ПЛАНАРНЫЙ ЭФФЕКТ ХОЛЛА И АНИЗОТРОПНОЕ МАГНИТОСОПРОТИВЛЕНИЕ В СЛОИСТЫХ СТРУКТУРАХ Со_{0.45}Fe_{0.45}Zr_{0.1}/*a*-Si С ПЕРКОЛЯЦИОННОЙ ПРОВОДИМОСТЬЮ

Б. А. Аронзон^{a,b*}, А. Б. Грановский^c, А. Б. Давыдов^a, М. Е. Докукин^c, Ю. Е. Калинин^d, С. Н. Николаев^a, В. В. Рыльков^{a,b**}, А. В. Ситников^d, В. В. Тугушев^a

^аРоссийский научный центр «Курчатовский институт»

123182, Москва, Россия

^b Институт прикладной и теоретической электродинамики Российской академии наук 127412, Москва, Россия

> ^с Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

^d Воронежский государственный технический университет 394026, Воронеж, Россия

Поступила в редакцию 27 февраля 2006 г.

Исследованы магнитные и магнитотранспортные свойства многослойных наноструктур $Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si, полученных методом ионно-лучевого распыления. Температурная зависимость сопротивления подчиняется закону вида $R_{xx} \propto -\lg T$, типичному для металл-диэлектрических нанокомпозитов на металлической стороне перколяционного перехода. Впервые для нанокомпозитов подобного типа вблизи перколяционного перехода обнаружен эффект анизотропии магнитосопротивления, а также планарный эффект Холла. Выявлена связь этих двух эффектов с поперечным (между холловскими зондами) магниторезистивным эффектом, достигающим по величине 6–9 %. При толщинах слоев аморфного кремния менее одного нанометра обнаружено слабое отрицательное магнитосопротивление порядка 0.15%, обусловленное спин-зависящими переходами электронов между соседними ферромагнитными слоями при антиферромагнитном характере обменного взаимодействия между ними.

PACS: 72.25.Dc, 75.47.-m, 72.20.My

1. ВВЕДЕНИЕ

Известно, что в магнитных переходных металлах и их сплавах при протекании электрического тока имеет место специфическое гальваномагнитное явление, называемое планарным эффектом Холла [1]. Физический смысл этого эффекта состоит в том, что если магнитный момент металла ориентирован в плоскости образца под некоторым углом φ к протекающему току I_x , то в перпендикулярном к I_x направлении возникает ЭДС Холла V_{PH} , зависящая от угла $\varphi.$ В случае однодоменной пленки выражение для V_{PH} может быть записано в виде [1]

$$V_{PH} = \frac{I_x w}{2l} (R_{\parallel} - R_{\perp}) \sin 2\varphi = A I_x \sin \varphi, \quad (1)$$

где l и w — толщина и ширина пленки, R_{\parallel} и R_{\perp} — сопротивления пленки в направлениях, соответственно параллельном и перпендикулярном направлению намагниченности. Из формулы (1) следует, что планарный эффект Холла наиболее ярко проявляется в тонких пленках и целиком определяется эффектом анизотропии магнитосопротивления (anisotropic magnetoresistance, AMR), разницей сопротивлений R_{\parallel} и R_{\perp} пленки соответственно в продольной (когда магнитный момент ориентируется вдоль тока) и

^{*}E-mail: aronzon@imp.kiae.ru

^{**}E-mail: rylkov@imp.kiae.ru

в поперечной (когда магнитный момент ориентируется перпендикулярно току) геометриях.

В последние годы планарный эффект Холла широко используется для изучения процессов перемагничивания, а также влияния магнитной анизотропии на магнитотранспортные свойства различных пленочных систем, в частности, на основе полупроводников с магнитными переходными металлами. О наблюдении планарного эффекта Холла в системах с перколяционным характером проводимости сообщалось в работе [2], где он наблюдался в гранулированных пленках $(NiFe)_x(SiO_2)_{1-x}$, в которых поведение магнитосопротивления в значительной степени может определяться спин-зависящими эффектами при туннелировании электронов между ферромагнитными гранулами и/или при их рассеянии на межгранульных границах. Однако в этом случае планарный эффект Холла наблюдался в образцах с металлической проводимостью, далеких от перколяционного перехода и обладающих достаточно заметным эффектом анизотропии магнитосопротивления. В образцах, близких к перколяционному переходу (т.е. при $(x-x_c)/x_c \ll 1$, где x концентрация ферромагнитной компоненты в системе, x_c — критическое значение x, отвечающее переходу металл-диэлектрик), магнитосопротивление в случае поля, ориентированного вдоль пленки, носило изотропный характер, и планарный эффект Холла отсутствовал. Заметим, что в образцах с $(x-x_c)/x_c \ll 1$ температурная зависимость сопротивления, начиная от комнатных температур, подчиняется закону $R_{xx} \propto - \lg T$. Это связано, по-видимому, как с эффектами слабой локализации носителей, так и с усилением роли туннелирования спин-поляризованных электронов между ферромагнитными гранулами (см. работу [3] и ссылки в ней), которое приводит к увеличению изотропного отрицательного магнитосопротивления.

Ввиду возможного использования в качестве базовых материалов для спиновой электроники особый интерес привлекают в последнее время слоистые системы, состоящие из ферромагнитного переходного металла и аморфного кремния. Наиболее подробно исследованы структуры типа Fe/a-Si, что связано с обнаруженным в них достаточно сильным эффектом обменного взаимодействия ферромагнитных слоев железа через полупроводниковую прослойку кремния. Это взаимодействие носит преимущественно антиферромагнитный характер, и его механизм до сих пор недостаточно понятен [4–7], что в большой степени связано со сложными структурными особенностями данных систем, обусловленными взаимным перемешиванием металла и аморфного кремния и образованием в прослойке силицидов железа. Заметим также, что в структурах Fe/a-Si было выявлено [8,9] небольшое (0.1–1%) отрицательное магнитосопротивление, объясняемое в рамках спин-зависящего электронного рассеяния подобно эффекту гигантского магнитосопротивления, обнаруженному в слоистых металлических структурах типа Fe/Cr [10, 11]. Однако эффект анизотропии магнитосопротивления и планарный эффект Холла в работах [8,9] не исследовались.

В данной работе исследуется многослойная структура $Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si с более сложным составом ферромагнитного слоя, чем традиционная система Fe/a-Si. Показано, что планарный эффект Холла возникает в системах с эффективной толщиной ферромагнитного металла не более 3.5 нм, при которой наблюдается температурная зависимость вида $R_{xx} \propto -\lg T$ и происходит подавление эффекта анизотропии магнитосопротивления.

2. ОБРАЗЦЫ И МЕТОДИКА ИЗМЕРЕНИЙ

Многослойные структуры (Соо.45 Feo.45 Zro.1/a-Si)_n с числом бислоев n = 100 получены в вакуумной установке путем ионно-лучевого распыления мишеней из $Co_{0.45}Fe_{0.45}Zr_{0.1}$ и Si на ситалловые подложки при комнатной температуре. Выбор металла сложного состава обусловлен необходимостью стабилизации аморфной структуры ферромагнетика, устойчивой при комнатной температуре. С этой целью к ферромагнитным атомам железа и кобальта добавлено 10% аморфизатора — циркония. Пленки напылялись в течение нескольких часов на вращающуюся подложку после предварительной ионной очистки подложки и мишени. Толщины напыляемых слоев определялись по предварительно измеренной скорости их осаждения и составляли $d_m = 2.5 - 3.5$ нм для $Co_{0.45}Fe_{0.45}Zr_{0.1}$ и $d_s = 0.7$ -3.5 нм для *a*-Si. В качестве инертного газа использовался аргон чистотой 99.992 %. Во время распыления происходила непрерывная смена аргона в камере за счет его напуска через дозирующий вентиль в ионный источник и откачки диффузионным насосом.

Для контроля «разрывности» металлических слоев были приготовлены также двухслойные структуры — пленки Co_{0.45}Fe_{0.45}Zr_{0.1} толщиной от 1.3 до 3 нм, нанесенные на аморфный кремний фиксированной толщины около 10 нм.

После получения слоистых структур с применением фотолитографии были изготовлены образцы

Рис.1. Вид образца Co_{0.45}Fe_{0.45}Zr_{0.1}/*a*-Si (*a*) и распределение магнитных моментов в области холловских зондов в условиях, когда магнитное поле приложено в первом квадранте, а затем уменьшено до нуля (δ)

в стандартной форме двойного креста для измерения электрической проводимости и эффекта Холла (рис. 1).

Исследования эффекта Холла и магнитосопротивления проводились с помощью автоматизированной установки на базе персонального компьютера и прецизионного мультиметра HP3457A. Напряжение между холловскими (V_y) и потенциальными (V_x) зондами, а также протекающий через образец ток I_x синхронно регистрировались в режиме постоянного тянущего напряжения при положительном и отрицательном значениях магнитного поля H. По результатам измерений находились сопротивление образца между потенциальными зондами, $R_{xx} = V_x/I_x$, и поперечное сопротивление $R_{xy} = V_y/I_x$.

Намагниченность пленок измерялась при комнатной температуре с использованием вибрационного магнитометра BHV-50 с чувствительностью не хуже 10^{-5} Гс · см³.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ

На рис. 2*a* приведены зависимости сопротивления пленок от магнитного поля в структурах $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a-Si)_{100}$ с толщинами аморфного кремния $d_s = 0.7-3.5$ нм и металла $d_m = 2.5-3.5$ нм при комнатной температуре. Поле при измерениях прикладывалось параллельно плоскости структуры и протекающему току. В такой геометрии в условиях проявления эффекта анизотропии магнитосопротивления сопротивление должно расти с увеличением поля [1]. В нашем случае даже в структурах с наибольшей толщиной металла (3.5 нм) этот эффект в явном виде отсутствует. Вместо этого при

 $d_s \leq 1.9$ нм и $d_m = 2.5$ –2.8 нм начинает наблюдаться отрицательное магнитосопротивление, причем его величина достигает максимума при $d_s \approx 1$ нм. Заметим, что именно при такой толщине *a*-Si наблюдается максимум антиферромагнитного взаимодействия в структурах Fe/*a*-Si в случае высокоомной прослойки, т.е. при малом содержании силицидов железа в *a*-Si, или, иными словами, когда диффузия атомов железа в *a*-Si не играет существенной роли [6, 7].

На рис. 26 представлена зависимость сопротивления двухслойных структур $Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si при комнатной температуре при изменении толщины металла от 3 до 1.3 нм. Эти данные свидетельствуют о том, что перколяционный переход от металлической к туннельной проводимости, сопровождаемый экспоненциальным ростом сопротивления с уменьшением d_m , в нашем случае происходит при $d_m \leq d_{mc} \approx 2.2$ нм. Данная величина незначительно превышает критическую толщину металла $(d_{mc} \approx 2 \text{ нм})$, при которой происходит аналогичный переход, для многослойных структур Co/SiO₂ или Со_{0.8}Fe_{0.2}/Al₂O₃ с несущественной растворимостью металла в диэлектрической матрице [12,13]. Это, в свою очередь, можно рассматривать как указание на небольшую роль в наших условиях эффектов взаимной диффузии металла и кремния с образованием силицидов, что, вероятно, связано с присутствием циркония в слое ферромагнетика, стабилизирующего его аморфную структуру. С другой стороны, необходимо отметить, что пересчет сопротивления R_1 двухслойных структур $Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si в сопротивление R_{100} структур с числом бислоев 100 $(R_{100} = R_1/100)$ дает значения R_{100} почти на два порядка большие, чем следует из результатов непосредственных измерений. Это означает, что со-

Рис.2. *а*) Зависимости сопротивления структур (Co_{0.45} Fe_{0.45} Zr_{0.1}/*a*-Si)₁₀₀ от магнитного поля при различных толщинах (в нм) металла (d_m) и *a*-Si (d_s): $1 - d_m = 3.5$, $d_s = 3.4$, $2 - d_m = 2.8$, $d_s = 1.9$, $3 - d_m = 2.6$, $d_s = 1.2$, $4 - d_m = 2.5$, $d_s = 0.8$, $5 - d_m = 2.46$, $d_s = 0.7$. *б*) Зависимость сопротивления двухслойных структур Co_{0.45}Fe_{0.45}Zr_{0.1}/*a*-Si от толщины металла; $d_s = 10$ нм

седние слои в многослойных структурах, являясь разрывными (несплошными)¹⁾, имеют между собой относительно низкоомные и/или туннельные (через a-Si) контакты, которые способствуют понижению порога перколяции и переходу к трехмерной проводимости. Природа этих контактов может быть связана с наличием атомов металла в кремниевых слоях, проникших туда в силу ограниченной, но все же имеющей место диффузии. Очевидно, что такого рода контакты образуются, в первую очередь, «мертвыми» концами бесконечного кластера, которым в условиях близости к перколяционному переходу принадлежит подавляющее число гранул перколяционной пленки [14]. Заметим также, что тестовые исследования распределения магнитного момента с помощью рассеяния поляризованных нейтронов демонстрируют слабый контраст между слоями в полученных структурах, что свидетельствует о существовании атомов металла в слоях кремния, вероятнее всего, в форме силицида или кластеров металла. Именно в силу этих обстоятельств нейтроннографические исследования оказались малоинформативными.

Таким образом, представляется разумным связывать наблюдаемое отрицательное магнитосопротивление, проявляющееся при уменьшении толщины *a*-Si, со спин-зависящими эффектами при туннелировании (или рассеянии) электронов между гранулами соседних металлических слоев и ожидать определенного подобия в поведении транспортных свойств рассматриваемых систем с металл-диэлектрическими нанокомпозитами [3]. Такое подобие действительно имеет место в отношении поведения температурной зависимости проводимости.

На рис. За приведена температурная зависимость сопротивления структуры с толщиной a-Si $d_s = 0.8$ нм и толщиной металла $d_m = 2.5$ нм в диапазоне T = 77-300 К. Увеличение сопротивления с уменьшением температуры не превышает 30 % и хорошо описывается законом $R_{xx} \propto -\lg T$, причем коэффициент перед логарифмом заметно уменьшается при увеличении d_m (рис. 36). Аналогичный закон наблюдается в нанокомпозитах $\operatorname{Co}_x(\operatorname{SiO}_2)_{1-x}$ и Ni_x(SiO₂)_{1-x} в окрестности перколяционного перехода на металлической его стороне [3].

Металлический характер проводимости полученных структур подтверждается также данными измерений аномального эффекта Холла. На рис. 4 представлены магнитополевые зависимости холловского сопротивления R_H при T = 10, 79 К. Увеличение R_H в области его насыщения с уменьшением T для данной структуры приблизительно пропорционально росту R_{xx} , что наблюдается в случае тонких металлических пленок, а также в нанокомпозитах с металлической проводимостью [15]. Заметим, что в случае туннельной проводимости $R_H \propto R_{xx}^{0.5}$, как установлено на примере наноком-

¹⁾ В англоязычной литературе в отношении данных слоистых структур употребляется термин «discontinuous multilayers». Отдельные слои в таких системах представляют собой изолированные гранулы металла (для Co/SiO₂ диаметром 2.5 нм) и цепочки из них, длина которых сильно зависит от эффективной толщины металла и стремится к бесконечности при приближении к критической толщине d_{mc} [12, 13].

Рис. 3. *a*) Температурная зависимость сопротивления структуры $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a-Si)_{100}$ при $d_s = 0.8$ нм и $d_m = 2.5$ нм. δ) Зависимости $R_{xx}(T)$ в полулогарифмическом масштабе для структур с $d_m = 2.5$ нм, $d_s = 0.8$ нм (1) и $d_m = 3.5$ нм, $d_s = 3.4$ нм (2)

позитов $\operatorname{Fe}_{x}(\operatorname{SiO}_{2})_{1-x}$ в работе [16].

Несмотря на сходство в поведении зависимостей $R_{xx}(T)$ в наших структурах и металл-диэлектрических нанокомпозитах, зависимости $R_{xx}(H)$ заметно различаются. На рис. 5 представлены результаты измерения R_{xx} для поля в плоскости, ориентированного параллельно и перпендикулярно току, при T = 300 и T = 77 К. Во всех случаях отсутствует насыщение магнитосопротивления в полях около 1 Тл. Между тем в многослойных структурах $\mathrm{Co}/\mathrm{SiO}_2$ при $T=77~\mathrm{K}$ поля насыщения магнитосопротивления составляют даже на пороге перколяции несколько килоэрстед [12]. Близкая ситуация наблюдается и в нанокомпозитах $(NiFe)_x (SiO_2)_{1-x} [2].$ Кроме того, в нашем случае при T = 77 К проявляется анизотропия магнитосопротивления в отличие от нанокомпозитов, где этот эффект вблизи порога перколяции (x = 0.55) отсутствует [2].

Вопрос о магнитной структуре изучаемой системы $\operatorname{Co}_{0.45}\operatorname{Fe}_{0.45}\operatorname{Zr}_{0.1}/a$ -Si оказывается отнюдь не простым. Прежде всего, необычным является поведение намагниченности для поля, ориентированного вдоль плоскости структуры (рис. 6). Отношение остаточной намагниченности к намагниченности насыщения, M_r/M_s , в структурах с $d_s \approx 1$ нм составляет примерно 0.7 (рис. 66, штриховая линия), тогда как в гранулированных слоях в окрестности перколяционного перехода это отношение обычно не более 0.5 [17]. При этом поле насыщения намагниченности, H_s , превышает 3 кЭ (см. вставку к рис. 6*a*), что заметно больше значений H_s , наблюдаемых для однослойных и достаточно толстых аморфных пле-

Рис. 4. Магнитополевые зависимости холловского сопротивления R_H при T = 10 К (1) и T = 79 К (2) для структуры $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si)₁₀₀ с $d_s = 0.9$ нм и $d_m = 2.5$ нм

нок. Увеличение H_s может быть в принципе связано с наличием в ферромагнитных слоях или между слоями изолированных суперпарамагнитных гранул и/или с эффектами поверхностной магнитной анизотропии, обусловленной как шероховатостью границ раздела слоев, так и взаимодиффузией (перемешиванием) атомов вблизи этих границ [18].

Другая возможность описать большие поля насыщения намагниченности заключается в учете обменного взаимодействия между ферромагнитными

Рис.5. Полевая зависимость продольного сопротивления структуры $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a-Si)_{100}$ с $d_s = 0.8$ нм и $d_m = 2.5$ нм при T = 300 K (a) и T = 77 K (b) при ориентации поля вдоль тока (\blacktriangle) и перпендикулярно току (\Box). Поле параллельно плоскости образца

Рис. 6. *а*) Зависимость намагниченности от магнитного поля для структуры $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a-Si)_{100}$ с $d_s = 0.8$ нм и $d_m = 2.5$ нм при T = 300 К. Вставка — намагниченность в области насыщения. δ) Гистерезис намагниченности для разных ориентаций поля в плоскости: \circ — поле вдоль длинной стороны; \blacktriangle — поле поперек длинной стороны; \blacksquare — поле под углом 45° к длинной стороне

слоями, которое в случае слоистых структур типа Fe/a-Si носит билинейно-биквадратичный характер. Это означает, что наряду с антиферромагнитной по знаку билинейной компонентой межслоевого обмена возникает биквадратичная компонента такого обмена, стремящаяся выстроить магнитные моменты соседних слоев железа перпендикулярно друг другу. Действительно, в отсутствие кристаллической анизотропии выражение для поверхностной плотности энергии обмена между двумя однородными ферромагнитными слоями имеет вид [19]

$$E = -2HM_s d_m \cos\theta + J_1 \cos 2\theta + J_2 \cos^2 2\theta, \quad (2)$$

где $J_1, J_2 > 0$ соответствуют константам билинейного (антиферромагнитного) и биквадратичного взаимодействий, d_m — толщина слоя $Co_{0.45}Fe_{0.45}Zr_{0.1}, \theta$ и $-\theta$ — углы между магнитными моментами соседних слоев и вектором напряженности поля, выбранные, в силу изотропности системы, симметричными относительно направления поля. Минимум энергии межслоевого обмена достигается при условии

$$HM_s d_m/2 = (J_1 - 2J_2)\cos\theta + 4J_2\cos^3\theta.$$
 (3)

Отсюда видно, что при выполнении условия 2
 $J_2>>J_1$ имеем $M_r/M_s\neq 0$ и

$$\frac{M_r}{M_s} = \sqrt{\frac{2J_2 - J_1}{4J_2}},$$

$$H_s = \frac{2(J_1 + 2J_2)}{M_s d_m}.$$
(4)

Из формулы (4) следует, что максимальное значение M_r/M_s достигается в условиях преобладающего вклада биквадратичного обмена $(J_2 \gg J_1)$ и составляет примерно 0.71, что в принципе совпадает с величиной M_r/M_s , наблюдаемой в эксперименте. Интересно также отметить, что в предположении преобладающей роли биквадратичного обмена и на основе экспериментально измеренных значений $H_s \approx 3$ кЭ и $M_s d_m \approx 3.1 \cdot 10^{-4}$ Гс см мы получаем величину $J_2 \approx 0.23$ эрг/см². Она совпадает с константой биквадратичного обмена ($J_2 \approx 0.2 \text{ эрг/см}^2$), найденной для структур Fe/a-Si/Fe с металлическим силицидом железа в прослойке при T = 300 К и при минимальных значениях $d_s = 1.3$ нм [4], хотя заметно меньше максимальной величины $J_2 \approx 1$ эрг/см² для структур Fe/a-Si/Fe с $d_s \approx 1$ нм, в которых силицид железа отсутствует [6]. С другой стороны, необходимо отметить, что в трехслойных структурах Fe/a-Si/Fe при T = 300 К преобладает билинейный член межслоевого обменного взаимодействия $(J_1 > 2J_2)$ и $M_r/M_s \approx 0$ [4-6] в отличие от нашей ситуации.

Исходя из изложенного выше, можно заключить, что в изучаемых системах, по-видимому, реализуется неоднородное и достаточно сложное по структуре магнитное состояние, которое имитируется введением сильного $(J_2 \gg J_1)$ биквадратичного обмена между слоями Co_{0.45}Fe_{0.45}Zr_{0.1} (см. уравнение (2)). Однако пока нет достаточных оснований предполагать, что в наших образцах такое взаимодействие на самом деле имеет место, да и следующая из сильного неравенства $(J_2 \gg J_1)$ почти ортогональная ориентация магнитных моментов соседних слоев $Co_{0.45}Fe_{0.45}Zr_{0.1}$ не подтверждается данными для планарного эффекта Холла. Другая интересная особенность исследуемых структур заключается в изотропности системы и перколяционном характере ее проводимости, которые, однако, не приводят к подавлению анизотропии в поведении отрицательного магнитосопротивления (см. рис. 5), как в случае металл-диэлектрических нанокомпозитов [2].

Данные измерений при T = 77 К полевой зависимости поперечного сопротивления R_{xy} в геометрии, когда магнитное поле прикладывается параллельно плоскости образца под небольшим углом (около 1°)

к холловским зондам, представлены на рис. 7а. Для сравнения на рис. 76 также показана полевая зависимость продольного сопротивления R_{xx}. Хотя поведение зависимостей $R_{xy}(H)$ и $R_{xx}(H)$ качественно подобно, обращает на себя внимание тот факт, что изменение в R_{xy} составляет около 6%, а в R_{xx} всего лишь 0.15 %. Кроме того, поперечное сопротивление насыщается в существенно меньших полях (H < 500 Э). Другими словами, обнаруженный сигнал между холловскими зондами не может быть связан с сопротивлением, вызванным асимметрией в их расположении. В условиях анизотропии в поведении R_{xx} данный сигнал естественно отождествить с проявлением планарного эффекта Холла. Заметим также, что наблюдаемый планарный эффект Холла симметричен по магнитному полю, что согласно выражению (1) соответствует вращению магнитного момента в первом (H > 0) и третьем (H < 0) квадрантах (или во втором и четвертом). Такое обстоятельство неудивительно, поскольку между направлением поля и холловским зондом (см. рис. 1) имеется небольшой угол. В этом случае при положительных значениях поля после уменьшения его до нуля остаточный магнитный момент в области контакта образца с холловскими зондами окажется в первом квадранте под углом к току (см. рис. 1). При H < 0ситуация изменится с точностью до зеркального отражения — остаточный магнитный момент повернется на 180°. Аналогичное поведение R_{xy} наблюдается и при перемагничивании образца в условиях, когда магнитное поле наклонено под углом примерно 45° к протекающему току. Результаты таких измерений иллюстрирует вставка на рис. 7а, из которой следует, что изменение R_{xy} в этом случае составляет около 9 %. Вынудить магнитный момент вращаться в первом (H > 0) и четвертом (H < 0) квадрантах (или во втором и третьем) с изменением знака *R_{xy}* можно, если приложить небольшое фоновое поле Н_b вдоль тока, намагнитив в этом направлении образец. В нашем случае это поле оказалось приблизительно равным коэрцитивной силе $H_c \approx 10$ Э (см. рис. 6). На рис. 8 показаны зависимости $R_{xy}(H)$ при наличии фонового поля H_b . Видно, что знак R_{xy} в этом случае изменяется в соответствии с выражением (1). Наконец, оценим величину A в формуле (1), $A = (R_{\parallel} - R_{\perp})w/2l$. Используя данные рис. 5*a* по анизотропии продольного магнитосопротивления,

$$dR_{xx} = R_{\parallel} - R_{\perp} \approx 60 \text{ MOM},$$

получим $A \approx 26$ мОм, что хорошо согласуется с величиной изменения поперечного сопротивления

Рис.7. Магнитополевые зависимости поперечного R_{xy} (*a*) и продольного R_{xx} (*б*) сопротивлений для структуры ($Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si)₁₀₀ с $d_s = 0.8$ нм и $d_m = 2.5$ нм при T = 77 К. Поле параллельно плоскости структуры и перпендикулярно току. На вставке — зависимость R_{xy} для поля, наклоненного под углом 45° к протекающему току при T = 77 К

Рис. 8. Полевая зависимость поперечного сопротивления R_{xy} для структуры $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a-Si)_{100}$ с $d_s = 0.8$ нм и $d_m = 2.5$ нм при T = 77 К в условиях постоянного приложенного вдоль тока поля $H_b \approx 10$ Э (a) и $H_b \approx -10$ Э (b). Поле развертки параллельно плоскости образца и перпендикулярно току

 $dR_{xy} \approx 23$ мОм (см. рис. 7*a*) и $dR_{xy} \approx 26$ мОм (см. рис. 8*a*) и подтверждает предложенный механизм возникновения сигнала между холловскими зондами в поле, параллельном плоскости образца.

Основным «источником» проявления планарного эффекта Холла в исследуемых структурах, по-видимому, является эффект анизотропии магнитосопротивления, как и в случае пленок магнитных переходных металлов [1]. Об этом свидетельствуют результаты измерений магнитосопротивления, полученные на структурах с относительно толстым слоем a-Si ($d_s = 3.4$ нм), когда спин-зависящие эффекты в магнитосопротивлении не играют существенной роли (рис. 9). Из рис. 9 видно, что в этом случае в поле, перпендикулярном току, наблюдается отрицательное магнитосопротивление, тогда как в поле, параллельном току, оно отсутствует, причем магнитосопротивление насыщается в достаточно слабых полях (не более 100 Э), типичных для эффекта анизотропии магнитосопротивления [1]. Малая величина этого эффекта в наших условиях, $(R_{\parallel} - R_{\perp})/R \approx 0.1\%$, объясняется сильным рассеянием электронов на поверхности пленки и границах гранул [20].

Качественно полученные результаты можно объяснить тем, что в нашем случае соседние металлические слои не являются сплошными и закорочены между собой в «узких местах» через «мертвые концы» перколяционной сетки, которые локально связаны между собой низкоомными прослойками силицида. Антиферромагнитное обменное взаимодействие в таких местах [4-7] стремится выстроить магнитные моменты гранул соседних слоев антипараллельно, в то время как сильное магнитное поле выстраивает эти моменты параллельно, приводя к уменьшению спин-зависящего рассеяния и сопротивления структуры. Несмотря на антиферромагнитный обмен в областях межслоевых контактов, в силу магнитной анизотропии и случайного характера пересечения мертвых концов результирующий угол между магнитными моментами в среднем будет отличаться от 180°. Это, на наш взгляд, и приводит, с одной стороны, к имитации сильного биквадратичного обменного взаимодействия в исследуемых структурах, а с другой, - к изотропному отрицательному (спин-зависящему) магнитосопротивлению. Наличие низкоомных закороток между мертвыми концами способствует также более однородному протеканию тока в плоскости слоев (или эффективному сдвигу порога перколяции в область меньших толщин металла), что, в свою очередь, обусловливает возможность наблюдения планарного эффекта Холла. Очевидно также, что в отсутствие закороток между слоями магнитосопротивление структуры обусловливается только эффектом анизотропии магнитосопротивления, и это также подтверждается экспериментом, в ходе которого была обнаружена слабая анизотропия магнитосопротивления (около 0.1%), см. рис. 9, которая и определяет природу планарного эффекта Холла. Последний в силу выражения (1) чувствителен к направлению магнитного момента системы. Представленные экспериментальные данные указывают на то, что планарный эффект Холла в слоистых структурах Со_{0.45} Fe_{0.45} Zr_{0.1} /a-Si характеризует, в первую очередь, изменение направления магнитного момента величиной примерно 0.7M_s. В то же время в этом случае отрицательное магнитосопротивление практически изотропно $((R_{\parallel}-R_{\perp})/R \approx 0.014~\%)$ и определяется полевым изменением магнитного момента системы от 0.7*M*_s до *M*_s (величина отрицательного магнитосопротивления при этом более 0.1 % в полях около 1 Тл).

Рис. 9. Полевая зависимость продольного сопротивления R_{xx} для структуры $(Co_{0.45}Fe_{0.45}Zr_{0.1}/a$ -Si)_{100} с $d_s = 3.4$ нм и $d_m = 3.5$ нм при T = 77 К для поля в плоскости образца, ориентированного параллельно (1) и перпендикулярно (2) току

4. ЗАКЛЮЧЕНИЕ

Исследованы магнитные и гальваномагнитные свойства тонкопленочных многослойных структур, состоящих из ферромагнитного металла и аморфного кремния (Co_{0.45}Fe_{0.45}Zr_{0.1}/a-Si) вблизи перколяционного перехода, которые представляют интерес для возможного использования в качестве материалов для спиновой электроники. Существенную роль в формировании свойств этих материалов играет образование силицидов металла, которые являются узкозонными полупроводниками и полуметаллами. Показано, что даже в условиях слабой диффузии атомов металла в слои кремния свойства исследованных многослойных структур при малых толщинах a-Si (около 1 нм) определяются наличием между слоями относительно низкоомных контактов, связанных с присутствием атомов металла в кремниевых прослойках. Такие контакты способствуют понижению порога перколяции и переходу к трехмерной проводимости, в результате чего температурная зависимость проводимости структур оказывается сходной с аналогичной зависимостью для металл-диэлектрических нанокомпозитов. Как и в нанокомпозитах, в исследованных структурах наблюдается отрицательное магнитосопротивление, которое, однако, в данном случае связано с антиферромагнитным взаимодействием гранул соседних металлических слоев в области контактов. Отрицательное магнитосопротивление почти изотропно, но, в отличие от нанокомпозитов, в данном случае присутствует анизотропное магнитосопротивление, величина которого хотя и невелика (0.014%), однако достаточна для формирования хорошо заметного сигнала, соответствующего планарному эффекту Холла (6%). Природа этого эффекта связана, в первую очередь, с изменением направления магнитного момента, а природа отрицательного магнитосопротивления — с его увеличением в магнитном поле на величину примерно 30%. Магнитные свойства системы также обусловлены существованием межслоевых микроконтактов, обеспечивающих антиферромагнитное взаимодействие гранул соседних слоев, которое в силу беспорядка в расположении гранул имитируется сильным биквадратичным взаимодействием.

Работа выполнена при поддержке РФФИ (гранты №№ 04-02-16158, 04-02-16090, 05-02-17021, 06-02-16313).

ЛИТЕРАТУРА

- T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).
- B. Zhao, X. Yan, and A. B. Pakhomov, J. Appl. Phys. 81, 5527 (1997).
- J. C. Denardin, M. Knobel, X. X. Zhang, and A. B. Pakhomov, J. Magn. Magn. Mat. 262, 15 (2003).
- G. J. Strijkers, J. T. Kohlepp, H. J. M. Swagten et al., Phys. Rev. Lett. 84, 1812 (2000).
- R. R. Gareev, D. E. Bugler, M. Buchmeier et al., Phys. Rev. Lett. 87, 157202 (2001).
- R. R. Gareev, D. E. Bugler, M. Buchmeier et al., J. Magn. Magn. Mat. 240, 235 (2002).

- 7. D. E. Burgler, M. Buchmeier, S. Cramm et al.,
- K. Inomata, K. Yusu, and Y. Saito, Phys. Rev. Lett. 74, 1863 (1995).

J. Phys.: Condens. Matter 15, S443 (2003).

- 9. L. N. Tong, M. H. Pan, J. Wu et al., Eur. Phys. J. B 5, 61 (1998).
- 10. M. N. Baibich, J. M. Brote, A. Fert et al., Phys. Rev. Lett. 61, 2472 (1988).
- P. M. Levy, S. Zhang, and A. Fert, Phys. Rev. Lett. 65, 1643 (1990).
- 12. B. Dieny, S. Sankar, M. R. McCartney et al., J. Magn. Magn. Mat. 185, 283 (1998).
- 13. G. N. Kakazei, Yu. G. Pogorelov, A. M. L. Lopes et al., J. Appl. Phys. 90, 4044 (2001).
- 14. Б. И. Шкловский, А. Л. Эфрос, Электронные свойства легированных полупроводников, Наука, Москва (1979).
- 15. A. Gerber, A. Milner, M. Karpovsky et al., J. Magn. Magn. Mat. 242–245, 90 (2002).
- 16. Б. А. Аронзон, Д. Ю. Ковалев, А. Н. Лагарьков и др., Письма в ЖЭТФ 70, 87 (1999).
- И. В. Золотухин, Ю. Е. Калинин, О. В. Стогней, Новые направления физического материаловедения, Изд-во Воронежского государственного университета, Воронеж (2000).
- 18. H. Kachkachi, A. Ezzir, M. Nogues, and E. Tronc, Eur. Phys. J. B 14, 681 (2000); H. Kachkachi and D. A. Garanin, Physica A 300, 487 (2001).
- 19. E. E. Fullerton and S. D. Bader, Phys. Rev. B 53, 5112 (1996).
- 20. Th. G. S. M. Rijks, R. Coehoorn, M. J. M. de Jong, and W. J. M. de Jonge, Phys. Rev. B 51, 283 (1995).