АНАЛОГ СООТНОШЕНИЯ КЛАУЗИУСА-МОССОТТИ ДЛЯ ПЛОСКОГО МОНОСЛОЯ ЧАСТИЦ

М. И. Рязанов, А. А. Тищенко*

Московский инженерно-физический институт (государственный университет) 115409, Москва, Россия

Поступила в редакцию 24 марта 2006 г.

Рассмотрены диэлектрические свойства плоского монослоя молекул. Диэлектрическая проницаемость монослоя выражена через поляризуемость молекул и характеристики монослоя аналогично известному соотношению Клаузиуса – Моссотти для трехмерной среды. Рассчитана функция отклика монослоя на поле внешних источников. Рассмотрен также случай плоского слоя наночастиц. Решение получено в рамках теории локального поля.

PACS: 03.50.De, 78.67.-n

1. ВВЕДЕНИЕ

Свойства монослоев молекул на поверхностях конденсированных сред исследовались многими авторами [1–9]. Существование монослоя молекул поверхности твердого тела влияет на спектр электромагнитных поверхностных волн [10], на отражение света поверхностью [11, 12], что важно при исследовании поверхности твердых тел методами ближнепольной оптики и эллипсометрии.

Особенно сильно влияние адсорбированного монослоя молекул на свойства поверхности для полей с частотой, близкой к резонансным для монослоя частотам или для полей с частотой, обращающей в единицу диэлектрическую проницаемость подложки. В этих случаях влиянием подложки на монослой можно в первом приближении пренебречь, рассматривая изолированный монослой молекул.

Феноменологическое описание двумерного слоя на границе двух сред было предложено в работе [13]. В работе [14] была найдена связь между локальным полем (авторы называют его «ближним» [15,16]) и полем падающей на монослой внешней плоской волны, но соотношение между поляризацией пленки и макроскопическим полем получено не было.

Представляет интерес вычисление диэлектрических характеристик изолированного монослоя молекул как функций поляризуемости молекул и их взаимного расположения аналогично известному соотношению Клаузиуса – Моссотти для трехмерной среды. Ниже проведен микроскопический расчет электродинамических соотношений для монослоя и получены уравнения, связывающие макроскопические и локальное поля с полем внешних источников в длинноволновом приближении.

2. МИКРОСКОПИЧЕСКОЕ И ЛОКАЛЬНОЕ ПОЛЕ В ВЕЩЕСТВЕ

Как известно, среднее действующее на молекулу поле, называемое обычно локальным полем, не совпадает со средним макроскопическим полем, которое получается усреднением решения микроскопических уравнений Максвелла по квантовомеханическому состоянию атомных электронов и по распределению теплового движения ядер.

Источник, создающий в вакууме поле \mathbf{E}^{0} , в присутствии монослоя создает микроскопическое поле \mathbf{E}^{mic} , отличное от \mathbf{E}^{0} . Соотношения между первичным полем \mathbf{E}^{0} , макроскопическим полем \mathbf{E} и локальным полем \mathbf{E}^{loc} , приводящие к формуле Клаузиуса – Моссотти в трехмерной среде, получаются при учете бинарной функции распределения молекул [17].

Действие на молекулу электромагнитного поля, длина волны которого намного больше, чем межмолекулярные расстояния, можно рассматривать в ди-

^{*}E-mail: tishchenko@dpt39.mephi.ru

польном приближении. Тогда фурье-образы плотности микротоков в среде $\mathbf{j}^{mic}(\mathbf{R},\omega)$, микроскопического поля $\mathbf{E}^{mic}(\mathbf{R},\omega)$ и поляризуемость молекулы $\alpha_{ij}(\omega)$ связаны соотношением

$$j_i^{mic}(\mathbf{r},\omega) = -i\omega \alpha_{ij}(\omega) \sum_b E_j^{mic}(\mathbf{R}_b,\omega) \delta(\mathbf{r}-\mathbf{R}_b).$$

Микроскопическое поле в среде складывается из первичного поля источника, не взаимодействовавшего с веществом, и из вторичных полей, созданных каждой молекулой вещества. Из уравнений Максвелла следует уравнение для фурье-образа микроскопического поля в точке **г**:

$$E_i^{mic}(\mathbf{r},\omega) = E_i^0(\mathbf{r},\omega) + \frac{\alpha_{ik}(\omega)}{2\pi^2} \int d^3 l \, S_{kj}(\mathbf{l},\omega) \times \\ \times \sum_b E_j^{mic}(\mathbf{R}_b,\omega) \exp\left\{i\mathbf{l}\cdot(\mathbf{r}-\mathbf{R}_b)\right\}, \quad (1)$$

где суммирование проводится по координатам всех молекул \mathbf{R}_b и

$$S_{kj}(\mathbf{l},\omega) = \frac{(\omega/c)^2 \delta_{kj} - l_k l_j}{l^2 - (\omega/c)^2 - i0}.$$
(2)

Правило обхода полюса можно установить, например, из существования бесконечно малого поглощения.

Длинноволновое поле, действующее на молекулу вещества, складывается из полей многих молекул, и его точное значение близко к его усредненному по положениям остальных молекул значению, называемому локальным полем. Пусть $w(\mathbf{R}_{ba})$ — плотность вероятности найти *b*-ю молекулу на расстоянии $\mathbf{R}_{ba} = \mathbf{R}_b - \mathbf{R}_a$ относительно *a*-й. Заменим в первом приближении точное значение действующего на молекулу поля $\mathbf{E}^{mic}(\mathbf{R}_a, \omega)$ под знаком суммы в (1) локальным полем $\mathbf{E}^{loc}(\mathbf{R}_a, \omega)$:

$$\mathbf{E}_{i}^{loc}(\mathbf{R}_{a}) = \int d^{3}R_{b_{1}a} \cdots d^{3}R_{b_{N-1}a}w(\mathbf{R}_{b_{1}a}) \cdots$$
$$\cdots w(\mathbf{R}_{b_{N-1}a})\mathbf{E}_{i}^{mic}(\mathbf{R}_{a};\mathbf{R}_{b_{1}},\cdots,\mathbf{R}_{b_{N-1}}). \quad (3)$$

Локальное поле не зависит от координат соседних молекул, однако зависимость от структуры вещества сохраняется — она определяется функцией $w(\mathbf{R}_{ba})$. Уравнение (1) после указанной замены принимает вид

$$E_{i}^{mic}(\mathbf{r},\omega) = E_{i}^{0}(\mathbf{r},\omega) + \frac{\alpha_{ik}(\omega)}{2\pi^{2}} \int d^{3}l S_{kj}(\mathbf{l},\omega) \times \sum_{b} E_{j}^{loc}(\mathbf{R}_{b},\omega) \exp\left\{i\mathbf{l}\cdot(\mathbf{r}-\mathbf{R}_{b})\right\}.$$
 (4)

Это уравнение определяет микроскопическое поле в произвольной точке пространства через поле внешних по отношению к веществу зарядов $E_i^0(\mathbf{r},\omega)$ и сумму полей от всех молекул вещества. Оно также позволяет установить связь между макроскопическим полем, локальным полем и полем внешних источников в любой точке в зависимости от свойств среды [18–23]. Так, для однородной изотропной бесконечной среды данный метод позволяет получить как обычную формулу Клаузиуса – Моссотти

$$\varepsilon(\omega) = \frac{1 + (8\pi/3)n_0\alpha(\omega)}{1 - (4\pi/3)n_0\alpha(\omega)},$$
(5)

где n_0 — число молекул с поляризуемостью $\alpha(\omega)$ в единице объема, так и поправки к ней, связанные с кристалличностью среды [18,21], с неоднородностью среды [19], с близостью поверхности [20], с многокомпонентностью среды [23].

3. ЛОКАЛЬНОЕ ПОЛЕ В МОНОСЛОЕ

Пусть в плоскости z = 0 расположен монослой, состоящий из молекул с поляризуемостью

$$\alpha_{ij}(\omega) = \alpha_{\parallel}(\omega)(\delta_{ij} - e_i e_j) + \alpha_{\perp}(\omega)e_i e_j,$$

а толщина монослоя b меньше среднего расстояния $n^{-1/2}$ между молекулами в плоскости слоя. Здесь n = N/S — поверхностная плотность числа молекул пленки, S — площадь пленки. Тот факт, что молекулы имеют тензорную поляризуемость, может как отражать присущие этим молекулам свойства, так и учитывать возможное влияние подложки или иных факторов, не относящихся к электромагнитному взаимодействию молекул монопленки между собой и с полем внешних источников.

Микроскопическое поле, действующее на *a*-ю молекулу слоя, имеет вид (4), где теперь суммирование проводится по всем молекулам слоя. Усреднение (4) по координатам всех молекул слоя, кроме рассматриваемой, дает уравнение для локального поля

$$E_{i}^{loc}(\mathbf{R}_{a},\omega) - E_{i}^{0}(\mathbf{R}_{a},\omega) = \frac{\alpha_{ik}(\omega)}{2\pi^{2}} \times \int d^{3}l S_{kj}(\mathbf{l},\omega) \int d^{3}R_{ba}Nw(\mathbf{R}_{ba})E_{j}^{loc}(\mathbf{R}_{a} + \mathbf{R}_{ba},\omega) \times \exp\left\{-i\mathbf{l}\cdot\mathbf{R}_{ba}\right\}.$$
 (6)

Если толщина слоя мала по сравнению с характерными размерами задачи, то плотность вероятности распределения молекул относительно данной *a*-й молекулы можно представить как

$$w(X_{ba}, Y_{ba}, Z_a + Z_{ba}) = \frac{1}{S} \eta(Z_a + Z_{ba}) \left[1 - f(X_{ba}, Y_{ba})\right], \quad (7)$$

где $\eta(Z_b)$ — плотность распределения молекул пленки по оси z.

Поскольку корреляция расположения далеких молекул отсутствует, имеем $f(\mathbf{R}_{\parallel}) = 0$ при $R_{\parallel} \gg \gg n^{-1/2}$, т. е. функция $f(\mathbf{R}_{\parallel})$ отлична от нуля лишь на расстояниях порядка межмолекулярных и можно вынести во втором слагаемом в (6) локальное поле за знак интеграла. Перейдя к фурье-образам по координатам X и Y в получившемся уравнении, нетрудно получить

$$E_i^0(\mathbf{q}, z, \omega) = A_{ij}(\mathbf{q}, z, \omega) E_j^{loc}(\mathbf{q}, z, \omega), \qquad (8)$$

где

$$A_{ij}(\mathbf{q}, z, \omega) = \delta_{ij} - 4\pi n \alpha_{ik}(\omega) \int d^3 l \, S_{kj}(\mathbf{l}, \omega) \eta(l_z) \times \\ \times \left[\delta(\mathbf{l}_{\parallel} - \mathbf{q}) - f(\mathbf{l}_{\parallel} - \mathbf{q}) \right] \exp\{i l_z z\}, \quad (9)$$

 \mathbf{l}_{\parallel} — компонента вектора $\mathbf{l} = (\mathbf{l}_{\parallel}, l_z \mathbf{e})$ в плоскости монослоя (\mathbf{e} — единичный вектор нормали к плоскости монослоя). Среднее макроскопическое поле можно найти, усреднив (4) по координатам всех молекул вещества,

$$E_i(\mathbf{r},\omega) = E_i^0(\mathbf{r},\omega) + + 4\pi \int \frac{d^3r'}{(2\pi)^3} S_{ij}(-\mathbf{r}',\omega) P_j(\mathbf{r}+\mathbf{r}'), \quad (10)$$

где

$$S_{ij}(-\mathbf{r}',\omega) = \int d^3l \, S_{ij}(\mathbf{l},\omega) \exp\{-i\mathbf{l}\cdot\mathbf{r}'\},\,$$

а поляризация монослоя связана с локальным полем соотношением

$$P_{i}(\mathbf{r},\omega) = \frac{i}{\omega} \left\langle j_{i}^{mic}(\mathbf{r},\omega) \right\rangle =$$

$$= \left\langle \sum_{b} \alpha_{ij}(\omega) E_{j}^{loc}(\mathbf{R}_{b},\omega) \delta(\mathbf{r}-\mathbf{R}_{b}) \right\rangle =$$

$$= \alpha_{ij}(\omega) E_{j}^{loc}(\mathbf{r},\omega) \sum_{b} \iint dX_{b} dY_{b} \frac{1}{S} \times$$

$$\times \int dZ_{b} \eta(Z_{b}) \delta(\mathbf{r}-\mathbf{R}_{b}) =$$

$$= \eta(Z) n \alpha_{ij}(\omega) E_{j}^{loc}(\mathbf{r},\omega). \quad (11)$$

Угловые скобки $\langle \cdots \rangle$ означают усреднение по положениям молекул монопленки. Исключив из выражения (10) первичное поле $E_i^0(\mathbf{r}, \omega)$ с помощью (8), получаем выражение, связывающее локальное поле и среднее макроскопическое поле в монослое:

$$t_{ij}(\mathbf{q}, z, \omega) E_j^{loc}(\mathbf{q}, z, \omega) = E_j(\mathbf{q}, z, \omega), \qquad (12)$$

где тензор t_{ij} определен формулой

$$t_{ij}(\mathbf{q}, z, \omega) = \delta_{ij} + 4\pi n \alpha_{ik}(\omega) \times \int d^3 l \, S_{kj}(\mathbf{l}, \omega) \eta(l_z) f(\mathbf{l}_{\parallel} - \mathbf{q}) \exp\{i l_z z\}.$$
(13)

Интеграл по l в (13) определяется функциями $\eta(l_z)$ и $f(\mathbf{l}_{\parallel} - \mathbf{q})$, отличными от нуля в области, где их аргумент не превышает $n^{1/2}$ по порядку величины. Рассмотрим область оптических или меньших частот, где

$$\omega/c \ll n^{1/2}, \quad |\mathbf{q}| \ll n^{1/2}.$$
 (14)

Второе из неравенств (14) отвечает пренебрежению пространственной дисперсией. В таком случае (13) приобретает вид

$$t_{ij}(\mathbf{q}, z, \omega) = t_{ij}(z, \omega) = \delta_{ij} - 4\pi n \alpha_{ik}(\omega) \times \int d^3 l f(\mathbf{l}_{\parallel}) \eta(l_z) \exp\{i l_z z\} (l_k l_j / l^2).$$
(15)

Интеграл в правой части (15) представляет собой симметричный тензор, зависящий только от одного вектора — единичного вектора е нормали к поверхности монослоя. Поэтому этот интеграл может быть представлен в виде суммы двух слагаемых, пропорциональных тензорам δ_{kj} и $e_k e_j$:

$$\int d^3l f(\mathbf{l}_{\parallel})\eta(l_z) \exp\{il_z z\} \frac{l_k l_j}{l^2} = c\delta_{kj} + be_k e_j.$$
(16)

Свертка тензора (16) с δ_{kj} дает соотношение

$$3c + b = \int d^3 l f(\mathbf{l}_{\parallel}) \eta(l_z) \exp\{i l_z z\} = \eta(z), \quad (17)$$

где учтено, что вероятность неограниченного сближения молекул в пленке пренебрежимо мала, т.е.

$$w(0) \propto \eta(0) \left(1 - f(0)\right) = 0$$

и поэтому

$$\int d^2 l_{\parallel} f(\mathbf{l}_{\parallel}) = f(0) = 1$$

Свертка (16) с $e_k e_j$ дает

$$c + b = \int d^3 l f(\mathbf{l}_{\parallel}) \eta(l_z) \exp\{i l_z z\} \frac{l_z^2}{l^2}.$$
 (18)

)

Поскольку толщина монослоя меньше всех характерных длин задачи, функция распределения молекул поперек монослоя $\eta(z)$ ведет себя более резко, чем остальные стоящие под интегралом (18) функции. Тогда под интегралом можно в первом приближении заменить $\eta(z)$ дельта-функцией, после чего интегрирование по dl_z проводится элементарно. Получаем

$$c + b = \eta(z) - \frac{1}{2}\xi(z),$$
 (19)

где

$$\xi(z) = \int d^2 l_{\parallel} f(\mathbf{l}_{\parallel}) l_{\parallel} \exp\{-|z|l_{\parallel}\}.$$
 (20)

Получив коэффициенты c и b из (17) и (18), можно представить (15) в виде

$$t_{ij}(z,\omega) = \left[1 - \pi n \alpha_{\parallel}(\omega)\xi(z)\right] (\delta_{ij} - e_i e_j) + \left[1 + 2\pi n \alpha_{\perp}(\omega) \left(\xi(z) - 2\eta(z)\right)\right] e_i e_j.$$
(21)

Тензор $A_{ij}(\mathbf{q},z,\omega)$ удобно представить в виде разности:

$$A_{ij}(\mathbf{q}, z, \omega) = t_{ij}(\mathbf{q}, z, \omega) - 4\pi n \alpha_{ik}(\omega) \times \int_{-\infty}^{\infty} dl_z S_{kj}(\mathbf{q}, l_z, \omega) \eta(l_z) \exp\{i l_z z\}.$$
 (22)

Во втором слагаемом наибольший вклад в интеграл вносят

$$(l_z)_{eff} \sim b^{-1},$$

где *b* — характерная толщина монослоя. Поэтому

$$(l_z)_{eff} \gg \omega/c, \quad (l_z)_{eff} \gg |\mathbf{q}|,$$

так что

$$S_{kj}(\mathbf{q}, l_z, \omega) = \frac{(\omega/c)^2 \delta_{kj} - (\mathbf{q} + l_z \mathbf{e})_k (\mathbf{q} + l_z \mathbf{e})_j}{l_z^2 + \mathbf{q}^2 - (\omega/c)^2 - i0} \approx -e_k e_j. \quad (23)$$

Тогда (22) принимает вид

$$A_{ij}(z,\omega) = \begin{bmatrix} 1 - \pi n\alpha_{\parallel}(\omega)\xi(z) \end{bmatrix} (\delta_{ij} - e_i e_j) + \\ + \begin{bmatrix} 1 + 2\pi n\alpha_{\perp}(\omega)\xi(z) \end{bmatrix} e_i e_j. \quad (24)$$

Отметим, что явный вид функций отклика A_{ij} и t_{ij} зависит от фактора $\xi(z)$, который в свою очередь определяется структурой монослоя, поскольку функция $f(\mathbf{l}_{\parallel})$ является частью функции распределения молекул относительно выделенной молекулы. При вычислении выражений (21) и (24) функция $\eta(z)$ под интегралом была приближенно заменена

дельта-функцией. Не представляет трудностей провести вычисления и при заданном явном виде $\eta(z)$. Например, если распределение молекул в поперечном к поверхности монослоя направлении описывается распределением Гаусса,

$$\eta(z) = (4\pi b^2)^{-1/2} \exp\left\{-\frac{z^2}{4b^2}\right\},\tag{25}$$

то нетрудно видеть, что явный вид выражений (21) и (24) остается тем же, только вместо $\xi(z)$ из (20) возникает функция $\xi'(z)$:

$$\xi'(z) = \int d^2 l_{\parallel} f(\mathbf{l}_{\parallel}) l_{\parallel} \exp\{b^2 l_{\parallel}^2\} \left\{ \operatorname{ch}(l_{\parallel} z) + \frac{1}{2} \left[\exp\{-l_{\parallel} z\} \operatorname{erf}(\chi_{-}) - \exp\{l_{\parallel} z\} \operatorname{erf}(\chi_{+}) \right] \right\}, \quad (26)$$

где

$$\chi_{\pm} = \frac{z}{2b} \pm bl_{\parallel}, \quad \operatorname{erf}(\chi_{\pm}) = \frac{2}{\sqrt{\pi}} \int_{0}^{\chi_{\pm}} \exp\{-t^2\} dt.$$

Если толщина монослоя намного меньше межмолекулярных расстояний в плоскости монослоя, то можно считать, что

$$b \ll l_{\parallel}^{-1} \sim n^{-1/2},$$

и выражение (26) упрощается:

$$\xi'(z) = \int d^2 l_{\parallel} f(\mathbf{l}_{\parallel}) l_{\parallel} \left\{ \operatorname{ch}(l_{\parallel}z) - \operatorname{erf}\left(\frac{z}{2b}\right) \operatorname{sh}(l_{\parallel}z) \right\}.$$
(27)

Как показывает численный анализ, выражения (20) и (27) в рамках использованных при их выводе приближений практически совпадают.

4. ДИЭЛЕКТРИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ МОНОСЛОЯ И ФУНКЦИЯ ОТКЛИКА НА ПОЛЕ ВНЕШНИХ ИСТОЧНИКОВ

Тензоры $t_{ij}(z,\omega)$ и $A_{ij}(z,\omega)$ определяют две различные функции отклика [24]. Тензор t_{ij}^{-1} дает связь между локальным полем и макроскопическим, поэтому он определяет диэлектрические свойства монослоя при распространении по монослою собственных мод этой квазидвумерной системы. С этой функцией отклика прямо связаны проводимость монослоя

$$\sigma_{ij}(z,\omega) = -i\omega n\alpha_{ik}(\omega)\eta(z)t_{kj}^{-1}(z,\omega)$$
(28)

(где $t_{ij}^{-1}(z,\omega)$ — тензор, обратный к (21)), диэлектрическая восприимчивость монослоя

$$\chi_{ij}(z,\omega) = n\alpha_{ik}(\omega)\eta(z)t_{kj}^{-1}(z,\omega)$$
(29)

и диэлектрическая проницаемость монослоя

$$\varepsilon_{ij}(z,\omega) = \delta_{ij} + 4\pi n\alpha_{ik}(\omega)\eta(z)t_{kj}^{-1}(z,\omega).$$
(30)

Последнюю можно представить в виде

$$\varepsilon_{ij}(z,\omega) = \varepsilon_{\parallel}(z,\omega)(\delta_{ij} - e_i e_j) + \varepsilon_{\perp}(z,\omega)e_i e_j, \quad (31)$$

где ε_{\parallel} и ε_{\perp} — продольная и поперечная по отношению к плоскости монослоя главные компоненты тензора диэлектрической проницаемости:

$$\varepsilon_{\parallel}(z,\omega) = 1 + \frac{4\pi n\alpha_{\parallel}(\omega)\eta(z)}{1 - \pi n\alpha_{\parallel}(\omega)\xi(z)},$$

$$\varepsilon_{\perp}(z,\omega) = \frac{1 + 2\pi n\alpha_{\perp}(\omega)\xi(z)}{1 + 2\pi n\alpha_{\perp}(\omega)\left(\xi(z) - 2\eta(z)\right)}.$$
(32)

Тензор A_{ij}^{-1} определяет связь локального поля \mathbf{E}^{loc} с полем внешних источников \mathbf{E}^{0} :

$$E_{i}^{loc}(\mathbf{r},\omega) = A_{ij}^{-1}(z,\omega)E_{j}^{0}(\mathbf{r},\omega) = \\ = \left(\frac{\delta_{ij} - e_{i}e_{j}}{1 - \pi n\alpha_{\parallel}(\omega)\xi(z)} + \frac{e_{i}e_{j}}{1 + 2\pi n\alpha_{\perp}(\omega)\xi(z)}\right) \times \\ \times E_{i}^{0}(\mathbf{r},\omega). \quad (33)$$

Отличие \mathbf{E}^{loc} от \mathbf{E}^0 определяется вкладом в среднее действующее на молекулу поле, кроме поля внешних источников \mathbf{E}^0 еще и суммы полей, действующих на данную молекулу со стороны всех остальных молекул монослоя.

Формула (31) с учетом (32) является аналогом известной формулы Клаузиуса-Моссотти для квазидвумерной системы, представляющей собой монослой молекул. Поперечное к плоскости монослоя распределение молекул определяется функцией $\eta(z)$. Распределение молекул в плоскости монослоя определяется параметром $\xi(z)$ (см., например, формулу (20)). Этот интегральный параметр характеризует структуру монослоя. Его можно вычислить, если знать функцию f(X, Y), определяющую величину и форму свободной площадки вблизи молекулы монослоя. Функция f(X, Y) может быть вычислена аналитически или измерена для конкретного монослоя, например, по результатам рентгеноструктурного анализа. Однако можно рассматривать величину $\xi(z)$ и как феноменологический параметр. Для конкретного образца монопленки он может быть измерен экспериментально, например, по интенсивно-

4 ЖЭТФ, вып. 4 (10)

сти переходного излучения от монослоя. Если монослой находится на подложке, то, чтобы исключить влияние подложки, измерение переходного излучения нужно проводить либо на частотах, обращающих в единицу диэлектрическую проницаемость подложки, либо на резонансных для монослоя частотах. В этих случаях монослой будет давать определяющий вклад в переходное излучение. Спектрально-угловые характеристики переходного излучения от монослоя с дельта-функционным распределением по оси z были рассчитаны в работе [25].

Тензорная структура функций отклика t_{ij}^{-1} и A_{ij}^{-1} обусловлена наличием выделенного направления вдоль вектора е, являющегося нормалью к монослою. Их зависимость от z возникает благодаря распределению молекул монослоя по оси z. Характерные масштабы изменения функции $\eta(z)$ выше считались намного меньшими всех характерных длин задачи. Несмотря на резкость распределения по оси z, описание остается макроскопическим, так как макроскопическое усреднение проводится по квантовомеханическому электронному состоянию и по флуктуациям расположения молекул, так что усредненные величины могут изменяться в пространстве достаточно резко [24, 26].

Знаменатели в выражениях (32), (33) не обращаются в нуль, поскольку поляризуемость молекул является комплексной величиной.

5. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ПЛОСКОГО СЛОЯ НАНОЧАСТИЦ

Полученные выражения справедливы и для монослоя, состоящего из искусственных объектов. Рассматривают монослои, состоящие как из диэлектрических [27–29], так и из металлических частиц [30]. Для примера рассмотрим в качестве частиц маленькие шарики с радиусом

$$R < \frac{\lambda}{10\sqrt{\varepsilon_0}} \,, \tag{34}$$

где λ — длина волны излучения, а ε_0 — диэлектрическая проницаемость материала наночастицы. Как известно из теории рассеяния, при выполнении условия (34) частица взаимодействует с набором падающих на нее плоских волн как электрический диполь с поляризуемостью $\alpha(\omega)$, прямо пропорциональной объему частицы [22, 31]:

$$\alpha(\omega) = R^3 \frac{\varepsilon_0(\omega) - 1}{\varepsilon_0(\omega) + 2}.$$
 (35)

Эта формула получается в рамках известной теории Рэлея и, несмотря на внешнюю простоту, хорошо описывает (см. обзор [32]) поляризуемость маленьких частиц с комплексными значениями диэлектрической проницаемости

$$\varepsilon_0(\omega) = \varepsilon_0'(\omega) + i\varepsilon_0''(\omega)$$

Вообще говоря, величина $\alpha(\omega)$ комплексна. Рассмотрим частоту ω_1 , такую что выполняется условие

$$\operatorname{Re}\left\{\alpha^{-1}(\omega_1)\right\} = \pi n\xi(z). \tag{36}$$

На частоте ω_1 продольная часть диэлектрической проницаемости $\varepsilon_{\parallel}(z,\omega)$ по формуле (32) принимает вид

$$\varepsilon_{\parallel}(z,\omega_1) = 1 + 4\pi i n \eta(z) \frac{|\alpha(\omega_1)|^2}{\mathrm{Im}\{\alpha(\omega_1)\}}.$$
 (37)

Рассмотрим металлические частицы с проводимостью σ_0 . В рассматриваемом длинноволновом приближении для металлов с высокой проводимостью

$$\varepsilon_0'' \approx 4\pi\sigma_0/\omega \gg \varepsilon_0',$$

поэтому

$$\operatorname{Re}\{\alpha(\omega_{1})\} = R^{3} \frac{3}{4\pi} \gg \operatorname{Im}\{\alpha(\omega_{1})\} = R^{3} \frac{9}{(4\pi)^{2}} \frac{\omega_{1}}{\sigma_{0}}.$$
 (38)

Формула (37) с учетом (38) запишется как

$$\varepsilon_{\parallel}(z,\omega_1) \approx 1 + 4\pi i n \eta(z) R^3 \frac{\sigma_0}{\omega_1}.$$
 (39)

С другой стороны, условие (36) принимает вид

$$\frac{4}{3R^3} = n\xi(z). \tag{40}$$

Функцию $\xi(z)$ можно грубо оценить из формулы (20) следующим образом. Подынтегральная функция в (20) имеет характерный масштаб изменения $n^{1/2}$. Поскольку интеграл в (20) по размерности равен $n^{1/2}$, по порядку величины

$$\xi(0) \sim n^{1/2}.$$

Поскольку $n \approx d^{-2}$, где d — характерное расстояние между наночастицами в монослое, условие (36) эквивалентно

$$d \approx R.$$
 (41)

Иными словами, резонанс в монослое наночастиц для продольных к монослою компонент функции отклика возможен, когда расстояние между наночастицами примерно равно их размерам. Из выражения (25) возьмем для оценки

$$\eta(0) = (4\pi b^2)^{-1/2}.$$

Плотность n частиц размера R, расположенных на расстоянии d = R друг от друга, равна

$$n \approx (2R)^{-2}$$

В таком случае получаем

$$\varepsilon_{\parallel}(0,\omega_1) \approx 1 + i \frac{\sqrt{\pi}}{2} \frac{R}{b} \frac{\sigma_0}{\omega_1}.$$
 (42)

Взяв для оценки численные значения $\sigma_0 \sim 10^{17}$, R = 30 нм и b = R, видим, что при выполнении резонансного условия (36) действительная часть $\varepsilon(0, \omega_1)$ равна единице, в то время как мнимая часть $\varepsilon(0, \omega_1)$ может существенно превышать единицу. При этом с ростом расстояния между наночастицами в плоскости монослоя мнимая часть диэлектрической проницаемости уменьшается. Для того чтобы выполнялось условие (34), необходимо рассматривать излучение на длинах волн, превышающих $10R\sqrt{\varepsilon_0}$, что при взятых параметрах есть приблизительно 6 мкм, т.е. ближнее инфракрасное излучение. Для того чтобы наблюдать эффект в оптическом диапазоне частот, нужно брать наночастицы с размерами в несколько нанометров. Однако в этом случае на поляризуемость наночастиц сильное влияние может оказывать эффект квантования уровней электронов проводимости, связанный с конечностью размеров частицы [32-34].

Говоря о наночастицах, следует иметь в виду, что при некоторых условиях магнитная поляризуемость может оказаться много больше, чем электрическая [31, 32], поэтому описание электромагнитных свойств монослоя наночастиц может потребовать введения магнитной проницаемости.

В общем случае произвольного соотношения между длиной волны и радиусом частицы можно пользоваться результатами численных расчетов по теории Ми.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В настоящей работе получен аналог формулы Клаузиуса-Моссотти для монослоя (см. (31), (32)), устанавливающей связь между микроскопическими и макроскопическими свойствами двумерной системы. Диэлектрические свойства монослоя определяются функцией t_{ij}^{-1} , связывающей локальное поле с макроскопическим. Вычислена также функция отклика монослоя на поле внешних источников A_{ij}^{-1} , определяющая связь между локальным полем и произвольным полем внешних источников. Результаты получены для аморфного плоского монослоя, причем учтена функция распределения частиц в направлении, поперечном к плоскости слоя. Эффектами пространственной дисперсии пренебрегалось. Из-за того что в задаче есть выделенное направление нормали к плоскости монослоя, функции t_{ij}^{-1} и A_{ij}^{-1} являются тензорами второго ранга. Продольные по отношению к плоскости монослоя компоненты тензоров t_{ij}^{-1} и A_{ij}^{-1} совпадают, в то время как поперечные различны, что нетрудно видеть из сравнения знаменателей выражений (32) и (33).

Как показано в работе [17], эффекты локального поля обусловлены отличием парной корреляционной функции частиц от ее значения в идеальном газе. Это учитывается в использованном выше подходе, где локальное поле получается естественным образом в результате решения уравнений Максвелла с автоматическим учетом как кулоновских, так и запаздывающих взаимодействий.

Как известно, эффекты локального поля сильно сказываются в нелинейных оптических явлениях [36, 37]. Учет эффектов локального поля при вычислении функций отклика монослоя t_{ij}^{-1} и A_{ij}^{-1} открывает возможность анализа нелинейных оптических свойств монослоев, которые в последнее время начинают привлекать внимание исследователей [3, 35].

Следует отметить, что в частном случае сферически-симметричных молекул, расположенных строго в плоскости z = 0, явный вид функции $A_{ij}^{-1}(z, \omega)$ (33) качественно совпадает с выражениями (2.10) из работы [14]. Авторы [14] используют усовершенствованный метод сферы Лоренца, в котором, по существу, предлагается искусственно выбранная модель для парной корреляционной функции. Существование в настоящее время возможности измерения парной корреляционной функции по рассеянию рентгеновских лучей позволяет обойтись и без моделирования этой функции.

Полученные нами результаты являются достаточно общими и могут, с нашей точки зрения, представлять интерес в различных областях физики. Например, функция t_{ij}^{-1} и определяемые через нее макроскопические характеристики монослоя частиц могут быть полезны для анализа прошедших и отраженных монослоем электромагнитных волн, а также для анализа спектра поверхностных волн. Функция A_{ij}^{-1} позволяет выразить поле, действующее на частицу монослоя, через параметры внешних источников и микроскопические свойства отдельных частиц монослоя с учетом их взаимного расположения. Это позволяет, в соответствии с выражением (4), анализировать микроскопическую структуру электромагнитного поля как в волновой, так и в ближней зонах. Последнее обстоятельство имеет важное значение для ближнепольной оптики. С другой стороны, знание связи между действующим на частицы слоя полем и полем внешних источников играет решающую роль для расчета характеристик электромагнитных излучений, возникающих при пролете заряженных частиц и их пучков сквозь монослой или вблизи него.

ЛИТЕРАТУРА

- D. M. Taylor and G. F. Bayes, Phys. Rev. E 49, 1439 (1994).
- C.-X. Wu and M. Iwamoto, Thin Solid Films 327–329, 395 (1998).
- A. V. Zakharov and M. Iwamoto, Phys. Rev. E 66, 061605 (2002).
- 4. Л. М. Блинов, УФН 155, 443 (1988).
- J. Oviedo, D. R. Bowler, and M. J. Gillan, Surface Science 515, 483 (2002).
- J. R. Power and P. Weightman, Phys. Rev. B 58, 10532 (1998).
- A. Abdeghani, S. Hleli, and K. Cherif, Mat. Lett. 56, 1054 (2002).
- D. Vuillaume and S. Lenfant, Microelectronic Engineering 70, 539 (2003).
- A. Fang, H. T. Ng, and S. F. Y. Li, Biosensors and Bioelectronics 19, 43 (2003).
- I. V. Baryakhtar, Y. V. Demidenko, S. V. Kriuchenko, and V. Z. Lozovskii, Surface Science 323, 142 (1995).
- J. K. Power, T. Farrel, P. Gerber et al., Surf. Sci. 372, 83 (1997).
- 12. В. З. Лозовский, Опт. и спектр. 65, 1373 (1988).
- 13. K. I. Golden and G. Kalman, Phys. Rev. B 45, 5834 (1992).
- 14. О. Н. Гадомский, К. В. Крутицкий, И. В. Гадомская, Опт. и спектр. 67, 780 (1998).
- 15. О. Н. Гадомский, УФН 170, 1145 (2000).

- **16.** К. В. Крутицкий, С. В. Сухов, Опт. и спектр. **88**, 827 (2000).
- 17. О. В. Долгов, Е. Г. Максимов, УФН 135, 441 (1981).
- **18**. М. И. Рязанов, ЖЭТФ **103**, 1840 (1993).
- 19. М. И. Рязанов, ЖЭТФ 108, 1778 (1995).
- 20. М. И. Рязанов, ЖЭТФ 110, 959 (1996).
- 21. V. M. Dubovik and M. I. Ryazanov, Laser Phys. 8, 1218 (1998).
- 22. М. И. Рязанов, Электродинамика конденсированного вещества, Наука, Москва (1984).
- 23. V. M. Dubovik and M. I. Ryazanov, Laser Phys. 14, 1059 (2004).
- 24. Ю. А. Ильинский, Л. В. Келдыш, Взаимодействие электромагнитного излучения с веществом, Изд-во МГУ, Москва (1989).
- 25. M. I. Ryazanov and A. A. Tishchenko, Laser Phys. 12, 1442 (2002).
- 26. В. Л. Гинзбург, Теоретическая физика и астрофизика. Дополнительные главы, Наука, Москва (1981).
- 27. K. Ohtaka G. Suda, S. Nagano et al., Phys. Rev. B 61, 5267 (2000).

- 28. Y. Kurokawa, H. Miyazaki, and Y. Jimba, Phys. Rev. B 69, 155117 (2004).
- **29**. В. А. Лойко, А. А. Мискевич, Опт. и спектр. **98**, 67 (2005).
- 30. F. Silly, A. O. Gusev, A. Taleb et al., Phys. Rev. Lett. 84, 5840 (2000).
- Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1992).
- 32. И. Д. Морохов, В. И. Петинов, Л. И. Трусов,
 В. Ф. Петрунин, УФН 133, 653 (1981).
- 33. Л. П. Горьков, Г. М. Элиашберг, ЖЭТФ 48, 1407 (1965).
- 34. B. Strassler, I. Rice, and P. Wider, Phys. Rev. B 6, 2575 (1972).
- 35. S. Sharma, J. K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev. B 67, 165332 (2003).
- 36. В. И. Емельянов, Н. И. Коротеев, УФН 135, 345 (1981).
- 37. Е. М. Аверьянов, Эффекты локального поля в оптике жидких кристаллов, Наука, Новосибирск (1999).