МАГНИТНОЕ УПОРЯДОЧЕНИЕ В МАНГАНИТАХ, ЗАМЕЩЕННЫХ ИОНАМИ ХРОМА

И. О. Троянчук, М. В. Бушинский, Д. В. Карпинский

Объединенный институт физики твердого тела и полупроводников Национальной академии наук Беларуси 220072, Минск, Беларусь

Поступила в редакцию 25 апреля 2006 г.

Проведены нейтронографические и магнитные исследования двух систем твердых растворов NdMn_{1-x}Cr_xO₃ и Nd_{0.6}Ca_{0.4}Mn_{1-x}Cr_xO₃. В NdMn_{0.5}Cr_{0.5}O₃ выявлена магнитная структура, состоящая из антиферромагнитной *G*-типа и ферромагнитной компонент, обусловленных 3*d*-ионами. Магнитные моменты ионов неодима направлены параллельно ферромагнитной компоненте. В Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O₃ выявлена магнитная структура преимущественно *G*-типа, причем магнитные моменты ионов неодима направлены параллельно ферромагнитной компоненте. В Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O₃ выявлена магнитная структура преимущественно *G*-типа, причем магнитные моменты ионов неодима направлены перпендикулярно вектору антиферромагнетизма. Построены магнитные фазовые диаграммы обеих систем, которые интерпретируются исходя из того, что сверхобменные взаимодействия Mn³⁺-O-Cr³⁺ являются положительными, а Mn⁴⁺-O-Cr³⁺ — отрицательными, с учетом того, что ионы марганца и хрома не упорядочиваются в кристаллоструктурной подрешетке. Концентрационные магнитные фазовые превращения происходят через двухфазное состояние вследствие внутренней химической неоднородности твердых растворов.

PACS: 61.12.Ld, 75.47.Lx, 75.50.Dd, 75.50.Ee, 75.50.Lk

1. ВВЕДЕНИЕ

В настоящее время изучено большое количество систем манганитов, в которых ионы марганца замещены на другие 3*d*- или диамагнитные ионы [1-7]. Установлено, что наиболее сильное воздействие на магнитные свойства оказывают ионы хрома, небольшие добавки которых иногда приводят к смене магнитного состояния. Из данных спектроскопических исследований следует, что ионы хрома в манганитах находятся в трехвалентном состоянии [8]. Замещение ионов марганца на хром в системах $LnMn_{1-x}Cr_xO_3$ (Ln = La, Nd) приводит к переходу из чисто антиферромагнитного состояния в состояние, очень близкое к ферромагнитному [6, 9–11], которое менее ярко выражено в $NdMn_{1-x}Cr_xO_3$, по-видимому, вследствие уменьшения величины угла Mn-O-Mn, который характеризует гибридизацию 3d-орбиталей и, следовательно, величину обменных взаимодействий. В работе [6] на основании измерений намагниченности предложена магнитная фазовая диаграмма си-

стемы $NdMn_{1-x}Cr_xO_3$, в которой представлена последовательность переходов из антиферромагнитного состояния А-типа (в этом состоянии происходит ферромагнитное упорядочение магнитных моментов ионов в кристаллоструктурных плоскостях, которые связаны между собой антиферромагнитно) в ферромагнитное, потом при концентрациях x > 0.4появляется ферримагнитное состояние и при x > 0.6оно постепенно вытесняется антиферромагнитным состоянием G-типа (в этом состоянии магнитные моменты ближайших соседей направлены противоположно), присущим NdCrO₃. Однако для подтверждения наличия ферримагнитного состояния необходимы нейтронографические исследования. Причины перехода из антиферромагнитного состояния А-типа в ферромагнитное являются предметом дискуссии. Существуют две точки зрения. Согласно работе [12], между ионами Mn³⁺ и Cr³⁺ магнитное взаимодействие реализуется через двойной обмен, как между ионами разновалентного марганца. Другая точка зрения предполагает, что ионы хрома приводят к снятию статических ян-теллеровских искажений, при этом сверхобменные взаимодействия Mn³⁺-O-Mn³⁺ становятся ферромагнитными [13].

^{*}E-mail: troyan@ifttp.bas-net.by

Очень сильные изменения кристаллической и магнитной структур происходят при легировании ионами хрома зарядово-упорядоченных манганитов [14-16]. В этом случае при добавке 3-5 % ионов хрома антиферромагнитное диэлектрическое состояние СЕ-типа переходит в металлическое ферромагнитное. При легировании другими 3*d*-ионами таких сильных изменений не наблюдалось [16]. В работе [7] предложена магнитная фазовая диаграмма твердых растворов $Nd_{0.6}Ca_{0.4}Mn_{1-x}Cr_xO_3$. Интригующей особенностью этой фазовой диаграммы является наличие кардинального изменения магнитных свойств вблизи концентрации x = 0.5, которое, как было предположено, обусловлено упорядочением ионов Cr³⁺ и Mn⁴⁺. Для понимания свойств манганитов, легированных ионами хрома, необходимо провести детальные нейтронографические исследования кристаллической и магнитной структур. В настоящей работе определено магнитное состояние манганитов с 50 % замещением хрома в системах $NdMn_{1-x}Cr_xO_3$ и $Nd_{0.6}Ca_{0.4}Mn_{1-x}Cr_xO_3$ и с учетом этих данных модифицированы ранее предложенные магнитные фазовые диаграммы. По сравнению с работой [17] проведен более корректный анализ магнитной структуры состава Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O₃.

2. ЭКСПЕРИМЕНТ

Образцы твердых растворов $Nd_{0.6}Ca_{0.4}Mn_{1-x}Cr_xO_3$ и $NdMn_{1-x}Cr_xO_3$ были приготовлены методом твердофазных реакций на воздухе. Чтобы гомогенизировать химический состав, температура синтеза была выбрана достаточно высокой — 1500 °C. Скорость охлаждения составляла 50°С/час. Рентгенофазовый анализ был выполнен на дифрактометре ДРОН-3М в СиК_а-излучении. В некоторых образцах были выявлены следы примесной фазы, содержание которой не превышало 2-3 %. Для нейтронографических исследований были выбраны два однофазных состава $Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$ и $NdMn_{0.5}Cr_{0.5}O_3$, которые являются ключевыми для понимания свойств этих систем. Приготовленный на воздухе образец NdMn_{0.5}Cr_{0.5}O₃ характеризовался повышенным содержанием кислорода по сравнению со стехиометрическим значением, и поэтому образец был восстановлен в запаянной кварцевой ампуле до стехиометрического состава. Нейтронографические исследования состава $Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$ были выполнены на дифрактометре Е6 в BENSC в институте Ханн-Мейтнер (Берлин) с использованием излучения с длиной волны 2.4422 Å от графитового монохроматора. Дифрактограммы были записаны в диапазоне 1.8–200 К в отсутствие магнитного поля. Ядерные и магнитные структуры были уточнены с помощью программы Fullprof. При T = 1.8 К получены дифрактограммы в магнитных полях 1, 3 и 5 Тл. Нейтронографические исследования образца NdMn_{0.5}Cr_{0.5}O₃ были выполнены на дифрактометре FIREPOD ($\lambda = 1.7971$ Å) в том же институте. Магнитные измерения были выполнены на MPMS SQUID-магнитометре.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно рентгенографическим исследованиям, образец $NdMn_{0.5}Cr_{0.5}O_3$ является орторомбически искаженным перовскитом.

Измерения температурной зависимости намагниченности были проведены в режиме нагрева после охлаждения в поле (FC) и без поля (ZFC) (рис. 1). Из графика видно, что переход в парамагнитное состояние происходит вблизи температуры 90 К. Вблизи 65 К ZFC- и FC-кривые резко расходятся, что указывает на возрастание магнитной анизотропии с понижением температуры. Из полевой зависимости намагниченности при гелиевой температуре (рис. 2) следует, что этот состав обладает достаточно большой спонтанной намагниченностью. Точно оценить ее величину не представляется возможным вслед-

Рис.1. ZFC- и FC-намагниченности в зависимости от температуры образца $NdMn_{0.5}Cr_{0.5}O_3$, H=100 Э

Рис. 2. Намагниченность в зависимости от поля образца $NdMn_{0.5}Cr_{0.5}O_3, T = 5 K$

ствие того, что насыщения намагниченности в полях до 4.5 Тл не наблюдалось. Однако можно оценить, что ее величина составляет около 1.4µ_B на формульную единицу.

Расчет кристаллической структуры этого состава был проведен в пространственных группах Pbnm и P2₁/n. Элементарная ячейка имеет искажения О'-типа, что указывает на наличие статических ян-теллеровских искажений [13]. Это обусловлено тем, что содержание ян-теллеровских ионов Mn³⁺ в этом составе около 50 %. В пространственной группе $P2_1/n$ подрешетка ионов Mn/Cr разбивается на неэквивалентные сайты, что может быть в случае упорядочения ионов марганца и хрома. Однако расчет в этой группе не привел к существенному улучшению факторов достоверности по сравнению с пространственной группой Pbnm, что указывает на то, что ионы марганца и хрома не упорядочиваются. Согласно результатам спектроскопических исследований [8], ионы хрома в манганитах находятся в окислительном состоянии 3+, тогда как ионное упорядочение происходит, как правило, в том случае, когда зарядовые состояния ионов сильно различаются. Рассчитанный и измеренный профили нейтронограммы представлены на рис. 3.

Кислородный октаэдр вокруг 3*d*-ионов довольно вытянут вдоль одной из осей (см. табл. 1). Этого следует ожидать в случае стабилизации *d*_{z²}-орбиталей ионов марганца. Углы Mn/Cr–O–Mn/Cr незначительно разнятся и близки к 152°, что значительно меньше, чем в щелочноземельных манганитах лантана.

Рис. 3. Рассчитанный и измеренный профили нейтронограммы $NdMn_{0.5}Cr_{0.5}O_3$ при T = 4.2 K (*a*) и 300 K (δ). Штрихами отмечено расположение рефлексов

Магнитный вклад наблюдался в следующих рефлексах: (011), (101), (121), (110), (002), (020), (112) и (200). Рефлексы (110), (002), (020), (112) и (200) соответствуют ферромагнитной компоненте, тогда как рефлексы (011), (101) и (121) указывают на антиферромагнитную структуру G-типа. Сосуществование двух типов магнитного порядка довольно часто наблюдается в манганитах. Это явление можно интерпретировать в рамках образования однородной неколлинеарной структуры или как проявление магнитного фазового расслоения на пространственные области с разными типами магнитного порядка. Поэтому расчет магнитной структуры был проведен в различных моделях (см. табл. 1). Согласно двухфазной модели, образец состоит из антиферромагнитной *G*-типа и ферромагнитной фаз, содержание которых приблизительной одинаково. Средний магнитный момент в ферромагнитной и антиферромагнитной фазах составляет около $2\mu_B$, тогда как в ионной модели он должен быть больше $3\mu_B$. Мо-

Kp	исталлическая	структура			
Температура	4.2	К	300 K		
Пространственная группа	Pbnm		Pbnm		
Параметры элементарной ячейки					
$a,{ m \AA}$	5.411	6(6)	5.4233(8)		
$b, \mathrm{\AA}$	5.590	9(5)	5.5916(7)		
$c, \mathrm{\AA}$	7.6495(9)		7.6707(1)		
Координаты атомов					
Nd:					
x	-0.0104(3)		-0.0089(4)		
y	0.0533(3)		0.0512(3)		
O(1):					
x	0.0827(4)		0.0825(4)		
y	0.4797(4)		0.4811(4)		
O(2):					
x	0.7093(3)		0.7099(3)		
y	0.3012(3)		0.3009(3)		
<i>z</i>	0.0430(2)		0.0429(2)		
Длины связей					
$\mathrm{Mn/Cr-O(1),\ \AA}$	1.9	674	1.9720		
$\mathrm{Mn/Cr-O(2),\ \AA}$	2.0561		2.0584		
$\mathrm{Mn/Cr-O(2)},\mathrm{\AA}$	1.9542		1.9548		
Углы связей					
$\mathrm{Mn}/\mathrm{Cr} ext{-O}(1) ext{-Mn}/\mathrm{Cr}$	152.84°		153.04°		
$\mathrm{Mn}/\mathrm{Cr} ext{-}\mathrm{O}(2) ext{-}\mathrm{Mn}/\mathrm{Cr}$	151.92°		152.10°		
Факторы достоверности					
$R_{p}, [\%]/R_{wp}, [\%]$	3.69/4.72		3.71/4.77		
χ^2	2.61		2.94		
$R_{Bragg}, \%$	4.00		5.01		
Магнитная структура					
	Двухфазная модель		Неколлинеарная модель		
	1-я фаза	2-я фаза			
Процентное содержание	52~%	48~%			
Mn/Cr:					
μ_x, μ_B	_	2.000	1.250		
μ_z, μ_B	2.100	_	-		
Nd:					
μ_x, μ_B	-	0.600	0.300		
Магнитный R -factor	8.98	15.9	13.5		

Таблица 1. Параметры кристаллической и магнитной структур, полученные уточнением по методу Ритвелда для $NdMn_{0.5}Cr_{0.5}O_3$

Рис. 4. FC-намагниченность в зависимости от температуры состава $Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$ в поле H=200 Э

менты ионов неодима упорядочиваются в ферромагнитной фазе параллельно моментам 3*d*-ионов, однако их магнитный момент также значительно меньше ожидаемого. В неколлинеарной модели средний магнитный момент немного больше, ферромагнитная компонента направлена перпендикулярно вектору антиферромагнетизма. Поскольку магнитные факторы достоверности сильно не различаются, трудно отдать предпочтение какой-либо модели. Величина ферромагнитной компоненты, полученная из нейтронографических измерений, довольно хорошо согласуется с результатами измерений намагниченности, согласно которым оценочная величина спонтанного магнитного момента составляет $1.2\mu_B$ на формульную единицу.

В образце Nd_{0.6} Ca_{0.4}Mn_{0.5} Cr_{0.5}O₃ выявлено весьма необычное поведение температурных зависимостей ZFC- и FC-намагниченностей, что указывает на сложную магнитную структуру этого соединения. FC-намагниченность, измеренная в магнитном поле 200 Э, отрицательна в интервале температур ниже 100 К (рис. 4). Резкий спад намагниченности в интервале 160-172 К обусловлен, по-видимому, переходом магнитоупорядоченного состояния в парамагнитное. Однако в поле 1 кЭ поведение FC-намагниченности радикально изменилось (рис. 5). Она стала положительной во всем интервале температур. Вблизи температуры 100 К наблюдался минимум, а при 150 К — максимум. Весьма своеобразно поведение ZFC-намагниченности, которая резко увеличивается с ростом температуры до 25 К, а затем плавно уменьшается; при

671

Рис.5. ZFC- и FC-намагниченности в зависимости от температуры состава $Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$ в поле H = 1 кЭ

Рис. 6. Зависимости намагниченности состава Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O₃ от поля

температуре 160 К наблюдался максимум. ZFCи FC-намагниченности начинают расходиться при температуре около 200 К, а при 165 К резкое расхождение кривых указывает на кооперативное изменение магнитного состояния. Возможно, это связано с некоторой неоднородностью химического состава, так как известно, что температура Нееля состава с 60 % хрома равна 220 К [7].

Изотермы намагниченности в зависимости от поля приведены на рис. 6. При 160 К зависимость почти линейная, остаточная намагниченность очень мала. При 100 К поведение существенно не изменя-

Рис.7. Рассчитанный и измеренный профили нейтронограммы состава $Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$ при T=1.8 К. Штрихами отмечено расположение рефлексов. Буквами обозначены: F — рефлексы, соответствующие ферромагнитной компоненте, G — рефлексы, соответствующие антиферромагнитной компоненте G-типа, A — рефлексы, соответствующие антиферромагнитной компоненте A-типа

ется, однако при 50 и 5 К зависимость становится нелинейной, спонтанная намагниченность резко увеличивается и составляет не менее $0.35\mu_B$ на формульную единицу при 5 К.

Кристаллическая структура этого соединения также уточнялась в двух пространственных группах, Pbnm и $P2_1/n$, чтобы учесть возможное упорядочение ионов марганца и хрома. Однако уточнение в группе $P2_1/n$ не улучшило результаты. Это свидетельствует о том, что если упорядочение ионов и существует, то в очень малой степени и не существенно для понимания магнитных свойств. Расчетный и измеренный профили нейтронограмм представлены на рис. 7.

Результаты расчета кристаллической структуры в пространственной группе Pbnm приведены в табл. 2. Кислородный октаэдр Mn/Cr–O₆ несколько искажен вдоль разных осей. Так как количество ян-теллеровских ионов Mn³⁺ очень мало, искажение скорее всего обусловлено несоответствием ионных радиусов различных ионов, т. е. размерным эффектом. Углы Mn/Cr–O–Mn/Cr увеличиваются до 157° по отношению к NdMn_{0.5}Cr_{0.5}O₃, в котором этот угол равен 152°, что привело к довольно высокой температуре Нееля, 165 К, вследствие увеличения ковалентной составляющей химической связи.

Магнитная структура этого соединения также уточнялась в двухфазной и неколлинеарной моде-

лях. Так как магнитные факторы достоверности и в этом случае оказались близки, обсудим результаты уточнения в неколлинеарной модели. Основной магнитный вклад наблюдался в рефлексы (011) и (101). Это указывает на образование антиферромагнитной структуры *G*-типа, как и в случае NdMn_{0.5}Cr_{0.5}O₃. Вклад в рефлексы (110), (020), (002), (112) и (200) был учтен в предположении ферромагнитной компоненты за счет Nd-подрешетки. При температуре ниже 50 К возникают слабые рефлексы (010), (100), (012) и (102), которые указывают на появление антиферромагнитной компоненты А-типа. Величины рассчитанных магнитных моментов представлены в табл. 2. Средняя величина магнитного момента в Mn/Cr-подрешетке близка к значению $2\mu_B$ на формульную единицу, что немного больше, чем в $NdMn_{0.5}Cr_{0.5}O_3$. Магнитный момент ионов Ndтакже близок к ожидаемому значению в манганитах [18], он составляет $1.1 \mu_B$ и направлен перпендикулярно антиферромагнитным компонентам. Наложение внешнего магнитного поля приводит к изменению интенсивности магнитных рефлексов. Магнитные рефлексы, соответствующие G-типу магнитного порядка, уменьшаются по интенсивности, тогда как рефлексы (020), (112) и (200), отвечающие ферромагнитной компоненте, увеличиваются. Согласно расчетам в Mn/Cr-подрешетке появляется ферромагнитная компонента, направленная так же, как и магнитные моменты ионов неодима (вдоль оси z) за счет уменьшения компоненты G-типа. Намагниченность, измеренная с помощью магнитометра в поле 5 Тл (рис. 6), значительно меньше значения, рассчитанного из нейтронограмм. Возможно, это обусловлено большой величиной магнитной анизотропии (коэрцитивная сила при 5 К равна 2 кЭ) и спецификой f-d-обмена между ионами Mn/Cr и неодима, который, судя по измерению магнитных свойств (рис. 4, 5), в этом соединении необычно велик. Действительно, ход намагниченности в зависимости от температуры в малых полях (рис. 4) можно объяснить наличием в этом соединении двух магнитных подрешеток, магнитные моменты которых направлены в противоположные стороны, причем обменное поле на одной подрешетке меньше, чем на другой. Естественно связать с сильной подрешеткой ионы марганца и хрома, а слабой подрешеткой является подсистема ионов неодима. Поэтому внешнее поле должно переориентировать одну из подрешеток по направлению к другой. Очень малая ферромагнитная компонента от 3*d*-ионов скорее всего возникает вследствие взаимодействия Дзялошинского-Мория, что характерно для магнитной

Таблица 2. Параметры кристаллической и магнитной структур, полученные уточнением по методу	/Ритвелда	для
$Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$ ($F- ферромагнитная$ компонента, $A-$ антиферромагнитная компонента	а <i>А</i> -типа, б	G -
антиферромагнитная компонента G-типа)		

Кристалличес	ская структура	
Поле	0 Тл	5 Тл
Пространственная группа	Pbnm	Pbnm
Параметры элементарной ячейки		
a, Å	5.3669(9)	5.3623(1)
$b, \mathrm{\AA}$	5.3808(1)	5.3794(1)
$c, \mathrm{\AA}$	7.5909(1)	7.5753(1)
Координаты атомов		
Nd, Ca:		
x	0.0120(4)	-0.0035(3)
y	0.0337(2)	0.0380(1)
O(1):		
x	0.0746(5)	0.0737(3)
y	0.4821(2)	0.4877(1)
O(2):		
x	-0.2845(2)	-0.2881(2)
y	0.2918(2)	0.2830(2)
z	0.0382(2)	0.0370(1)
Длины связей		
Mn/Cr-O(1), Å	1.9419	1.9358
Mn/Cr-O(2), Å	1.9718	1.9201
$ m Mn/Cr-O(2),~\AA$	1.9155	1.9566
Углы связей		
${ m Mn/Cr-O(1)-Mn/Cr}$	155.519°	156.101°
Mn/Cr-O(2)-Mn/Cr	155.653°	156.829°
Факторы достоверности		
$R_n \left[\%\right]/R_{wn} \left[\%\right]$	4.54/6.51	4.96/6.65
χ^2	7.20	7.38
$R_{Bragg}, \%$	3.22	2.20
Магнитная	н структура	1
Поле	0 Тл	5 Тл
Nd:		
μ_z, μ_B	F: 1.147	F: 1.439
Mn/Cr:		
μ_x, μ_B	A: 0.488	A: 0.462
μ_y, μ_B	G: 2.054	G: 1.860
μ_z, μ_B	F: -	F: 1.070
Магнитный R -factor	6.24	6.21

7 ЖЭТ Φ , вып. 4 (10)

Рис. 8. Магнитная фазовая диаграмма системы $NdMn_{1-x}Cr_xO_3$ (P — парамагнитная фаза, AF (A-тип) — антиферромагнитная фаза A-типа, AF (G-тип) — антиферромагнитная фаза G-типа, F — ферромагнитная фаза, SG — спиновое стекло)

G-структуры в орторомбически искаженных перовскитах. Эта компонента не выявляется в нейтронографическом эксперименте, так как она очень мала и направлена перпендикулярно вектору антиферромагнетизма. Антипараллельно этой компоненте вследствие *f*-*d*-обмена упорядочиваются магнитные моменты ионов неодима, магнитный момент которых значительно больше. При температуре меньше 100 К вклад от ионов неодима начинает преобладать над вкладом от 3*d*-ионов и намагниченность в слабых полях становится направленной противоположно внешнему полю. Это обусловлено тем, что анизотропия этого соединения достаточно высока, и в малых полях переориентации магнитных моментов не происходит. Однако приложение больших магнитных полей ведет к переориентации неодимовых моментов по направлению поля. Так как переориентации препятствует f-d-обмен, намагниченность не насыщается в больших полях.

Как мы уже отмечали, магнитные моменты 3d-ионов, вычисленные из нейтронографических измерений, значительно меньше ожидаемых значений в ионной модели, где магнитные моменты должны быть строго локализованы. Можно предположить, что существенная доля магнитных моментов 3d-ионов находится в состоянии спинового стекла и поэтому не дает вклада в когерентное магнитное рассеяние нейтронов. На основании полученных результатов нейтронографических исследований с учетом результатов работы [6] мы построили магнитную фазовую диаграмму твердых растворов NdMn_{1-x}Cr_xO₃ (рис. 8). Эту фазовую диаграмму мы будем интерпретировать, исходя из связи между типом магнитного упорядочения и эффектом Яна-Теллера [13] с учетом результатов работы [19], в которой показано, что твердые растворы манганитов являются химически неоднородными объектами, в которых ионы замещаемого компонента не распределены статистически в масштабах 10–30 Å. Такая химическая неоднородность является внутренним свойством твердых растворов манганитов.

Вследствие наномасштабной неоднородности химического состава в манганитах наблюдается кристаллоструктурное и магнитное фазовое расслоение даже в составах, расположенных достаточно далеко от границы фазовых превращений. Было предпринято множество попыток приписать явление магнитного фазового расслоения процессам неоднородного распределения носителей заряда. Однако до сих пор веских аргументов в пользу электронного фазового расслоения при однородном распределении ионов по кристаллической решетке не обнаружено. Твердые растворы $NdMn_{1-x}Cr_xO_3$ являются диэлектриками во всем концентрационном интервале содержания хрома, поэтому электронное фазовое расслоение не может являться причиной магнитной неоднородности. Соединение NdMnO₃ является орбитально-упорядоченным антиферромагнетиком A-типа с точкой Нееля T = 85 К [18]. При замещении ионов марганца ионами Fe³⁺, $\mathrm{Cr}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Ga}^{3+}$ появляется ярко выраженная ферромагнитная компонента, которая достигает максимума в концентрационном интервале 10–20 %. Этот процесс аналогичен замещению ионов Mn³⁺ на Mn^{4+} в твердых растворах $Nd_{1-x}Ca_xMnO_3$, при котором также возникает ферромагнетизм без изменения основного диэлектрического состояния [18]. Твердые растворы Nd_{1-x}Ca_xMnO₃ являются орбитально-упорядоченными вплоть до концентрации и
онов ${\rm Mn}^{4+},$ равной 25 %, где орбитально-упорядоченная фаза начинает вытесняться зарядово-упорядоченной. Согласно нашим нейтронографическим исследованиям, твердые растворы $NdMn_{1-x}Cr_xO_3$ являются орбитально-упорядоченными вплоть до концентрации ионов хрома x = 0.5. Это означает, что ферромагнитная компонента и кооперативный орбитальный порядок совместимы. Поэтому понять природу ферромагнетизма в манганитах можно только при учете динамической природы эффекта Яна-Теллера. В орбитально-упорядоченных LnMnO₃ (Ln = La-Dy) обменные взаимодействия Mn³⁺-O-Mn³⁺ анизотропны [13].

Рис.9. Магнитная фазовая диаграмма системы $Nd_{0.6}Ca_{0.4}Mn_{1-x}Cr_xO_3$ (P — парамагнитная фаза, CO — зарядовоупорядоченная фаза, AI — антиферромагнитный диэлектрик, FI — ферромагнитный диэлектрик, AF (G-тип) — антиферромагнитная фаза G-типа, SG — спиновое стекло)

В плоскостях, в которых антиферродисторсионно упорядочиваются заполненные d_{z²}-орбитали, это взаимодействие ферромагнитно, а между плоскостями оно антиферромагнитно, как и предсказывают правила Гуденафа-Канамори. При замещении ионов Mn³⁺ на не ян-теллеровские ионы Mn⁴⁺ или Cr³⁺, Ga³⁺ и т. д. статические искажения в ближайших октаэдрах могут не сниматься, однако частота переходов типа d_{z^2} в d_{x^2} или d_{y^2} резко возрастает, что приводит к изотропному ферромагнитному обменному взаимодействию вблизи этих ионов. При увеличении концентрации не ян-теллеровских ионов наступает перколяционный переход, приводящий к появлению дальнего ферромагнитного порядка на фоне сохранения кооперативного орбитального упорядочения. При значительных концентрациях ионов хрома ионы марганца и хрома начинают объединяться в кластеры с избытком одной из компонент. Кластеры, обогащенные ионами хрома, перколируют, и на их основе возникает дальний антиферромагнитный порядок G-типа, присущий хромиту NdCrO₃. В областях, обогащенных ионами марганца, сохраняются орбитальное упорядочение и дальний ферромагнитный порядок. Скорее всего, подобного рода фазовое расслоение имеет двумерный характер распределения в пространстве [20, 21].

Магнитные свойства твердых растворов Nd_{0.6}Ca_{0.4}Mn_{1-x}Cr_xO₃ существенно различаются. На рис. 9 представлена магнитная фазовая диаграмма этих растворов с учетом результатов

нейтронографического исследования для состава $Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O_3$, представленных ранее в данной статье, и измерений намагниченности [7]. Соединение $Nd_{0.6}Ca_{0.4}MnO_3$ является антиферромагнитным зарядово-упорядоченным диэлектриком СЕ-типа с точкой Нееля T = 230 К [7]. Замещение марганца (Mn³⁺) на ионы Cr³⁺ приводит к появлению ферромагнитного металлического состояния, реализующегося в довольно узком концентрационном интервале. Магнитные моменты ионов Cr³⁺ направлены противоположно магнитным моментам ионов марганца [8]. Переход протекает через двухфазное состояние, включающее зарядово-упорядоченные и металлические кластеры. Мы полагаем, что природа магнитного фазового расслоения такая же, как и в диэлектрических твердых растворах $NdMn_{1-x}Cr_xO_3$ это внутренняя химическая неоднородность твердых растворов. С увеличением содержания ионов хрома (x > 0.1) наблюдается обратный переход в диэлектрическое состояние. Это свидетельствует о том, что ионы Cr³⁺ не участвуют в образовании металлического состояния, а наоборот, препятствуют ему. Металлическое состояние обусловлено снятием зарядового упорядочения, вследствие того что ионы Cr³⁺, скорее всего, статистически распределены по 3*d*-подрешетке и отрицательно обменно взаимодействуют с ионами марганца, приводя к ферримагнитному порядку в расположении магнитных моментов в ближайшем окружении. С увеличением концентрации ионов хрома они начинают конгломерироваться в кластеры, внутри которых обменные взаимодействия отрицательны, что приводит к резкому возрастанию относительного количества фрустрированных связей по границе кластеров.

Процесс возрастания количества ионов хрома сопровождается переходом ионов Mn³⁺ в Mn⁴⁺ электронейтральности. вследствие сохранения Обменные взаимодействия между ионами Mn⁴⁺ также антиферромагнитны, что благоприятствует образованию структуры *G*-типа. Вблизи x = 0.5образуется бесконечный магнитный кластер с дальним антиферромагнитным порядком G-типа. При этом магнитные свойства меняются скачкообразно. Температура антиферромагнитного упорядочения достигает 220 К, возрастая более чем в три раза. При $x \approx 0.4$ вклад ионов неодима в поведение температурной зависимости намагниченности был практически незаметен [7], что, возможно, связано с флуктуациями обменных полей на этих ионах. При $x \geq 0.5$ неодимовая подрешетка ферромагнитно упорядочивается противоположно вектору слабого ферромагнетизма Mn/Cr-подрешетки. Магнитное состояние ионов неодима в Nd_{0.6}Ca_{0.4}Mn_{0.5}Cr_{0.5}O₃ коренным образом отличается от магнитного состояния в NdMn_{0.5}Cr_{0.5}O₃, несмотря на наличие в этом соединении ярко выраженной G-компоненты. Скорее всего, это обусловлено тем, что магнитное двухфазное состояние нельзя рассматривать как простую суперпозицию фаз. Обе магнитные фазы, скорее всего, имеют преимущественно двумерный характер реализации в пространстве, что приводит к существенному изменению параметров обменного поля на ионе неодима. Действительно, в составе $NdMn_{0.2}Cr_{0.8}O_3$ обнаружена сильная отрицательная магнитная связь между 3d-подрешеткой и подрешеткой ионов неодима, как и в случае Са-содержащих твердых растворов для состава x = 0.5.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф06МС-021), ГКПНИ «Наноматериалы и нанотехнологии» (задание № 3.03) и European Research Area, Research Infrastructures, контракт № RII3-CT-2003-505925 (NMI3).

ЛИТЕРАТУРА

- K. H. Ahn, X. W. Wu, K. Liu, and C. L. Chien, Phys. Rev. B 54, 15299 (1966).
- Y. Sun, X. Xu, and Y. Zhang, Phys. Rev. B 63, 054404 (2001).
- Y. Sun, X. Xu, L. Zheng, and Y. Zhang, Phys. Rev. B 63, 12317 (1999).
- N. Gayathri, A. K. Raychaudhuri, S. K. Tiwary, R. Gundakaram, A. Arulraj, and C. N. Rao, Phys. Rev. B 56, 1345 (1997).
- J. Blasco, J. Garcia, J. M. de Teresa, M. R. Ibarra, J. Perez, P. A. Algarabel, C. Marquina, and C. Ritter, Phys. Rev. B 55, 8905 (1997).

- 6. И. О. Троянчук, М. В. Бушинский, Н. В. Пушкарев, Н. Ю. Беспалая, ФТТ 46, 1816 (2004).
- И. О. Троянчук, М. В. Бушинский, В. В. Еременко, В. А. Сиренко, Г. Шимчак, ФНТ 28, 61 (2002).
- O. Toulemonde, F. Studera, A. Barnabe, A. Maignan, C. Martin, and B. Raveau, Eur. Phys. J. B 4, 159 (1998).
- J. Deisenhofer, M. Paraskevopoulos, H.-A. K. von Nidda, and A. Loidl, E-print archives, cond-mat/0207708.
- M. B. Phillips, N. M. Sammes, and O. Yamamoto, J. Mater. Sci. 31, 1689 (1996).
- Zh. Yang, L. Ye, and X. Xie, J. Phys.: Condens. Matter 12, 2737 (2000).
- Y. Sun, W. Tong, X. Xu, and Yu. Zhang, Phys. Rev. B 63, 174438 (2001).
- 13. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).
- L. Pi, S. Hebert, C. Yaicle, C. Martin, A. Maignan, and B. Raveau, J. Phys.: Condens. Matt. 15, 2701 (2003).
- I. O. Troyanchuk, D. A. Efimov, H. Szymczak, R. Szymczak, and B. Krzymanska, J. Magn. Magn. Mater. 202, 95 (1999).
- 16. F. Damay, A. Maignan, C. Martin, and B. Raveau, J. Appl. Phys. 82, 1485 (1997).
- 17. И. О. Троянчук, Н. В. Пушкарев, М. В. Бушинский, Е. Гамари-Силе, ФТТ 48, 1244 (2006).
- V. A. Khomchenko, I. O. Troyanchuk, A. I. Kurbakov, H. Gamari-Seale, V. V. Eremenko, H. Szymczak, and R. Szymczak, J. Magn. Magn. Mater. 288, 224 (2005).
- 19. T. Shibata, B. Bunker, J. F. Mitchell, and P. Schiffer, Phys. Rev. Lett. 88, 207205 (2002).
- 20. Ch. Simon, S. Mercone, N. Guiblin, C. Martin, A. Brulet, and G. Andre, Phys. Rev. Lett. 89, 207202 (2002).
- 21. S. Mercone, V. Hardy, C. Martin, Ch. Simon, D. Saurel, and A. Brulet, Phys. Rev. B 68, 094422 (2003).