensionality in autocat-
alytic processes. As the substrate dimensionality de-
creases, the free-energy maximum moves right and
finally disappears, such that more poisoning states
emerge. This is partly due to the dependence of the
number of neighbors on the dimensionality.

Figure 4 presents the free energy F'(ks) for the same
kinetic constants and for different numbers of near-
est neighbors nn; nn 2 corresponds to the one-
dimensional case and nn = 4 to the two-dimensional

lattice. For small dimensions, the system is poisoned
for all values of the kinetic constants.

In particular, in D = 1, oscillations are impossible.
This becomes obvious from the shape of the free en-
ergy, which has no turning (maximum) points for any
values of kq, ko or k. This is shown in Fig. 5 for F(k)
at ks = 0.6 and different values of k;. Some oscilla-
tions could have been possible only for very small £y,
in which case we expect poisoning by X,. But if we
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Fig.4. The free-energy dependence on k; for different
numbers of nearest neighbors nn = 2, 2.5, 3, 3.5, 4
from top down at k1 = 0.6, kx = 0.4
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F

Fig.5. The free-energy dependence on ks for a one-
dimensional lattice at k2 = 0.6 and k; = 0.1 (1),
0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5)

consider F'(k1), this small k; is on the left-hand side of
the maximum showing poisoning by S. The same re-
sults, for D = 1, were also obtained in [22] using KMC
simulations and theoretical arguments.

4. COMPARISON WITH KINETIC MONTE
CARLO SIMULATIONS

In [23], a set of LLV simulations was performed with
very low values of ks (ky = 0.05 and ko = 0.075) at
different values of k; and kg for fractal (D = 1.893)
and two-dimensional square lattice substrates. In this
work, we produced new sets of results for £y = 0.05 and
ko = 0.1 using a speeded version of the KMC algorithm
in [23]. The KMC scheme used here is as follows.
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Fig.6.  Numerical results.  Poisoning states for

ko = 0.05. The simulations were performed on a two-
dimensional square lattice substrate
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Fig.7.  Numerical results.  Poisoning states for

ko = 0.05. The simulations were performed on a ran-
dom fractal substrate with D = 1.893

1. At each elementary time step (ETS) of the KMC
procedure, one site of the lattice is chosen at random.
2. One of the nearest neighbors is also selected.

3. If the originally chosen site is X; and the se-
lected neighbor is X5, then the chosen site changes to
X, with the probability ps = ks/ max(ky, ko, ks). If
the originally chosen site is X5 and the selected neigh-
bor is S, then the chosen site changes to S with the
probability p1 = ki /max(kq, ko, ks). If the originally
chosen site is S and the selected neighbor is X5, then
the chosen site changes to X; with the probability
po = ko/max(ky, ko, ks). Otherwise, the system re-
mains unchanged.

4. The algorithm returns to step 1.

This particular choice of the probabilities considerably
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ks
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04+ A E B
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O x2 SIS IS IS
0 0.2 0.4 0.6 0.8 1.0
k1
Fig.8. Thermodynamic results. Poisoning states for
ko = 0.05 on a two-dimensional square lattice sub-
strate
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Fig.9. Thermodynamic results. Poisoning states
for k2 = 0.05 on a random fractal substrate with

D =1.893

speeds the algorithm because at least one of the three
processes takes place with probability 1, while the other
two have relative probability weights. One Monte Carlo
step (MCS) is finished after the number N of ETS steps
equal to the number of substrate (active) lattice sites.
Thus, at each MCS, each lattice site has reacted once
on average. We note that due to the difference in this
speeded version of the algorithm, the results in Figs. 6
and 7 do not correspond to those in Ref. [23].

Comparison of Fig. 6 with Fig. 8 and Fig. 7 with
Fig. 9 demonstrates qualitative agreement of the KMC
results with the corresponding thermodynamic approx-
imation, for small values of ks 0.05. The same
KMC simulations were performed for k; = 0.1 (Figs. 10
and 12). Here, much less poisoning is observed both
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Fig.10. Numerical results. Poisoning states for Fig.12, Numerical results.  Poisoning states for

ko = 0.1. The simulations were performed on a two-
dimensional square lattice substrate
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Fig.11. Thermodynamic results. Poisoning states for
ko = 0.1 on a two-dimensional square lattice sub-
strate

thermodynamically and numerically, except for poison-
ing at relatively high values of k; and kg in the random
fractal substrate (thermodynamic results).

From Figs. 6-13, both approaches show that the
X -poisoning states are more favored on fractal lattices
for identical kinetic constants. As ks and kq increase,
more poisoning states emerge for both fractal and two-
dimensional lattices. The thermodynamic formula can
also predict Xo-poisoning for small ks and large k; val-
ues, the mechanism of which is described in Sec. 3.

For the fractal support with D; = 1.893, the
average number of nearest neighbors was calcu-
lated numerically as nn = 3.315, which is less
than the number obtained using the approximation

10 ZK3T®, Bem. 4 (10)

ko = 0.1. The simulations were performed on a random
fractal substrate with D = 1.893

kS
VIS s s o o 2
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i I s R O A EH e
0.4} JEHEHBB8H3
= B E E
0’2':51 S
S o ISENSIS IS SIS
0 0.2 0.4 0.6 0.8 1.0
k1
Fig.13. Thermodynamic results. Poisoning states
for k2 = 0.1 on a random fractal substrate with

D =1.893

nn = 2D = 2-1.893 = 3.786. This leads to more
poisoning in the thermodynamic approach, and we
used the numerically calculated nn as more precise.

This first approach to thermodynamic modeling of
chemical dynamics achieves good agreement with nu-
merical data. Some disagreement can be explained by
the following phenomenological approximations used
in the thermodynamics approach: a) We have calcu-
lated the average energy and entropy using steady-state
probability distributions, which do not correspond to
poisoning but are nevertheless used to find poisoning
states as well as oscillatory regimes. b) For the energy
calculations, we did not take into account that transi-
tions depend on neighboring sites. Instead, we assumed
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that interactions influence only the entropy. c¢) For while the entropy takes the form

fractal substrates, we used the approximate (numeri-

cally calculated) average number of neighbors. d) All (29)

thermodynamic parameters in our model are effective
and cannot therefore be measured experimentally. In-
stead, they are introduced as functions of the kinetic
constants using phenomenological interpretations.

Another source of disagreement between the ther-
modynamic approach and the KMC simulations is the
statistical fluctuations in the simulations, which is es-
pecially important for fractal substrates. For example,
some poisoning states can be achieved only asymptoti-
cally, after very long simulations times, while numerical
experiments have a finite time of calculation. Some ad-
ditional poisoning is possible because of limited lattice
sizes (finite-size effects).

In the case of one-dimensional systems, both ther-
modynamic and KMC approaches agree, predicting
poisoning for all values of the kinetic constants [22].

5. GENERALIZATION FOR MULTISPECIES
LLV SYSTEMS

The entire formalism presented in Sec. 2 can be gen-
eralized to the case of M species. We consider the set
of M transitions

Xi+ Xis1 82Xy, i=1,....M  (23)

with the corresponding kinetic constants k;. All pa-
rameters have the cyclic symmetry: Ayry; = Aj.
The potential energies considered as functions of the

k; and the temperature are given by
U;=kTInk; <0. (24)

The steady probability distribution corresponds to

_ £
P; & (25)
where
Mo -1
5:<Zg> : (26)
i=1 ¢

The average potential energy for one particle is esti-

mated as

In kl
ki

(27)

(U)=> UP; =kTEY
i i
The temperature can be generalized as

T=rY ki,
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S=—nnk Y I(k;)PiP1,

where I(k;) is defined in Eq. (20).

In the case of many species, the dependence on the
initial conditions becomes more important. Poisoning
by several species is possible in this case. But the main
tendency indicated by numerical simulations is an in-
crease in poisoning states. This can also be obtained
qualitatively from our thermodynamic theory. The en-
tropy is bilinear in the probabilities, Eq. (29), and the
average energy is linear, Eq. (27). As the number of
species M increases, the steady-state probabilities de-
crease due to normalization. Thus, the effect of higher
M is the same as decreasing the dimensionality D, lead-
ing to poisoning.

6. CONCLUSIONS

The thermodynamic approach can be useful in non-
linear reactive systems restricted to low-dimensional
supports, because it allows considering transitions from
chemical oscillations to poisoning regimes and back as
phase transitions induced by the presence of the sup-
port. The main idea is to introduce an imaginary
Brownian particle whose energies correspond to dif-
ferent kinds of reacting species. The potential energy
can be defined through the kinetic constants using the
Kramers formula. The average kinetic energy can be
obtained from the theorem on equal distribution of en-
ergy among all degrees of freedom. The temperature
can be estimated according to the Einstein diffusion
equation. The entropy can be written as a measure
of uncertainty in its informational interpretation. In-
troducing effective thermodynamical parameters allows
defining the free energy in terms of the kinetic con-
stants. The maximum of this free energy function sep-
arates the poisoning and oscillatory regimes. Taking
relatively small values of a kinetic constant leads to
poisoning by the corresponding species.

The new thermodynamic approach allows direct in-
vestigation of the influence of the substrate dimen-
sions. Within this formalism, the behavior of the LLV
model was considered when realized on square-lattice
and fractal substrates. For the LLV model, it was
shown that the lower the dimensionality of the sub-
strate, the higher the possibility of poisoning. For one-
dimensional systems, there are no oscillatory regimes.
All thermodynamic results have been confirmed by nu-
merical kinetic Monte Carlo simulations.
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Generalizations of this theory can give new predic-
tions of reactive phenomena that have not been stud-
ied yet, such as more complex dynamical mechanisms,
higher or lower (fractal) dimensions, and mechanisms
with many species involved.

All thermodynamic results qualitatively conform
with computer simulations. Thus, the proposed ther-
modynamic approach can be considered a first ap-
proximation and a first step towards elaborating a
thermodynamic theory of nonlinear dynamical systems
restricted to low-dimensional supports.
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