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We analyze the non-Fermi-liquid (NFL) behavior of the fluctuating gap model (FGM) of pseudogap behavior
in both one and two dimensions. A detailed discussion of the quasiparticle renormalization (Z-factor) is given,
demonstrating a kind of “marginal” Fermi-liquid or Luttinger-liquid behavior and topological stability of the
“bare” Fermi surface (the Luttinger theorem). In the two-dimensional case, we discuss the effective picture of
the Fermi surface “destruction” both in “hot spot” model of dielectric (AFM, CDW) pseudogap fluctuations and
for the qualitatively different case of superconducting d-wave fluctuations, reflecting the NFL spectral density
behavior and similar to that observed in ARPES experiments on copper oxides.

PACS: 71.10.Hf, 71.27.+a, 74.72.-h

1. INTRODUCTION

Pseudogap formation in the electronic spectrum
of underdoped copper oxides is an especially striking
anomaly of the normal state of high-temperature super-
conductors [1]. Discussions on the nature of the pseu-
dogap state continue within two main “scenarios” — of
superconducting fluctuations, leading to Cooper pair
formation above T,, or of other order-parameter fluc-
tuations, in fact competing with superconductivity.

We believe that the preferable scenario for pseu-
dogap formation is most likely based on the model of
strong scattering of the charge carriers by short-range
antiferromagnetic (AFM, SDW) spin fluctuations [1].
In momentum representation, this scattering transfers
momenta of the order of Q = (7/a,n/a) (where a is
the lattice constant of a two-dimensional lattice). This
leads to the formation of structures in the one-particle
spectrum that are precursors of the changes in the spec-
tra due to a long-range AFM order (period doubling).

Within this spin-fluctuation scenario, a simplified
model of the pseudogap state was studied [1-3] under
the assumption that the scattering by dynamic spin
fluctuations can be reduced for high enough tempera-
tures to a static Gaussian random field (quenched disor-
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der) of pseudogap fluctuations. These fluctuations are
defined by a characteristic scattering vector from the
vicinity of Q, with a width determined by the inverse
correlation length of the short-range order k = £~1.
Actually, a similar model (formalism) can also be ap-
plied to the case of pseudogaps of a superconducting
nature [3].

These models originated from the earlier one-
dimensional model of pseudogap behavior [4, 5], the
so-called fluctuating gap model (FGM), which is ex-
actly solvable in the asymptotic limit of large correla-
tion lengths of pseudogap fluctuations k = €1 — 0 [4],
and “nearly exactly” solvable in the case of finite &,
where we can take all Feynman diagrams of perturba-
tion series into account, albeit using an approximate
ansatz for higher-order contributions [5].

Non-Fermi-liquid behavior of the FGM model was
already discussed in one [4,6-8] and two dimensions
[1-3]. However, some interesting aspects of this model
are still under discussion [9]. Below, we analyze differ-
ent aspects of this anomalous behavior in both one-
and two-dimensional versions, mainly in the case of
AFM (SDW) or CDW pseudgap fluctuations, and also,
more brielfly, in the case of superconducting fluctua-
tions, demonstrating a kind of “marginal” Fermi-liquid
behavior and the qualitative picture of Fermi surface
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“destruction” and formation of “Fermi arcs” in two di-
mensions, similar to those observed in ARPES experi-
ments on copper oxides.

2. POSSIBLE TYPES OF GREEN’S FUNCTION
RENORMALIZATION

We start with a qualitative discussion of possible
manifestations of the NFL behavior. The Green’s func-
tion of the interacting system of electrons is expressed
via the Dyson equation (in the Matsubara representa-
tion, with £, = (2n + 1)7T and &, = vp(p — pr)) as)

1
i€ — fp - Z(Enafp).

Glen. &) = (1)

In what follows, we use a rather unusual definition of
the renormalization (“residue”) Z-factor, introducing it
as [9]

Z(‘Sn', fp)
ten —&p

G(Enagp) = Z(snvfp)GO(gn-,fp) (2)

or

ten —&p
1€y — gp - Z(Enagp) B
= (ifn - gp)G(snagp)'

Z(En-, fp) =
(3)

We note that Z(e,.§,) is in general complex and
actually determines the full renormalization of the
free-electron Green’s function Go(e,,&,) due to inter-
actions. At the same time, it is in some sense similar
to the standard residue renormalization factor used in
the Fermi-liquid theory.

We consider possible alternatives for the Z(ep,&p)
behavior.

A. Fermi-liquid behavior

In a normal Fermi liquid, we can perform the usual
expansion (close to the Fermi level and in the obvious
notation) assuming the absence of any singularities in

Y(en, p):

0% (en, &p)
d(ien) |,
82 (En7 fp)
&y

Y(en, &p) ~ X(0,0) + icy,

+& (4)

0

1) Despite our use of the Matsubara representation, we regard
£n as a continuous variable below.
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In the absence of the static impurity scattering, ¥(0,0)
is real and just renormalizes the chemical potential. We
can then rewrite (1) as

1
e = ) o=\
i), U ),
= _Z_
- 1€n —5},7 5)

where we have introduced the usual renormalized
residue at the pole,

.1 o
= 1 T ), ©
O(ien) |o

and the spectrum of quasiparicles

The usual analytic continuation to real frequencies now
yields the standard expressions of the normal Fermi-
liquid theory [10, 11] with real 0 < Z < 1, conserving
the quasiparticle pole of the Green’s function.

In the special case where §, = 0, i.e., at the Fermi
surface, which is not renormalized by interactions in
accordance with the Landau hypothesis and Luttinger
theorem, we have

Z

. 9
1€n

G(en,&p) (8)
i.e., Z coincides with the limit of Z(g, — 0,£, = 0)
defined by (2) and (3), and we have the usual pole
as ¢, — 0. Similarly, for ¢, = 0, we have
Z(en=0,6 = 0) ~ Z.

In general, this behavior is preserved not only in
the case of ¥(g,,§,) possessing a regular expansion at
small £, and &, but also for ¥(ey,§p) ~ max(ey, §7)
with any a > 1.

B. Impure Fermi liquid

In the case of low concentration of random static
impurities, we have X(e,, — 0,§, — 0) — const, with
Re (0, 0) again giving a shift of the chemical potential,
while Im (0, 0) ~ ~, where v is the impurity scattering
rate. For the Green’s function, we have

Z

Glen &) = (9)

En

isn—fp-l-i'y‘g |
n
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and hence the renormalization factor defined by (3) is
given by

N 1€
Zlen ) = 2—2 "5 (10)
1&n — ng + Y
len]
For fp = 0./ we have
- 1€
Z(‘Snvfpzo):Z. . n -
1en + Z“y| |
[£n] =0 as |e,| =0 (11)
Y
and for |e,| < [&,,
g
Z(Enﬁoafp)_z . &n ~
S
n
~ %signan =0 as & —0, (12)

i.e., impurity scattering leads to the vanishing of the
Z-factor at the Fermi surface, just removing the usual
Fermi-liquid pole singularity and producing a finite dis-
continuity of the Green’s function at ¢, = 0. This be-
havior is due to the loss of translational invariance of
the Fermi liquid theory (momentum conservation) be-
cause of impurities. In fact, Green’s function (9) is ob-
tained after averaging over the impurity position, which
formally restores translational invariance, leading to a
kind of (trivial) non-Fermi-liquid (NFL) behavior. We
note that this behavior is observed for |e,/, |&,] < 7,
while in the opposite limit, we obviously have a finite
Z(e.6) ~ 2.

C. Superconductors and Peierls and excitonic
insulators

We now consider the case of an s-wave supercon-
ductor. The normal Gorkov Green’s function is given
by

1€ +§p
(ign)? = & — [A]2

Glen. &) = (13)
where A is the superconducting gap. The normal
Green’s function also takes this form in an excitonic
or Peierls insulator, where A denotes the appropriate
insulating gap in the spectrum [11]. Then

(e = (&)
(ien)? — & — A2
max(e5, &)
A2

Z(Ena 517) =

=0 for e,,§ —0, (14)
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i.e., we have the NFL behavior with the pole of the
Green’s function at the Fermi surface replaced by a
zero, due to the Fermi surface being “closed” by the
superconducting (or insulating) gap.

Again, Fermi-liquid-type behavior with a finite
Z-factor is “restored” for |, |, |&,| > |A].

But the complete description of the superconduc-
ting (excitonic, Peierls) phase is achieved only after the
introduction of the anomalous Gorkov function. The
excitation spectrum on both sides of the phase transi-
tion is determined by different Green’s functions with
different topological properties [9].

D. Non-Fermi-liquid behavior due to
interactions

Non-Fermi-liquid behavior of Green’s function due
to interactions may also occur in the case of the singu-
lar behavior X(gp,,&,) = o0 ase, — 0and &, — 0, e.g.,
a power-like divergence?) of £(c,,,&,) ~ max(s,®, &)
with @ > 0. Obviously, Z(e, = 0,&, — 0) — 0 in this
case, and we again have a zero of the Green’s function
at the Fermi surface.

Another possibility is a singular behavior of deriva-
tives of the self-energy in (4), e.g., in the case where
Y(en, &p) ~ max(ey, £) with 0 < a < 1, leading to the
pole singularity of the Green’s function at the Fermi
surface being weaker than usual.

Both types of behavior are realized within the To-
monaga — Luttinger model in one dimension [12], where
the asymptotic behavior of G(iey, &) in the region of
small &, ~ &, can be expressed as

1

Glen ~ &) ~ o (15)
with o/ < 1/2. For o’ > 1/2,
Glen ~ &) ~ A+ B2 7L, (16)
For 3/2 >a' > 1,
Glen ~ &) ~ A+ Bep + Ce2' 71, (17)

etc., with the value of a’ determined by the interaction
strength.

A gspecial case is given by the so-called “marginal”
Fermi-liquid behavior assumed [13] for the interpreta-
tion of the electronic properties of CuQs planes of cop-
per oxides. It is given by

Y(en, &) ~ Niep,In M,

We

(18)

2) An additional logarithmic divergence can also be present

here!
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where )\ is some dimensionless interaction constant and
w, is a characteristic cut-off frequency. If we formally
use (6) at finite ¢,,, we obtain

1
max(e,, &)
We

Z(en,&p) ~ (19)

1—Aln

In this case, the “residue at the pole” of the Green’s
function (Z-factor)?) tends to zero at the Fermi sur-
face itself, and, again, quasiparticles are just not de-
fined there at alll However, everywhere outside a nar-
row (logarithmic) region close to the Fermi surface,
we have a more or less “usual” quasiparticle contribu-
tion: quasiparticles (close to the Fermi surface) are just
“marginally” defined. At present, there are no generally
accepted microscopic models of the “marginal” Fermi-li-
quid behavior in two dimensions.

3. FLUCTUATING GAP MODEL

The physical nature of the FGM was extensively
discussed in the literature [1-8,11]. The model based
on the picture of an electron propagating in the (static!)
Gaussian random field of (pseudogap) fluctuations,
leading to scattering with the characteristic momen-
tum transfer from a close vicinity of some fixed scat-
tering vector Q. These fluctuations are described by
two basic parameters: the amplitude A and the cor-
relation length (of short-range order) ¢!, determining
the effective width & = £~! of the scattering vector
distribution.

In one dimension, the typical choice of the scat-
tering vector is @) = 2pp (the fluctuation region of
the Peierls transition) [4, 5], while in two dimensions,
we usually mean the so-called “hot spot” model with
Q = (n/a,7/a) 2, 3]. These models assume the “di-
electric” (CDW, SDW) nature of pseudogap fluctua-
tions, but essentially the same formalism can be used
in the case of superconducting fluctuations [3].

The case of superconducting (s-wave) pseudo-
gap fluctuations in higher dimensions is actually de-
scribed by the same one-dimensional version of the
FGM [3.4,9].

An attractive property of the models under discus-
sion is the possibility of an exact solution achieved by
the complete summation of the whole Feynman dia-
gram series in the asymptotic limit of large correlation

3) We note that (19), strictly speaking, cannot give the cor-
rect definition of the “residue”, because standard expression (6)
is defined only at the Fermi surface itself, where (19) just does
not exist. In what follows, we therefore prefer the rather unusual
definition in (2).
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lengths & — oo [4, 6]. In the case of finite correlation
lengths, we can also perform summation of all Feyn-
man diagrams for the single-electron Green’s function
using an approximate ansatz for higher-order contribu-
tions in both one [5] and two dimensions [2, 3]. Similar
methods of diagram summation can also be applied in
calculations of the two-particle Green’s functions (ver-
tex parts) [2-4,7, 11, 14].

Our aim is to demonstrate that nearly all aspects
of the NFL behavior discussed above can be nicely de-
scribed within different variants of the FGM.

A. One dimension

We limit ourselves here to the case of incommensu-
rate pseudogap (CDW) fluctuations [4, 5]. The com-
mensurate case [6, 5] can be analyzed similarly. We
note that the same expressions also apply in the case
of superconducting (s-wave) fluctuations in all dimen-
sions.

In the limit of the infinite correlation length of pseu-
dogap fluctuations, we have the exact solution for a
single-electron Green’s function [4, 11] given by

ten +&p _
- - AT

)o
(128

A2
en — 0,

Glen, &) = [ de ¢ —
0/ (ien

exp (

_iEnt &
N xe In

er+&
AZ

€2 + &2
AZ

)

where Ei(—xz) denotes the integral exponential function
and we use the asymptotic behavior Ei(—z) ~ In(y'x)
as ¢ — 0 (Iny’ = 0.577 is the Euler constant). Then,
using (3), we immediately obtain

_iEnt+&p
A2

>z

fp_>01

as (20)

et & et &
Z(‘Snvfp):_ A2 2 1n 7I A2 L =0
as e, — 0, & —0. (21)

Precisely the same result is obtained if, for finite £,, and
&p, we define

1

1— 0% (en, &p)
d(iey,)

Z(gn-,fp) = (22)
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similarly to (6). We note that because |e,| < A and
1&p| < A, we obviously have Z > 0, but the usual pole
of the Green’s function at the Fermi surface (“point”) of
the “normal” system is here transformed into a zero due
to pseudogap fluctuations. Because of the topological
stability [9], the singularity of the Green’s function at
the Fermi surface is not destroyed: the zero is also a
singularity (with the same topological charge) as the
pole. But the FGM actually gives an explicit example
of a kind of Luttinger or “marginal” Fermi liquid with
a very strong renormalization of the singularity at the
Fermi surface.

We consider the self-energy corresponding to
Green'’s functions (20):

Z(Emgp) =g, — gp -

_ d —¢ i5n+£17
0/<e (in)? — & — CA?

-1

Z(Ena 510)

Taking &, = 0 for simplicity and ¢, — 0, we obtain

-1

o0
1 - 1
S(en 20,6 =0)=— /dCe Cm
n n
0
A? 1

T a3 %
i€n €T
In <’y F)

i.e., the divergence of the type discussed above.

In the case of finite correlation lengths ¢ = k! of
pseudogap fluctuations, we use the continuous-fraction
representation of single-electron Green’s function de-

which can be studied numerically.

In Fig. 1, we show typical dependences of the renor-

(23)  rived in Ref. [5] to obtain the renormalization factor as
| (en >0)
Z.571 B f
pAQ (25)
ten —&p — A’
ten +&p +ivpk — SAZ
€n — 2 - - 4
= {p + 2ivek e + & + 3ivpr — ...
N 1 VFK\ €n + &) _
Gl &)~ 3o () ien—&
1 VEK
=-ize(5). o0

malization factor Z(e,,§,). In all cases, it tends to zero
at the (“bare”) Fermi surface and the pole of the Green’s
function disappears. Essentially, this strong renormal-
ization starts on the scale of the pseudogap width, i.e.,
for |en] < A and [€,| < A, reflecting a non-Fermi-liquid
behavior due to pseudogap fluctuations.

However, the role of finite correlation lengths & (fi-
nite k) is qualitatively similar to static impurity scat-
tering?), and a more detailed calculation shows that the
Z-factor behaves at small ¢, < vpk and || € vpk

en + &

(with €, > 0) as
A ) -0

en — 0,

Zen &) = (5°) (

as & — 0, (26)

with a(vpk/A) — 0 as K — 0, as seen from Fig. 2.
In terms of the Green’s function, this behavior corre-
sponds to

4) This is due to our approximation of the static nature of
pseudogap fluctuations.

7 ZKOT®, Bem. 3 (9)

Therefore, for finite k, the Green’s function has no zero
at €, = 0 and &, = 0 and remains finite as in an impure
system.

The vanishing of the renormalization factor
Z(en,&p) at the “bare” Fermi surface is in corres-
pondence with the general topological stability argu-
ments [9]: in the absence of static impurity-like scat-
tering, the pole singularity of the Green’s function is
replaced by a zero. In the presence of this additional
scattering, this zero is replaced by a finite discontinuity,
and the singularity therefore persists.

B. “Hot spot” model in two dimensions

In two dimensions, we introduce the so-called “hot
spot” model. We consider a typical Fermi surface of
electrons moving in the CuQO, plane of copper oxides as
shown in Fig. 3. If we neglect fine details, the observed
(e.g., in ARPES experiments) Fermi surface (and also

481



E. Z. Kuchinskii, M. V. Sadovskii

MKIT®, Tom 130, Boin. 3(9), 2006

Z
0.7

0.6
0.5

0.4

0.3
0.2
0.1

Fig.1. Typical dependences of the Z(e,,§,) fac-

tor in the one-dimensional FGM with finite correla-

tion lengths: dependences of Z(e, = 0,&,) and

Z(en,&p = 0) on g, and &, for vpr/A = 0.1.

set: the dependences of Re Z(s,, = 0,&p,) on &, for

different values of x (in units of A/vr). Both ¢, and
&p are given in units of A

In-

0.2 0.4 0.6 0.8 1.0

VFKR

A

Fig.2. Dependence of o (vpr/A) on the inverse cor-
relation length

the spectrum of elementary excitations) in the CuQOs
plane is in the first approximation described by the
usual tight-binding model,

e(p) = —2t(cospya + cospya) —

— 4t' cos pgacospya, (28)
where t is the nearest-neighbor transfer integral, t' is
the transfer integral between second-nearest neighbors,
and a is the square lattice constant.

482

Fig.3. Fermi surface in the Brillouin zone and the
“hot spot” model. The magnetic zone appears, e.g.,
in the presence of the antiferromagnetic long-range or-
der. “Hot spots” correspond to intersections of the
magnetic zone borders with the Fermi surface and
are connected by the scattering vector of the order of

Q= (r/a,7/a)

Phase transition to the antiferromagnetic state in-
duces lattice period doubling and leads to the appear-
ance of an “antiferromagnetic” Brillouin zone in inverse
space, as is also shown in Fig. 3. If the spectrum of
carriers is given by (28) with ¢ = 0 and we consider
the half-filled case, the Fermi surface becomes just a
square coinciding with the borders of the antiferro-
magnetic zone and we have a complete “nesting”™ flat
parts of the Fermi surface match each other after the
translation by the vector of antiferromagnetic ordering
Q = (£7/a,£7/a). In this case and for T = 0, the
electron spectrum is unstable, the energy gap appears
everywhere on the Fermi surface, and the system be-
comes an insulator, due to the formation of an antifer-
romagnetic spin density wave (SDW)%). In the case of
the Fermi surface shown in Fig. 3, the appearance of the
antiferromagnetic long-range order, in accordance with
the general rules of the band theory, leads to the ap-
pearance of discontinuities of isoenergetic surfaces (e.g.,
the Fermi surface) at crossing points with boundaries
of a new (magnetic) Brillouin zone due to gap opening
at points connected by the vector Q.

In the most part of the underdoped region of the
cuprate phase diagram, the antiferromagnetic long-
range order is absent, but a number of experiments sup-

5) Analogous dielectrization is also realized in the case of the

formation of the similar charge density wave (CDW).
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port the existence of well-developed fluctuations of the
antiferromagnetic short-range order that scatter elec-
trons with the characteristic momentum transfer of the
order of Q. Similar effects may appear due to CDW
fluctuations. These pseudogap fluctuations are again
considered to be static and Gaussian, and character-
ized by two parameters: the amplitude A and correla-
tion length ¢ = k! [1]. In this case, we can obtain a
rather complete solution for the single-electron Green’s
function via summation of all Feynman diagrams of the
perturbation series describing scattering by these fluc-
tuations [1-3]. This solution is again exact in the limit
as £ = oo [2], and apparently very close to the exact
solution in case of finite £ [15]. Generalizations of this
approach to two-particle properties (vertex parts) are
also quite feasible.

We start again with an exact solution for £ — oo
(or K =0) [2]. We first introduce the (normal) Green’s
function for the SDW (CDW) state with long-range
order (see, e.g., [11]):

iEn — fp_Q
G(en,&p) = — - , 29
(En: ) (ien = &p)(ien — Ep—q) — W2 (2)
where W denotes the amplitude of the SDW (CDW)
periodic potential and &, = e(p) — p. Then we can
write the appropriate Z factor as

(isn - fl)(lﬁn B 52)

Z(Enagp) = (lgn — fl)(lgn - 52) - WQI/

(30)

where we set §, = & and {p_q = & for brevity. In
what follows, we are mainly interested in the limit as
en = 0 and & — 0, i.e., in the vicinity of the “bare”
Fermi surface. We note that & = 0 defines the so-called
“shadow” Fermi surface. We have £ = & = 0 precisely
at the “hot spots”. It is convenient to introduce the
complex variable

z = (ien = &1)(ign — &), (31)

which becomes small as ¢,,, &1, & — 0.

1. Incommensurate combinatorics

In the case of incommensurate (CDW) pseudogap
fluctuations, an exact solution for the Green’s function
of the FGM in the limit as £ — oo takes a form similar
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to (20) [1, 2] and we obtain (averaging (30) with the
Rayleigh distribution for W)

T QW 9 a2 z
Z(Z) = /dWFe w=/a m =
0

R ST

= | A =

z — 2 /A% z
o= V()
0

Then, as z — 0 we obtain

Z(z = 0) ~ — [m (yé) - m] . (33)

At the “bare” Fermi surface, we have & = 0, and we
limit ourselves to €, > 0 in what follows. From (33), we
can then easily find the limit behavior of Z(z). Some
of the results are as follows.

1. For g,, < |&|, we have

T 62l
2 A2
i.e., the “impure™like linear behavior in ¢,,.

2. For g, > |&| (i.e., also at the “hot spot”, where
& =0), we have

ReZ(en < [&].61 =0) & (34)

ReZ(an > |fz|,fl = 0) 7

e e\, 18
N X% n<’yF> t3 Az (35)
i.e., for & = 0, the NFL behavior similar to the one-
dimensional case.
We note that we always have ImZ = 0 at & = 0,

i.e., at the “shadow” Fermi surface and in particular at
the “hot spot” itself.

2. Spin-fermion combinatorics

We now consider the spin-fermion (Heisenberg)
model for pseudogap (SDW) fluctuations [2]. In this
case, we again obtain the FGM, but with the gap distri-
bution different from the Rayleigh distribution; instead
of (32), we have

2 [ W2
0
3

7*
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A2
(5

_TE/2) (=)

exp

r /A2 %2 _2 A2
() B
z
x T = A (36)
(%)
3
Hence, as z — 0, we obtain
2T'(3/2)
Z N —"
(2) Jr
3/2
z 1 z
oy TR oAy (87)

*(3)

On the “bare” Fermi surface (¢,

(%)

0), we then have

3 3

2I(3/2) enlen +1&)
Z(‘Sn_>07€27€1:0): ﬁ - ) A_2 +
3
3/2
1 n\cn 3
+F<—J _EnlEn 1 i6) (38)
2 5 A?
()
In particular, for & = 0, we have Im Z = 0 and
Z(En — 0,52 = fl = 0) =
2
CReZ(en = 0,6 = & = 0) = L5/2) Z’g (39)

T &)
and we thus obtain the quadratic NFL behavior of the
Z factor. We again present some results on the limit
behavior.

1. For ¢,, < |&|, we have

3

aT(3/2
Re Z(en < lexl 61 = 0) = 0L
3/2
531 enléa|
X T +\/ﬂ T s (40)

2(3) 2(3)
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i.e., the NFL “zero” behavior.
2. For g, > |&| (i.e., also at the “hot spot”, where

& =0), we have
which is again the NFL “zero” behavior.

In the general case of finite correlation lengths
¢ = k7!, we have to perform numerical analysis us-
ing the recursive relations proposed in Refs. [2, 3]. We
again use the basic definition of the Z factor in (3). To
calculate the self-energy (e, &p) of an electron mov-
ing in the quenched random field of (static) Gaussian
spin fluctuations with dominant scattering momentum
transfers from the vicinity of the characteristic vector
Q. we use the recursive procedure [2, 3] in which all
Feynman diagrams describing the scattering of elec-
trons by this random field are taken into account. The
sought self-energy is given by

€
A2
3

I'(3/2)

ReZ(5n>>€27€1:0): ﬁ <

(41)

E(en, p) = Zi=1(en, &p) (42)
with &, = e(p) — 1 (cf. (28)) and
Zk(‘gn-,gp) =
_ A2 s(k) (43)

icn + 1 — €k (P) + invgk — Sgt1(en, &p)

The quantity A again characterizes the energy scale
of pseudogap fluctuations and x = ¢! is the inverse
correlation length of short-range SDW fluctuations,
ex(p) = e(p+ Q) and vy = |v], gl + v}, gl for odd
k, while ex(p) = e(p) and vy, = |vg| + [v§] for even k.
The velocity projections vy and vy are determined by
the usual momentum derivatives of the “bare” electron
energy dispersion €(p) given by (28). Finally, s(k) is a
combinatorial factor, with

s(k) =k (44)

for commensurate charge (CDW type) fluctuations
with Q = (7/a,n/a) [5]. For incommensurate CDW
fluctuations [5], we find

k+1

for odd &,
s(k)

(45)

for even k.

For the spin-fermion model in Ref. [2], the com-
binatorics of diagrams becomes more complicated.
Spin-conserving scattering processes obey commensu-
rate combinatorics, while spin-flip scattering is de-
scribed by diagrams of the incommensurate type
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ReZ
1.0

0.8

0.6

0.4

0.2

Fig.4. Dependence of ReZ on &, (in units of ¢) at
different points of the Fermi surface (corresponding to
t' = —0.4t and u = —1.3t) in the “hot spot” model (the
spin-fermion combinatorics of diagrams) with the corre-
lation lengths ¢ — oo (k = 0) and £ 'a = ka = 0.01.
The pseudogap amplitude is A = 0.1¢t. Inset: the
“bare” Fermi surface and the points where the calcula-
tions were done

(“charged” random field in terms of Ref. [2]). In this
model, the recursive relation for the single-particle
Green’s function is again given by (43), but the combi-
natorial factor s(n) acquires the form [2]

k+2

for odd &,

s(k) (46)

for even k.

Below, we only present our results for the spin-fermion
combinatorics, because in other cases, we obtain more
or less similar behavior of the renormalization factors.

In Fig. 4, we show the results of numerical calcu-
lation of Re Z(e,,& = 0) at different points taken at
the “bare” Fermi surface, shown in the inset. For com-
parison, we show the data obtained in the limit of the
infinite correlation length & — oo (or k = 0, which
is an exactly solvable case) and for finite ka = 0.01
(i.e., &€ = 100a). Tt is clearly seen that in both cases,
Re Z ~ 1 at the “nodal” point D, except at very small
values of ¢,, while in the vicinity of the “hot spot”
(points A and C') and also at the “hot spot” itself (point
B), ReZ becomes small in a rather wide interval of
€n < A. This corresponds to an approximately “Fermi-
liquid” behavior of the “nodal” region (the vicinity of
the Brillouin zone diagonal), with a kind of “marginal”
Fermi-liquid or Luttinger-liquid (NFL) behavior as we
move to the vicinity of the “hot spot”.

ImZ
0.6 F 1.0[ A
Py %é
0.5F \_.
0.4
D
0.5 1.0
02 pa C
0 D
B
A
—0.2 r
A =0.1t
—-04 + ka = 0.01
0 0.02 0.04 0.06 0.08 0.1
€
Fig.5. Dependence of ImZ on £, (in units of the

transfer integral t) at different points of the Fermi sur-

face (corresponding to t' = —0.4¢ and p = —1.3t) in

the “hot spot” model with the finite correlation length

¢ 'a = ka = 0.01 (the spin-fermion combinatorics of

diagrams). The pseudogap amplitude is A = 0.1¢. In-

set: the “bare” Fermi surface and the points where the
calculations were done

For completeness, in Fig. 5, we show similar com-
parison of the dependences of Im Z on ¢, at the same
characteristic points on the Fermi surface and for the
same parameters as in Fig. 4. It is only important to
stress once again that we have Im Z = 0 only at the
“hot spot” itself (point B), and therefore Z becomes
real and shows the dependence on ¢,, more or less equiv-
alent to that proposed for “marginal” Fermi liquids (or
Luttinger liquids).

In all cases, we observe the vanishing of the renor-
malization factor Z(e,,§,) at the “bare” Fermi surface.
In the absence of static impurity-like scattering due to
finite values of the correlation length ¢ = k™', the pole
singularity of the Green’s function is replaced by a zero,
reflecting the topological stability of the “bare” Fermi
surface (the Luttinger theorem) [9]. In the presence of
this scattering, the singularity of the Green’s function
at the topologically stable “bare” Fermi surface remains
in the form of a finite discontinuity.

C. Spectral density and Fermi surface
“destruction” in the “hot spot” model

We return to (29) and perform the usual analytic
continuation to real frequencies, ic,, — ¢ +1i5. We then
obtain
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-6
(e+id0—&)(e =& +id6) —W?
_ £ &
o (e=&)(E &) W2 Hi0(2e - & — &)
and therefore the spectral density in the case of a
long-range (CDW, SDW) order is given by

GR(Ea gp) =

(47)

Aw(e &) = -~ Tm G (e, &)
= (e—&)0[(e—&) (e—&)—W ] sign(2e—& —&).

Accordingly, for the FGM with the correlation length
& — 00, we have

(48)

Ale, &) = /dWPWAW(a,gp), (49)

where Py is the distribution function of gap fluctua-
tions, depending on the combinatorics of diagrams and
leading to the following separate cases, already consid-
ered (or mentioned) above.

1. Incommensurate combinatorics

In the case of incommensurate CDW-like pseudogap
fluctuations, we have
exp <— —

which is the Rayleigh distribution [4, 11]. From (49),
E—&)-&)

we then obtain
Ale, &) = exp (— A2 ) X

e—&
x B[(e — & )(e — &)]sign(2e — & — &).

2w

A2
(51)

For ¢ = 0, we have

A(E - Oagp) =
_ % exp <_i_€22> 061 & sign(&r + &) (52)

For £ — £0, we obtain

&

A(E = 07613 — ioaﬁ?) = iA2

(£&),  (563)
and therefore A(e = 0,&p) is nonzero within the Bril-
louin zone only in the space between the “bare” Fermi
surface and the “shadow” Fermi surface. This quali-
tative result is confirmed below, for all other combina-
torics, in the case of the “pure” FGM with ¢! = x = 0.

486

2. Commensurate combinatorics

In the case of commensurate CDW-like pseudogap
1

fluctuations, we have [6]
ex
V2rA P <

which is the Gaussian distribution. From (49), we then
obtain

2

W>7

Pw = e

(54)

g e—&
A(f-,fp)—\/ﬂA (e =&)(e—&)
(e-&)Ee - &)
xexp<—T>X

x Ol(e — &)(e — &2)]sign(2e — & — &), (55)

with the same qualitative conclusions as in the incom-
mensurate case.

3. Spin-fermion combinatorics

In the case of SDW-like pseudogap fluctuations of
the (Heisenberg) spin-fermion model [2], we have the
gap distribution

2 W2 w2
Pw = ;W exp _T (56)
3 ) 2 =

From (49), we then obtain

Alergy) = = LGB,
(5)
wexp | - EZSE—&) Ol(= — &1)(c — &)] x

A2
3

(%)

again with the same qualitative conclusions as in the
incommensurate case.

In the general case of finite correlation lengths
¢ = k7L, spectral densities can be directly computed
using analytic continuation of recursive relations (42)
and (43) to real frequencies [2, 3].

Actually, two-dimensional contour plots of
A(e = 0,&) (which directly correspond to ARPES
intensity plots) can be used for a “practical” definition
of the renormalized Fermi surface and provide a

X sign(2e — & — &), (57)
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Fig.6. Intensity plots of the spectral density A(c = 0,&p) in the Brillouin zone for the "hot spots” model (' = —0.4¢ and

p = —1.3t) in the case of infinite correlation length €' = k = 0 and for a finite correlation length £ 'a = ka = 0.01

(the spin-fermion combinatorics of diagrams) with different values of the pseudogap amplitude. The “bare” Fermi surface is
shown by a dashed line

qualitative picture of its evolution in the FGM with
changed model parameters®).

In Fig. 6, we show typical intensity plots of the spec-
tral density A(e = 0,&p) in the Brillouin zone for the
“hot spot” model both in the case of the infinite corre-
lation length €' = k = 0 and for a finite (large!) cor-
relation length £ *a = ka = 0.01 (for the spin-fermion
combinatorics of diagrams; in other cases, the behavior
is quite similar) and for different values of the pseudo-
gap amplitude A. We see that these spectral density
plots give a rather beautiful qualitative picture of the

6) We note that for free electrons, A(e = 0,&p) = 0(&p), and
therefore the appropriate intensity plot directly reproduces the
“bare” Fermi surface.

“destruction” of the Fermi surface in the vicinity of “hot
spots” for small values of A, with formation of typical
“Fermi arcs” as A grows, which qualitatively resembles
typical ARPES data for copper oxides [16, 17].

D. Superconducting d-wave fluctuations

As noted above, the case of superconducting s-
wave pseudogap fluctuations simply reduces to the one-
dimensional FGM. Much more interesting is the case
of superconducting d-wave fluctuations in two dimen-
sions.

To obtain exact results in the case of the infinite
correlation length ¢! = k = 0, we have only to make
simple replacements in the above expressions for the
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“hot spot” model with incommensurate combinatorics: ReZ
& = =& = =& and A — Ap, where A, defines the 1.0 X D A
amplitude of fluctuations with the d-wave symmetry: o - 8 &f
1 0.8 | - .
Ap = §A [cos(pgya) — cos(pya)], (58)
where A now characterizes the energy scale of pseudo- 0.6 A
gap fluctuations. Z
Equation (31) then reduces to z = —(e 4 &2) and 0.4 1A
we immediately obtain an expression for the Z factor, Py 0.5 _
similar to (21): 0.2} D
I 12 YO O T S
(e, &p) = = A2 P77 Az x 0 0.02 004 006 008 0.1
P P c
R[] Lt
A2 A2 Fig.7. The dependences of Re Z on &, (in units of )

2+

Ap

€
X In (’y'

again replacing the pole singularity by a zero at the

“bare” Fermi surface, except for the “nodal” point at the

diagonal of the Brillouin zone, where A, = 0 (cf. (58)).
Instead of (51), we obtain the spectral density as

>—>0 as e, — 0, & — 0, (59)

e+ & g2 - &2
Ale, &) = ‘pexp<— =P | x
P)= Az A2

x (c* — &) signe,  (60)

which is nonzero only for |{,| < €. Asaresult, at e =0,
we have A(e = 0,&p) = 0 for A, # 0, and it is different
from zero only at the intersection of the Brillouin zone
diagonal with the “bare” Fermi surface, where Ay, given
by (58) is zero. At the Fermi surface itself, we have

(=)
exp 5

A2
Ap
with two maxima at e = +£A,/V/2.
Considering the general case of finite correlation

le]

Ap

Ae, & = 0) (61)

lengths ¢ = k!, we again perform numerical analy-
sis based on the recursive relations introduced for this
problem in Ref. [3], using the basic definition of the Z
factor in (3). To calculate the self-energy ¥(e,,&p) of
an electron scattered by static fluctuations of the super-
conducting order parameter with the d-wave symmetry,
we use the following relation (similar to (43)) slightly
generalizing relations derived in Ref. [3]:

Zk(En, gp) =
_ A%s(k)
e (=1)kEpFikn (g ]+ vp]) Skt (En, &p)

(62)

where s(k) is defined in (45).
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at different points of the Fermi surface (corresponding
to t' = —0.4t and p = —1.3t) in the model of super-
conducting (d-wave) pseudpgap fluctuations with the
correlation length ¢ 7'a = ka = 0.01. The pseudogap
amplitude is A = 0.1¢. Inset: the “bare” Fermi surface
and the points where the calculations were done

In Fig. 7, we show the results for Re Z(¢,, &, = 0),
again taken at different points of the “bare” Fermi sur-
face, shown in the inset. The correlation length is
¢ =100a (ka = 0.01) and A = 0.1¢. Tt is clearly seen
that Re Z = 1 precisely at the “nodal” point D (where
Ap = 0), but at other points on the “bare” Fermi sur-
face, Re Z is strongly renormalized in a rather wide
intervals of €, < |Apl, tending to zero as ¢, — 0. We
thus again obtain a kind of “marginal” Fermi liquid or
Luttinger liquid (NFL), but qualitatively different from
the case of “hot spot” model.

In Fig. 8, we also show typical intensity plots of the
spectral density A(e = 0,&p) in the Brillouin zone in
the case of superconducting (d-wave) pseudogap fluctu-
ations with the correlation length ¢ 'a = ka = 0.1 and
two different values of A. We see that these spectral
density plots give a totally different picture of the “de-
struction” of the Fermi surface than the one given by
the “hot spot” model, which also, in our opinion, differs
significantly from most results of the ARPES measure-
ments on copper oxides. The Fermi surface is sharply
defined only at one point (at the diagonal of the Bril-
louin zone), where Ay given by (58) is precisely zero,
and there are no sharply defined Fermi arcs formed
close to this point. We observe only some more or less
wide “dragonfly wings” formed around this point. We
also note the absence of any signs of the “shadow” Fermi
surface.
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Fig.8. Intensity plots of the spectral density A(z = 0,&p) in the Brillouin zone (' = —0.4t and p = —1.3t) in the case

of superconducting (d-wave) pseudogap fluctuations. The correlation length is ¢ "'a = ka = 0.1 (with the spin-fermion
combinatorics of diagrams) for two different values of the pseudogap amplitude A = 0.3t and A = ¢

4. CONCLUSION

We analyzed the rather unusual (NFL) behavior of
the fluctuating gap model of pseudogap behavior in
both one and two dimensions. We studied the quasipar-
ticle renormalization (Z factor) of the single-electron
Green’s function, demonstrating a kind of “marginal”
Fermi-liquid or Luttinger-liquid behavior (i.e., the ab-
sence of well-defined quasiparticles close to the Fermi
surface) and also the topological stability of the “bare”
Fermi surface (the Luttinger theorem). This reflects
strong renormalization effects leading to the replace-
ment of the usual pole singularity of the Green’s func-
tion in a Fermi liquid by a zero, thus effectively replac-
ing the Fermi surface of poles by the Luttinger surface
of zeroes [20]. In the presence of static impurity-like
scattering due to the effects of finite correlation lengths
of pseudogap fluctuations, this singularity is replaced
by a finite discontinuty.

In the two-dimensional case, we discussed the
effective picture of the Fermi surface “destruction”
both in the “hot spot” model of dielectric (AFM,
CDW) pseudogap fluctuations and in the qualitatively
different case of superconducting d-wave fluctuations,
reflecting the NFL spectral density behavior and simi-
lar to that observed in ARPES experiments on copper
oxides. Intensity plots obtained in the case of AFM
(CDW) fluctuations, in our opinion, are more similar
to the ARPES intensity data obtained in experiments

on copper oxides. We note that this effective picture
was also directly generalized to the case of strongly
correlated metals or doped Mott insulators [18] using
the so-called DM FT + X}, approach in Ref. [19].
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