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ADIABATIC PROPAGATION OF QUANTIZED LIGHT PULSESIN AN ATOMIC MEDIUM WITH THE TRIPOD LEVELCONFIGURATIONI. E. Mazets *Io�e Physio-Tehnial Institute194021, St. Petersburg, RussiaReeived Marh 24, 2006We onsider adiabati propagation of a pair of quantized light pulses in a oherently prepared atomi mediumwith the tripod level on�guration. We �nd that under the onditions of the eletromagnetially indued trans-pareny, two distint polariton modes are simultaneously formed in the medium. These polaritons, representedby ertain oherent superpositions of the quantized �elds, have di�erent group veloities; the fast one propa-gates at essentially the speed of light, while the group veloity of the slow polariton an be dynamially reduedto zero. The state mapping between the eletromagneti �eld and atomi ensemble is also demonstrated.PACS: 42.50.GyShape-preserving adiabati propagation of eletro-magneti pulses, often termed adiabatons, in three-le-vel atomi media has been studied over the lastdeade [1�3℄. The underlying e�et is the oherentpopulation trapping phenomenon [4℄ that is the au-mulation of atoms in a oherent superposition of states,whih is immune to exitation by the given frequeny-split laser radiation. Its extension to atomi or moleu-lar systems ontaining more than just three levels, suhas four-level atoms with the tripod level on�guration,is beoming an ative topi of urrent researh [5℄.The related e�et of eletromagnetially induedtranspareny (the manifestation of oherent populationtrapping in optially dense media) [6℄ is the basis forseveral groundbreaking reent ahievements, suh as re-dution of the group veloity of weak light pulses toremarkably low values [7℄ or even down to ompletestop [8, 9℄, single-photon pulse generation [10℄ and re-versible quantum memories [11℄, whih may eventuallybe employed to realize deterministi quantum ompu-tation with single-photon qubits [12℄.In a reent paper [13℄, we have studied the adiabatipulse propagation in a medium of atoms with the tripodlevel sheme (hereafter alled a tripod medium). Wethere onsidered strong oherent pulses of large ampli-*E-mail: mazets�astro.io�e.rssi.ru

tudes, desribable by the semilassial approah. Weakquantum pulse propagation in suh a system was stud-ied in Ref. [14℄, where the possibility of ahieving aquantum phase gate between a pair of single-photonpulses was demonstrated. Parametri generation oflight in a medium of tripod atoms prepared in a ertainoherent superposition of ground states was reentlydisussed in Ref. [15℄.The main result of the semilassial analysis inRef. [13℄ is that a lassial three-omponent light pulsepropagating in a tripod medium under adiabatiityonditions asymptotially (at large propagation timesor distanes) evolves into a pair of nonlinear, shape-pre-serving pulses propagating at the di�erent group velo-ities. The fast pulse propagates at the speed of light ,whereas the group veloity of the slow pulse is dynami-ally redued with respet to , in aordane with thestandard formula for the slow-light veloity [1℄. Re-markably, suh an adiabati propagation is essentiallygoverned by the o�-diagonal geometri phase that de-velops in the atomi state in a self-onsistent way un-der the ation of the light pulse. Before generalizing thetreatment based on geometri-phase e�ets to a systemwhere all the eletromagneti �elds are quantized, it isreasonable to �rst extend the polaritoni theory of slowlight propagation [8℄ to the ase of a tripod medium.421
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|3〉Level sheme of tripod atoms interating with two weak�elds E1;2 and a strong driving �eld of a Rabi fre-queny 
In the present paper, we onsider the interation oftwo quantized optial �elds and a strong lassial driv-ing �eld with a medium of atoms having a tripod on-�guration of levels (see the Figure). The lower statesj1i, j2i, and j3i are the relevant Zeeman sublevels of theeletroni ground state of the atoms. The optially ex-ited state of the tripod sheme is denoted by j0i. Thetransition j3i ! j0i is driven by the lassial, time-de-pendent in the general ase, eletromagneti �eld witha Rabi frequeny 
. The quantized �elds Êj , j = 1; 2,exite the orresponding atomi transitions jji ! j0i.All the �elds are tuned exatly to resonane with theorresponding atomi transitions.The interation Hamiltonian is given byV̂ = �~NL LZ0 dz 24
(t)�̂03 + 2Xj=1 gjÊj �̂0j35+H.; (1)where N is the total number of atoms in the quantiza-tion volume AL, A being the ross-setion area and Lbeing the medium length,��� � j�ih�jare the atomi operators, andgj = d0jr kj2~"0ALare the atom��eld oupling onstants, with d0j beingthe optial transition dipole moments. We neglet ther-mal motion of atoms, i.e., set the atomi veloity tozero. The �eld operators Êj admit the mode deompo-sition Êj =Xk â(k)j (t) exp[ik(z � t)℄;

where â(k)j (t) is the photon annihilation operator obey-ing the usual bosoni ommutation rules. In the slowlyvarying envelope approximation, the propagation equa-tions for the quantum �eld operators are given by� ��t +  ��z� Êj = igjN�̂j0; j = 1; 2: (2)On the other hand, the atomi operators ��� in the in-teration representation satisfy the evolution equation��t�̂�� = ��� �̂�� + i~ [V̂ ; �̂�� ℄ + F̂�� ; (3)where �� are the relaxation onstants and F̂�� arethe orresponding Æ-orrelated Langevin noise opera-tors. In partiular, Eqs. (3) expliitly yield��t �̂10 = �10�̂10 + ig1Ê1(�̂11 � �̂00) ++ ig2Ê2�̂12 + i
�̂13 + F̂10; (4)��t �̂20 = �20�̂20 + ig2Ê2(�̂22 � �̂00) ++ ig1Ê1�̂21 + i
�̂23 + F̂20; (5)��t �̂j3 = �j3�̂j3 � igjÊj �̂03 + i
��̂j0 + F̂j3; (6)j = 1; 2:Let j
j be the largest frequeny in the system. As-suming that it hanges slowly enough,�����
�t ����� j
j2;we an use the standard approximations ommonlyused in the adiabati pulse propagation analysis [1, 8℄.We an then neglet the noise terms for atomi oher-enes (� 6= �) and use Eqs. (4)�(6) to obtain�̂j0 = � i
� ��t �̂j3; �̂j3 = � 1
 2Xl=1 glÊl�̂jl: (7)For simpliity, we assume 
(t) and �12 to be real; wereall that the number of photons in the weak �elds Êjis so small that the populations of the atomi levels j1iand j2i and the oherene between them remain pra-tially unhanged throughout the evolution. We antherefore replae the operators �̂lj , l; j = 1; 2, by on-stant -numbers �lj . Then propagation equations (2)for the quantized �elds are redued to� ��t +  ��z� Êj = �gjN
(t) ��t 2Xl=1 glÊl�jl
(t) ; (8)j = 1; 2:422



ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006 Adiabati propagation of quantized light pulses : : :We onsider two linear ombinations of the operatorvariables Êj , having the form	̂� = 1os#�(t) �sin��Ê1 + os��Ê2� ; (9)where os#�(t) = 
(t)q
2(t) + P 2� (10)are the mixing angles, and �� and P� are some on-stants to be determined. We now prove that the abovepolariton operators 	̂� satisfy the orresponding prop-agation equations� ��t +  os2 #�(t) ��z� 	̂� = 0; (11)where  os2 #�(t) � v�evidently play the role of group veloities. Throughthe diret substitution, using Eq. (8), and temporarilydropping the subsripts ���, we obtainsin2 # ��t 	̂ + os2 #� ��t +  ��z� 	̂ = 0;or, in other words,sin2 # ��t  sin� Ê1 + os� Ê2os# !�� (sin� Ê1 + os� Ê2) ��t os# �� os#"sin� g1N
 ��t  g1�11Ê1 + g2�12Ê2
 ! ++ os� g2N
 ��t  g1�21Ê1 + g2�22Ê2
 !# = 0: (12)

Realling Eq. (10), we transform Eq. (12) into(P 2 sin��g21�11N sin��g1g2�21N os�) ��t  Ê1
 !++ (P 2 os�� g22�22N os�� g1g2�12N sin�)�� ��t  Ê2
 ! = 0: (13)Beause Ê1 and Ê2 are arbitrary and linearly indepen-dent, Eq. (13) results in the following set of equationsfor the unknown variables sin� and os�:(P 2 � g21�11N) sin�� g1g2�21N os� = 0; (14)�g1g2N�12 sin�+ (P 2 � g22�22N) os� = 0: (15)The solvability ondition for the set of equations (14),(15),(P 2 � g21�11N)(P 2 � g22�22N)� g21g22 j�12j2N2 = 0;yields the eigenvalues of P , given byP 2� = N2 �g21�11 + g22�22�� q(g21�11 + g22�22)2 � 4g21g22(�11�22 � �212) � : (16)Realling that Im�12 = 0by assumption, we obtaintg�� = 2g1g2�12g22�22 � g21�11 �p(g21�11 + g22�22)2 � 4g21g22(�11�22 � �212) : (17)We note that tg�+ tg�� = �1: (18)In what follows, we assume that the medium is pre-pared in a pure state [13; 15℄, suh that�12 = p�11�22: (19)Also, we neglet the spatial dependene of the Rabi fre-queny, assuming that it is a funtion of the time vari-able only, 
 = 
(t). By setting 
 = 
(t), we neglet
the propagation e�ets linear in the ratio of the pulsepropagation veloity to . This ratio is small for the	̂+(z; t) polariton, but approahes 1 for the 	̂�(z; t)polariton. However, in analogy with the lassial pulsepropagation in a tripod medium studied in Ref. [13℄, we�nd that in the quantum ase, the fast mode also prop-agates at , provided the medium is prepared in a purestate. Alternatively, we an assume that the lassialdriving �eld propagates in the diretion perpendiularto the propagation diretion of the quantized �elds Êj .We then have423



I. E. Mazets ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006tg�� = �g2p�22g1p�11 ; P 2� = 0; os#�(t) = 1; (20)meaning that the group veloity of the 	̂�(z; t) polari-ton is equal to the speed of light,	̂�(z; t) = 	̂(z � t; 0) = 	̂(0; t� z=):For the 	̂+(z; t) polariton, we obtaintg�+ = g1p�11g2p�22 ; P 2+ = N(g21�11 + g22�22);os#+(t) = 
(t)q
2(t) + P 2+ : (21)The group veloity of the 	̂+(z; t) polariton an there-fore beome muh smaller than  if the driving �eldRabi frequeny satis�es
� P+:The orresponding solution is then given by	̂+(z; t) = 	̂+0�z � tZ0 v+(t0)dt0; 01A ;where v+(t) =  os2 #+(t)is the time-dependent group veloity. Thus, one the	̂+ polariton has been fully aommodated in themedium, one an stop it ompletely by rotating themixing angle #+ de�ned in Eq. (10) from its initialvalue 0 � #+ < �=2 to #+ = �=2, whih amounts toswithing o� the Rabi frequeny 
. In the ase of aonstant Rabi frequeny 
, the above solution an berewritten as	̂+(z; t) = 	̂+(z � v+t; 0) = 	̂+(0; t� z=v+):From Eq. (9), using Eq. (18), we obtainÊ1 = sin�� os ��	̂� + os�� os �+	̂+; (22)Ê2 = os�� os ��	̂� � sin�� os �+	̂+: (23)At large times t > L=, when the fast polariton runsaway from the medium and only the slow polariton re-mains inside the medium, the quantized �eld operatorsare expressed asÊ1(z; t) = os�� os#+(t)��  os��Ê1 � sin��Ê2os#+ !�����0;t�z=v+ ; (24)

Ê2(z; t) = � sin�� os#+(t)��  os��Ê1 � sin��Ê2os#+ !�����0;t�z=v+ ; (25)We introdue the �eld operator for atoms in thestate j3i via �̂3(z; t) =r N�11 �̂13(z; t): (26)Their plane-wave deomposition is given by�̂3(z; t) =Xk �̂(k)3 (t)eikz ;�̂(k)3 (t) = 1L LZ0 �̂13(z; t)e�ikz:From Eq. (7), we obtain for large t that�̂3 = �pN
 �g1p�11Ê1 + g2p�22Ê2� == �pN os#+(t)
(t) (g1p�11 os���g2p�22 sin��)�� 	̂+(z; t); (27)whih �nally yields,�̂3(z; t) = � sin#+(t)	̂+(0; t� z=v+): (28)The plane-wave deomposition operator oe�ients ofEq. (28) are expressed through the photon annihilationoperators â(k)j as�̂(k)3 = F(z; t)���os��â(k)1 (t�z=v+)� sin��â(k)2 (t�z=v+)� ; (29)F(z; t) = � sin#+(t)os#+(t� z=v+) :We now assume thatos�� = 1p2 ; sin�� = � 1p2 : (30)Then �̂(k)3 = F(z; t)â(k)+ ;where â(k)� = â(k)1 � â(k)2p2 :424
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