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NON-FERMI-LIQUID BEHAVIOR IN THE FLUCTUATING GAPMODEL: FROM THE POLE TO A ZERO OF THE GREEN'SFUNCTIONE. Z. Ku
hinskii, M. V. Sadovskii *Institute for Ele
trophysi
s, Russian A
ademy of S
ien
es620016, Ekaterinburg, RussiaRe
eived February 17, 2006We analyze the non-Fermi-liquid (NFL) behavior of the �u
tuating gap model (FGM) of pseudogap behaviorin both one and two dimensions. A detailed dis
ussion of the quasiparti
le renormalization (Z-fa
tor) is given,demonstrating a kind of �marginal� Fermi-liquid or Luttinger-liquid behavior and topologi
al stability of the�bare� Fermi surfa
e (the Luttinger theorem). In the two-dimensional 
ase, we dis
uss the e�e
tive pi
ture ofthe Fermi surfa
e �destru
tion� both in �hot spot� model of diele
tri
 (AFM, CDW) pseudogap �u
tuations andfor the qualitatively di�erent 
ase of super
ondu
ting d-wave �u
tuations, re�e
ting the NFL spe
tral densitybehavior and similar to that observed in ARPES experiments on 
opper oxides.PACS: 71.10.Hf, 71.27.+a, 74.72.-h1. INTRODUCTIONPseudogap formation in the ele
troni
 spe
trumof underdoped 
opper oxides is an espe
ially strikinganomaly of the normal state of high-temperature super-
ondu
tors [1℄. Dis
ussions on the nature of the pseu-dogap state 
ontinue within two main �s
enarios� � ofsuper
ondu
ting �u
tuations, leading to Cooper pairformation above T
, or of other order-parameter �u
-tuations, in fa
t 
ompeting with super
ondu
tivity.We believe that the preferable s
enario for pseu-dogap formation is most likely based on the model ofstrong s
attering of the 
harge 
arriers by short-rangeantiferromagneti
 (AFM, SDW) spin �u
tuations [1℄.In momentum representation, this s
attering transfersmomenta of the order of Q = (�=a; �=a) (where a isthe latti
e 
onstant of a two-dimensional latti
e). Thisleads to the formation of stru
tures in the one-parti
lespe
trum that are pre
ursors of the 
hanges in the spe
-tra due to a long-range AFM order (period doubling).Within this spin-�u
tuation s
enario, a simpli�edmodel of the pseudogap state was studied [1�3℄ underthe assumption that the s
attering by dynami
 spin�u
tuations 
an be redu
ed for high enough tempera-tures to a stati
 Gaussian random �eld (quen
hed disor-*E-mail: sadovski�iep.uran.ru

der) of pseudogap �u
tuations. These �u
tuations arede�ned by a 
hara
teristi
 s
attering ve
tor from thevi
inity of Q, with a width determined by the inverse
orrelation length of the short-range order � = ��1.A
tually, a similar model (formalism) 
an also be ap-plied to the 
ase of pseudogaps of a super
ondu
tingnature [3℄.These models originated from the earlier one-dimensional model of pseudogap behavior [4, 5℄, theso-
alled �u
tuating gap model (FGM), whi
h is ex-a
tly solvable in the asymptoti
 limit of large 
orrela-tion lengths of pseudogap �u
tuations � = ��1 ! 0 [4℄,and �nearly exa
tly� solvable in the 
ase of �nite �,where we 
an take all Feynman diagrams of perturba-tion series into a

ount, albeit using an approximateansatz for higher-order 
ontributions [5℄.Non-Fermi-liquid behavior of the FGM model wasalready dis
ussed in one [4; 6�8℄ and two dimensions[1�3℄. However, some interesting aspe
ts of this modelare still under dis
ussion [9℄. Below, we analyze di�er-ent aspe
ts of this anomalous behavior in both one-and two-dimensional versions, mainly in the 
ase ofAFM (SDW) or CDW pseudgap �u
tuations, and also,more briel�y, in the 
ase of super
ondu
ting �u
tua-tions, demonstrating a kind of �marginal� Fermi-liquidbehavior and the qualitative pi
ture of Fermi surfa
e477
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tion� and formation of �Fermi ar
s� in two di-mensions, similar to those observed in ARPES experi-ments on 
opper oxides.2. POSSIBLE TYPES OF GREEN'S FUNCTIONRENORMALIZATIONWe start with a qualitative dis
ussion of possiblemanifestations of the NFL behavior. The Green's fun
-tion of the intera
ting system of ele
trons is expressedvia the Dyson equation (in the Matsubara representa-tion, with "n = (2n+ 1)�T and �p = vF (p� pF )) as1)G("n; �p) = 1i"n � �p ��("n; �p) : (1)In what follows, we use a rather unusual de�nition ofthe renormalization (�residue�) Z-fa
tor, introdu
ing itas [9℄G("n; �p) = Z("n; �p)G0("n; �p) = Z("n; �p)i"n � �p (2)orZ("n; �p) = i"n � �pi"n � �p ��("n; �p) == (i"n � �p)G("n; �p): (3)We note that Z("n; �p) is in general 
omplex anda
tually determines the full renormalization of thefree-ele
tron Green's fun
tion G0("n; �p) due to inter-a
tions. At the same time, it is in some sense similarto the standard residue renormalization fa
tor used inthe Fermi-liquid theory.We 
onsider possible alternatives for the Z("n; �p)behavior. A. Fermi-liquid behaviorIn a normal Fermi liquid, we 
an perform the usualexpansion (
lose to the Fermi level and in the obviousnotation) assuming the absen
e of any singularities in�("n; p):�("n; �p) � �(0; 0) + i"n ��("n; �p)�(i"n) ����0 ++ �p ��("n; �p)��p ����0 + : : : (4)1) Despite our use of the Matsubara representation, we regard"n as a 
ontinuous variable below.

In the absen
e of the stati
 impurity s
attering, �(0; 0)is real and just renormalizes the 
hemi
al potential. We
an then rewrite (1) asG(") = 1i"n�1� ���(i"n)�0 � �p�1 + ����p�0 �� ~Zi"n � ~�p ; (5)where we have introdu
ed the usual renormalizedresidue at the pole,~Z = 11� ���(i"n) ����0 ; ~Z�1 = 1� ���(i"n) ����0 ; (6)and the spe
trum of quasipari
les~�p = ~Z �1 + ����p�0 �p: (7)The usual analyti
 
ontinuation to real frequen
ies nowyields the standard expressions of the normal Fermi-liquid theory [10, 11℄ with real 0 < ~Z < 1, 
onservingthe quasiparti
le pole of the Green's fun
tion.In the spe
ial 
ase where �p = 0, i.e., at the Fermisurfa
e, whi
h is not renormalized by intera
tions ina

ordan
e with the Landau hypothesis and Luttingertheorem, we have G("n; �p) = ~Zi"n ; (8)i.e., ~Z 
oin
ides with the limit of Z("n ! 0; �p = 0)de�ned by (2) and (3), and we have the usual poleas "n ! 0. Similarly, for "n = 0, we haveZ("n = 0; �p ! 0) � ~Z.In general, this behavior is preserved not only inthe 
ase of �("n; �p) possessing a regular expansion atsmall "n and �p, but also for �("n; �p) � max("�n; ��p )with any � � 1.B. Impure Fermi liquidIn the 
ase of low 
on
entration of random stati
impurities, we have �("n ! 0; �p ! 0) ! 
onst, withRe�(0; 0) again giving a shift of the 
hemi
al potential,while Im�(0; 0) � 
, where 
 is the impurity s
atteringrate. For the Green's fun
tion, we haveG("n; �p) = ~Zi"n � ~�p + i
 "nj"nj (9)478
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tuating gap model : : :and hen
e the renormalization fa
tor de�ned by (3) isgiven by Z("n; �p) = ~Z i"n � �pi"n � ~�p + i
 "nj"nj : (10)For �p = 0, we haveZ("n; �p = 0) = ~Z i"ni"n + i
 "nj"nj �� j"nj
 ! 0 as j"nj ! 0 (11)and for j"nj � j�pj,Z("n ! 0; �p) = ~Z �p�p � i
 "nj"nj �� �p
 sign "n ! 0 as �p ! 0; (12)i.e., impurity s
attering leads to the vanishing of theZ-fa
tor at the Fermi surfa
e, just removing the usualFermi-liquid pole singularity and produ
ing a �nite dis-
ontinuity of the Green's fun
tion at "n = 0. This be-havior is due to the loss of translational invarian
e ofthe Fermi liquid theory (momentum 
onservation) be-
ause of impurities. In fa
t, Green's fun
tion (9) is ob-tained after averaging over the impurity position, whi
hformally restores translational invarian
e, leading to akind of (trivial) non-Fermi-liquid (NFL) behavior. Wenote that this behavior is observed for j"nj; j�pj � 
,while in the opposite limit, we obviously have a �niteZ(";�p) � ~Z.C. Super
ondu
tors and Peierls and ex
itoni
insulatorsWe now 
onsider the 
ase of an s-wave super
on-du
tor. The normal Gorkov Green's fun
tion is givenby G("n; �p) = i"n + �p(i"n)2 � �2p � j�j2 ; (13)where � is the super
ondu
ting gap. The normalGreen's fun
tion also takes this form in an ex
itoni
or Peierls insulator, where � denotes the appropriateinsulating gap in the spe
trum [11℄. ThenZ("n; �p) = (i"n)2 � (�p)2(i"n)2 � �2p � j�j2 �� max("2n; �2p)j�j2 ! 0 for "n; �p ! 0; (14)

i.e., we have the NFL behavior with the pole of theGreen's fun
tion at the Fermi surfa
e repla
ed by azero, due to the Fermi surfa
e being �
losed� by thesuper
ondu
ting (or insulating) gap.Again, Fermi-liquid-type behavior with a �niteZ-fa
tor is �restored� for j"nj; j�pj � j�j.But the 
omplete des
ription of the super
ondu
-ting (ex
itoni
, Peierls) phase is a
hieved only after theintrodu
tion of the anomalous Gorkov fun
tion. Theex
itation spe
trum on both sides of the phase transi-tion is determined by di�erent Green's fun
tions withdi�erent topologi
al properties [9℄.D. Non-Fermi-liquid behavior due tointera
tionsNon-Fermi-liquid behavior of Green's fun
tion dueto intera
tions may also o

ur in the 
ase of the singu-lar behavior �("n; �p)!1 as "n ! 0 and �p ! 0, e.g.,a power-like divergen
e2) of �("n; �p) � max("��n ; ���p )with � > 0. Obviously, Z("n ! 0; �p ! 0) ! 0 in this
ase, and we again have a zero of the Green's fun
tionat the Fermi surfa
e.Another possibility is a singular behavior of deriva-tives of the self-energy in (4), e.g., in the 
ase where�("n; �p) � max("�n ; ��p ) with 0 < � < 1, leading to thepole singularity of the Green's fun
tion at the Fermisurfa
e being weaker than usual.Both types of behavior are realized within the To-monaga �Luttinger model in one dimension [12℄, wherethe asymptoti
 behavior of G(i"n; �p) in the region ofsmall �p � "n 
an be expressed asG("n � �p) � 1"1�2�0n (15)with �0 < 1=2. For �0 > 1=2,G("n � �p) � A+B"2�0�1n : (16)For 3=2 > �0 > 1,G("n � �p) � A+B"n + C"2�0�1n ; (17)et
., with the value of �0 determined by the intera
tionstrength.A spe
ial 
ase is given by the so-
alled �marginal�Fermi-liquid behavior assumed [13℄ for the interpreta-tion of the ele
troni
 properties of CuO2 planes of 
op-per oxides. It is given by�("n; �p) � �i"n ln max("n; �p)!
 ; (18)2) An additional logarithmi
 divergen
e 
an also be presenthere!479
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hinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006where � is some dimensionless intera
tion 
onstant and!
 is a 
hara
teristi
 
ut-o� frequen
y. If we formallyuse (6) at �nite "n, we obtain~Z("n; �p) � 11� � ln max("n; �p)!
 : (19)In this 
ase, the �residue at the pole� of the Green'sfun
tion (Z-fa
tor)3) tends to zero at the Fermi sur-fa
e itself, and, again, quasiparti
les are just not de-�ned there at all! However, everywhere outside a nar-row (logarithmi
) region 
lose to the Fermi surfa
e,we have a more or less �usual� quasiparti
le 
ontribu-tion: quasiparti
les (
lose to the Fermi surfa
e) are just�marginally� de�ned. At present, there are no generallya

epted mi
ros
opi
 models of the �marginal� Fermi-li-quid behavior in two dimensions.3. FLUCTUATING GAP MODELThe physi
al nature of the FGM was extensivelydis
ussed in the literature [1�8; 11℄. The model basedon the pi
ture of an ele
tron propagating in the (stati
!)Gaussian random �eld of (pseudogap) �u
tuations,leading to s
attering with the 
hara
teristi
 momen-tum transfer from a 
lose vi
inity of some �xed s
at-tering ve
tor Q. These �u
tuations are des
ribed bytwo basi
 parameters: the amplitude � and the 
or-relation length (of short-range order) ��1, determiningthe e�e
tive width � = ��1 of the s
attering ve
tordistribution.In one dimension, the typi
al 
hoi
e of the s
at-tering ve
tor is Q = 2pF (the �u
tuation region ofthe Peierls transition) [4, 5℄, while in two dimensions,we usually mean the so-
alled �hot spot� model withQ = (�=a; �=a) [2, 3℄. These models assume the �di-ele
tri
� (CDW, SDW) nature of pseudogap �u
tua-tions, but essentially the same formalism 
an be usedin the 
ase of super
ondu
ting �u
tuations [3℄.The 
ase of super
ondu
ting (s-wave) pseudo-gap �u
tuations in higher dimensions is a
tually de-s
ribed by the same one-dimensional version of theFGM [3; 4; 9℄.An attra
tive property of the models under dis
us-sion is the possibility of an exa
t solution a
hieved bythe 
omplete summation of the whole Feynman dia-gram series in the asymptoti
 limit of large 
orrelation3) We note that (19), stri
tly speaking, 
annot give the 
or-re
t de�nition of the �residue�, be
ause standard expression (6)is de�ned only at the Fermi surfa
e itself, where (19) just doesnot exist. In what follows, we therefore prefer the rather unusualde�nition in (2).

lengths � ! 1 [4, 6℄. In the 
ase of �nite 
orrelationlengths, we 
an also perform summation of all Feyn-man diagrams for the single-ele
tron Green's fun
tionusing an approximate ansatz for higher-order 
ontribu-tions in both one [5℄ and two dimensions [2, 3℄. Similarmethods of diagram summation 
an also be applied in
al
ulations of the two-parti
le Green's fun
tions (ver-tex parts) [2�4; 7; 11; 14℄.Our aim is to demonstrate that nearly all aspe
tsof the NFL behavior dis
ussed above 
an be ni
ely de-s
ribed within di�erent variants of the FGM.A. One dimensionWe limit ourselves here to the 
ase of in
ommensu-rate pseudogap (CDW) �u
tuations [4, 5℄. The 
om-mensurate 
ase [6, 5℄ 
an be analyzed similarly. Wenote that the same expressions also apply in the 
aseof super
ondu
ting (s-wave) �u
tuations in all dimen-sions.In the limit of the in�nite 
orrelation length of pseu-dogap �u
tuations, we have the exa
t solution for asingle-ele
tron Green's fun
tion [4, 11℄ given byG("n; �p) = 1Z0 d� e�� i"n + �p(i"n)2 � �2p � ��2 == i"n + �p�2 exp "2n + �2p�2 !Ei "2n + �2p�2 ! �� i"n + �p�2 ln 
0 "2n + �2p�2 !as "n ! 0; �p ! 0; (20)where Ei(�x) denotes the integral exponential fun
tionand we use the asymptoti
 behavior Ei(�x) � ln(
0x)as x ! 0 (ln 
0 = 0:577 is the Euler 
onstant). Then,using (3), we immediately obtainZ("n; �p) = �"2n + �2p�2 ln 
0 "2n + �2p�2 !! 0as "n ! 0; �p ! 0: (21)Pre
isely the same result is obtained if, for �nite "n and�p, we de�ne ~Z("n; �p) = 11� ��("n; �p)�(i"n) (22)480
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tuating gap model : : :similarly to (6). We note that be
ause j"nj � � andj�pj � �, we obviously have Z > 0, but the usual poleof the Green's fun
tion at the Fermi surfa
e (�point�) ofthe �normal� system is here transformed into a zero dueto pseudogap �u
tuations. Be
ause of the topologi
alstability [9℄, the singularity of the Green's fun
tion atthe Fermi surfa
e is not destroyed: the zero is also asingularity (with the same topologi
al 
harge) as thepole. But the FGM a
tually gives an expli
it exampleof a kind of Luttinger or �marginal� Fermi liquid witha very strong renormalization of the singularity at theFermi surfa
e.We 
onsider the self-energy 
orresponding toGreen's fun
tions (20):�("n; �p) = i"n � �p �� 24 1Z0 d� e�� i"n + �p(i"n)2 � �2p � ��235�1 : (23)

Taking �p = 0 for simpli
ity and "n ! 0, we obtain�("n ! 0; �p = 0) = 1i"n 24 1Z0 d� e�� 1"2n + ��235�1 �� ��2i"n 1ln�
0 "2n�2� !1; (24)i.e., the divergen
e of the type dis
ussed above.In the 
ase of �nite 
orrelation lengths � = ��1 ofpseudogap �u
tuations, we use the 
ontinuous-fra
tionrepresentation of single-ele
tron Green's fun
tion de-rived in Ref. [5℄ to obtain the renormalization fa
tor as("n > 0)Z("n; �p) = i"n � �pi"n � �p � �2i"n + �p + ivF�� �2i"n � �p + 2ivF�� 2�2i"n + �p + 3ivF�� : : : ; (25)
whi
h 
an be studied numeri
ally.In Fig. 1, we show typi
al dependen
es of the renor-malization fa
tor Z("n; �p). In all 
ases, it tends to zeroat the (�bare�) Fermi surfa
e and the pole of the Green'sfun
tion disappears. Essentially, this strong renormal-ization starts on the s
ale of the pseudogap width, i.e.,for j"nj < � and j�pj < �, re�e
ting a non-Fermi-liquidbehavior due to pseudogap �u
tuations.However, the role of �nite 
orrelation lengths � (�-nite �) is qualitatively similar to stati
 impurity s
at-tering4), and a more detailed 
al
ulation shows that theZ-fa
tor behaves at small �n � vF� and j�pj � vF�(with "n > 0) asZ(�n; �p) � � �vF�� ���n + i�p� �! 0as "n ! 0; �p ! 0; (26)with �(vF�=�) ! 0 as � ! 0, as seen from Fig. 2.In terms of the Green's fun
tion, this behavior 
orre-sponds to

G("n; �p) � 1�� �vF�� � "n + i�pi"n � �p == �i 1���vF�� � : (27)Therefore, for �nite �, the Green's fun
tion has no zeroat �n = 0 and �p = 0 and remains �nite as in an impuresystem.The vanishing of the renormalization fa
torZ("n; �p) at the �bare� Fermi surfa
e is in 
orres-ponden
e with the general topologi
al stability argu-ments [9℄: in the absen
e of stati
 impurity-like s
at-tering, the pole singularity of the Green's fun
tion isrepla
ed by a zero. In the presen
e of this additionals
attering, this zero is repla
ed by a �nite dis
ontinuity,and the singularity therefore persists.B. �Hot spot� model in two dimensionsIn two dimensions, we introdu
e the so-
alled �hotspot� model. We 
onsider a typi
al Fermi surfa
e ofele
trons moving in the CuO2 plane of 
opper oxides asshown in Fig. 3. If we negle
t �ne details, the observed(e.g., in ARPES experiments) Fermi surfa
e (and also4) This is due to our approximation of the stati
 nature ofpseudogap �u
tuations.7 ÆÝÒÔ, âûï. 3 (9) 481
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Fig. 1. Typi
al dependen
es of the Z("n; �p) fa
-tor in the one-dimensional FGM with �nite 
orrela-tion lengths: dependen
es of Z("n = 0; �p) andZ("n; �p = 0) on "n and �p for vF�=� = 0:1. In-set: the dependen
es of ReZ("n = 0; �p) on �p fordi�erent values of � (in units of �=vF ). Both "n and�p are given in units of �
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Fig. 2. Dependen
e of � (vF�=�) on the inverse 
or-relation lengththe spe
trum of elementary ex
itations) in the CuO2plane is in the �rst approximation des
ribed by theusual tight-binding model,�(p) = �2t(
ospxa+ 
os pya)�� 4t0 
os pxa 
os pya; (28)where t is the nearest-neighbor transfer integral, t0 isthe transfer integral between se
ond-nearest neighbors,and a is the square latti
e 
onstant.

�
(�; �)

Q = (�; �)
Fig. 3. Fermi surfa
e in the Brillouin zone and the�hot spot� model. The magneti
 zone appears, e.g.,in the presen
e of the antiferromagneti
 long-range or-der. �Hot spots� 
orrespond to interse
tions of themagneti
 zone borders with the Fermi surfa
e andare 
onne
ted by the s
attering ve
tor of the order ofQ = (�=a; �=a)Phase transition to the antiferromagneti
 state in-du
es latti
e period doubling and leads to the appear-an
e of an �antiferromagneti
� Brillouin zone in inversespa
e, as is also shown in Fig. 3. If the spe
trum of
arriers is given by (28) with t0 = 0 and we 
onsiderthe half-�lled 
ase, the Fermi surfa
e be
omes just asquare 
oin
iding with the borders of the antiferro-magneti
 zone and we have a 
omplete �nesting�: �atparts of the Fermi surfa
e mat
h ea
h other after thetranslation by the ve
tor of antiferromagneti
 orderingQ = (��=a;��=a). In this 
ase and for T = 0, theele
tron spe
trum is unstable, the energy gap appearseverywhere on the Fermi surfa
e, and the system be-
omes an insulator, due to the formation of an antifer-romagneti
 spin density wave (SDW)5). In the 
ase ofthe Fermi surfa
e shown in Fig. 3, the appearan
e of theantiferromagneti
 long-range order, in a

ordan
e withthe general rules of the band theory, leads to the ap-pearan
e of dis
ontinuities of isoenergeti
 surfa
es (e.g.,the Fermi surfa
e) at 
rossing points with boundariesof a new (magneti
) Brillouin zone due to gap openingat points 
onne
ted by the ve
tor Q.In the most part of the underdoped region of the
uprate phase diagram, the antiferromagneti
 long-range order is absent, but a number of experiments sup-5) Analogous diele
trization is also realized in the 
ase of theformation of the similar 
harge density wave (CDW).482
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tuating gap model : : :port the existen
e of well-developed �u
tuations of theantiferromagneti
 short-range order that s
atter ele
-trons with the 
hara
teristi
 momentum transfer of theorder of Q. Similar e�e
ts may appear due to CDW�u
tuations. These pseudogap �u
tuations are again
onsidered to be stati
 and Gaussian, and 
hara
ter-ized by two parameters: the amplitude � and 
orrela-tion length � = ��1 [1℄. In this 
ase, we 
an obtain arather 
omplete solution for the single-ele
tron Green'sfun
tion via summation of all Feynman diagrams of theperturbation series des
ribing s
attering by these �u
-tuations [1�3℄. This solution is again exa
t in the limitas � ! 1 [2℄, and apparently very 
lose to the exa
tsolution in 
ase of �nite � [15℄. Generalizations of thisapproa
h to two-parti
le properties (vertex parts) arealso quite feasible.We start again with an exa
t solution for � ! 1(or � = 0) [2℄. We �rst introdu
e the (normal) Green'sfun
tion for the SDW (CDW) state with long-rangeorder (see, e.g., [11℄):G("n; �p) = i"n � �p�Q(i"n � �p)(i"n � �p�Q)�W 2 ; (29)where W denotes the amplitude of the SDW (CDW)periodi
 potential and �p = "(p) � �. Then we 
anwrite the appropriate Z fa
tor asZ("n; �p) = (i"n � �1)(i"n � �2)(i"n � �1)(i"n � �2)�W 2 ; (30)where we set �p = �1 and �p�Q = �2 for brevity. Inwhat follows, we are mainly interested in the limit as"n ! 0 and �1 ! 0, i.e., in the vi
inity of the �bare�Fermi surfa
e. We note that �2 = 0 de�nes the so-
alled�shadow� Fermi surfa
e. We have �1 = �2 = 0 pre
iselyat the �hot spots�. It is 
onvenient to introdu
e the
omplex variablez = (i"n � �1)(i"n � �2); (31)whi
h be
omes small as "n; �1; �2 ! 0.1. In
ommensurate 
ombinatori
sIn the 
ase of in
ommensurate (CDW) pseudogap�u
tuations, an exa
t solution for the Green's fun
tionof the FGM in the limit as � !1 takes a form similar

to (20) [1, 2℄ and we obtain (averaging (30) with theRayleigh distribution for W )Z(z) = 1Z0 dW 2W�2 e�W 2=�2 zz �W 2 == 1Z0 d��2 e��=�2 zz � � = z�2 e�z=�2Ei � z�2 � : (32)Then, as z ! 0 we obtainZ(z ! 0) � z�2 hln�
0 z�2�� i�i : (33)At the �bare� Fermi surfa
e, we have �1 = 0, and welimit ourselves to "n > 0 in what follows. From (33), we
an then easily �nd the limit behavior of Z(z). Someof the results are as follows.1. For "n � j�2j, we haveReZ("n � j�2j; �1 = 0) � �2 "nj�2j�2 ; (34)i.e., the �impure�-like linear behavior in "n.2. For "n � j�2j (i.e., also at the �hot spot�, where�2 = 0), we haveReZ("n � j�2j; �1 = 0) �� � "2n�2 ln�
0 "2n�2�+ 12 �22�2 ; (35)i.e., for �2 = 0, the NFL behavior similar to the one-dimensional 
ase.We note that we always have ImZ = 0 at �2 = 0,i.e., at the �shadow� Fermi surfa
e and in parti
ular atthe �hot spot� itself.2. Spin-fermion 
ombinatori
sWe now 
onsider the spin-fermion (Heisenberg)model for pseudogap (SDW) �u
tuations [2℄. In this
ase, we again obtain the FGM, but with the gap distri-bution di�erent from the Rayleigh distribution; insteadof (32), we haveZ(z) = 2p2� 1Z0 dW W 2��23 �3=2 �� exp0BB�� W 22��23 �1CCA zz �W 2 =
483 7*
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hinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006= 1p2� 1Z0 d� p���23 �3=2 exp0BB�� �2��23 �1CCA �z � � == �(3=2)p2� (�z)3=2��23 �3=2 exp2664� z2��23 �3775�� �0BB��12;� z2��23 �1CCA : (36)Hen
e, as z ! 0, we obtainZ(z) � 2�(3=2)p� �� 26664� z2��23 � + ���12�0BB�� z2��23 �1CCA3=237775 : (37)On the �bare� Fermi surfa
e (�p = 0), we then haveZ("n ! 0; �2; �1 = 0) = 2�(3=2)p� 26664� "n("n + i�2)2��23 � ++ ���12�0BB��"n("n + i�2)2��23 � 1CCA3=237775 : (38)In parti
ular, for �2 = 0, we have ImZ = 0 andZ("n ! 0; �2 = �1 = 0) == ReZ("n ! 0; �2 = �1 = 0) = �(3=2)p� "2n��23 � ; (39)and we thus obtain the quadrati
 NFL behavior of theZ fa
tor. We again present some results on the limitbehavior.1. For "n � j�2j, we haveReZ("n � j�2j; �1 = 0) = 2�(3=2)p� �� 26664 "2n2��23 � +p2�0BB� "nj�2j2��23 �1CCA3=237775 ; (40)

i.e., the NFL �zero� behavior.2. For "n � j�2j (i.e., also at the �hot spot�, where�2 = 0), we haveReZ("n � �2; �1 = 0) = �(3=2)p� "2n��23 � ; (41)whi
h is again the NFL �zero� behavior.In the general 
ase of �nite 
orrelation lengths� = ��1, we have to perform numeri
al analysis us-ing the re
ursive relations proposed in Refs. [2, 3℄. Weagain use the basi
 de�nition of the Z fa
tor in (3). To
al
ulate the self-energy �("n; �p) of an ele
tron mov-ing in the quen
hed random �eld of (stati
) Gaussianspin �u
tuations with dominant s
attering momentumtransfers from the vi
inity of the 
hara
teristi
 ve
torQ, we use the re
ursive pro
edure [2, 3℄ in whi
h allFeynman diagrams des
ribing the s
attering of ele
-trons by this random �eld are taken into a

ount. Thesought self-energy is given by�("n; �p) = �k=1("n; �p) (42)with �p = �(p)� � (
f. (28)) and�k("n; �p) == �2 s(k)i"n + �� �k(p) + invk���k+1("n; �p) : (43)The quantity � again 
hara
terizes the energy s
aleof pseudogap �u
tuations and � = ��1 is the inverse
orrelation length of short-range SDW �u
tuations,�k(p) = �(p+Q) and vk = jvxp+Qj + jvyp+Qj for oddk, while "k(p) = "(p) and vk = jvxpj + jvypj for even k.The velo
ity proje
tions vxp and vyp are determined bythe usual momentum derivatives of the �bare� ele
tronenergy dispersion �(p) given by (28). Finally, s(k) is a
ombinatorial fa
tor, withs(k) = k (44)for 
ommensurate 
harge (CDW type) �u
tuationswith Q = (�=a; �=a) [5℄. For in
ommensurate CDW�u
tuations [5℄, we �nds(k) = 8>><>>: k + 12 for odd k;k2 for even k: (45)For the spin-fermion model in Ref. [2℄, the 
om-binatori
s of diagrams be
omes more 
ompli
ated.Spin-
onserving s
attering pro
esses obey 
ommensu-rate 
ombinatori
s, while spin-�ip s
attering is de-s
ribed by diagrams of the in
ommensurate type484
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0 "0:5 1:0DCBA00:51:00:20:40:6
0:81:0ReZ � = 0:1 t�a = 0

DACB0:010:02 0:04 0:06 0:08 0:1Fig. 4. Dependen
e of ReZ on "n (in units of t) atdi�erent points of the Fermi surfa
e (
orresponding tot0 = �0:4t and � = �1:3t) in the �hot spot� model (thespin-fermion 
ombinatori
s of diagrams) with the 
orre-lation lengths � !1 (� = 0) and ��1a = �a = 0:01.The pseudogap amplitude is � = 0:1t. Inset: the�bare� Fermi surfa
e and the points where the 
al
ula-tions were done(�
harged� random �eld in terms of Ref. [2℄). In thismodel, the re
ursive relation for the single-parti
leGreen's fun
tion is again given by (43), but the 
ombi-natorial fa
tor s(n) a
quires the form [2℄s(k) = 8>><>>: k + 23 for odd k;k3 for even k: (46)Below, we only present our results for the spin-fermion
ombinatori
s, be
ause in other 
ases, we obtain moreor less similar behavior of the renormalization fa
tors.In Fig. 4, we show the results of numeri
al 
al
u-lation of ReZ("n; �p = 0) at di�erent points taken atthe �bare� Fermi surfa
e, shown in the inset. For 
om-parison, we show the data obtained in the limit of thein�nite 
orrelation length � ! 1 (or � = 0, whi
his an exa
tly solvable 
ase) and for �nite �a = 0:01(i.e., � = 100a). It is 
learly seen that in both 
ases,ReZ � 1 at the �nodal� point D, ex
ept at very smallvalues of "n, while in the vi
inity of the �hot spot�(points A and C) and also at the �hot spot� itself (pointB), ReZ be
omes small in a rather wide interval of"n < �. This 
orresponds to an approximately �Fermi-liquid� behavior of the �nodal� region (the vi
inity ofthe Brillouin zone diagonal), with a kind of �marginal�Fermi-liquid or Luttinger-liquid (NFL) behavior as wemove to the vi
inity of the �hot spot�.

DCB1:000:5py
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�a = 0:01 "�0:4�0:200:2
0:40:6ImZ

� = 0:1t A
A

0 0:02 0:04 0:06 0:08 0:1
0:5 1:0

Fig. 5. Dependen
e of ImZ on "n (in units of thetransfer integral t) at di�erent points of the Fermi sur-fa
e (
orresponding to t0 = �0:4t and � = �1:3t) inthe �hot spot� model with the �nite 
orrelation length��1a = �a = 0:01 (the spin-fermion 
ombinatori
s ofdiagrams). The pseudogap amplitude is � = 0:1t. In-set: the �bare� Fermi surfa
e and the points where the
al
ulations were doneFor 
ompleteness, in Fig. 5, we show similar 
om-parison of the dependen
es of ImZ on "n at the same
hara
teristi
 points on the Fermi surfa
e and for thesame parameters as in Fig. 4. It is only important tostress on
e again that we have ImZ = 0 only at the�hot spot� itself (point B), and therefore Z be
omesreal and shows the dependen
e on "n more or less equiv-alent to that proposed for �marginal� Fermi liquids (orLuttinger liquids).In all 
ases, we observe the vanishing of the renor-malization fa
tor Z("n; �p) at the �bare� Fermi surfa
e.In the absen
e of stati
 impurity-like s
attering due to�nite values of the 
orrelation length � = ��1, the polesingularity of the Green's fun
tion is repla
ed by a zero,re�e
ting the topologi
al stability of the �bare� Fermisurfa
e (the Luttinger theorem) [9℄. In the presen
e ofthis s
attering, the singularity of the Green's fun
tionat the topologi
ally stable �bare� Fermi surfa
e remainsin the form of a �nite dis
ontinuity.C. Spe
tral density and Fermi surfa
e�destru
tion� in the �hot spot� modelWe return to (29) and perform the usual analyti

ontinuation to real frequen
ies, i"n ! "+ iÆ. We thenobtain485
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hinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006GR("; �p) = "� �2("+ iÆ � �1)("� �2 + iÆ)�W 2 == "� �2("� �1)("� �2)�W 2 + iÆ(2"� �1 � �2) (47)and therefore the spe
tral density in the 
ase of along-range (CDW, SDW) order is given byAW ("; �p) = � 1� ImGR("; �p) == ("��2)Æ[("��1)("��2)�W 2℄ sign(2"��1��2): (48)A

ordingly, for the FGM with the 
orrelation length� !1, we haveA("; �p) = 1Z0 dWPWAW ("; �p); (49)where PW is the distribution fun
tion of gap �u
tua-tions, depending on the 
ombinatori
s of diagrams andleading to the following separate 
ases, already 
onsid-ered (or mentioned) above.1. In
ommensurate 
ombinatori
sIn the 
ase of in
ommensurate CDW-like pseudogap�u
tuations, we havePW = 2W�2 exp��W 2�2 � ; (50)whi
h is the Rayleigh distribution [4, 11℄. From (49),we then obtainA("; �p) = "� �2�2 exp�� ("� �1)("� �2)�2 ��� �[("� �1)("� �2)℄ sign(2"� �1 � �2): (51)For " = 0, we haveA(" = 0; �p) == �2�2 exp���1�2�2 � �[�1�2℄ sign(�1 + �2): (52)For �1 ! �0, we obtainA(" = 0; �p ! �0; �2) = � �2�2 �(��2); (53)and therefore A(" = 0; �p) is nonzero within the Bril-louin zone only in the spa
e between the �bare� Fermisurfa
e and the �shadow� Fermi surfa
e. This quali-tative result is 
on�rmed below, for all other 
ombina-tori
s, in the 
ase of the �pure� FGM with ��1 = � = 0.

2. Commensurate 
ombinatori
sIn the 
ase of 
ommensurate CDW-like pseudogap�u
tuations, we have [6℄PW = 1p2�� exp��W 22�2� ; (54)whi
h is the Gaussian distribution. From (49), we thenobtainA("; �p) = 1p2� "� �2�p("� �1)("� �2) �� exp�� ("� �1)("� �2)2�2 ��� �[("� �1)("� �2)℄ sign(2"� �1 � �2); (55)with the same qualitative 
on
lusions as in the in
om-mensurate 
ase.3. Spin-fermion 
ombinatori
sIn the 
ase of SDW-like pseudogap �u
tuations ofthe (Heisenberg) spin-fermion model [2℄, we have thegap distributionPW = 2� W 2��23 �3=2 exp0BB�� W 22��23 �1CCA : (56)From (49), we then obtainA("; �p) = 1p2� p("� �1)("� �2)��23 �3=2 �� exp0BB�� ("� �1)("� �2)2��23 � 1CCA �[("� �1)("� �2)℄�� sign(2"� �1 � �2); (57)again with the same qualitative 
on
lusions as in thein
ommensurate 
ase.In the general 
ase of �nite 
orrelation lengths� = ��1, spe
tral densities 
an be dire
tly 
omputedusing analyti
 
ontinuation of re
ursive relations (42)and (43) to real frequen
ies [2, 3℄.A
tually, two-dimensional 
ontour plots ofA(" = 0; �p) (whi
h dire
tly 
orrespond to ARPESintensity plots) 
an be used for a �pra
ti
al� de�nitionof the renormalized Fermi surfa
e and provide a486
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Fig. 6. Intensity plots of the spe
tral density A(" = 0; �p) in the Brillouin zone for the �hot spots� model (t0 = �0:4t and� = �1:3t) in the 
ase of in�nite 
orrelation length ��1 = � = 0 and for a �nite 
orrelation length ��1a = �a = 0:01(the spin-fermion 
ombinatori
s of diagrams) with di�erent values of the pseudogap amplitude. The �bare� Fermi surfa
e isshown by a dashed linequalitative pi
ture of its evolution in the FGM with
hanged model parameters6).In Fig. 6, we show typi
al intensity plots of the spe
-tral density A(" = 0; �p) in the Brillouin zone for the�hot spot� model both in the 
ase of the in�nite 
orre-lation length ��1 = � = 0 and for a �nite (large!) 
or-relation length ��1a = �a = 0:01 (for the spin-fermion
ombinatori
s of diagrams; in other 
ases, the behavioris quite similar) and for di�erent values of the pseudo-gap amplitude �. We see that these spe
tral densityplots give a rather beautiful qualitative pi
ture of the6) We note that for free ele
trons, A(" = 0; �p) = Æ(�p), andtherefore the appropriate intensity plot dire
tly reprodu
es the�bare� Fermi surfa
e.

�destru
tion� of the Fermi surfa
e in the vi
inity of �hotspots� for small values of �, with formation of typi
al�Fermi ar
s� as � grows, whi
h qualitatively resemblestypi
al ARPES data for 
opper oxides [16, 17℄.D. Super
ondu
ting d-wave �u
tuationsAs noted above, the 
ase of super
ondu
ting s-wave pseudogap �u
tuations simply redu
es to the one-dimensional FGM. Mu
h more interesting is the 
aseof super
ondu
ting d-wave �u
tuations in two dimen-sions.To obtain exa
t results in the 
ase of the in�nite
orrelation length ��1 = � = 0, we have only to makesimple repla
ements in the above expressions for the487



E. Z. Ku
hinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006�hot spot� model with in
ommensurate 
ombinatori
s:�2 ! ��1 = ��p and � ! �p, where �p de�nes theamplitude of �u
tuations with the d-wave symmetry:�p = 12� [
os(pxa)� 
os(pya)℄ ; (58)where � now 
hara
terizes the energy s
ale of pseudo-gap �u
tuations.Equation (31) then redu
es to z = �("2n + �2p) andwe immediately obtain an expression for the Z fa
tor,similar to (21):Z("n; �p) = �"2n + �2p�2p exp �"2n + �2p�2p !�� Ei �"2n + �2p�2p ! � �"2n + �2p�2p �� ln 
0 "2n + �2p�2p !! 0 as "n ! 0; �p ! 0; (59)again repla
ing the pole singularity by a zero at the�bare� Fermi surfa
e, ex
ept for the �nodal� point at thediagonal of the Brillouin zone, where �p = 0 (
f. (58)).Instead of (51), we obtain the spe
tral density asA("; �p) = "+ �p�2p exp �"2 � �2p�2p !�� �("2 � �2p) sign "; (60)whi
h is nonzero only for j�pj < ". As a result, at " = 0,we have A(" = 0; �p) = 0 for �p 6= 0, and it is di�erentfrom zero only at the interse
tion of the Brillouin zonediagonal with the �bare� Fermi surfa
e, where �p givenby (58) is zero. At the Fermi surfa
e itself, we haveA("; �p = 0) = j"j�2p exp�� "2�2p� ; (61)with two maxima at " = ��p=p2.Considering the general 
ase of �nite 
orrelationlengths � = ��1, we again perform numeri
al analy-sis based on the re
ursive relations introdu
ed for thisproblem in Ref. [3℄, using the basi
 de�nition of the Zfa
tor in (3). To 
al
ulate the self-energy �("n; �p) ofan ele
tron s
attered by stati
 �u
tuations of the super-
ondu
ting order parameter with the d-wave symmetry,we use the following relation (similar to (43)) slightlygeneralizing relations derived in Ref. [3℄:�k("n; �p) == �2ps(k)i"n�(�1)k�p+ik�(jvxpj+jvypj)��k+1("n; �p) ; (62)where s(k) is de�ned in (45).

�a = 0:01� = 0:1t
0:50 1:0

DAA D "00:2
0:40:60:8
1:0ReZ

0:5py 1:0 px0:02 0:04 0:06 0:08 0:1Fig. 7. The dependen
es of ReZ on "n (in units of t)at di�erent points of the Fermi surfa
e (
orrespondingto t0 = �0:4t and � = �1:3t) in the model of super-
ondu
ting (d-wave) pseudpgap �u
tuations with the
orrelation length ��1a = �a = 0:01. The pseudogapamplitude is � = 0:1t. Inset: the �bare� Fermi surfa
eand the points where the 
al
ulations were doneIn Fig. 7, we show the results for ReZ("n; �p = 0),again taken at di�erent points of the �bare� Fermi sur-fa
e, shown in the inset. The 
orrelation length is� = 100a (�a = 0:01) and � = 0:1t. It is 
learly seenthat ReZ = 1 pre
isely at the �nodal� point D (where�p = 0), but at other points on the �bare� Fermi sur-fa
e, ReZ is strongly renormalized in a rather wideintervals of "n < j�pj, tending to zero as "n ! 0. Wethus again obtain a kind of �marginal� Fermi liquid orLuttinger liquid (NFL), but qualitatively di�erent fromthe 
ase of �hot spot� model.In Fig. 8, we also show typi
al intensity plots of thespe
tral density A(" = 0; �p) in the Brillouin zone inthe 
ase of super
ondu
ting (d-wave) pseudogap �u
tu-ations with the 
orrelation length ��1a = �a = 0:1 andtwo di�erent values of �. We see that these spe
traldensity plots give a totally di�erent pi
ture of the �de-stru
tion� of the Fermi surfa
e than the one given bythe �hot spot� model, whi
h also, in our opinion, di�erssigni�
antly from most results of the ARPES measure-ments on 
opper oxides. The Fermi surfa
e is sharplyde�ned only at one point (at the diagonal of the Bril-louin zone), where �p given by (58) is pre
isely zero,and there are no sharply de�ned Fermi ar
s formed
lose to this point. We observe only some more or lesswide �dragon�y wings� formed around this point. Wealso note the absen
e of any signs of the �shadow� Fermisurfa
e.488
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Fig. 8. Intensity plots of the spe
tral density A(" = 0; �p) in the Brillouin zone (t0 = �0:4t and � = �1:3t) in the 
aseof super
ondu
ting (d-wave) pseudogap �u
tuations. The 
orrelation length is ��1a = �a = 0:1 (with the spin-fermion
ombinatori
s of diagrams) for two di�erent values of the pseudogap amplitude � = 0:3t and � = t4. CONCLUSIONWe analyzed the rather unusual (NFL) behavior ofthe �u
tuating gap model of pseudogap behavior inboth one and two dimensions. We studied the quasipar-ti
le renormalization (Z fa
tor) of the single-ele
tronGreen's fun
tion, demonstrating a kind of �marginal�Fermi-liquid or Luttinger-liquid behavior (i.e., the ab-sen
e of well-de�ned quasiparti
les 
lose to the Fermisurfa
e) and also the topologi
al stability of the �bare�Fermi surfa
e (the Luttinger theorem). This re�e
tsstrong renormalization e�e
ts leading to the repla
e-ment of the usual pole singularity of the Green's fun
-tion in a Fermi liquid by a zero, thus e�e
tively repla
-ing the Fermi surfa
e of poles by the Luttinger surfa
eof zeroes [20℄. In the presen
e of stati
 impurity-likes
attering due to the e�e
ts of �nite 
orrelation lengthsof pseudogap �u
tuations, this singularity is repla
edby a �nite dis
ontinuty.In the two-dimensional 
ase, we dis
ussed thee�e
tive pi
ture of the Fermi surfa
e �destru
tion�both in the �hot spot� model of diele
tri
 (AFM,CDW) pseudogap �u
tuations and in the qualitativelydi�erent 
ase of super
ondu
ting d-wave �u
tuations,re�e
ting the NFL spe
tral density behavior and simi-lar to that observed in ARPES experiments on 
opperoxides. Intensity plots obtained in the 
ase of AFM(CDW) �u
tuations, in our opinion, are more similarto the ARPES intensity data obtained in experiments

on 
opper oxides. We note that this e�e
tive pi
turewas also dire
tly generalized to the 
ase of strongly
orrelated metals or doped Mott insulators [18℄ usingthe so-
alled DMFT +�k approa
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