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Chiral amplitudes for two-jet processes in the quasiperipheral kinematics are calculated at the Born and one-
loop correction levels. The amplitudes of subprocesses describing the interaction of a virtual and a real photon
with creation of a charged fermion pair for various chiral states are considered in detail. Similar results are
presented for the Compton subprocess with a virtual photon. Contributions of the emission of virtual, soft, and
hard real additional photons are taken into account explicitly. The relevant cross sections expressed in terms of
impact factors are in agreement with the structure-function approach in the leading logarithmic approximation.
Contributions of the next-to-leading terms are presented in analytic form. Accuracy estimation is discussed.
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1. INTRODUCTION

Much attention was paid during the last decades
(see [1] and the references therein) to different processes
of the kind

(A1)

al (p17 (51) + a»s (pQ, (52) — jetl + jet;’\2)7 (1)

where

ai,2 :ei777 (pl +p2)2 :S>>m227

and 6;()\;) describe the polarization states of the initial
and jet particles. Below, we choose

01 =02 = +1

without a loss of generality (see Fig. 1). These pro-
cesses can be studied at high-energy collisions of the
initial particles in peripheral kinematics, i.e., small an-
gles 6 of the emission of jet particles to the direction of
their parent particle (the center-of-mass (cms) frame of
the initial particles is implied), see Fig. 2. A remark-
able property of nondecreasing of the differential and
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2

Fig.1. General diagram for the process

total cross sections as functions of the cms total energy
/s in this kinematics is commonly known [2]. This
property is a consequence of the presence of a massless
vector particle (photon) in the scattering channel state.
The contributions of Feynman diagrams with fermions
and the interference of amplitudes of these types are
suppressed compared with the photon exchange ones.
Because the corresponding cross sections of the rele-
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Fig.2. Kinematics of a quasiperipheral process

vant QED processes are numerically large, they provide
an essential background in the study of the effects of
weak and strong interactions. In addition, these pro-
cesses can be used for monitoring and calibration pur-
poses.

Unfortunately, very small emission angles cannot be
measured in practice. We therefore suggest considering
processes (1) in the so-called quasiperipheral kinemat-
ics, which implies the values of emission angles to be
small compared with unity but much larger than

m  2m

BV

where m is a characteristic mass of the jet constituents:

2mi
— Kk
NG 0; K1

¢g=-p+ Zpil = —an + P2,
i i

with p;1,pi2 being the 4-momenta of particles from
jeti» and ¢ the momentum of the ¢-channel virtual
photon. The quasiperipheral kinematics provides the
independence from the energy of differential cross sec-
tions but has accuracy of the order of §2 — the order
of contributions of neglected terms compared to those
considered.

m? < —q2 < s,

(2)

Another important property of the quasiperipheral
kinematics is the independence of spin states from the
a1 — jet; and as — jets blocks of a process. We can
therefore set 61 5 = +1. This fact can be seen by using
Gribov’s form of the Green’s function of an exchanged
photon with momentum g¢:

g 1 2
qu; = q_2 Juvl + ;[plupm/ +p2pp11/] ) (3)

which results in the amplitude

Ara y
MU = B () ) () =

8rais

= 5.3, (4)

where J1:2 are the currents associated with blocks 1 and
2 of the Feynman diagram (Fig. 1) and their light-cone
projections (LP) are defined as

1 1
®, = ;Jl’“mm Dy = ;J2’Vp1u~ (5)

The LP factors ®* are independent of s in the limit as
s — o0,

At this stage, we introduce Sudakov’s parameteri-
zation of 4-momenta,

Pi1 = Q;p2 + Tip1 + Piit,
2
in - 1-, a; = &7
p ST;

Dj2 = y;p2 + Bip1 + pijo,
2 6)
Pj2 (
i i
2

g=apx+Bpr+qi. ¢ ~-q’, pl;=-pj

Zpil =q, an = —q.
i i

Sudakov’s longitudinal parameters o and 3 of the ex-
changed photon with momentum ¢ are related to the
jet invariant masses squared,

s1=(g+p1)? =~ —q + sa,
so=(—q+p2)’ = —q” — sp.

(7)

Here, we use the on-shell condition
2 2
Pi1 = Pjz =0,

the conservation law, and introduce the Euclidean two-
dimensional vectors

(piipr,2) =0.

We note that the current conservation condition

JMg, =J%"q, =0

leads to
1 1 1 1
—pR T = —— gt T TR = —— g TP (8
P2, AR U el (8)

We use the property that the matrix elements vanish
at small q as an important check of the calculations

(see (4)).
The differential cross section can be written in terms
of the Cheng—Wu impact factors [3]:

2 2
12y _ o d°q (M) (A2)
dO'( )_ F(q2)2 /dTl /dTQ 5

/dn“” =/\<I>E*”<q>\2dri, i=12,

(9)

with
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dly = (277)4/(1316 <p1 +q- Zpu) X
d Pit
x H 2e41(2m)3
dl’y = (27T)4/d325 <p2 —q- me) X
Ppis
X 1:[ e (27m)3

The impact factors [ dr; are independent of s. In the
cases where a jet consists of one, two or three particles,

we have
/ drt!

(10)

& pP11dz:
art? = 210l

2(271’) xll‘g
P11 +Pa1=q 21+22=1, (11)
dF( ) _ d*p11d*parde da;

4(271’)5331562563
T + ) + I3 = ].,
P11 + P21 + P31 = Q.

For conversion of the initial photon with momentum
p1 and chirality A to the charged fermion—antifermion
pair,

(@) + (1 A) = e (g4) +e (g, 0), (12)
we accept the description of chiral states of the photon
and lepton developed in [4]:

eMp1) = Ny (G-Geprow—x — Prd-Gswa),

(@) =0, () =1,
2
NA? =——, $1=204+q-, X+ = 2p1q+, (13)
SIX+X-
1
= %, o= +1.

Chiral states of fermions are defined as

u =w_su, v’ =wy.

Hereafter, we imply that chiral states of subprocess (12)
are defined as amplitudes with a definite chiral state
®*7 of the initial photon (\) and one electron (o) from
the pair. The LP factor of the photon ®*? in the Born
approximation has the form

= N, fou(q-

A

, A D2
L Jw—drG—wiv(gy), (14)

>
w |

%" =N, fou(q-)

fo = —iVdra.

qA’j—W—U(Q+)7 (15)

We note that in the combination
132@ = ﬁ? (ji_a
we can regard the 4-vector ¢ as a two-dimensional vec-
tor g, = qip-
The property of the LP factors

®12(q) =0 as |q| =0

is a consequence of gauge invariance, as we have noted
above.
The relevant impact factors are

/dTHi _ g/ q-dr_ o?r3
B = ;
) apro xax-
o (16)
Xi=i, ry+x_=1 aqy+9g-=q

The LP amplitudes <I>79’_i and the corresponding
impact factors can be obtained by applying of the space
reflection operator.

We consider the pair production process by a pho-
ton on an electron in the case of definite chiral states
of all the particles,

Y(pi, A =+) + e (p2,n) —

e (qr, F)+e (g=, %) +e (py.m). (17)

Using the impact factor of a spectator electron in
the lowest order of the perturbation theory with a
single-particle jet e (pa,n) + v*(—¢q) — e~ (ph),

A

P1
®3 = u(py) ~wyu(p2),

/dTQ =2,

we obtain the cross section of pair photoproduction on
the electron with definite chiral states of the initial pho-
ton and positron from the pair (it is independent of the
chiral state of the spectator)

(18)
23" =

dos 7™ _dog, 20
dr dr T2Q2x LY
dog,” _dop," __20%d° (19)
dl  dl' m2q?yax-
d’qd*>q_dx_
dlr = ——— .
T4 T

In considering the process of single photon emission
at peripherical scattering of high-energy electrons, we
also set

e (p2,n) +e (pr,o=+4) =

—e (p,+) +v(ki, A= %) +e (py,m), (20)
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Fig.3. Photon impact factor diagram

with definite chiral states

eNky) = Ny (P prhrw_x — k1 prwn),

P
N} = . u=2pph,
P uy i (21)

X =2pik1, X =2pika.
The LP factor of the electron ®¢7* is given by

_ . .P2
o = leou(pll)w—plq?w-ﬁ-u(pl) ; 22)
. 22
_ _ D2 . .
o5 = _leou(pll)?qpllw-ﬁ-u(pl) :
The corresponding impact factors are
/dTe,++ _ g/d2k1 dry o
B m zpxt oy
2 2(1\2 (23)
/d78’+ _g/dk1dév1q (')
B Tx rx oy

where 1 and z' are the energy fractions of the pho-

ton and the scattered electron from the jet. From the

conservation law and the on-shell conditions, we have
xl‘l'xlzl', P1I+k1:q7

_K

!
T 9 X - !
1 r1x

The differential cross sections have the form

da%’fnjL _ dag;f _ 203
dr dr Q?r2yy’
= —t
dU%’77 3 dU%’77 _2a%(a!)? (25)
da  dl' @?m2yy’
ir = Ckidaid’a

rix!

This paper is organized as follows. In Sec. 2, we con-
sider the virtual (in the one-loop approximation) and
soft real photon emission contribution to the photon
impact factor. In Sec. 3, similar calculations are pre-
sented for the electron impact factor. In Secs. 4 and 5,
we consider the emission of an additional hard photon
in collinear and noncollinear kinematics. Some gen-
eral remarks are given in the Conclusions. In partic-
ular, we discuss the validity of the structure-function
approach in the leading and next-to-leading approxi-
mations. The relevant one-loop integrals are listed in
Appendix A. Appendix B contains explicit expressions
for nonleading contributions arising from virtual and
soft real photon emission. These nonleading contribu-
tions expressed in terms of a K-factor turn out to be
quantities of the order of unity for typical experimental
conditions.

2. PHOTON IMPACT FACTOR: VIRTUAL
AND SOFT PHOTON CONTRIBUTIONS

We can divide all diagrams (see Fig. 3) into sev-
eral types, some of which (Fig. 3a,d and e,h) can
be obtained by simple exchanges of chiralities and 4-
momenta of particles:

Re[®] 1 (247,71 =

Born

= Re[@L 57 (@3 1) (¢- = 4+ 0+ = ¢-)),  (26)

Born

with ¢ = XV, V. B for the self-energy, vertex, and
box-type Feynman diagram contribution, respectively.
Here, the subscript describes the absorption of a vir-
tual photon by an electron (—) (Fig. 3a—d) or positron
(+) line (Fig. 3e-h).
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One class of radiative corrections to the electron im-
pact factor consists of the renormalized electron mass
operator and the vertex function with only one off-shell
electron or positron (see Figs. 3a,d and f,g). Its contri-

with the denominators (0),(2),(2),(q), (7) defined be-
low (see Appendix A). After integration, we obtain

VL =
bution can be written as [5] —=V . .
e} _ b2 . .
=—foNy— [+ — = _)=p1G- ,
o e i oz (1= 3 ) 100 2w 2
T )?7 ULy = (28)
3 1 ) 1 p
zZ_ Z _ oA D
8 [2 <2 It 2”) . = foNy5— (l— - 5) a(g-)d 1~ w-v(a4).
+/d4_k7”(—@+ + 1 — k)M =gy — 7%)7”] o
— =
' (0)2)(9) After multiplying these with the relevant Born am-
x wiv(qy ), plitude, we obtain [6]
Y. Ao (47ra)3/2 —
+,5V 1671'2 u(q*) X (27) 80(2 1
s ] G R C)
x [2 (5 — L+ —z_> At XA
d4_k V(G- —k)EMNG — P — k) % We note that the XV contribution does not satisfy
in? 0)(2)(a) the gauge condition (vanishing as q? at small q). But
G — P1 po we see in what follows that the total sum does satisfy
X 7_)(7 P 7v(q+), the gauge condition.
_— 2 Ly = X The contribution of the vertex functions with a vir-
P=Mmags =M tual photon can be written as
|
_ P2 Ay,
oA (dra)?/2 [ dtk ©Wa=)1ld= = k)72 (- = d = k)7u(br = G+ )e*w7v(gy)
L G O @ (—x+) | a0
s P2 e,
R (4ma)?/? / dtr Wa)ENG- = p)vu(=dr + G — k)?(—% — k)yuwv(g4)
=Y 16m2 im? 0)2)(a)(=x-) '
Using the list of integrals (see Appendix A for the no-  and

tation), we obtain

=

207 (957) = —2|95 3 X
11 xp+2¢° 3¢° 5 ]
By S % e Y W B B
X | 5 1 2 l++ l Jozq 5
2014 (B 4)” —2\<I>++\2— X (31)
1.1 y_+2¢? 3q @ |
Sy S Gl S R I 5
x |=5L—7 5% I + l JOQq_ ,
a=xy—q, a=x- q2.
The other contributions
O (B5Y)", 815 (57), 15y (B4 )",
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v @)

are equal to zero.

We recall that we work in the framework of the un-
renormalized field theory. The regularization procedure
consists in replacing the ultraviolet cut-off logarithm

A2
L:IDW
as 9
L_>21l_§

(see [5]).

The most complicated case is the calculation of
the box-type contribution. It can be written as (see
Fig. 3¢,h,)
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e (dma)¥? [tk (@ = R0 = d = BN =y — Ry e u(gs)
—hor T 16w /W_2 (0)(2)(2)(a) "
(32)
_ . AN A . D2, - -
ne (amay? [ atgla=)r"(a- - k)er g —pr — k)f(—q+ — k)y*wv(g4)
obor 1672 /F 0)(2)(2)(2) '

All the details about loop calculations and relevant
integrals can be found in Appendix A. Tt is worth
mentioning that in the case of the box-type contribu-
tion, both chiral amplitudes A\ = +1 and ¢ = *1 are
nonzero.

An additional real soft photon emission contribu-
tion to the LP factor has the standard form

= 81 Vira <q—‘ - q—*) e(k)".  (33)

o Aon
-k g4k

soft

The corresponding contribution to the impact factor is

/ 16wn3 Z|

where e is the energy of the initial electron in the cms
frame. The result is

$rAN 2

soft ‘ ‘w<As<<sA,7 (34)

a a o A 2
driyy = ~dry” [(ls - 1) <zl +1n ;i_) +

1, NE T
z it
+213 g —— =, (35)
A
A== =2
Ey

We here use the smallness of the angle between 3-
momenta of pair components in beams in the cms
frame. The smallness of the emission angles allows per-
forming the angular integration in (34) in the frame Sy
coinciding with the cms frame [7].

After summing all contributions (27), (30), and (32)
and adding the soft photon contribution, we explicitly
see the cancellation of an auxiliary parameter A and
the squared large logarithm:

v+t o

[drl o dTTES A+ dr = = %

xdri* [(Is—1)(4In A4+3—-2 1n(x+x_))+ls"g$] .

We see that the leading-logarithm contribution
(containing the factor (I — 1)) is proportional to the
Born cross section, and therefore our calculation is in
agreement with predictions of the structure-function
approach that the leading-logarithm contribution is ex-
actly the A part of the evolution equation kernel (see
Sec. 6). All nonleading terms are gathered in the so-
called K-factor.

Due to gauge invariance, the right-hand side of (36)
including the K-factor tends to zero as q> — 0. This
fact provides an important check of our calculation.

The Ag‘f factors are presented in the analytic form
in Appendix B.

The contribution from the emission of a hard pho-
ton, which eliminates the A-dependence, can be writ-
ten as a sum of two parts, one from collinear and the
other from noncollinear kinematics. It is considered
below.

3. ELECTRON IMPACT FACTOR: VIRTUAL
AND SOFT PHOTON CONTRIBUTIONS

In the same way, we calculate the electron impact
factor. All diagrams (see Fig. 4) are divided into six
types, the contribution of three of them to LP (Fig. 4¢,d
and f,h) can be obtained by a simple exchange

Re[®S 0 F (®547)"] =

i,contr Born

- R‘e[(be o ((PE +i) (pl — _pllapll — _pl)]a

f,contr\ = Born

(37)

where the subscripts correspond to the interaction of
the virtual photon with the initial (i) or scattered (f)
electron, and contr = XV, V, box for the self-energy,
vertex, and box-type Feynman diagram contributions,
respectively.

We evaluate the contributions of the self-energy
(Fig. 4a,b), vertex (Fig. 4e) and box-type (Fig. 4¢)
Feynman diagrams amplitudes as
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e,+A (47ra)3/2 — ]5
s = — — k
L, SV 167T2(—X)U(p ) s (pl 1)
d*k u(pr — k1 — B)Er(pr — k) 1 X m 3\ .,
X — 2{=In—= —2In—+ - | ¢ ,
l/ in? ). (D: o). F2ghye Ty Ay )@ wrulpy.
W o (39)
A~/ A A~
x| (Ama)?? [ dtk U a(py)vu(Py k)?( 1=k = @vu(P1 — k1)e wiu(pr)
BT a6 (—x) )i (0)e(2)e(q)e "
cir  (Ama)d? [ dtk U a(py)vu(Py k) 20y — k — )& yuwiulpr)
Bhor T G2 / im? (0)6(1)5(2)5((])5 .
The first two contribute (see the details in Ap- ~ We again see the cancellation of the auxiliary «photon
pendix A): mass» parameter A and agreement with the prediction
DO (Y = oGt |? a of the structure-function approach. The Kg‘ji term is
iV (@5 )" = —2[®%" | o x presented in the analytic form in Appendix B.
1 1, 32, o
X |3l — 7~ lo.o.@. T 575
2
X+2a L} : 4. COLLINEAR KINEMATICS OF THE
2d m’ (39) ADDITIONAL HARD PHOTON EMISSION
B B 8a? 1 CONTRIBUTION
283 @) = 5 (5 - 3 x
XX m
x z'[z'k; — zp1 ']q, For appropriate consideration of radiation correc-
, / tions to impact factors, we have to consider an addi-
d=x—-q°, ly=In me L. tional hard collinear photon emission. It is convenient

The contribution for the other polarization can be ob-
tained by substitution (37).

The soft photon contribution has the standard form
(the soft photon energy does not exceed Ag)

e, ++ e, ++ &
dsoft =drg T — x
x[(n25-1) (202 + 21 A —ma') +
m A
1. 5 u 9 2
+§1n W—Eln x'—Fj|7 (40)

where A = Ae/e, ¢ is the energy of the initial electrons
in the cms frame. We can express the contribution to
the electron impact factors with a definite chiral state
as

(degVi—}—dTE +i+drebﬁj+d7;:,;:;)+dre oft =
— d e +i X
o

i_ e 4+
x [(m = 1) (4In A+3—2Ina')+ K5 (41)

265

to distinguish the collinear and noncollinear kinematics
of the emission of a hard photon. For this, we intro-
duce an auxiliary small parameter y < 1. Collinear
kinematics corresponds to the case where the photon
emission angle € to the direction of motion of some
charged particle (initial or final) does not exceed 6.
Noncollinear kinematics corresponds to large emission
angles 8 > #y. Chiral amplitudes in the noncollinear
kinematics can be calculated using the methods devel-
oped by the CALCUL collaboration [4]. The contri-
bution from collinear kinematics can be obtained using
the quasi-real electron method developed in [8]. The
total sum is independent of the parameter 6. Can-
cellation of the 8y dependence is a check of our calcu-
lations. The nonleading contributions from additional
hard photon emission essentially depend on the experi-
mental set-up. We do include it in the K-factors in the
structure-function picture of impact factors.

Using the quasi-real electron method [8] for the con-
tribution to the photon impact factor in collinear kine-
matics, we obtain
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1

dz_
d YA g / Y
Teoll 27 Z_
z_(14+A)
1+ %
x{ ’ (ls+r_+ln0§—1)+1—93_]x
1-7_
/ d
drt (4= a / dey
X B 277q+ + o’ Zy X
z4(1+A)

1423
11—y

X

).

where the first term in square brackets corresponds to
the emission of a hard photon along the electron and
the second one along positron from the pair created.
We use the notation

(ls+7ry +InB2—1)+1— 3,

|

XdTg’—i—)\ <q_/ q_+
2+

and

I 2q41q_ I 2E%v (1 —c,)
s — m2 - m2 )
r In = )
o 20¢(1—cy)’

where ¢, is the cosine of the angle between the pair
momenta (the cms frame of colliding beams is implied).
The «shifted» photon impact factor is given by

re) =

1

q=—
zZ_

a 73q?
2 2
™ qiqZ

4+ 4=
,—,

, d’q_di_,
Zy Z-

dT;nL:I: <
(44)
- - 1
x++x—:17 q—+_q+7
Z+

and the conservation law is
1 1
p+qg=—q- + —q+.
zZ_ Z+

A similar method can be applied to the problem
of calculating the contribution from the collinear kine-
matics of photon emission for the impact factor of the
electron. The result is

266

1-A
e4+x @
choll = % / le X
0

|

1+ 23
].—21

(lu—}—ll—}—lnt‘)g—l)—}—l—zl] X

1

4 «a dzs
x drg (plzl,p'l)—}—% / = X
z'(1+A)
1+ (2'/2)° ) !
— (1 l Inf; —1 1—- =
1_33//22 (lu + 12 +In by )+ P X
1
X drg"")‘ <p1, Z—pﬁ) , (45)
2

where the first term in the square brackets describes
the emission from the initial electron and the second
one the emission from the scattered electron. We use
the notation

2p1p) 2E%2'(1 — ¢,
o= In 2P0y 2B )
m m
(46)
22 =1 x!
Iho=lnp— L _
! n2x’(1—ce)’ ? n22§(1—ce)’

and ¢, is the cosine of the angle between the momenta
of the initial and scattered electrons. The «shifted»
electron impact factor in the Born approximation is
given by

a q_2 4 2odkdxy
T

1
deg’HE <p121-, Z—p'1> =
2

™ xx' T
AN
nt=2, g = <—> ,
22
N2 (47)
- Z2 <P'1931 - klz_>
1 2
X = _k%7 "= ] 3
T 1T
x! 1
x1+_:17 q:kl-l'_p,la
Z9 %)

and the conservation law is
]' /
zuipr+q=—py + ki
zZ2

The terms containing «large» logarithms [, — 1 and
l, —1 are to be included in the lepton nonsinglet struc-
ture functions in the Drell- Yan form of impact fac-
tors, whereas the other terms contribute to the relevant
K-factors. We can therefore rewrite these formulas in
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Fig.4. Electron impact factor diagrams

terms of the structure-function approach for the elec- Py(2) 1+ 229(1 _ 21— A),

tron impact factor as 1-=2

and the nonleading contributions are given by

e,co @ Q i
dr® ”=/d21 [PG(Zl)%(lu_l)_'_;I‘coll X drigm, = =— dz—_Po< ) X

comp 271'

x drb(zipr, p}) +drie 4
) i ()
PR

1
dzy '\ «
— | Py — ) = — ki
+/ 22 [ ’ <22> 27T( V+z Xco”} / dz_ (x
0

_ 1
Kcoﬂ—g/j% Z—> (r-+1-7_) x
i -
X< drl(py, )+ drli,, (48)
X drp ( 7Q+>
(chiral indices are suppressed) and for the photon im- Z-
pact factor as o ! dzy oy
drin = — [ =P =) x
Tco’mp 27 / Z4 b <Z+>

1
dreoll — /z [ ( > Q1)+ Bw”}
0 * x dr}, <q7q—+>ln€§,
2+

q B
X dt <Z—_,q+> + dTCO:n’!Lp +

1 [dz T
1 K= [ () 1 n s
Z4 zy ) 27 +
0
4+ , q+
x dr <q, z+> +drn o, (49) x dr}, (q_, Z)
where for the photon impact factor and
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(50)
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1
(6]
dregmp = 5 /dzlpe (21) dr(21p1,p}) In 63,
0
1 1
KZOEU = §/d21P9(21)(l1 +1—2) %
0

x drg(z1p1.p1),

1
!
arte o [d=p (—) x (52)
%)

!
x dTp (pl, %)
2

for the electron impact factor. The terms with In 62 are
to be compensated by additional noncollinear photon
emission terms.

5. NONCOLLINEAR HARD PHOTON
EMISSION CONTRIBUTION

The contribution to the electron impact factor from
the channel of the double Compton scattering process

e(p1, M) +7*(q) = (ki A1) +
+7(k27/\2)+e(p,17)‘6)7 (53)
w=2pip}, xi=2kip1, xj=2kipy,
with the emission of both final electrons outside the

narrow cone 6 > 6y, can be calculated using the chiral
amplitude technique [4]. The result is

dri}

Nedido —
o 9 d k‘ld k2d$1d$2
2 2‘ )\1)\2‘ ) (54)
r1! 01,2>60
¥ =1-2 —x3, q=ki +ko+pj,
where
i [r =
T e
4(2")2q%u
mt = A = P, (35)
X1X2X1X2
2 5l Rt ARt
mt >’=———Trp'B _wip By,
| wxixaXixy *

MKIT®, Tom 130, Bbin. 2 (8), 2006
with
Bi = ————pikip\prka(pr + ﬁ)@ -
A (p1+q)? $
1 D2,y g s s
- (p/ — q)g _( i q)klpllplk2pll +
1

+ P (P + 1:31) (1 — k). (56)

” |@>

It was explicitly shown [9] that the quantity Bf_ tends
to zero as |q| — 0; this property is a consequence of
the gauge invariance requirement for the virtual photon
with momentum gq.

Below, to check the fy-dependence cancellation for
the sum of the collinear and noncollinear kinematics
contributions, we evaluate the limit expressions for
\m; 2 for emission in the real photon kinematics

91 > 90, 91 — 90, 92 > 90., (57)

with #; being the angle of the emission of a photon
with momentum k¢ to the initial or final electron mo-
mentum. These limit values are

(ImE_* +1m Py -0 =

_4q® (@) + (1 -n1)%)
X1 wi(l—21)2x2x5

i

(‘m+_|2 + |mi+|2)x’1—>0 =
4 x!

= ql ] [1+(1—$2)2],
X1 T1X2X3

, , (58)
(ImE P+ mE ")y, 0 =

4(12 1 12 2
= — )+ (1 —21)7],
X1 $1X2X’2[( ) ( V']
(m* P+ Im* )y 50 =
_4d® (z")?

= _ 1+ (1 — 562) .

X1 21(L = 22)2Xa2x5 A ]

At small emission angles, we can express all the in-
variants in terms of angular two-dimensional vectors in
the plane transverse to the beams axis:

k1 = Egcl@l, p'l = Eﬂi"gl,
/ @k =7 ni +.
X1 B ! 92
01>60
/d2k1 o / R )
X’1 - ! (91 _0:)2 -
61—6"|>6,
T 1

=—In=+...
o 62
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It can be explicitly verified that the fy-dependence is
absent in the sum of collinear kinematics and the non-
collinear contributions to the electron impact factor
summed over the final-state hard photon chiral states:

> (

A1,

+drle

evy
dr comp

le
W +dr2

comp

). (60)

e _
dThard,nc -

But this value depends essentially on the experimen-
tal photon detection set-up. Similar calculations of the
photon impact factor in the noncollinear kinematics of
a hard photon emission

Yk Ay) +77(0) = € (g-,A-) +
+e+(Q+a_A+) +7(k17/\1)1 (61)
51 =20-q1, X+ =2kqs, xi1+ =2k1qs,
with chiral amplitudes defined as mib\_, give
dr ete” _S‘m ‘2d2q,d2q+dx+dx,
)\ )\1)\7 271'2 )\1)\7 x1x+x_ 9 (62)
501:1—SU+—§U_7 qZQ—+q++k1,
where
|m+ |2 — 4q231x?|-
T o
N 4q231x%
mi |P=—-——,
X—=X1-X+X1+ (63)
|mt—(k7k1)|2 = ‘mJ—r—ﬁ-(_klv _k)‘Q',
4 -
+o2 5 oA+ o
mr " =——————Trq AT wiG AT
=] STX=X1-X+X1+ L
and
5 R
At = @ —q? kQ+k1( a+ +q)
St P2 i g
- — (G- — Q)kq-k1 —
(- —q)* s
. D2 .
—q+(q- — k)?(% +k1)g-. (64)

Again, the proportionality Af_,_ x |q| at small |q| was
demonstrated in [9)].

To check the cancellation of the 6y-dependence, we
evaluate the limit values of [m} x, |7 in the limit of the
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emission angles close to the momentum directions of
one of the charged particles,

(|mi+\2 + |mif‘2)><17%0 =
_ 4q? (4)*2
Xi— T1(1 —24)?X4X-

[127 + (1 - 1‘+)2]./

(|m |2 + ‘m——‘2)><17%0 =

4 -
B )

Xl— xlX‘i‘X— (65)
(Im* 2+ m* )ym0 =

4q> T2 2 2
= — 1—z_

X1— 21(1 — 2 )* X4 x— i+ (=),
(Imi? + 1m0 =

4> @ 2 2
= —— —723 + (1 —2_)7].

oo x1x+><—[ +F( )]

It can be verified that the 6y-dependence cancels in the
sum of collinear kinematics and the noncollinear contri-
butions to the photon impact factor summed over the
hard photon chiral states:

+dr7 +drty

ete™ ¥y
- dT comp comp*

TAN (66)

~
dThard,nc

The numerical value of dr}, ., .. also depends on the
experimental set-up and is not considered here.

6. DISCUSSION AND CONCLUSIONS

We have obtained that the impact factors of both
electron and photon in the leading logarithmic approx-
imation can be written in the partonic form of the
Drell - Yan process in terms of the structure functions
for any chiral states of the initial and final particles

(dTB +drsv + Z dThard)%)‘a (g—,q4) =

)-

T4
N

Je [ (o

+
X dry Ao < ) X
2+

(1 + _[17% A + I‘coll + I‘coll + I‘ncoll])

-
Z_l/
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e, o\
(dTB +drsy + Z dThard) (p1,p}) =
1 1 ; :
- /dzl/ﬁD(zl,zu)D (x—lu> x
Z9 Z9
0 x’!
pl
x drg <zlp1, —1> X
%)

(1 + _[I =i + I(éoell + I‘coll + I(zcoll]) .

Here, the chirality indices are suppressed and D is the
nonsinglet structure function of a fermion [6]:

D(z, — D+ (= DPUE) +

o(z
( -0 (2ma s D) o
+6(

)l-l-z >
A—0

The explicit form of Kgy is given in Appendix B
for definite chiral states. The explicit form of K.y is
given above (see (51) and (52)). The form of Kpcou
(after a proper regularization compensating the diver-
gent terms in the limit as 6y — 0) strongly depends on
the details of experiment tagging the additional hard
photon. The nonleading terms are free from infrared
and collinear divergences (are independent of A, A, and
90).

The terms containing the vector product arise due
to a nonzero imaginary part of the LP amplitudes.

We can be convinced in the validity of the gauge-
invariance check: the squares of chiral amplitudes in
the Born approximation and the one-loop-corrected
ones tend to zero as |q|? at small |q].

The electron impact factor also has contributions
from pair production channels [9], which are not con-
sidered here.

1-2-A

The accuracy of the formulas given above is deter-
mined by the omitted terms (2):

1+O<m12 Zf <%>2> (68)

We are grateful to S. Bakmaev for the attention to
the work in the initial part of this paper. One of us
(E. A. K) is grateful to V. Serbo and V. Telnov for the

useful criticism and discussions.

APPENDIX A

We evaluate asymptotic expressions for a part of
the scalar, vector, and tensor integrals corresponding

to the absorption of a virtual photon by the electron
from the pair created in v(p1)7*(q) collisions.

We first give the scalar integrals with two, three,
and four (different) denominators

(69)

The loop momentum integrals with the denomina-
tor

—pl—k)Q—m2

(@) = (¢-
instead of
(@) = (1 — a4 — k)2 —m2-,

including scalar, vector, and tensor ones can be ob-
tained from those listed below by replacement (26):

p1 — —Dp1,
(¢) — ().

q— — —q+,
X+ = XTF

q+ — —q—,

@ - @) (70)

We can therefore restrict ourselves to considering only
the integrals with denominators (0), (2), (2), and (q).

In this Appendix, we use the same conservation law,
on-shell conditions, and kinematic invariants as for the
photon impact factor in (12) and (13),

s1+a* = x4+ 1. (71)

Two denominator scalar integrals are defined as

d*k 1
= | = o

The explicit expressions for them are

Iop = L41, TIny = L—ly+1, Ioy = L—l4+1,

(72)
Is=L+1, In=L-Lg+1, IL,=L-1.
Here and below, we use the notation

A? X+ q’

L=Inh—, lizlnm, lg=1n—

2

1 .

L, ln—2—z7r—ls—z7r l[—ln/\2 (73)

We recall once more that we assume all the kine-
matic invariants to be greater than the electron mass
squared,

s1~q° ~xx >m?
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and systematically omit the terms of the order of m?/s;
and similar ones in presenting the asymptotic expres-
sions.

The scalar integrals with three denominators

d*k
Tijn = / @O0 )

are given by

Ipz, = —i li + 2:%2} ,

Ipos = il 12 4210 — ? —im(2, + 211)} :

Iy = —m [12 =12 + 7 + 2inl,] (74)
Ipag = ﬁ X

1 . X
X |:lq(lq—l+)+§(lq—l+)2+2[412 < —q—;)

The integral

Toss, = / _ dk
22" ] i (0)2)2)(9)
with four denominators is given by
1 2
lonzg = —— [12_21+ls_lsll + 2Li, <1+q_> +
S1X+ s1
2 Q>
g (% +l - 2Mn(1+ S—))} - (3)
1

We now describe the vector integrals

d* kk* _
Im = / — = afdt +a, ¢" + alp! (76)
with

r=(ij). (ijk), (ijkl), i,5,k,1=(0),(2),(2). (q).

For the vector integrals with two denominators, we
have (indicating only nonzero coefficients)

1 1
a;q:a%q:_a;r :_(L_lq+_)7

a2 2
1 1
aty = —ai, = 5 (L -1+ 3).
. L1 1 -
i =y =g (L= Lit ) )
1 1 3
— +
@ =-39,=5(1-3)
1 1 1 1
— + —
a02—§L—Z, aOQ__§L+Z

and the coefficients for the vector integrals with three
denominators are

-1 2x+ o’ + x+
T2 = 7 <X+Io2q + TH - qu )
+ 1 1
Qgag = —0p2q = p (I+ = 1g)
1 1
aoiq:;(—H‘l‘?)» a=x+—dq,
1 _ 1 (78)
+ _ — +
g5, = —lozq — ;l% Qgo5 = ~Agaz = ELS’
_ 1 1
a2§q = E (Ls_lq)a a;Eq = _I2§q+z (Ls_lq)a
S1 1 281
a%?q = ?Iﬁq + E (_lq + 2) - C_2 (Ls - lq) ;

c=51—|—q2=X++X_.

Finally, the coefficients of the vector integrals with four
denominators are given by

al =2 (x+A+x_-B—-s0C),

d
a+:%(X+A—X,B+510)7
- X
u :f(_X+A+X,B+S1O)7 (79)
d= 251X+X—1
A=1Iy, —lozg, B =lozg — Inzg,

C= Toag — Ipoz — X+Io2§q-

We parameterize the second-rank tensor integrals
as

Ak ko k
L= /Mr_2 % = |a%g + al'pipr+atqiq+
+ayTqoq— +a, T (pras + aep1) +

(pra— +q-p1) + af~ (qrq- +q-qq) " (80)

1—
+ a,

The coefficients for the tensor integral with four de-
nominators are (we suppressed the index 022¢)

1
a't = — (Ag + A7 — Avo) ,
X+

1
at” = S_(A2+A6 — Aio),
1

1
a'” = — (Ay + A7y — Ayg)

al = 1 (A; —s1a'™), (81)
X

@ = 4 (A5 = xpal) |
S1

a++ — l (A3 _ X_a1+) )
S1

1
a’ = 5 (A10 — A2 — X+a1+) s
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with For the tensor integral 152 , these coefficients are
11 3 5 q’
— 1 _ 9 — |2 o_2typ 4
Ar = a22q g3y As = Gozq ~ G5, 9229 = 3 [QL 4 QCLS QClq
Ay = a2§q7 A7 = Ap2q a(l)gg - x4a', L 1 ( L)
- (s = ——(lg —
A = a;%q aogq’ Ag = agyq = Agyy — X0, (82) 224 2¢ ! °
— 1 1 — _ + 3 -
Ag = agy — aiﬁq’ Ag = agyg — agyy — x4+a™, agg = I2§q+2_c(lq_Ls)a ;Eq Q_(Zq_LS)
A5 = Qo2g ~ Qa3 Aro = I 1 1 1 s S1
023 = ¢ [‘5 tocks - %lq] : (87)
It can be verified that these coefficients satisfy the re- 17 5 55, 2¢%—3s,
lati abd, = = | =S —s1lgy+ o Lot ————1g | ,
ations 22 . 2 22a7 9. 2¢ !
11 1 11 1 2 2 35t
Ay = X+a +sia ", AS = X_a___|_X+a+_’ a2§q = —2 4s1 + q + 81I2§q — —Ls+
Ao = ++ +- (83) ‘
9 =X4a" " +Xx-a 357 — (@) — 4s1¢?
+ Iyl .
2c
that to check the calculation.
At we use o chec ¢ calctiation The check-up equations for coefficients (87) can be ob-
. . . 14
The coefficients entering the tensor integral I(’)‘m] tained after multiplying ]l“/ by 2(q+ + q=)" or 2p¥,
have the form using the relations
g _ 13 d X 2k(q+ +q-)=(2) = (2), 2pik=(2) - (a) — x+
Aoy = =L+ =+ —lg — ~1y,
020 4 8 14a T a and using vector integrals (76). They are given by
R L S P\ G ) T -
(52q = ~Q02q = 5, [ o (Iy =1g) =11, 24 L s1a5, + ca 2+ Sla;‘Qq = a5, — az,,
1 ++ 1+ TR e
aE)i_Z_Z = a(l)%q (1);1 = %(lq - l+)7 (84) 2a; 22q + 81a22q + ca22q +s1a = Qgg — a?q’ (88)
1- 1 1
o 3X2 ca2§ + 51a22 + 51055, = Qyq — G5,
Qo2 = 2 X3 Tozq + —+l++ ! ’ ’ ’
The integrals for calculation of the electron impact fac-

(a*)? - 4d’ X+—3X+l N a® - 3y

+ 2a 2

The coefficients entering the tensor integral 16‘2"2 are
given by

1 3
ag2§ = Z(L - L)+ g’
1

=

Qa3 = Qa3 = E(Ls - 1), (85)
1

+- _

%22 = T,

X+
1
ags, = g (7l +2), (86)
ag;; I02q (31+ - ].)

tor with the denominators

(0)e = k? — A%,
(e = (p1 — k)* —m?® +10,
(2)e = (P} — k)* = m® +10,
(@)e = (p1 — k1 — k)* —m? +i0

(89)

can be obtained from those given above by the substi-
tution

/d‘*_k 1k kk
in? (0129).
=Plg- = Pi.q+ = —p1.p1 = —k1,4 = q) x
d*k 1, k, kk
/F (022¢)° (50)

An additional set of relevant integrals for the electron
impact factor can be obtained by substitution (37).

APPENDIX B

The explicit expressions for the photon K -factor are
(in the case of two different polarizations)
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1 . 1. 524 3 1 1 3 1 3
ST =—5In® = - Zlis + lgslps + Flaskms + 3lms + Jlos + 5loa = 7 +
3. q2 . X+ 1_. X- X-Ty — 2X+ — 251
—Lip 1+ — ) — Li: — = | —-=Lix[1-= .
+ 5 12 < + 31> 12 < < 3 12 2 + x4 175, +
X-T+ (93+X— - 81)2 1 2 7T2 . q2 . X—
— =12 — lgsl — —Lib (14 — Lis {1— = —
i <X+x 222 % glas T lastme Fgr m 2 (B4 ST )+ LD e
. Ims —lgs ((@’24 — 212X n dx— —s1 —2z4x- X2 n 224 x- — 81
T2 42 2 2+ 2424
2
zms—1n<1+“_> +3
™ S1 S1 T_X+ — T4 X—
gl [ e o e + c .
n lqsz <xi + sf —|—22x+51x+ _ 2z_s1 + x4+ n s% by —2s1 + 93+X—> N
27 c c X+C X+
" X3+ s+ 2z s n X3 1, 1) X+ (2032 + o 24) +
: — | =27 —-1) ——— (2« oy —
222 s1c 2519222 \ 2 + 4as1q22> +X4+ T a4 T+X X+
1 (1 q’ 1 1, 1,
+ qu, <ZX— - 7 + X+r- — 58156_ — Zx+81 + Zx+X+ , (91)
1. 1 x 3 1 1 . -
§Bg¢+ = _5 In’ x__f - 1123 + lqslms + Elqslps + Z(lps + lqs) — Lis ( - 2—2> +

31 q’ 1 X+
SLip (14— ) —zLip (1-22) -1
+212<+81> 212( q2 +

20 i x-X+ — (T_x+ —51)2 (1, . q . X+ m’
+ e D ST Al Gy A A

Lps — lgs

T (=2s1x474 +2-07) n ro(drysixy —@yst —w-a@) (51— wox4)?
z2 4a? 2as1 2x_51
lgs [22481x4 +@° s? riq? +s1oo +x-/2  a_ 1 1
2% 2c2 2 — c Y— ST X g T - +
s _ —x_ 2 2 1 _
+7r[q+q2]~ T4 X +8; ToX+ <1p3—1n<1+q—>>+ zp+1_ e 81}_
22y X2 51 c X-  Xx-c¢
1 281 —x—q>  wpx_ 2w + — 51)?
_ L <x 1 eed e 2ogsixg + O - s1) >_|_
3 a 2 2¢sy
1 [(2%s) o 3 1, YA
1 d 0 e — s — - N (02
+ ] < da T g TN+ T ST TS m Xy 2$+81> RN (92)
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a=X+—-9q, a=x-—-d, Cc=x4++X-,

2 (93)
ls=In L 1=l ., =m=

S1 S1 S1

The explicit expression for the electron K-factor is

Q2 / 2 / 2
Kb = ln%c’—§1n201 +21n—1n—+1nX—1 CTyomX y3m e
sv 2
u u 2 q U
q2 XI 2
_2L12 ]-__ +3L12 11— = —Lig 1+=)]-—-2-
q’ U q? 4
1 1 ,q a’, X . q’ . X w2
S SN (- W NS P P N R S S 5 (T SO [
@) () (21“ TR G I CR) I )
% <d2 _ 21‘,(—71)(/ +U2 _l_XX/) + (x/)2u2> _
_ vty L ()% @’
_ _ 20’y — N2, _ 2 - 1 a ) _
o (0B @t s )+ g (14
1 <x(—u+2x+um’) 1 , X’—2u+2x’u>
+-—-r - =
(@2 c 2 2d
1 lﬂx_’(m’(2d+x’u)_x’(4x’—u)_d2(—2u—3x) ac’ux’)_
(@) q? X' d 242 P
1 lnq_ uzx x((x—u)zx—qux’)_2uxx’+(u2—x2)x2 N
(a)? u \x(x')? c? c cx
1k ’ "\ X —u—a (- ki), [(d(—2u—3 -2
T L R
(') q? X (z') 2y vd
where
d=x—-q>, d=u+y, c=u—q (95)
For Kgif ", we have
2 2 / 2 1 2
I'E'H' 1n2x'—§1n2q—+21nq—lnx—lnq—+lni+—l K—I—élnq——
2 U u U U u 2 u 2 u
! 2 2
oy (14 X ) sy (1- ) Cmy (1o X)) T 3
u 2 4 2
1 q X, a ™ ) d X odd X\ X
—In> =~ 4+InZh— - — In—+(InZ% —In—+ 2| =
(x’)2< i pt ety My Tyt ) u T
2
+L12<1——> L12<1——2>>( x® + 22" xd + ( )X(—Qu—x))-l-
2(1 — 22 2! ' 2 /
XA 22D gy, 4 "””X<_1K X_+1‘I_<1_%>>_
uc u u c
2! "X (s ,u(=2yu + 2'd)
_E<ux—§xx>+—dl —2<u + 4yu d ¥
2 -2 2u(l — 2y _ ;2 2.2
L ur + o'y | 2u(l - (@)%) - xa®  wia?y
u X! c cx!
1 5 d x?u? 22
q2< X+ 2'u+ 32"y —2(2')u 2(:v) 5 +uq2' (96)
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