МЕЖСЛОЕВАЯ ОБМЕННАЯ СВЯЗЬ В НАНОСТРУКТУРАХ ЖЕЛЕЗО/КРЕМНИЙ

В. Н. Меньшов^{*}, В. В. Тугушев^{**}

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 10 февраля 2006 г.

Для наноструктур типа Fe/Si рассмотрен суперобменный механизм межслоевой обменной связи. Предполагается, что важнейшую роль в этом механизме играют границы раздела слоев железа и кремния, в непосредственной близости от которых формируется «контактно-индуцированная» ферромагнитная фаза объемно-центрированного моносилицида железа, и возникают поляризованные по спину интерфейсные состояния. Магнитная связь между слоями железа осуществляется путем взаимодействия интерфейсных состояний через прослойку нормального полупроводника и включает как внутризонные, так и межзонные процессы. При этом немонотонный характер зависимости межслоевой обменной связи от толщины и состава прослойки (наличие максимума, изменение формы, возможная смена знака билинейной компоненты) обусловлен конкуренцией ферро- и антиферромагнитных составляющих суперобмена и сложным характером электронного спектра прослойки (в частности, наличием нескольких эквивалентных экстремумов полупроводниковых зон). Данная модель позволяет на качественном уровне воспроизвести основные черты механизма межслоевой обменной связи в реальных наноструктурах типа Fe/Si.

PACS: 75.70.-i, 75.50.Bb, 75.75.+a

1. ВВЕДЕНИЕ

В последние годы слоистые структуры типа Fe/Si стали объектом пристального изучения вследствие их необычных и во многих отношениях непонятных магнитных свойств. Подавляющее число работ было посвящено системам с кристаллографической ориентацией (001) вдоль оси роста (см., например, статью [1] и ссылки в ней). Значительные усилия были предприняты для того, чтобы понять механизм магнитного взаимодействия слоев Fe через прослойку Si и построить модель межслоевой обменной связи (MOC) в обсуждаемых структурах, однако результаты данных исследований остаются крайне противоречивыми.

Интенсивность МОС принято характеризовать эффективными параметрами — билинейным $J_1(L)$ и биквадратичным $J_2(L)$ интегралами межслоевого обмена, зависящими от толщины прослойки L. В феноменологическом выражении для обменной энергии слоистой структуры эти интегралы являются коэффициентами соответственно при билинейном и биквадратичном по магнитным моментам соседних слоев Fe слагаемых. Заметим, что величина $J_2(L)$ в указанных системах всегда является положительной, тогда как $J_1(L)$ может быть как положительной, так и отрицательной; ниже, для определенности, принимаем $J_1(L) > 0$ для антиферромагнитного (АФМ) и $J_1(L) < 0$ для ферромагнитного (ФМ) типа МОС. Весьма интригующими особенностями обменной связи в структурах типа Fe/Si являются сильно немонотонная зависимость интегралов $J_{1,2}(L)$ от толщины прослойки L, а также возможная смена знака $J_1(L)$ при изменении L. В дальнейшем там, где это не вызовет недоразумений, будем употреблять для интеграла $J_1(L)$ упрощенное обозначение J(L).

Антиферромагнитный характер интеграла J(L)при значениях L > 10-15 Å надежно установлен различными группами исследователей, но детали поведения J(L), особенно при значениях L < 10-15 Å, сильно различаются и остаются неясными. Очень слабая AФM MOC была найдена в работе [2], но в то же время аномально сильная AФM MOC наблю-

^{*}E-mail: vnmenshov@mail.ru

^{**}E-mail: vvtugushev@mail.ru

далась в [3, 4], причем величина J(L) экспоненциально и монотонно возрастала с уменьшением L. В других экспериментах имел место ярко выраженный максимум J(L) при некоторой характерной толщине прослойки L_{max}, лежащей в широком диапазоне значений, примерно от 8-10 Å до 18-25 Å [1,5]. Более того, в работе [5] были зафиксированы не только сильное возрастание, а затем резкое убывание J(L)с уменьшением L, но также смена знака J(L) (т. е. переход от АФМ-типа к ФМ-типу МОС) при значениях L < 10-15 Å. Впрочем, эти результаты, насколько нам известно, не были подтверждены другими группами экспериментаторов. В работах [4, 6–8] наряду с обычным билинейным вкладом в энергию межслоевого обмена был также обнаружен сильный биквадратичный вклад, дискуссия о природе которого не выявила единого понимания ситуации.

Интерпретация экспериментальных данных [2–8] в стандартных терминах туннелирования спин-поляризованных электронов между слоями ферромагнитного металла через тонкую прослойку немагнитного диэлектрика (см. [9]) сильно усложнена из-за значительной неконтролируемой диффузии железа через интерфейс Fe/Si в процессе роста структур. Вследствие такой диффузии внутри прослойки кремния практически по всей ее толщине происходит формирование силицидов железа ($\operatorname{Fe}_{1-x}\operatorname{Si}_x$) различного состава, от простейшего моносилицида (c-FeSi) со структурой объемно-центрированной кубической (ОЦК) решетки до более сложных соединений [10], т.е. состав материала прослойки в указанных экспериментах остается, по сути дела, неизвестен. Качественно новый уровень понимания особенностей МОС достигнут в исследованиях [1, 11–14] многослойных структур типа $\mathrm{Fe}/\mathrm{Fe}_{1-x}\mathrm{Si}_x$ с контролируемым составом (0.5 < x < 1) силицида железа, выращенных по специальной технологии методом молекулярно-лучевой эпитаксии из двух источников. Экспоненциальное убывание интеграла J(L)при больших значениях L наблюдалось во всем диапазоне составов x, причем для прослоек с низким содержанием Si, когда значение x близко к 0.5, имел место плавный максимум MOC при $L \approx 10-11$ Å.

Сильное (в несколько раз) возрастание J(L), а также смещение пика зависимости J(L) в область толщин $L \approx 7-8$ Å и его заметное сужение наблюдались с ростом содержания Si в прослойке, когда значение x близко к 1. Таким образом, оказалось, что диффузия железа в прослойку не усиливает, а наоборот, значительно подавляет интенсивность МОС, что прямо противоречит стандартному «туннельному» механизму [9]. Действительно, хорошо известно

(см., например, [11]), что твердые растворы $Fe_{1-x}Si_x$ при 0.5 < x < 1 являются либо полуметаллами, либо полупроводниками с шириной запрещенной зоны, заведомо меньшей, чем в чистом кремнии. Казалось бы, что с увеличением содержания Si в прослойке высота энергетического барьера для электронов, туннелирующих между металлическими обкладками через слой диэлектрика, должна возрастать, и, следовательно, интеграл туннелирования и пропорциональная ему величина J(L) — резко убывать при любой толщине L из-за уменьшения де-бройлевской длины волны электрона в диэлектрике. Эксперименты [1,11–14], в которых наблюдалось прямо противоположное поведение J(L) с изменением параметра x, заставили задуматься об истинном механизме МОС в структурах Fe/Si и инициировали наш интерес к данным объектам.

Различные теоретические подходы к проблеме МОС в системах типа ферромагнитный металл/немагнитный диэлектрик, базирующиеся на механизме туннелирования спин-поляризованных квазичастиц через эффективный потенциальный барьер, неоднократно предлагались в литературе. Например, в простейшей модели [15] для расчета интеграла МОС использовалось приближение газа свободных электронов, туннелирующих через прямоугольный барьер, а в более сложной «электронно-оптической» модели [16] применен метод расчета асимметричных по спину парциальных коэффициентов отражения электронных волн различной угловой симметрии при их квантовой интерференции на границе раздела парамагнетик/ферромагнетик. Обе эти феноменологические модели предсказывают знак и монотонное экспоненциальное уменьшение J(L) с ростом толщины L, но не способны объяснить наличие максимума функции J(L), наблюдаемого в структурах типа Fe/Si. В то же время в схеме [17], базирующейся на расширенной обменной *s*-*d*-модели, показано, что уменьшение интеграла J(L) с ростом L не всегда является строго монотонным. В зависимости от конкретной зонной структуры и кристаллографической ориентации полупроводниковой прослойки функция J(L) может содержать осциллирующие компоненты и даже быть знакопеременной; иными словами, характер обмена может меняться с АФМ на ФМ и наоборот. Как хорошо известно, такое поведение взаимодействия J(L)характерно для структур типа ферромагнитный металл/немагнитный металл, где механизм МОС определяется взаимодействием типа РККИ. В модели свободного электронного газа функция J(L) осциллирует с периодом, определяемым топологией по-

пии (см. вторую из работ [3]). Иными словами, име-

верхности Ферми материала прослойки [18], а в схеме так называемых «слоев Андерсона» предсказывается АФМ-смещение этих осцилляций [19]. В структурах типа Fe/Fe_{1-x}Si_x выраженные осцилляции J(L) наблюдались лишь в случае специально выращенных и заведомо металлических прослоек с высоким содержанием железа (x < 0.5), но никогда — в случае полупроводниковых или полуметаллических прослоек с x > 0.5 [1].

Таким образом, можно констатировать, что понимание механизма MOC в структурах типа ферромагнитный металл/немагнитный полупроводник (полуметалл) вообще и Fe/Si в частности остается серьезной проблемой, не нашедшей адекватного объяснения в рамках существующих подходов. Не претендуя в данной работе на какие-либо общие выводы, заметим, что принципиальные сложности, возникающие на пути понимания механизма MOC в реальных слоистых структурах типа Fe/Si, состоят, по нашему мнению, в следующем.

Во-первых, даже в отсутствие диффузии железа в прослойку сильное влияние на характер МОС оказывает перераспределение зарядовой и спиновой плотностей вблизи интерфейса железо/кремний. Поэтому, в частности, необходимо принять во внимание возможность возникновения специфических поверхностных состояний, заполнение и спиновая поляризация которых заметно отличаются от аналогичных характеристик состояний внутри прослойки.

Во-вторых, образующиеся в прослойке при диффузии железа силициды $\operatorname{Fe}_{1-x}\operatorname{Si}_x$ являются сильно легированными магнитными полупроводниками или полуметаллами со сложной зонной структурой, которую следует учитывать при построении модели MOC и расчете функции J(L).

Ниже мы попытаемся хотя бы качественно учесть данные особенности рассматриваемой системы.

2. ПОВЕРХНОСТНЫЕ СПИН-ПОЛЯРИЗОВАННЫЕ СОСТОЯНИЯ И КОНТАКТНО-ИНДУЦИРОВАННЫЙ ФЕРРОМАГНЕТИЗМ НА ИНТЕРФЕЙСЕ ЖЕЛЕЗО/КРЕМНИЙ

В экспериментах по дифракции электронов с малой энергией (LEED) [1] было показано, что рост сверхтонких (менее 5 Å) слоев $\operatorname{Fe}_{1-x}\operatorname{Si}_x$ на подложке $\operatorname{Fe}(001)$ даже при $x \approx 1$ (т.е. для номинально чистого кремния) является псевдоморфическим. Этот факт также отмечался в более ранних экспериментах по рентгеновской фотоэлектронной спектроско-

ет место хорошая совместимость кристаллических решеток металла (Fe) и полупроводника (Si) с образованием почти идеально гладкого интерфейса между ними, что само по себе довольно любопытно для обсуждаемой системы. Формально возможным, но крайне маловероятным нам представляется предположение о существовании вблизи интерфейса слоя кремния с метастабильной ОЦК-решеткой (кстати, такой ОЦК-кремний был бы, по-видимому, хорошим металлом). Поэтому в данной работе мы обсудим более реалистичный сценарий, объясняющий данные по LEED [1], при котором за счет химической реакции на интерфейсе Fe/Si происходит формирование тонкого промежуточного слоя силицида железа с-FeSi с ОЦК-решеткой. Толщина этого слоя составляет менее 5 Å в случае наноструктур Fe/Si с подавленной диффузией железа в прослойку кремния и может достигать 10-14 Å, если процесс диффузии идет интенсивно. Межслоевое расстояние для силицида *c*-FeSi, оцениваемое как 1.43 Å, очень близко к соответствующей величине для ОЦК-железа, так что вполне естественно рассматривать это соединение в качестве реального кандидата на роль промежуточного слоя. Как показано в работе [20], модификация *c*-FeSi — это парамагнитный полуметалл, имеющий очень малую плотность электронных состояний (ПЭС) на уровне Ферми и резкий пик ПЭС, лежащий на 0.2-0.3 эВ выше уровня Ферми. Данная модификация неустойчива в форме объемного монокристалла относительно структурного перехода в более сложную, с точки зрения симметрии кристаллической решетки, модификацию ε-FeSi, которая является почти магнитным полупроводником с очень узкой (~0.05 эВ) запрещенной зоной. Природа магнитных и структурных превращений в ε -FeSi нас здесь не интересует, поэтому мы не будем обсуждать результаты многолетней и противоречивой дискуссии по данному вопросу.

Примечательно, что модификация *c*-FeSi оказывается стабильной в форме тонкого слоя на поверхности Fe благодаря отмеченной выше хорошей согласованности параметров решеток Fe и *c*-FeSi. Очевидно, что как заполнение, так и спиновая поляризация электронных состояний в таком слое и в объемном монокристалле *c*-FeSi могут значительно отличаться друг от друга. Наше принципиальное предположение заключается в том, что в прилегающем к границе с Fe тонком промежуточном слое *c*-FeSi на масштабе нескольких постоянных решетки происходит сильное перераспределение зарядовой и спиновой плотностей. Это перераспределение индуцирует-

Схематическое представление структуры плотности состояний $N_{\uparrow\downarrow}(\varepsilon)$ в переходной области от слоя железа к слою кремния: Fe — слой Fe; FM *c*-FeSi — поляризованный слой силицида ФМ *c*-FeSi; PM *c*-FeSi — слой парамагнитного силицида ПМ *c*-FeSi; Si — слой кремния Si. Подзоны с различной спиновой поляризацией, ↑ или ↓, показаны соответственно на правом и левом фрагментах. Состояния, лежащие ниже уровня Ферми ε_F , заштрихованы

ся спин-зависящим поверхностным потенциалом, содержащим кулоновскую и обменную составляющие. При перетекании электронов из слоя Fe в слой *c*-FeSi кулоновская составляющая поверхностного потенциала изгибает зоны и сдвигает вниз по шкале энергий узкий пик ПЭС в силициде *с*-FeSi; в то же время обменная составляющая расщепляет этот пик по спину. В результате, как схематически представлено на рисунке, в области интерфейса Fe/Si образуется двойной заряженный слой (избыточный положительный заряд на Fe и отрицательный — на с-FeSi), и вблизи уровня Ферми формируются узкие спин-поляризованные подзоны. Для состояний в этих подзонах будем также употреблять термин «интерфейсные состояния», причем, согласно нашему сценарию, состояния со спином, направленным вверх, являются заполненными, а со спином, направленным вниз, — пустыми. Структура плотности электронных состояний в различных слоях схематически изображена на рисунке.

Иными словами, согласно нашей модели, на интерфейсе Fe/Si за счет эффекта близости к слою Fe возникает тонкий промежуточный слой «контактно-индуцированной» ФМ-фазы c-FeSi. Заметим, что похожий эффект индуцирования ФМ-порядка под влиянием сильного внешнего магнитного поля обсуждался в статьях [21] для упоминавшегося выше объемного моносилицида железа ε -FeSi. Согласно расчетам [21], наведенная внешним полем объемная ФМ-фаза ε -FeSi возникает из парамагнитной фазы путем метамагнитного перехода, который сопровождается трансформацией зонной структуры типа полупроводник-металл. В нашем случае, естественно, никакого фазового перехода не происходит, а ФМ-фаза *c*-FeSi образуется в форме тонкого поверхностного слоя вблизи интерфейса Fe/Si в процессе роста наноструктуры.

Вообще говоря, для обозначения рассматриваемого сложного интерфейса следовало бы ввести следующие формально строгие обозначения:

а) Fe/(Φ M *c*-FeSi)/Si, если диффузия Fe слабая и промежуточный слой «контактно-индуцированной» Φ M-фазы пространственно почти совпадает со слоем силицида *c*-FeSi;

б) Fe/(Φ M *c*-FeSi)/(ПМ *c*-FeSi)/Si, если диффузия Fe сильная и в глубине прослойки остается не затронутый эффектом близости слой парамагнитного силицида ПМ *c*-FeSi.

Для простоты, однако, будем придерживаться упрощенного традиционного обозначения Fe/Si там, где это не вызовет недоразумений, и перейдем к последовательному построению микроскопической модели MOC в «трехслойной» системе Fe/Si/Fe(001).

3. МОДЕЛЬНЫЙ ГАМИЛЬТОНИАН

Рассмотрим слой немагнитного полупроводника с номинальной толщиной L = 2l, помещенный между двумя слоями ферромагнитного металла. Ось z направим вдоль направления роста наноструктуры, т. е. перпендикулярно плоскости интерфейса металл/полупроводник, который предполагаем идеально гладким, и будем отсчитывать координату z от середины прослойки.

Запишем полный гамильтониан прослойки *H_S* следующим образом:

$$H_S = H_i + H_{ib} + H_b. \tag{1}$$

Здесь *H_i* — гамильтониан интерфейсных состояний:

$$H_i = H_i(+l) + H_i(-l),$$
 (2)

$$H_{i}(\pm l) = \sum_{\alpha\beta} \int d\mathbf{q} \left(a_{\alpha}^{+}(\mathbf{q}, \pm l) \times \left[E_{i}(\mathbf{q}, \pm l) \delta_{\alpha\beta} + J_{i}(\pm l) \mathbf{M}(\pm l) \boldsymbol{\sigma}_{\alpha\beta} \right] a_{\beta}(\mathbf{q}, \pm l) \right), \quad (3)$$

где a^+ и a — операторы рождения и уничтожения квазичастиц с энергией $E_i(\mathbf{q}, \pm l)$; \mathbf{q} — двумерный квазиимпульс в плоскости интерфейса (x, y), ортогональной к оси \mathbf{z} ; $J_i(\pm l)$ — обменный интеграл между состояниями ФМ и промежуточного слоев; $\mathbf{M}(\pm l)$ вектор намагниченности на правой (+) и левой (-) ФМ-обкладках, соответственно; $\boldsymbol{\sigma}$ — вектор, составленный из матриц Паули; (α, β) — спиновые индексы. Ниже предполагается, что величины $E_i(\mathbf{q}, \pm l)$ и $J_i(\pm l)$ идентичны для обоих интерфейсов:

$$E_i(\mathbf{q}, +l) = E_i(\mathbf{q}, -l) = E_i(\mathbf{q}), \quad J_i(+l) = J_i(-l) = J_i.$$

Модули векторов $\mathbf{M}(\pm l)$ также одинаковы, но их направления $\mathbf{e}(\pm l)$ отличны друг от друга: $\mathbf{M}(\pm l) = M \mathbf{e}(\pm l)$, $\mathbf{e}(+l) \neq \mathbf{e}(-l)$.

Гамильтониан H_{ib} описывает одноэлектронную гибридизацию между интерфейсными состояниями и объемными состояниями прослойки; он может быть записан в рамках модели плоского дефекта как

$$H_{ib} = H_{ib}(+l) + H_{ib}(-l),$$
(4)

$$H_{ib}(\pm l) = \sum_{\alpha,m} \int d\mathbf{q} \, d\mathbf{q}' dk_z a^+_{\alpha}(\mathbf{q}, \pm l) \times V_m(\mathbf{q}, \mathbf{q}', \pm l) b_{m,\alpha}(\mathbf{q}', k_z) \exp(\pm ik_z l) + \text{H.c.}, \quad (5)$$

где b_m^+ и b_m — операторы рождения и уничтожения квазичастиц для состояний прослойки в m-й зоне с законом дисперсии $E_m(\mathbf{k}), k_z$ — проекция трехмерного квазиимпульса $\mathbf{k} = (\mathbf{q}, k_z)$ на ось $\mathbf{z}, V_m(\mathbf{q}, \mathbf{q}', \pm l)$ — матричные элементы периодического в плоскости (x, y) потенциала гибридизации на интерфейсах, которые считаем равными, так что $V_m(\mathbf{q}, \mathbf{q}', +l) = V_m(\mathbf{q}, \mathbf{q}', -l) = V_m(\mathbf{q}, \mathbf{q}')$. Следует заметить, что величина $V_m(\mathbf{q}, \mathbf{q}')$, в принципе, отлична от нуля при произвольном соотношении между векторами \mathbf{q} и \mathbf{q}' , поскольку состояния прослойки

и интерфейсные состояния принадлежат к неприводимым представлениям различных групп пространственной симметрии.

Гамильтониан объемных состояний прослойки H_b имеет вид

$$H_b = \sum_{m,\alpha} \int d\mathbf{k} \, b_{m,\alpha}^+(\mathbf{k}) E_m(\mathbf{k}) b_{m,\alpha}(\mathbf{k}). \tag{6}$$

Ниже мы ограничимся рассмотрением двухзонной модели (m = V, C) невырожденного полупроводника. Предполагаем, что широкая валентная зона (со спектром $E_V(\mathbf{k})$) и широкая зона проводимости (со спектром $E_C(\mathbf{k})$) имеют максимум и минимум соответственно в точках \mathbf{K}_V и \mathbf{K}_C в первой зоне Бриллюэна. Вблизи этих точек спектры можно представить в виде

$$E_V(\mathbf{k}) = E_V(\mathbf{K}_V) - \frac{(\mathbf{k} - \mathbf{K}_V)^2}{2m_V},$$

$$E_C(\mathbf{k}) = E_C(\mathbf{K}_C) + \frac{(\mathbf{k} - \mathbf{K}_C)^2}{2m_C},$$
(7)

где $m_{V,C}$ — соответствующие эффективные массы. При этом считаем, что ширина каждой зоны, $W_V \sim W_C \gg E_g$, велика по сравнению с шириной запрещенной зоны (в общем случае, непрямой), $E_g = E_C(\mathbf{K}_C) - E_V(\mathbf{K}_V).$

4. ТЕРМОДИНАМИЧЕСКИЙ ПОТЕНЦИАЛ И ЭНЕРГИЯ МОС

Из структуры гамильтониана (1)–(6) очевидно, что в отсутствие гибридизации (4), (5) нет никакой связи между интерфейсными состояниями на правой и левой границах прослойки. Рассматривая (4) по теории возмущений и используя стандартную технику функций Грина [22], получим поправку $\Delta\Omega$ в полный термодинамический потенциал системы Ω в форме разложения по степеням потенциала гибридизации V. Очевидно, что только коэффициенты при четных степенях этого ряда отличны от нуля. В четвертом порядке теории возмущений имеем

$$\Delta \Omega = \Delta \Omega_2 + \Delta \Omega_4, \tag{8}$$

$$\Delta\Omega_{2} = \frac{1}{2} \sum_{m,\alpha} \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q} d\mathbf{q}'}{(2\pi)^{4}} V_{m}^{*}(\mathbf{q},\mathbf{q}') V_{m}(\mathbf{q},\mathbf{q}') \times \\ \times \left[G_{i}^{\alpha\alpha}(\omega,\mathbf{q},-l) G_{m}^{\alpha\alpha}(\omega,\mathbf{q}',0) + \right. \\ \left. + \left. G_{i}^{\alpha\alpha}(\omega,\mathbf{q},+l) G_{m}^{\alpha\alpha}(\omega,\mathbf{q}',0) \right], \quad (9)$$

$$\begin{split} \Delta\Omega_4 &= \frac{1}{4} \sum_{mn,\alpha\beta} \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q} \, d\mathbf{q}' d\mathbf{q}'' d\mathbf{q}'''}{(2\pi)^8} \times \\ &\times V_m^*(\mathbf{q},\mathbf{q}') V_m(\mathbf{q}',\mathbf{q}'') V_n^*(\mathbf{q}'',\mathbf{q}''') V_n(\mathbf{q}''',\mathbf{q}) \times \\ &\times \left[G_i^{\alpha\beta}(\omega,\mathbf{q},-l) G_i^{\beta\alpha}(\omega,\mathbf{q}'',-l) \times \right] \\ &\times G_m^{\beta\beta}(\omega,\mathbf{q}',0) G_n^{\alpha\alpha}(\omega,\mathbf{q}''',0) + G_i^{\alpha\beta}(\omega,\mathbf{q},+l) \times \\ &\times G_i^{\beta\alpha}(\omega,\mathbf{q}'',+l) G_m^{\beta\beta}(\omega,\mathbf{q}',0) \times \\ &\times G_n^{\alpha\alpha}(\omega,\mathbf{q}''',0) + G_i^{\alpha\beta}(\omega,\mathbf{q},-l) G_i^{\beta\alpha}(\omega,\mathbf{q}'',+l) \times \\ &\times G_m^{\alpha\alpha}(\omega,\mathbf{q}',L) G_n^{\beta\beta}(\omega,\mathbf{q}''',-L) + \end{split}$$

$$\times G_{m}^{\alpha\alpha}(\omega, \mathbf{q}', L)G_{n}^{\beta\alpha}(\omega, \mathbf{q}'', -L) + G_{i}^{\alpha\beta}(\omega, \mathbf{q}, +l)G_{i}^{\beta\alpha}(\omega, \mathbf{q}'', -l)G_{m}^{\alpha\alpha}(\omega, \mathbf{q}', -L) \times \\ \times G_{n}^{\beta\beta}(\omega, \mathbf{q}''', L) \bigg] .$$
(10)

Здесь мы ввели обозначения G_i и G_m соответственно для функций Грина промежуточного слоя и прослойки; ω — частота. В данной работе все вычисления проводятся только при нулевой температуре T = 0, но в принципе аналогичная процедура может быть осуществлена и при конечной температуре $T \neq 0$ в рамках температурной диаграммной техники [22].

Определим энергию межслоевой обменной связи $\Delta\Omega_{ex}$ как ту часть термодинамического потенциала $\Delta\Omega$, которая является билинейной формой от векторов намагниченности ФМ-обкладок:

$$\Delta\Omega_{ex} = I(L)\mathbf{M}(-l)\mathbf{M}(+l), \qquad (11)$$

где I(L) — обменный интеграл. Из уравнений (8)–(10) видим, что первый неисчезающий вклад в энергию $\Delta\Omega_{ex}$ возникает в слагаемом $\Delta\Omega_4$ (10), иными словами, обменный интеграл I(L) пропорционален величине V^4 .

Чтобы получить явное выражение для функции I(L), упростим интегралы в формуле (10) следующим образом. Главный вклад в эти интегралы, очевидно, вносят те квазиимпульсы в функциях Грина G_m , которые лежат вблизи экстремумов \mathbf{K}_V и **К**_C объемных зон в прослойке. С другой стороны, при интегрировании необходимо учесть вклад различных (в том числе больших) квазиимпульсов в функциях Грина G_i интерфейсных состояний, формирующих узкий пик в плотности электронных состояний промежуточного слоя. Ясно, что вклад процессов гибридизации с переносом больших квазиимпульсов в интегралы (9), (10) оказывается при этом весьма существенным. Для учета данной особенности используем в формуле (10) «среднеквадратичное» приближение следующего вида:

$$\int \frac{d\mathbf{q}''}{(2\pi)^2} V_m(\mathbf{q},\mathbf{q}'') G_i^{\alpha\beta}(\omega,\mathbf{q}'',\pm l) V_n^*(\mathbf{q}'',\mathbf{q}') \approx \\ \approx \gamma_{mn} \Gamma^{\alpha\beta}(\omega,\pm l) \delta(\mathbf{q}-\mathbf{q}'-\mathbf{K}_{mn}^{\perp}), \quad (12)$$
$$\Gamma^{\alpha\beta}(\omega,\pm l) = \int \frac{d\mathbf{q}}{(2\pi)^2} G_i^{\alpha\beta}(\omega,\mathbf{q},\pm l), \\ \gamma_{mn} = \int \frac{d\mathbf{q}}{(2\pi)^2} V_m(\mathbf{K}_m^{\perp},\mathbf{q}) V_n^*(\mathbf{q},\mathbf{K}_n^{\perp}).$$

Таким образом, в приближении (12) влияние интерфейсных состояний на объемные состояния прослойки описывается введением эффективных поверхностных потенциалов $\gamma_{mn}\Gamma^{\alpha\beta}(\omega,\pm l)$, зависящих от частоты.

Отметим, что векторы $\mathbf{K}_{mn} = \mathbf{K}_m - \mathbf{K}_n$ принадлежат первой зоне Бриллюэна, а вектор \mathbf{K}_{mn}^{\perp} — это проекция вектора \mathbf{K}_{mn} на плоскость (x, y). В нашей модели ширины зон в полупроводниковой прослойке W_m значительно превышают ширину пика ПЭС в промежуточном слое W_i ; при этом уровень Ферми лежит вблизи этого пика и находится внутри энергетической щели E_g . Указанные предположения позволяют существенно упростить выражение для интеграла I(L):

$$I(L) = \frac{J_i^2}{2} \sum_{mn} |\gamma_{mn}|^2 \exp(iK_{mn}^z L) \times \\ \times \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q} \, dk_z dk'_z}{(2\pi)^4} \, D^2(\omega) \times \\ \times G_m(\omega, k_z, \mathbf{q}) G_n(\omega, k'_z, \mathbf{q}) \exp\left(i(k_z - k'_z)L\right), \quad (13)$$

$$G_m(\omega, k_z, \mathbf{q}) = \frac{1}{\omega - E_m(\mathbf{k})},$$
$$D(\omega) = \int \frac{d\varepsilon N_i(\varepsilon)}{(\omega - \varepsilon)^2 - (J_i M)^2}.$$

Здесь $N_i(\varepsilon)$ — плотность электронных состояний в промежуточном слое, K_{mn}^z — проекция вектора \mathbf{K}_{mn} на ось \mathbf{z} , вектор \mathbf{k} в функциях Грина $G_m(\omega, \mathbf{k}) = G_m(\omega, k_z, \mathbf{q})$, фигурирующих в формуле (13), отсчитывается от точки экстремума функции $E_m(\mathbf{k})$.

В двухзонной модели (7), где (m, n) = (C, V), перепишем выражение (13) следующим образом:

$$I(L) = I_{1}(L) + I_{2}(L)\cos(K_{0}^{z}L),$$
(14)

$$\mathbf{K}_{0} = \mathbf{K}_{C} - \mathbf{K}_{V},$$

$$I_{1}(L) = |\gamma_{CC}|^{2}A_{C}(L) + |\gamma_{VV}|^{2}A_{V}(L),$$

$$I_{2}(L) = |\gamma_{CV}|^{2}A_{CV}(L) + |\gamma_{VC}|^{2}A_{VC}(L),$$

$$A_{C}(L) = \frac{J_{i}^{2}}{2} \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q}}{(2\pi)^{2}} F_{C}^{*}(\omega, \mathbf{q}, L) F_{C}(\omega, \mathbf{q}, L),$$

$$A_V(L) = \frac{J_i^2}{2} \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q}}{(2\pi)^2} F_V^*(\omega, \mathbf{q}, L) F_V(\omega, \mathbf{q}, L),$$

$$A_{CV}(L) = A_{VC}^*(L) = \frac{J_i^2}{2} \oint \frac{d\omega}{2\pi i} \times \int \frac{d\mathbf{q}}{(2\pi)^2} F_C^*(\omega, \mathbf{q}, L) F_V(\omega, \mathbf{q}, L),$$
$$F_{C,V}(\omega, \mathbf{q}, L) = \int \frac{dk_z}{2\pi} D(\omega) G_{C,V}(\omega, k_z, \mathbf{q}) \exp(ik_z L).$$

Как внутризонная, так и межзонная составляющие интеграла (14) могут быть аналитически рассчитаны при условии $\Omega_{C,V} \ll W_{C,V}$, где Ω_C — расстояние между узким интерфейсным пиком плотности электронных состояний и дном зоны проводимости, Ω_V — расстояние между узким интерфейсным пиком плотности электронных состояний и потолком валентной зоны. В этом случае основной вклад в интегралы по квазиимпульсам вносят области вблизи экстремумов зон полупроводника \mathbf{K}_V и \mathbf{K}_C , где электронный спектр аппроксимируется простым параболическим законом (7). В противном случае, когда $\Omega_{C,V} \sim W_{C,V}$, пришлось бы вести интегрирование по всей зоне Бриллюэна с учетом деталей зонной структуры, что можно сделать только численными методами. Уровень Ферми для рассматриваемого случая невырожденного полупроводника лежит внутри запрещенной зоны, $E_C(\mathbf{K}_C) > \varepsilon_F > E_V(\mathbf{K}_V);$ для определенности совместим его с началом отсчета энергии, $\varepsilon_F = 0$. При T = 0 свободные носители в прослойке отсутствуют, поэтому выражение (14) описывает только вклад механизма суперобмена в МОС, а вклад механизма РККИ отсутствует. Явные выражения для компонент обменного интеграла (14) приведены в Приложении.

5. РОЛЬ КРИСТАЛЛИЧЕСКОЙ СИММЕТРИИ

Выражение (14) описывает вклад в эффективный интеграл обменной связи I(L), возникающий благодаря механизму суперобмена между ФМ-слоями через немагнитную полупроводниковую прослойку с простым двухзонным спектром (7). При этом два различных по характеру своей зависимости от толщины прослойки L слагаемых определяют вид функции I(L).

Внутризонная компонента $I_1(L)$ всегда соответствует АФМ-типу связи, в то время как межзонная компонента $I_2(L) \cos(K_0^z L)$ может соответствовать либо ФМ (если вектор **K**₀ строго перпендикулярен оси роста структуры), либо осциллирующему между ΦM и $A\Phi M$ с изменением толщины L типу связи (если ориентация вектора \mathbf{K}_0 такова, что $(\mathbf{K}_0 \cdot \mathbf{z}) \neq 0$). Однако для реальной прослойки ситуация оказывается более сложной, поскольку группа пространственной симметрии полупроводника образует неприводимую звезду векторов $\{\mathbf{K}_{C,V}\}$, и потому имеется целый набор векторов $\{\mathbf{K}_0\}$, которые могут быть различным образом сориентированы относительно направления роста структуры.

Электронный спектр полупроводниковой прослойки имеет, как правило, несколько эквивалентных максимумов и минимумов. Вследствие того что процессы гибридизации на интерфейсах Fe/Si допускают большую передачу квазиимпульса, различные по характеру зависимости от толщины прослойки компоненты MOC (AФМ, ФМ или осциллирующая) возникают как во внутризонном, так и в межзонном слагаемом в интеграле I(L). Учет нескольких эквивалентных экстремумов в электронном спектре прослойки ведет к следующему выражению:

$$I(L) = \sum_{CC'} |\gamma_{CC'}|^2 A_C(L) \cos(K^z_{CC'}L) + \\ + \sum_{VV'} |\gamma_{VV'}|^2 A_V(L) \cos(K^z_{VV'}L) + \\ + \sum_{CV} \left[|\gamma_{CV}|^2 A_{CV}(L) + |\gamma_{VC}|^2 A_{VC}(L) \right] \times \\ \times \cos(K^z_{CV}L), \quad (15)$$

где суммирование проводится по индексам зонных минимумов (C, C') и максимумов (V, V'); функции $A_C(L), A_V(L), A_{CV}(L)$ и $A_{VC}(L)$ определены выше в формуле (14).

Рассмотрим два вида спектра, которые качественно соответствуют двум различным предельным ситуациям в системах типа Fe/Si с ориентацией интерфейса (001).

I) Спектр электронов в прослойке имеет максимум валентной зоны в точке Γ и минимум зоны проводимости вблизи точек X в первой зоне Бриллюэна решетки с кристаллической структурой алмаза. Неприводимая звезда { \mathbf{K}_C } состоит из векторов

$$\mathbf{K}_{\pm 1} = \frac{\pi}{2a} (1 \pm \delta, 0, 0), \quad \mathbf{K}_{\pm 2} = \frac{\pi}{2a} (0, 1 \pm \delta, 0),$$
$$\mathbf{K}_{\pm 3} = \frac{\pi}{2a} (0, 0, 1 \pm \delta), \quad \delta \ll 1,$$

 $\mathbf{K}_{V} = 0, a$ — расстояние между соседними монослоями решетки [23]. Тогда соотношение (15) может быть переписано в форме, аналогичной (14):

$$I(L) = I_1(L) + I_2(L)\cos(K_0^z L),$$
(16)

$$K_0^z = \frac{\pi}{2a},$$

$$I_1(L) = I_1'(L) + I_1''(L) \cos\left(\frac{\pi\delta L}{a}\right),$$

$$I_2(L) = I_2'(L) \cos\left(\frac{\pi\delta L}{2a}\right),$$

$$I_1'(L) = |\gamma_{VV}|^2 A_V(L) + [6|\gamma_{CC}|^2 + 2|\gamma_{CC}''|^2] \times$$

$$\times A_C(L) + |\gamma_{CV}'|^2 A_{CV}(L) + |\gamma_{VC}'|^2 A_{VC}(L),$$

$$I_1''(L) = 2|\gamma_{CC}|^2 A_C(L),$$

$$I'_{2}(L) = 4|\gamma'_{CC}|^{2}A_{C}(L) + + 2|\gamma_{CV}|^{2}A_{CV}(L) + 2|\gamma_{VC}|^{2}A_{VC}(L),$$

$$|\gamma_{VV}|^2 = |\gamma_{VV}(0)|^2, \quad |\gamma_{CC}|^2 = |\gamma_{CC}(0)|^2,$$

 $|\gamma_{VC}|^2 = |\gamma_{VC}(0)|^2,$

$$\begin{aligned} |\gamma_{CC}'|^2 &= |\gamma_{CC}(\mathbf{K}_{+1})|^2 + |\gamma_{CC}(\mathbf{K}_{+2})|^2 + \\ &+ |\gamma_{CC}(\mathbf{K}_{-1})|^2 + |\gamma_{CC}(\mathbf{K}_{-2})|^2, \end{aligned}$$

$$\begin{aligned} |\gamma_{CV}'|^2 &= |\gamma_{CV}(\mathbf{K}_{+1})|^2 + |\gamma_{CV}(\mathbf{K}_{+2})|^2 + \\ &+ |\gamma_{CV}(\mathbf{K}_{-1})|^2 + |\gamma_{CV}(\mathbf{K}_{-2})|^2, \end{aligned}$$

$$\begin{aligned} |\gamma'_{VC}|^2 &= |\gamma_{VC}(\mathbf{K}_{+1})|^2 + |\gamma_{VC}(\mathbf{K}_{+2})|^2 + \\ &+ |\gamma_{VC}(\mathbf{K}_{-1})|^2 + |\gamma_{VC}(\mathbf{K}_{-2})|^2, \end{aligned}$$

$$|\gamma_{CC}''|^{2} = |\gamma_{CC}(\mathbf{K}_{+1} + \mathbf{K}_{+2})|^{2} + |\gamma_{CC}(\mathbf{K}_{-1} + \mathbf{K}_{+2})|^{2} + |\gamma_{CC}(\mathbf{K}_{+1} + \mathbf{K}_{-2})|^{2} + |\gamma_{CC}(\mathbf{K}_{-1} + \mathbf{K}_{-2})|^{2}.$$

Модель I) качественно описывает ветви электронного спектра вблизи краев запрещенной зоны в кристаллическом кремнии и может быть использована для анализа МОС при условии отсутствия диффузии Fe в прослойку Si. Как видно из формул (16), одна знакопостоянная и три знакопеременных компоненты присутствуют в зависимости I(L); при этом, конечно, амплитуда I(L) экспоненциально убывает при большой толщине прослойки L. Период коротковолновых осцилляций I(L) равен $d_s = 4a$, а длинноволновые периоды составляют соответственно $d'_l = 2a/\delta$ и $d''_l = 4a/\delta$. Как известно, в чистом кристаллическом кремнии $a \approx 1.35$ Å, $\delta \approx 0.2$, поэтому справедлива оценка $d_s = 5.4 \text{ Å}, d'_l = 13.5 \text{ Å},$ $d''_{l} = 27$ Å. Отметим, что в наноструктурах с сильно подавленной диффузией Fe в Si более или менее значительная МОС наблюдается из-за резкого затухания амплитуды I(L) только при толщине прослойки L, не превышающей 18–20 Å [1], т. е. компонента с периодом d_l'' может рассматриваться как практически постоянная по знаку.

II) Спектр электронов в прослойке имеет максимумы валентной зоны в точках X и минимумы зоны проводимости в точках M в первой зоне Бриллюэна ОЦК-решетки. Неприводимые звезды состоят из векторов { \mathbf{K}_V }:

$$\begin{split} \mathbf{K}_{1V} &= \frac{\pi}{b}(1,0,0), \quad \mathbf{K}_{2V} = \frac{\pi}{b}(0,1,0), \\ \mathbf{K}_{3V} &= \frac{\pi}{b}(0,0,1); \end{split}$$

и $\{\mathbf{K}_C\}$:

$$\mathbf{K}_{1C} = \frac{\pi}{b}(1, 1, 0), \quad \mathbf{K}_{2C} = \frac{\pi}{b}(0, 1, 1),$$
$$\mathbf{K}_{3C} = \frac{\pi}{b}(1, 0, 1);$$

b — параметр решетки [23]. Перепишем уравнение (15) в виде, аналогичном (14):

$$I(L) = I_1(L) + I_2(L)\cos(K_0^z L),$$

$$K_0^z = \pi/b,$$
 (17)

$$I_{1}(L) = \begin{bmatrix} 3|\gamma_{VV}|^{2} + 2|\gamma_{VV}''|^{2} \end{bmatrix} A_{V}(L) + \\ + \begin{bmatrix} 3|\gamma_{CC}|^{2} + 2|\gamma_{CC}''|^{2} \end{bmatrix} A_{C}(L) + \\ + 2|\gamma_{VC}|^{2} A_{VC}(L) + 2|\gamma_{VC}'|^{2} A_{VC}(L),$$

$$I_{2}(L) = 2|\gamma'_{VV}|^{2}A_{V}(L) + 2|\gamma'_{CC}|^{2}A_{C}(L) + [3|\gamma''_{VC}|^{2} + 2|\gamma_{VC}|^{2}]A_{VC}(L) + [3|\gamma''_{CV}|^{2} + 2|\gamma_{CV}|^{2}]A_{CV}(L),$$

$$\begin{aligned} |\gamma_{VV}| &= |\gamma_{VV}(0)| , \quad |\gamma_{CC}| &= |\gamma_{CC}(0)| , \\ &|\gamma_{VC}|^2 = |\gamma_{VC}(0)|^2 , \\ |\gamma_{CC}'|^2 &= |\gamma_{CC}(\mathbf{K}_1)|^2 + |\gamma_{CC}(\mathbf{K}_2)|^2 , \\ &|\gamma_{VV}'|^2 = |\gamma_{VV}(\mathbf{K}_1)|^2 + |\gamma_{VV}(\mathbf{K}_2)|^2 , \\ &|\gamma_{CV}'|^2 = |\gamma_{CV}(\mathbf{K}_1)|^2 + |\gamma_{VC}(\mathbf{K}_2)|^2 , \\ &|\gamma_{VC}'|^2 = |\gamma_{VC}(\mathbf{K}_1)|^2 + |\gamma_{VC}(\mathbf{K}_2)|^2 , \\ &|\gamma_{VC}''|^2 = |\gamma_{VC}(\mathbf{K}_1 + \mathbf{K}_2)|^2 , \\ &|\gamma_{VC}''|^2 = |\gamma_{VC}(\mathbf{K}_1 + \mathbf{K}_2)|^2 , \\ &|\gamma_{VC}''|^2 = |\gamma_{VC}(\mathbf{K}_1 + \mathbf{K}_2)|^2 , \\ &|\gamma_{CV}''|^2 = |\gamma_{VC}(\mathbf{K}_1 + \mathbf{K}_2)|^2 . \end{aligned}$$

Модель II) качественно описывает ближайшие к краям запрещенной зоны «полупроводниковые» ветви электронного спектра моносилицида железа с ОЦК-решеткой [20] в парамагнитной фазе (будем обозначать ее, как ПМ *c*-FeSi, чтобы отличить от контактно индуцированной ферромагнитной фазы ФМ *c*-FeSi). Данная модель качественно применима к анализу МОС в системе с сильной диффузией Fe в прослойку Si, в предположении, что по всей толщине последней образуется однородный слой ПМ *c*-FeSi. Величина $b \approx 2.8-2.9$ Å [20], и период коротковолновых осцилляций функции I(L) оценивается как $d_s \approx 5.6-5.8$ Å.

Конечно, в рамках модели II) мы пренебрегли многими особенностями электронного спектра реального силицида ПМ с-FeSi. Строго говоря, в этом соединении края зоны «проводимости» и «валентной» зоны вблизи точек М и Х разделены не истинной энергетической щелью в плотности электронных состояний, но «псевдощелью» величиной $E_g \sim 0.5$ эВ. Эту «псевдощель» заполняют «полуметаллические» состояния с очень малой плотностью, формирующие поверхность Ферми; при этом уровень Ферми находится всего примерно на 0.05 эВ ниже зоны «проводимости» легких электронов $E_C(\mathbf{K}_C)$ в точке M [20]. «Полуметаллические» состояния должны, вообще говоря, обеспечивать осциллирующий вклад в МОС, обусловленный механизмом РККИ; однако, ввиду крайне малой величины плотности электронных состояний на уровне Ферми в ПМ с-FeSi, такой вклад является, по-видимому, практически ненаблюдаемым. В рамках модели II) также не приняты во внимание состояния тяжелых квазичастиц, дающие узкий пик плотности электронных состояний, расположенный в фазе ПМ *с*-FeSi заметно выше (примерно на 0.3 эВ) уровня Ферми. Этот пик, как отмечалось выше в разд. 2, сдвигается к уровню Ферми вследствие эффектов близости к слою Fe и играет принципиальную роль при формировании спин-поляризованных интерфейсных состояний в фазе ΦM *c*-FeSi. Как показал анализ [24], из-за очень малой длины туннелирования участие состояний тяжелых квазичастиц в суперобмене через ПМ с-FeSi может стать заметным лишь в случае предельно тонкой (менее 5 Å) прослойки, поэтому в данной работе ролью таких квазичастиц пренебрегаем.

Таким образом, по нашему мнению, выражение (15) вполне годится для качественного описания суперобмена через прослойки, обладающие различной кристаллической симметрией и приготовленные в различных условиях.

6. ВЛИЯНИЕ ФЛУКТУАЦИЙ ТОЛЩИНЫ И СОСТАВА ПРОСЛОЙКИ

До сих пор мы рассматривали только системы с идеальными интерфейсами и без композиционного беспорядка в прослойке. Интуитивно понятно, что составляющая с коротковолновыми осцилляциями в интеграле I(L) особенно чувствительна к шероховатостям межслоевых границ и флуктуациям состава в прослойке. К сожалению, довольно сложно включить эти факторы непосредственно в микроскопическую модель суперобмена, поскольку они ведут к потере трансляционной инвариантности системы в плоскости интерфейса и процедура расчета значительно усложняется. Ниже мы попытаемся сделать оценки для вносимых беспорядком поправок в MOC, используя простое феноменологическое приближение.

Характеристики слоистых наноструктур в значительной степени определяются качеством межслоевых границ, которое зависит от технологии их приготовления. Как правило, при сравнительном анализе морфологии межслоевых границ выделяются флуктуации состава и структуры интерфейса на различных масштабах. Во-первых, любые методики выращивания наноструктуры сопровождаются интердиффузией ее компонент и потому неизбежно ведут к флуктуациям атомного масштаба длины (как вдоль, так и поперек направления роста). Эффект нарушения (фрустрации) регулярных межатомных связей за счет коротковолнового беспорядка на границе Fe/Si может быть грубо учтен путем введения конечного времени жизни квазичастиц в состояниях, формирующих спектр промежуточного слоя $E_i(\mathbf{q}, \pm l)$, и, как легко показать, данный эффект принципиально не отразится на полученных результатах расчетов МОС. Во-вторых, достаточно качественные наноструктуры обладают более или менее выраженным длинноволновым рельефом поверхности раздела между слоями в виде террас атомной высоты. Такую шероховатость интерфейса принято описывать двумя статистическими параметрами: дисперсией высоты рельефа σ вдоль направления роста слоев и корреляционной длиной ξ вдоль плоскости интерфейса. Первый параметр обычно составляет величину порядка нескольких постоянных решетки, а второй может меняться в широких пределах (в зависимости от температурного режима роста слоев и совершенства подложки) от нескольких нанометров до нескольких микрон.

В хорошо известной феноменологической схеме МОС с флуктуирующей за счет шероховатости межслоевых границ толщиной прослойки [25] показано, что если знак обменного интеграла I(L) осциллирует с коротким периодом, не превышающим величину дисперсии шероховатости, т. е. $d_s \leq \sigma$, тогда помимо обычной билинейной компоненты возникает также

7 ЖЭТФ, вып. 1 (7)

биквадратичная компонента МОС. В нашей модели биквадратичная компонента также может формально появиться в результате введения в термодинамический потенциал системы (8) феноменологического слагаемого, учитывающего конечную обменную жесткость слоев железа, и последующего усреднения соотношения (11) для обменной части термодинамического потенциала по флуктуациям толщины прослойки кремния. К сожалению, из приведенных выше оценок периодов осцилляций интеграла I(L)следует, что схема [25] применима лишь к структурам Fe/Si с очень плохими интерфейсами, для которых $\sigma \geq 5-6$ Å, и совершенно теряет смысл в случае наиболее интересных для нас структур с достаточно гладкими интерфейсами, в которых σ составляет величину порядка расстояния между соседними монослоями в кремнии.

Кроме «интерфейсного» беспорядка, проявляющегося в размывании межслоевой границы Fe/Si за счет интердиффузии и шероховатости, значительную роль может играть «композиционный» беспорядок непосредственно внутри прослойки Si, связанный с пространственными неоднородностями ее состава, возникающими в процессе роста наноструктуры. Даже в предположении об отсутствии диффузии железа наличие разорванных ковалентных связей в кремнии (т.е. его частичная аморфизация) нарушает периодичность и симметрию кристаллической решетки; растворенные в прослойке атомы Fe, вакансии, дислокации и т. д. вносят дополнительный беспорядок. Таким образом, квазичастицы, движущиеся в прослойке, испытывают действие кристаллического потенциала, в котором можно выделить два различных вклада: периодический (регулярный) и флуктуирующий на различных пространственных масштабах. Микроскопические флуктуации на атомных масштабах можно учесть тем или иным известным способом (например, в известной схеме когерентного потенциала), что в простейшем приближении сведется к перенормировке параметров зонного спектра и появлению конечного времени жизни квазичастиц в прослойке. «Наноскопические» флуктуации кристаллического потенциала на масштабах нескольких единиц или десятков межатомных расстояний, вызванные, например, неоднородностью состава прослойки $x(\mathbf{r})$, включениями иной фазы, кластерами или крупномасштабными флуктуациями оборванных связей, можно принять во внимание посредством усреднения макроскопических характеристик системы по какому-либо случайному распределению этих флуктуаций, т.е. чисто феноменологическим образом.

Рассмотрим вновь выражение (14) для интеграла МОС в двухзонной модели спектра прослойки, но будем теперь считать, что в рамках какого-либо метода микроскопический беспорядок уже включен в эффективные параметры модели. Можно показать, что связанные с таким беспорядком «хвосты» плотности электронных состояний вблизи краев полупроводниковых зон лишь несколько изменяют предэкспоненциальные множители в интегралах (14), но принципиальным образом не отражаются на зависимостях $I_{1,2}(L)$. Наиболее серьезная модификация интеграла (14) возникает вследствие введения флуктуаций квазиимпульса К₀, на величину которого разнесены экстремумы зон в модели (7). В случае достаточно толстой прослойки даже малая вариация ΔK_0^z может привести к изменению знака второго слагаемого в формуле (14), если $|\Delta K_0^z L| \geq \pi$. Учитывая для простоты только изоморфные, т.е. не нарушающие локальной симметрии кристалла флуктуации, перепишем данное условие в виде

$$\frac{\Delta a}{a} \frac{L}{2a} \ge 1, \tag{18}$$

где $\Delta a/a$ — относительное изменение постоянной решетки в прослойке. При толщине прослойки $L \approx 10-20$ Å неравенство (18) выполняется, если $(\Delta a/a) \approx 0.2-0.3$.

Нетрудно показать, что в рамках стандартного метода [25], который мы не будем здесь подробно излагать, усредненное по флуктуациям толщины и (или) состава прослойки выражение для энергии MOC может быть получено в виде суммы билинейного и биквадратичного слагаемых:

$$E_{ex} = \langle \Delta \Omega_{ex} \rangle = J_1(L) \mathbf{M}(-l) \mathbf{M}(+l) + J_2(L) \left[\mathbf{M}(-l) \mathbf{M}(+l) \right]^2, \quad (19)$$

где

$$J_1(L) = I_1(L), \quad J_2(L) = \lambda \xi [I_2(L)]^2 / A$$

Здесь $J_{1,2}(L)$ — соответственно билинейный и биквадратичный интегралы МОС, ξ — корреляционная длина продольных флуктуаций толщины и (или) состава прослойки, A — обменная жесткость в слое Fe, λ — численный коэффициент, зависящий от деталей функции распределения флуктуаций. Соотношение (19) представляет МОС в форме, характерной для стандартной билинейно-биквадратичной модели, в которой коэффициенты $J_{1,2}(L)$ являются сложными функциями толщины L.

7. ФЕНОМЕНОЛОГИЧЕСКОЕ ОПИСАНИЕ МОС

Чтобы детально описать картину поведения МОС, даваемую соотношением (19), необходимо воспользоваться численными расчетами интегралов $J_{1,2}(L)$. Но даже приближенные расчеты интегралов МОС в рамках простейшей зонной схемы, проведенные в Приложении, дают довольно громоздкие выражения. Тем не менее из них видно, что внутризонные $A_C(L)$, $A_V(L)$ и межзонные $A_{VC}(L)$, $A_{CV}(L)$ компоненты, формирующие суперобменное взаимодействие I(L) (14), имеют противоположные знаки, а их амплитуда и масштаб убывания с ростом длины L определенным образом зависят от параметров электронной структуры полупроводниковой прослойки и промежуточного интерфейсного слоя. Пользуясь формулами (П.1)-(П.10), можно построить несколько различных вариантов зависимости $J_1(L)$, варьируя такие величины, как эффективные массы электронов и дырок, ширина запрещенной зоны, положение расщепленных по спину зон интерфейсных состояний относительно краев «объемных зон» и т. д. Однако качественно понять происхождение максимума в зависимостях $J_{1,2}(L)$ для обсуждаемых структур удается даже в рамках простейшей аппроксимации.

Согласно формулам Приложения, грубая оценка $J_1(L) = I_1(L)$ в асимптотическом пределе большой толщины прослойки может быть выражена простым феноменологическим соотношением

$$J_1(L) = A_1 \exp\left(-\frac{L}{L_A}\right) - F_1 \exp\left(-\frac{L}{L_F}\right),$$

где A_1 и F_1 — положительные предэкспоненциальные множители, а $L_{A,F}$ — характерные длины соответственно АФМ- и суперобменной ФМ-связей, выраженные через микроскопические параметры модели. Предполагаем, следуя экспериментальным фактам, что для рассматриваемой системы $L_A > L_F$, т.е. при большой толщине прослойки АФМ-тип МОС доминирует. Для такого выбора параметров модели асимптотическое поведение функции $J_1(L)$ при $(L/L_A) \rightarrow \infty$ имеет вид $J_1(L) \approx$ $\approx \exp(-L/L_A) > 0$, что соответствует АФМ-характеру МОС.

При выполнении соотношения $(A_1/L_A) < (F_1/L_F)$ функция $J_1(L)$ имеет максимум в точке

$$L_1^* = \frac{\ln(L_A/L_F) - \ln(A_1/F_1)}{L_F^{-1} - L_A^{-1}}.$$
 (20)

Если $A_1 - F_1 > 0$, то билинейный обменный интеграл $J_1(L) > 0$ для всех L, что соответствует АФМ-характеру МОС, как в экспериментах [1]. С другой стороны, если $A_1 - F_1 < 0$, то функция $J_1(L)$ проходит через нуль в точке

$$L_1^{**} = \frac{-\ln(A_1/F_1)}{L_F^{-1} - L_A^{-1}} < L_1^*,$$
(21)

причем $J_1(L) > 0$ при $L > L_1^{**}$ и $J_1(L) < 0$ при $L < L_1^{**}$. Таким образом, с уменьшением L после достижения максимума в точке L_1^* происходит изменение характера МОС с АФМ на ФМ при толщине прослойки $L = L_1^{**} < L_1^*$, что качественно соответствует экспериментальным результатам [5].

Нетрудно также показать, что если задать феноменологическое соотношение вида

$$I_2(L) \approx A_2 \exp\left(-\frac{L}{L_A}\right) - F_2 \exp\left(-\frac{L}{L_F}\right),$$

то биквадратичный обменный интеграл $J_2(L) \sim [I_2(L)]^2 > 0$ для всех L, и при условии $(A_2/L_A) < (F_2/L_F)$ зависимость $J_2(L)$ достигает максимума в точке

$$L_2^* = \frac{\ln(L_A/L_F) - \ln(A_2/F_2)}{L_F^{-1} - L_A^{-1}}.$$
 (22)

Заметим, что если $\ln(L_A/L_F) \gg \{\ln(A_1/F_1), \ln(A_2/F_2)\}$, то оба максимума L_1^* и L_2^* почти совпадают, что согласуется с экспериментальным результатом работы [1].

Один из важных выводов исследования наноструктур $\mathrm{Fe}/\mathrm{Fe}_{1-x}\mathrm{Si}_x$ с хорошо контролируемой диффузией Fe [1] заключается в том, что величина интеграла значительно возрастает, а точка его максимума L_1^* заметно сдвигается в сторону меньшей толщины прослойки с увеличением номинальной концентрации кремния х. Авторы работы [1] прямо связали факт аномально сильной МОС в структурах с высоким содержанием кремния $(x \approx 1)$ с наличием в прослойке полупроводника с широкой запрещенной зоной. Наша модель дает вполне разумное объяснение такому поведению МОС, поскольку с увеличением энергетической щели Е_q в электронном спектре прослойки резко убывает величина ФМ-компоненты МОС, связанная с межзонным вкладом в суперобмен. При этом АФМ-компонента МОС, связанная с внутризонным вкладом в суперобмен, гораздо сильнее доминирует над ФМ-компонентой, чем в структурах с узкозонным полупроводником в качестве прослойки.

Таким образом, наблюдаемые в работе [1] максимумы билинейной и биквадратичной компонент МОС, а также найденную в работе [5] смену знака МОС при уменьшении толщины прослойки удается интерпретировать в рамках простой феноменологической модели как результат конкуренции между ФМ- и АФМ-составляющими в обменных интегралах $J_{1,2}(L)$. К сожалению, мы пока слишком плохо понимаем специфику технологии выращивания структур в работах [1] и [5], чтобы интерпретировать на микроскопическом уровне существенные различия в полученных этими группами результатах.

8. ЗАКЛЮЧЕНИЕ

В нашем подходе МОС описывается в терминах эффективного суперобменного взаимодействия слоев ферромагнитного металла через прослойку нормального полупроводника. Такой подход теряет свой смысл для структур с сильно обогащенной железом прослойкой $\operatorname{Fe}_{1-x}\operatorname{Si}_x$ с x < 0.5, содержащей высшие металлические силициды (см. [11]). Во-первых, с уменьшением концентрации кремния х значительно возрастает роль обмена по механизму типа РККИ через «металлические» зоны материала прослойки, в то время как суперобмен дает только АФМ-сдвиг интеграла МОС [19]. Во-вторых, хорошо известно [26], что такая особенность электронного спектра, как узкая незаполненная зона, образующая резкий пик в плотности электронных состояний вблизи уровня Ферми, существенно усиливает парамагнитные спиновые флуктуации в обогащенных магнитными ионами силицидах. Поэтому необходимо принять во внимание дополнительный (коллективный) вклад в МОС, вносимый спиновыми флуктуациями [27]. В-третьих, в структурах с металлической прослойкой важную роль в МОС начинает играть взаимодействие через одиночные парамагнитные спины («loose spins» по терминологии работы [28]), растворенные внутри прослойки, что, по-видимому, и наблюдалось в экспериментах [14].

В отличие от систем Fe/Si слоистые наноструктуры Co/Si изучены пока очень слабо, полученные данные выглядят столь противоречиво, что нельзя даже определенно сказать о наличии или отсутствии AФМ-связи в них. Можно лишь предполагать интенсивную и слабо контролируемую в ходе приготовления этих структур диффузию атомов кобальта в слой кремния с последующим образованием силицида кобальта (вероятнее всего, кубической фазы *c*-CoSi) вблизи межслоевой границы Co/Si [29–32]. Тем более интересным представляется обнаружение АФМ-связи в мультислоях необычного состава

 $\mathrm{Co}_{1-x}\mathrm{Si}_x/\mathrm{Si}$ с $x \approx 0.26$ [33]. Данные факты находят удовлетворительное истолкование в рамках нашей модели, если принять во внимание особенности электронных состояний силицида кобальта. В соединении c-CoSi, которое изоморфно соединению c-FeSi, но имеет на один валентный электрон больше, пик плотности электронных состояний изначально лежит ниже уровня Φ ерми (а не выше, как в *c*-FeSi). Поэтому, вследствие перераспределения зарядовой плотности вблизи интерфейса Co/Si пик в плотности электронных состояний сдвигается еще ниже по энергии, т. е. удаляется от уровня Ферми, что исключает появление спин-поляризованных состояний и контактно-индуцированной фазы ФМ с-CoSi в промежуточном слое на интерфейсе. Однако в металлическом силициде $\operatorname{Co}_{1-x}\operatorname{Si}_x$ при определенной концентрации кремния x положение уровня Ферми могло бы опуститься настолько (по отношению к ситуации в чистом кобальте), чтобы реализовались условия пиннинга пика плотности электронных состояний и возникновения контактно-индуцированной фазы ΦM *c*-CoSi на интерфейсе Co_{1-x}Si_x/Si. На наш взгляд, именно таким образом в структуре Со_{1-x}Si_x/Si «запускается» обсуждаемый в настоящей работе механизм суперобмена. Похоже, что в работе [33] удалось нащупать оптимальный для этой цели состав $x \approx 0.26$.

Резюмируем полученные в работе результаты. Для наноструктур типа Fe/Si предложен механизм MOC, базирующийся на следующих главных положениях.

1) На границе раздела слоев Fe/Si формируется промежуточный слой контактно-индуцированной фазы ФМ *c*-FeSi и возникают поляризованные по спину интерфейсные состояния.

 Магнитная связь между слоями Fe, разделенными слоем номинального Si, осуществляется путем суперобменного взаимодействия интерфейсных состояний через прослойку нормального полупроводника, как через внутризонный, так и через межзонный каналы.

3) Немонотонный характер зависимости МОС от толщины и состава прослойки (наличие максимума, изменение формы, возможная смена знака билинейной компоненты) связан с конкуренцией АФМ- и ФМ-составляющих суперобмена и сложным характером электронного спектра прослойки (в частности, наличием нескольких эквивалентных экстремумов полупроводниковых зон).

Эта модель позволяет, по крайней мере, на качественном уровне, непротиворечивым образом воспроизвести основные черты МОС в наноструктурах типа Fe/Si. Аналитический расчет интегралов MOC осуществлен пока лишь для T = 0, но весьма желательно распространить его на случай конечных температур.

Работа выполнена при финансовой поддержке РФФИ (грант № 04-02-1609а).

ПРИЛОЖЕНИЕ

При моделировании формы узкого пика в плотности электронных состояний промежуточного слоя ограничимся приближением локального уровня с энергией ε_0 , так что $N_i(\varepsilon) \approx n_i \delta(\varepsilon - \varepsilon_0), \ \delta(\varepsilon)$ дельта-функция, n_i — число состояний, формирующих пик. Такое приближение вполне обосновано, если ширина пика $W_i \ll (W_{C,V}, J_iM)$, для определенности полагаем $J_iM > 0$.

Для расщепленных по спину интерфейсных состояний считаем, что уровень со спином, направленным вверх, с энергией $\varepsilon_0 - J_i M < 0$ заполнен, а уровень со спином, направленным вниз, с энергией $\varepsilon_0 + J_i M > 0$ пуст.

Проведем вначале расчет внутризонной компоненты МОС. В выражении (14) для $A_C(L)$ или для $A_V(L)$ выполним, в первую очередь, интегрирование по частоте, замкнув контур в верхней полуплоскости комплексной переменной ω , а затем возьмем интеграл по поперечному квазиимпульсу k_z от $-\infty$ до $+\infty$. В результате для суперобмена, например, через зону проводимости имеем

$$A_{C}(L) = \frac{n_{i}^{2}m_{C}}{16M^{2}} \times \int \frac{d\mathbf{q}}{(2\pi)^{2}} \left(\frac{1}{J_{i}M\Omega_{C}(q)} + \frac{L\sqrt{2m_{C}}}{\left(\Omega_{C}(q)\right)^{3/2}} \right) \times \exp\left[-2L\sqrt{2m_{C}\Omega_{C}(q)}\right], \quad (\Pi.1)$$

где

$$\Omega_C(q) = \Omega_C + \frac{q^2}{2m_C}, \quad \Omega_C = E_C(\mathbf{K}_C) - \varepsilon_0 + J_i M.$$

Оставшийся в формуле (Π .1) интеграл по двумерному квазиимпульсу **q**, лежащему в плоскости интерфейса, можно выразить в довольно компактной форме:

$$A_C(L) = \frac{n_i^2 m_C^2}{8\pi M^2} \times \left[\frac{\exp(-L/L_C)}{2\Omega_C} - \frac{\operatorname{Ei}(-L/L_C)}{J_i M} \right], \quad (\Pi.2)$$

где $L_C = (2\sqrt{2m_C\Omega_C})^{-1}$, а $\mathrm{Ei}(t)$ — интегральная экспоненциальная функция

$$\operatorname{Ei}(t) = -\int_{-\infty}^{t} \frac{\exp t}{t} \, dt.$$

Вклад порядка $A_C(L)$ возникает благодаря косвенному взаимодействию намагниченностей соседних Φ M-слоев через виртуальные возбуждения электронов с интерфейсных состояний (один электрон от каждой границы, но с различной спиновой поляризацией) в зону проводимости полупроводника.

Аналогично, для суперобмена через валентную зону получим выражение

$$A_V(L) = \frac{n_i^2 m_V^2}{8\pi M^2} \times \left[\frac{\exp(-L/L_V)}{2\Omega_V} - \frac{\operatorname{Ei}(-L/L_V)}{J_i M} \right], \quad (\Pi.3)$$

где $\Omega_V = |E_V(\mathbf{K}_V)| + \varepsilon_0 + J_i M$ и $L_V = (2\sqrt{2m_V\Omega_V})^{-1}$. Вклад порядка $A_V(L)$ возникает благодаря косвенному взаимодействию намагниченностей соседних ФМ-слоев через виртуальные дырки, возбуждаемые в заполненной валентной зоне полупроводника при уходе из нее электронов на интерфейсные состояния (по одному электрону с различной спиновой поляризацией к каждой из границ).

Величины $\Omega_{C,V}$ можно условно трактовать как энергии возбуждения квазичастиц с «донорных» и «акцепторных» уровней на интерфейсах соответственно в зону проводимости и валентную зону объемного полупроводника при внутризонном туннелировании электронов и дырок через прослойку. Асимптотическое поведение функции $A_{C,V}(L)$ при больших значениях $L/L_{C,V}$ имеет вид

$$A_{C,V}(L) = \frac{n_i^2 m_{C,V}^2}{8\pi M^2} \times \left[\frac{1}{2\Omega_{C,V}} + \frac{L_{C,V}/L}{J_i M}\right] \exp\left(-\frac{L}{L_{C,V}}\right). \quad (\Pi.4)$$

Видно, что внутризонный вклад $I_1(L)$ в суперобмен (14) имеет АФМ-знак, а его характерная длина определяется наибольшей из туннельных длин: электронной или дырочной. Важно отметить, что суперобмен заметно затухает на масштабе, значительно превышающем параметр решетки полупроводника, $L_{C,V} \sim a \sqrt{W_{C,V}/\Omega_{C,V}} \gg a$. Благодаря сильной гибридизации с зонными состояниями полупроводниковой прослойки интерфейсные состояния, изначально локализованные на длине нескольких монослоев вдоль оси роста структуры, частично делокализуются, а их волновые функции приобретают «хвосты» длиной порядка $L_{C,V}/2$, сравнимые с толщиной прослойки. При этом в меру перекрытия «хвостов» волновых функций возникает длинноволновый вклад в МОС, отличный от нуля даже в отсутствие свободных носителей в прослойке.

Вычисление межзонной компоненты МОС требует значительно больших усилий, чем расчет внутризонных компонент. После интегрирования по частоте ω получаем для соответствующего вклада в формулу (14) выражение

$$A_{CV}(L) = -\frac{n_i^2}{8M^2} \int \frac{d\mathbf{q}}{(2\pi)^2} \int \frac{dk_z}{2\pi} \int \frac{dk_z'}{2\pi} \frac{\exp\left(i(k_z - k_z')L\right)}{\frac{k_z^2}{2m_C} + \frac{k_z'^2}{2m_V} + E_g(q)} \times \left\{ \frac{1}{J_i M\left(\Omega_C(q) + \frac{k_z^2}{2m_C}\right)} + \frac{1}{\left(\Omega_C(q) + \frac{k_z^2}{2m_C}\right)^2} + \frac{1}{J_i M\left(\Omega_V(q) + \frac{k_z'^2}{2m_V}\right)} + \frac{1}{\left(\Omega_V(q) + \frac{k_z'^2}{2m_V}\right)^2} \right\}, \quad (\Pi.5)$$

где введены следующие обозначения:

$$E_g(q) = E_g + \left(\frac{1}{m_C} + \frac{1}{m_V}\right) \frac{q^2}{2}, \quad \Omega_V(q) = \Omega_V + \frac{q^2}{2m_V},$$
$$E_g = E_C(\mathbf{K}_C) + |E_V(\mathbf{K}_V)|.$$

После замены переменных интегрирования, $k_z - k'_z = k$ и $\sqrt{m_V/m_C} k_z + \sqrt{m_C/m_V} k'_z = K$, формула (П.5) перепишется в виде

$$A_{CV}(L) = -\frac{n_i^2}{8M^2} \frac{(m_C + m_V)^4}{\sqrt{m_C m_V}} \int \frac{d\mathbf{q}}{(2\pi)^2} \int \frac{dk}{2\pi} \int \frac{dK}{2\pi} \frac{e^{ikL}}{k^2 + K^2 + 2(m_C + m_V)E_g(q)} \times \left[\frac{1}{J_i M \left(\left(K - \sqrt{\frac{m_C}{m_V}} k \right)^2 + \frac{2(m_C + m_V)^2}{m_V} \Omega_C(q) \right)} + \frac{2(m_C - m_V)^2/m_V}{\left(\left(K - \sqrt{\frac{m_C}{m_V}} k \right)^2 + \frac{2(m_C - m_V)^2}{m_V} \Omega_C(q) \right)^2} + \frac{1}{J_i M \left(\left(K + \sqrt{\frac{m_V}{m_C}} k \right)^2 + \frac{2(m_C - m_V)^2}{m_C} \Omega_V(q) \right)} + \frac{2(m_C - m_V)^2/m_C}{\left(\left(K + \sqrt{\frac{m_V}{m_C}} k \right)^2 + \frac{2(m_C - m_V)^2}{m_C} \Omega_V(q) \right)^2} \right]. \quad (\Pi.6)$$

Выражение (П.6) настолько сложное, что не позволяет в общем случае записать точную аналитическую формулу. Поэтому ограничимся его приближенным вычислением. Совершив в (П.6) интегрирование по переменной K, заметим, что в оставшемся интеграле по переменной k подынтегральная функция при ее аналитическом продолжении имеет полюсную особенность на мнимой оси в верхней полуплоскости, именно, в точках

$$k_C^{\pm} = i\sqrt{2} \times \left| \sqrt{m_V \left(E_g(q) - \Omega_C(q) \right)} \pm \sqrt{m_C \Omega_C(q)} \right| \quad (\Pi.7)$$

для первого и второго слагаемых и в точках

$$k_V^{\pm} = i\sqrt{2} \times \\ \times \left| \sqrt{m_C \left(E_g(q) - \Omega_V(q) \right)} \pm \sqrt{m_V \Omega_V(q)} \right| \quad (\Pi.8)$$

для третьего и четвертого слагаемых, а также разрезы вдоль границ полупроводниковых зон. Понятно, что в пределе большой толщины, $L \gg L_{C,V}$, главный вклад в интеграл (П.6) вносит полюс, расположенный ближе других к действительной оси. Оказывается, что суммарный вклад, связанный с полюсами $k_{C,V}^{-}$, точно равен нулю (иными словами, $k_{C,V}^{-}$ являются устранимыми особыми точками). Соответственно, справедлива асимптотическая оценка:

$$A_{CV}(L) = -\frac{n_i^2}{M^2} \int \frac{d\mathbf{q}}{(2\pi)^2} \times \left[\Lambda_C(q) \exp\left(-\sqrt{2} \left(\sqrt{m_V \left(E_g(q) - \Omega_C(q) \right)} + \sqrt{m_C \Omega_C(q)} \right) L \right) + \sqrt{m_C \Omega_C(q)} \right) L \right] + \Lambda_V(q) \exp\left(-\sqrt{2} \left(\sqrt{m_C \left(E_g(q) - \Omega_V(q) \right)} + \sqrt{m_V \Omega_V(q)} \right) L \right) \right], \quad (\Pi.9)$$

где $\Lambda_{C,V}(m_C, m_V, q)$ — коэффициенты, не зависящие от L, но являющиеся громоздкой комбинацией m_C и m_V . Чтобы упростить дальнейшие расчеты, положим $m_C = m_V = m$. Рассматривая интеграл по модулю двумерного вектора **q** как интеграл Лапласа, легко получим главный член асимптотики функции $A_{CV}(L)$:

$$A_{CV}(L) = -\frac{n_i^2 m^2}{8\pi E_g M^2} \left\{ \left[\frac{\sqrt{\Omega_C} \sqrt{\Omega_V - 2J_i M}}{J_i M L} + \frac{\sqrt{2m}}{2} \left| \sqrt{\Omega_C} - \sqrt{\Omega_V - 2J_i M} \right| \right] L_1^{int \, er} \times \right. \\ \left. \times \exp\left(-\frac{L}{L_1^{int \, er}}\right) + \left[\frac{\sqrt{\Omega_V} \sqrt{\Omega_C - 2J_i M}}{J_i M L} + \frac{\sqrt{2m}}{2} \left| \sqrt{\Omega_V} - \sqrt{\Omega_C - 2J_i M} \right| \right] L_2^{int \, er} \times \\ \left. \times \exp\left(-\frac{L}{L_2^{int \, er}}\right) \right\}, \quad (\Pi.10)$$

где

$$(L_1^{int\,er})^{-1} = \sqrt{2m} \left(\sqrt{\Omega_C} + \sqrt{\Omega_V - 2J_iM} \right),$$
$$(L_2^{int\,er})^{-1} = \sqrt{2m} \left(\sqrt{\Omega_V} + \sqrt{\Omega_C - 2J_iM} \right).$$

Эти же величины, как очевидно из формулы (П.9), в случае неравных эффективных масс имеют соответственно вид

$$(L_1^{int\,er})^{-1} = \sqrt{2m_C\Omega_C} + \sqrt{2m_V(\Omega_V - 2J_iM)},$$
$$(L_2^{int\,er})^{-1} = \sqrt{2m_V\Omega_V} + \sqrt{2m_C(\Omega_V - 2J_iM)}.$$

Длины $L_{1,2}^{int\,er}$ определяют характерный масштаб затухания суперобменного взаимодействия в межзонном канале и превышают межатомное расстояние. Вклад порядка $A_{CV} = A_{VC}^*$ в МОС можно представить себе как результат виртуального процесса, в котором электрон со спином, направленным вверх, из интерфейсного состояния на левой границе уходит в зону проводимости полупроводника, при этом освободившееся состояние занимает электрон со спином, направленным вниз, пришедший из валентной зоны полупроводника; далее, на вакантное место в валентной зоне приходит электрон из интерфейсного состояния на правой границе, которое сразу же занимает электрон из зоны проводимости. Аналогичные процессы происходят, разумеется, и в обратном направлении, с заменой левой границы на правую и спина «вверх» на спин «вниз».

Важно подчеркнуть, что межзонный интеграл $A_{CV}(L)$ имеет ФМ-знак в противоположность АФМ-знаку внутризонного интеграла $A_C(L)$ или $A_V(L)$. Причем абсолютные значения этих интегралов и масштаб их спада с ростом длины L, как видно из вышеприведенных формул, имеют одинаковый порядок. Вообще говоря, результат конкуренции между ФМ- и АФМ-вкладами зависит от положения расщепленного по спину уровня с энергией $\varepsilon_0 - J_i M < 0, \varepsilon_0 \pm J_i M$ (реально квазидвумерной поверхностной или интерфейсной зоны) относительно краев зон $E_C(\mathbf{K}_C)$ и $E_V(\mathbf{K}_V)$ и от отношения эффективных масс m_C/m_V .

Отметим, что проведенные расчеты интегралов суперобмена формально во многом похожи на соответствующие вычисления, выполненные в работе [34] при исследовании взаимодействия двух точечных магнитных примесей в модели двухзонного полупроводника. Полученные в работе [34] результаты, однако, достаточно сильно отличаются от наших, поскольку в «примесной» ситуации потенциал гибридизации локализованных и зонных состояний не является периодической функцией в плоскости (x, y), из-за чего совершенно по-разному выполняется интегрирование по квазиимпульсам. Кроме того, структура интерфейсных спин-поляризованных состояний в пределе слабой электронной корреляции, рассмотренная в нашей модели, совершенно отлична от структуры локальных примесных уровней для модели Андерсона в пределе сильной электронной корреляции, используемой в работе [34].

ЛИТЕРАТУРА

 D. E. Burgler, M. Buchmeier, S. Cramm, S. Eisbitt et al., J. Phys.: Condens. Matter 15, S443 (2003).

- B. Briner and M. Landolt, Phys. Rev. Lett. 73, 340 (1994).
- J. J. de Vries, J. T. Kohlhepp, F. J. A. den Broeder, R. Coehoorn et al., Phys. Rev. Lett. 78, 3023 (1997); M. Schleberger, P. Walser, M. Hunziker, and M. Landolt, Phys. Rev. B 60, 14360 (1999).
- 4. G. Strijkers, J. T. Kohlhepp, H. G. Swagten, and W. J. M. de Jonge, Phys. Rev. Lett. 84, 1812 (2000).
- 5. Г. С. Патрин, С. Г. Овчинников, Д. А. Великанов, В. П. Кононов, ФТТ 43, 1643 (2001).
- E. Fullerton and S. Bader, Phys. Rev. B 53, 5112 (1996).
- J. Kohlhepp, M. Valkier, A. van der Graaf, and F. J. A. den Broeder, Phys. Rev. B 55, R696 (1997).
- R. W. E. van der Kruijs, M. Th. Rekveldt, H. Fredrikze et al., Phys. Rev. B 65, 06440 (2002).
- 9. C. B. Duke, Tunneling in Solids, in Tunneling Phenomena in Solids, ed. by E. Burstein and S. Lundquist, Plenum, New York (1969); M. D. Stiles, in Ultrathin Magnetic Structures III, ed. by B. Heinrich and J. A. C. Bland, Springer, New York (2005).
- Y. P. Lee, C. O. Kim, J. Y. Baek, K. W. Kim et al., J. Magn. Magn. Mater. 226–230, 1790 (2001).
- Y. Endo, O. Kitakami, and Y. Shimada, Phys. Rev. B 59, 4279 (1999).
- 12. R. R. Gareev, D. E. Burgler, M. Buchmeier, D. Olligs et al., Phys. Rev. Lett. 87, 157202 (2001).
- R. R. Gareev, D. E. Burgler, M. Buchmeier, R. Schreiber et al., J. Magn. Magn. Mater. 240, 237 (2002).
- B. Croonenborghs, F. M. Almeida, C. L'abbe, R. R. Gareev et al., Phys. Rev. B 71, 024410 (2005).
- 15. J. C. Slonczewsky, Phys. Rev. B 39, 6995 (1989).
- 16. P. Bruno, Phys. Rev. B 52, 411 (1995).
- 17. K. Xia, W. Zhang, M. Lu, and H. Zhai, Phys. Rev. B 56, 14901 (1997).
- 18. M. Stiles, J. Magn. Magn. Mater. 200, 322 (1999).

- 19. Z.-P. Shi, P. Levy, and J. Fry, Europhys. Lett. 26, 473 (1994).
- J. M. Pruneda, R. Robles, S. Bouarab, J. Ferrer et al., Phys. Rev. B 65, 02440 (2001).
- E. Kulatov, H. Ohta, T. Arioka, S. Halilov, and L. Vinokurova, J. Phys.: Condens. Matter 9, 9043 (1997);
 E. Kulatov and H. Ohta, J. Phys. Soc. Jpn. 66, 2386 (1997).
- 22. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Москва, Наука (1962).
- 23. Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Москва, Наука (1972).
- 24. V. Tugushev, E. Kulatov, and O. Navarro, Microelectr. J. 36, 472 (2005).
- 25. J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991).
- 26. Т. Мориа, Спиновые флуктуации в магнетиках с коллективизированными электронами, Москва, Мир (1988).
- 27. V. Menshov and V. Tugushev, submitted to Physica B (2006).
- 28. J. C. Slonczewski, J. Appl. Phys. 73, 5957 (1993).
- 29. J. M. Fallon, C. A. Faunce, H. J. Blythe, and P. J. Grundy, J. Magn. Magn. Mater. 198–199, 728 (1999).
- J. M. Fallon, C. A. Faunce, and P. J. Grundy, J. Appl. Phys. 87, 6833 (2000); J. Phys.: Condens. Matter 12, 4075 (2000); J. Appl. Phys. 88, 2400 (2000).
- 31. P. J. Grundy, J. M. Fallon, and H. J. Blythe, Phys. Rev. B 62, 9566 (2000).
- 32. K. Inomata and Y. Saito, J. Appl. Phys. 81, 5344 (1997).
- 33. C. Quirós, J. I. Martin, L. Zárate, M. Vélez et al., Phys. Rev. B 71, 024423 (2005).
- 34. V. Barzykin, Phys. Rev. B 71, 155203 (2005).