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We consider a free-field realization of Gepner models based on the free-field realization of N = 2 superconfor-
mal minimal models. Using this realization, we analyze the A/B-type boundary conditions starting from the
ansatz with the left-moving and right-moving free-field degrees of freedom glued at the boundary by an arbitrary
constant matrix. We show that the only boundary conditions consistent with the singular vector structure of
unitary minimal model representations are given by permutation matrices, thereby yielding an explicit free-field

construction of the permutation branes of Recknagel.

PACS: 11.25.Hf, 11.25.Pm

1. INTRODUCTION

Investigation of D-branes on Calabi-Yau manifolds
at string scales is an interesting and important prob-
lem. There is a significant progress in this direction
achieved mainly due to the intensive study of D-branes
at Gepner points of the Calabi—Yau moduli space ini-
tiated in [1].

Because Gepner models are defined by a purely al-
gebraic construction [2, 3], it is natural that the sym-
metry-preserving boundary states (D-branes) in these
models can also be described by algebraic objects [1-6].
The question of their geometric interpretation then
appears to be nontrivial and interesting. Consider-
able progress in the understanding of the geometry
of D-branes in the Gepner models has been achieved
recently in [7-16]. The main idea developed in these
papers is to relate the intersection index of boundary
states [17] to the bilinear form of the K-theory classes
of bundles on a large-volume Calabi-Yau manifold and
use this relation to associate the K-theory classes to
the boundary states.

The natural question that arises here but is hard
to answer is whether one can find a direct conformal
field theory description of the geometry of D-branes in
Gepner models instead of interpolation of large-volume
topological data of bundles to the Gepner point. In try-
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ing to find the direct description (as well as to develop
the main ingredients for the integral representation for
the boundary correlation functions), the free-field con-
struction of D-branes in Gepner models has been de-
veloped in [18]. It was shown there that the free-field
representations of the open-string spectrum between
the Recknagel-Schomerus boundary states can be de-
scribed in terms of representations of the chiral de
Rham complex [19] on a Landau-Ginzburg orbifold.
The chiral de Rham complex is a string generalization
of the usual de Rham complex and is a sheaf of ver-
tex algebras [19-21]. Hence, it is a geometric object,
and this property has been used in [18] to geometrically
interprete the boundary states in Gepner models (con-
structed in purely algebraic terms) as fractional branes
on Landau-Ginzburg orbifolds. This suggests that the
chiral de Rham complex might be a natural and effi-
cient object for the description of D-brane geometry at
string scales.

With this in mind, we try in this paper to extend
the free-field representation in [18,22] to the case of
permutation branes [6]. Our aim is to analyze and rep-
resent the free-field construction of permutation branes,
while the important question of the study and compari-
son of the free-field geometry of D-branes to the results
in [23, 24] is left for the future.

In Sec. 2, we briefly review the free-field construc-
tion of irreducible representations in N = 2 minimal
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models developed in [25]. In Sec. 3, we schematically
consider the free-field realization of Gepner models. In
Sec. 4, we investigate A- and B-type gluing conditions
in terms of free fields. We start from the ansatz where
the left-moving and right-moving free-field degrees of
freedom are glued at the boundary by an arbitrary con-
stant matrix and analyze the A- and B-type boundary
conditions in terms of free fields. Section 5 is the main
part of the paper. We analyze the consistency of the
boundary conditions with the singular vector structure
of minimal models (the butterfly resolution) and show
that only permutation matrices survive, thereby giving
the free-field representation of permutation Ishibashi
states. In Sec. 6, we use the Recknagel solution [6] of
Cardy’s constraints as the well as the orbifold construc-
tion to obtain a free-field realization of permutation
branes in Gepner models.

2. FREE-FIELD REALIZATION OF
IRREDUCIBLE REPRESENTATIONS IN
THE N =2 MINIMAL MODELS

In this section, we briefly discuss the free-field con-
struction in [25] of irreducible modules in N = 2 super-
conformal minimal models. The free-field approach to
N = 2 minimal models was also considered in [26, 27].

2.1. Free-field representations of the N = 2
super-Virasoro algebra

We introduce (in the left-moving sector) free
bosonic fields X (z) and X*(z) and free fermionic fields
¥ (z) and ¢*(z) with the operator product expansions
given by

X*(Zl)X(ZQ) = ln(212) + reg, (1)
¥ (21)1(20) = 21 + reg,

where z15 = z1 — zo and reg denotes regular terms as
21 — z3. Then for an arbitrary number, u, the currents
of the N = 2 super-Virasoro algebra are given by

G () = ¥ (20X (2) = 00" ().

G (2) =9(2)0X*(2) — 0Y(2),

I) =60 + 10X () = 0K ().
T(:) = OX(:)0X°(2) + (00" (2)(2) -

— U 00() = 50X () + X)),

and the central charge is

c=3<1—%). (3)

As usual, the fermions (), ¥*(2), and G*(z) in
the Neveu-Schwartz (NS) and Ramond (R) sectors are
expanded in half-integer (integer) modes. The bosons
X (2), X*(z), J(2), and T'(z) are expanded in integer
modes in both sectors.

In the NS sector, the N = 2 Virasoro superalge-
bra acts naturally in the Fock module F, ,- generated
by the fermionic operators ¢ *[r], ¥[r], r < 1/2, and
bosonic operators X*[n], X[n], n < 0, from the vac-
uum state |p, p*) such that

Vrlppt) = bl ) =0, 723,
X[nllp,p*) = X*llp,p*) =0, n>1, (4)
X[0]|p, p*) = plp,p*),  X*[0]|p,p*) = p*|p, p*).

The state |p, p*) is primary with respect to the N = 2
Virasoro algebra,

GElrllp,p*) =0, >0,
Jn]lp,p*) = L[n]lp,p*) =0, n >0,
T0llp.p*) = Ll =0, (5)
Lo)lp.p*) = MEED =T +4i) ut i p.p") =0,
where
J=p"—pp, h=p"+pup.

The character fp ,+(q,u) of the Fock module Fj,
is given by

Fopr (@yu) = Trp, . (qMO= (/20,7100 —

:q[h(h+2)*j2]/4u70/24uj/u@(q‘/;‘)7 (6)
n(q)

where the Jacoby theta-function

2
O(qu) = g% > ¢/ (7)
meZ

and the Dedekind eta-function
n(g) =g JJT 1 —¢™ (8)
m=1

are used.
The N = 2 Virasoro algebra has the following set
of automorphisms, known as the spectral flow [28]:
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GE[r] = GE[r] = GF[r + 1],

MM%MMELM+UM+#%M, (9)

ﬂﬂ%&MEJM+%%m

where t € Z.

The spectral flow action on the free fields can be
easily described if we bosonize the fermions ¥* and ¥
as

Y(z) = exp(—y(2)), ¥"(2) =exp(+y(z))  (10)

and introduce the spectral flow vertex operator

Ul(z) = exp <—t <y + %X* - X) (z)> . (11)

It gives the action of the spectral flow on the free-field
modes,
¢[T] —>¢[7’—t]-, ’(ﬁ“[?"] _>1/)*[7‘+t]7

NGE)

X*[n] = X*[n] + tdno, X[n]— X[n]-— E(Sn,o.
The action of the spectral flow on the vertex oper-

ator Vi p+)(2) is given by the normal ordered product

of the vertex U'(z) and V), p(z). It follows from (12)

that the spectral flow generates twisted sectors.

2.2. Irreducible N = 2 super-Virasoro
representations and the butterfly resolution

The N = 2 minimal models are characterized by
the condition that p is integer and p > 2. In the NS
sector, the irreducible highest-weight modules, consti-
tuting the (left-moving) space of states of the minimal
model, are unitary and are labeled by two integers h, 7,
where h =0,... ,u—2and j = —h,—h+2,... ,h. The
highest-weight vector |h, j) of the module satisfies the
conditions

GElrllh,§) =0, >0,
Jinllh,j) = Linlih,j) = 0, n >0,

J10]1h, j) = %\h, i (13)
R ]

The Fock modules are highly reducible representa-
tions of the NV = 2 Virasoro algebra and hence contain
an infinite number of singular vectors. To describe the
singular vector structure, we introduce, following [25],
the pair of fermionic screening currents S*(z) and the
screening charges Q7 as

ST (2) = ¢ exp(X¥)(2),

S7(2) = Y exp(uX)(2), (14)

Q* = %szi(z).

The screening charges commute with the generators of
N = 2 super-Virasoro algebra (2). But they do not act
within each Fock module. Instead, they map between
different Fock modules. The space where the screening
charges act naturally is the direct sum of Fock modules

Fo= @ Fpp. (15)
(p,p*)€

where 7 is the momentum lattice:

* n o,
Wz{(p,p)pz;,p =m,n,m€Z}. (16)

Application of the screening charge to an arbitrary vec-
tor |p, p*) € F, gives a singular vector in another Fock
module.

The screening charges are nilpotent and mutually
anticommute,

@) =) ={Q",Q7} =0 (17)

Due to important properties (17), we can combine the
charges Q*F into a BRST operator acting in F, and
build a BRST complex of Fock modules F), ,« € F;.
This complex, which has been constructed in [25], de-
scribes the structure of the N = 2 Virasoro singular
vectors and the corresponding submodules, and the co-
homology of the complex gives the irreducible module
Mh7j~

We first consider the free-field construction for the
chiral module M}, j—p. In this case, the complex (which
is known as the butterfly resolution [25]) can be repre-
sented by the diagram
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T T

—~ Fingp < Fonyp
1 0
— Fl,h — FO,h
N

We let C}, denote this resolution and let T' denote the
set where the momenta of the Fock spaces of the resolu-
tion take values. The horizontal arrows in this diagram
are given by the action of QT and the vertical arrows
are given by the action of ~. The diagonal arrow in
the middle of the butterfly resolution is given by the
action of QTQ~ (which equals —Q~ Q" due to (17)).
The ghost-number operator g of the complex is defined
for an arbitrary vector |vy m) € Fnmu+h by

9lvn,m) = (0 +m)|vam), if n,m >0,

. (19)
9lvnm) = (n+m + 1)|vp,m), if n,m <O0.

The main statement in [25] is that complex (18) is
exact except at the Fp ; module, where the cohomology
is given by the chiral module Mj, j—p.

The butterfly resolution allows writing the charac-
ter

Xh (Q7 U) = TI‘thh (qL[O]*C/24uJ[O])

of the module M} 5, as the Euler characteristic of the
complex:

(1) (r)

Xa(g,u) = x; (¢, u) — X3, (g, ),
XELI) (q,u) = Z (_1)n+mfn7h+mu (q,u),
n,m>0 (20)
W) = 3 (D e ),
n,m>0
where Xgl) (¢,u) and Xgr)(q, u) are the characters of the

left and right wings of the resolution.

To obtain the resolutions for other (antichiral and
nonchiral) modules, we can use the observation in [25]
that all irreducible modules can be obtained from the
chiral modules My, j—p, h =0,...,u— 2, by the spec-
tral flow action U~¢,t = h,h — 1,...,1. Equiva-
lently, we can restrict the set of chiral modules to the

(18)
F—l,h—u — F—27h—u —
1 T
F inhooy ¢ Fop oy
T T
range h = 0,...,[/2] — 1 and extend the spectral
flow action by t = u —1,...,1 (when p is even and

h = [u/2] — 1, the spectral flow orbit becomes shorter:
t=[u/2] —1,...,1) [29]. Thus, the set of irreducible
modules can also be labeled by the set

{(ht)h=0,...,[n/2] -1,

except in the case where p is even and the spectral
flow orbit becomes shorter. It turns out that all the
resolutions can also be obtained by the spectral flow
action.

t=p—1,...,0},

In view of this discussion, it is more convenient to
change the notation for irreducible modules. In what
follows, we let M}, 4 denote the irreducible modules, in-
dicating the spectral flow parameter by ¢.

As with the modules and resolutions, the characters
can also be obtained by the spectral flow action [25]:
ct2/6uct/3 (21)

Xht(g,u) =q xn (. ugh).

There are the following important automorphism prop-
erties of the irreducible modules and characters [25, 29]:

My =My _p—2t—h-1,

(22)
Xh,t (€ 8) = Xp—h—2,t—h—1(¢; 1),
Mut = Mh iy, Xht+u(a,u) = Xn,e(gq, ), (23)
where p is odd and
Mut = Mgy, Xnt+u(@0) = Xn,e(g, ),
Y »

M, = Mh,t+[u/2]a
Xh,t+[u/2](Q-,u) = Xnil(q,u), h=][u/2] -1,

where p is even.
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We note that the butterfly resolution is not periodic
under the spectral flow, unlike the characters. It is also
not invariant under automorphism (22). Instead, the
periodicity and invariance are recovered at the level of
cohomology. Therefore, the U*# spectral flow and au-
tomorphism (22) are quasi-isomorphisms of complexes.

The modules, resolutions, and characters in the R
sector are generated from the modules, resolutions, and
characters in the NS sector by the spectral flow opera-
tor U~1/2,

3. FREE-FIELD REALIZATION OF THE
GEPNER MODEL

3.1. Free-field realization of the product of
minimal models

It is easy to generalize the free-field representation
in Sec. 1 to the case of tensor product of r N = 2 mi-
nimal models characterized by an r-dimensional vector

n = (:ula'-' 7,ur)

with integer u; > 2.

Let E be a real r-dimensional vector space and let
E* be the dual space to E. We write (,) for the nat-
ural scalar product in the direct sum E @& E*. In the

subspaces E and E*, we fix the sets of basic vectors R
and R* as

R={s;,i=1,...,r},
R* = {s),i=1,...,r}, (25)

<Si-, S;) = 51»’]'.

Given the sets R and 9*, we introduce (in the left-
moving sector) the free bosonic fields X;(z), X/(z) and
free fermionic fields ¢;(2), ¥} (2), i = 1,... ,r, with sin-
gular operator product expansions given by Eq. (1),
and the following fermionic screening currents and their
charges:

S (2) = sip” exp(si X 7)(2),

(]

S (2) = sjyexp(uis; X)(2), (26)
QF = %szii(z).

For each i = 1,... ,r, we use formulas (2) to define
the N = 2 Virasoro superalgebra with central charge
ci =3(1—2/u;) as

Gl =sp*sioX — lsiazﬁ*,
i
G =sisi0X™ —s; 00,

1
Ji = sip*sf + —s;0X* — 870X,
Hi

(27)
Ti(z) = %(siazp*s;w —s;Y*soY) +
+8:0X*sf0X — % <s;82X + lisi82X*> ,
and the vertex operators
Vipipp) = exp(pis; X + pisiX7), (28)

which are the conformal fields whose conformal dimen-
sions and charges are labeled by integers
hi =pi + wipi,  Jji = p; — Hibi-
The vertex operators are naturally associated with
the lattice
MNM=P® P € EgE",

where P € E, P* € E* such that P is gener-
ated by (1/p;)s; and P* is generated by the basis s,
i =1,...,r. For an arbitrary vector (p,p*) € II, we
introduce the Fock vacuum state |p, p*) in the NS sec-
tor by formulas similar to (4) and let F}, p+ denote the
Fock module generated from |p, p*) by the creation op-
erators of the fields X;(z), X7(2), ¥i(z), and ¥} (2).

Let Fyp be the direct sum of Fock modules associa-
ted with the lattice II. As an obvious generalization of
the results in Sec. 1, for each vector

h=> hs;e P,

where h; = 0,1,..., u; — 2, we form the butterfly re-
solution C}, as the product @{_,;Cy. of butterfly re-
solutions of the minimal models. The corresponding
ghost-number operator ¢ is given by the sum of the
ghost-number operators of each resolution. The dif-
ferential 0 acting on the ghost-number-N subspace of
the resolution is given by the sum of differentials of
each complex C} .. It is obvious that the complex C}; is
exact except at the F , module, where the cohomology
is given by the product

Muo = ®@j_1Mp, 0

of the chiral modules of each minimal model. Hence,
we can represent the character

Xno(g,w) = Trag, o (¢F0 /24 (29)
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of Mn, as the product of characters
HXhZ,O (q.u)

According to the discussion at the end of Sec. 1, we
obtain the resolution and character for the product of
an arbitrary irreducible module of minimal models by
acting on Cf; by the spectral flow operators

=[[vi*

of the minimal models. Hence, we can label the resolu-
tions, modules, and characters by the pairs of vectors
(h,t) from the set

Xh,0(q, u)

ti:0,...,,ui—1, i:l,...,r}.
Equivalently, we can use the set
AI = {(h,t)|hz ZO, s Mg —2,
ti=0, ,hi,izl,...,r}.

It is also clear that the R-sector resolutions, modu-
les, and characters are generated from the NS sector
ones by the spectral flow

v/2 HU—1/2

where v =(1,...,1).

The same free-field realization can be used in the
right-moving sector. Therefore, the sets of screening
vectors R and R* have to be fixed in the right-moving
sector. This can be done in many ways, the only re-
striction is that the corresponding cohomology space
has to be isomorphic to the space of states of the prod-
uct of the minimal models in the right-moving sector.
Therefore, R and R* are defined modulo the O(r,r)
transformations that leave the matrix of scalar prod-
ucts (s;,s}) unchanged. In what follows, we set

R=NR, R =R (30)

Hence, we can use the same complex to describe the
irreducible modules in the right-moving sector.

3.2. Free-field realization and Calabi—Yau
extension

It is well known that a product of minimal mo-
dels cannot be applied straightforwardly to describe

the string theory on a complex dimension D Calabi-
Yau manifold. First, one has to require that

> e =3D.
i

Second, the so-called simple-current orbifold CY,,
[3,30,31] of the product of minimal models has to be
constructed. The currents of the N = 2 Virasoro super-
algebra of this model are given by the sum of currents
of each minimal model:

@) =2 6
= ZJ T(z) = ZT

The left-moving (as well as the right-moving) sec-
tor of C'Y), is given by projecting the space of states on
the subspace of integer J[0]-charges and organizing the
projected space into the orbits [h, t] under the spectral

flow operator
-
= H Uia
i=1

(31)

see [31].

The partition function in the NS sector of the C'Y),
sigma-model is the diagonal modular invariant of the
spectral flow orbit characters restricted to the subset
of integer J[0]-charges. From the standpoint of the
N = 2 Virasoro superalgebra representations, there is
no difference as to which of the sets A or A’ we use to
parameterize the orbit characters (although their free-
field realizations are different). In what follows, we
combine these two sets into the extended set

A:{(ht)\hlzo,,pl—Q
ti:0.,...,,ui—1, i:l,...,r}

and take this extension into account by a corresponding
multiplier («field identificationy) [2].

The orbit characters (with the restriction to the
integer-charge subspace) can be written in the explicit
form such that the structure of the simple-current ex-
tension becomes clear [3, 31]:

rk—1
Chh t(Q7 Z TrMh t (Unv Lio}= 6/24) 710l X
n,m=0
x exp (12rm J[0)U™™) =
k—1
Z Xh,t+nv (T7 v+ m)v (32)
n,m=0
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where

g =-exp (i27n7), u=-exp(i270), kK =Ilem{u;}.

)

The partition function of the C'Y,, model is given by

1
Zey(4,9) = or Z

[htleAcy

k| chpng) (0) ], (33)

where Aoy denotes the subset of A restricted to the
space of integer J[0] charges and [h, t] denotes the spec-
tral flow orbit of the point (h,t). The factor 1/2" cor-
responds to the extended set A of irreducible modules
and k is the length of the orbit [h,t]. In the general
case, the orbits with different lengths could appear, but
we do not consider these cases in order to avoid the
problem of the fixed-point resolution [5, 30, 31].

3.3. Free-field realization of Gepner models

The Gepner models [2] of Calabi-Yau superstring
compactification are given by the (generalized) Glioz-
zi-Scherk-Olive projection [2, 3] applied to the prod-
uct of the space of states of the C'Y,, model and the
space of states of external fermions and bosons descri-
bing space—time degrees of freedom of the string. In
the framework of the simple-current extension forma-
lism, Gepner’s construction has been further developed
in [30-32].

We introduce the so-called
(Green—Schwartz) characters [2, 3]

supersymmetrized

2k—1
1 m
Ch[h,t](q,u) = m Z Tr(Mh,t®<I>)(UtOt/2 X

n,m=0

X exp (iﬂ.njtot[o])q(Lm—cm/24)qu[0] Ut;;nﬂ)’ (34)

where the trace is calculated in the product of the
Myt and the Fock module ® generated by the exter-
nal (space-time) fermions and bosons in the NS sector,
Jiot[0] and Ly, [0] are zero modes of the total U(1) cur-
rent and stress-energy tensor, which includes the con-
tributions from space-time degrees of freedom,

3
Ctot = C + 5(8—2D) =12

is the total central charge, and Uy, is the total spectral
flow operator acting in the product My ¢ @ ®.

The modular-invariant Gepner model partition
function is given by [2, 3, 31]

1
Zaep(a,0) = 57 (lm7)~4=P/2)

x>

[htleAcy

k| chp 41(q)[>. (35)

4. THE ISHIBASHI STATES IN FOCK
MODULES

The boundary states to be constructed in what fol-
lows can be regarded as bilinear forms on the space of
states of the model. It is understood in what follows
that the right-moving sector of the model is realized by
the free fields X;(2), X*(2),v(2),¢}(2),i = 1,...,r,
and the right-moving N = 2 super-Virasoro algebra is
given by the formulas similar to (2).

There are two types of boundary states preserving
the N = 2 super-Virasoro algebra [33], usually called
the B-type

(L[n] = L[-n))|B)) = (J[n] + J[-n])|B)) = 0,
(GT[r] +inGT[-r])|B)) = (36)
= (G [r]+inG"[-r])|B)) =0,

and A-type states
(L[n] = L[-n])|4)) =
= (JIn] = J[-n])|A)) =0,
(GHI]+inG™[=r])|4)) =
= (G™[r] +inGT[-r])]4)) = 0,
where n = £1.
In the tensor product of the left-moving Fock
module Fp p- and right-moving Fock module Fp 5,
we construct the simplest states satisfying condi-

tions (36) and (37). We call these states the Fock-space
Ishibashi [34] states.

4.1. B-type Ishibashi states in the Fock module

In the NS sector, we consider the following ansatz
for fermions:

(1/): [T] - 2001]1/_);[_71])‘1), p*a 157 15*7 7, B>> =0
(wl [T] - ZnQ:J/LE] [—7"])|p, p)‘< 3 p7 p*v 17, B>> = 07
where (;;, ), are arbitrary nondegenerate matrices.

Substituting these relations in (36) and using (27)
and (31), we find

Qix Q7 = Ok,

(38)

Qujd; = dj,  Qdi = d;
Pe = —Qkpj — di, Py = Q505 — dy,
(i X;[n] + Xi[-n] + (39)

+ dk(sn,())‘p-,p*apap*an'/B)) = 07
(0, X5 [n] + Xg[—n] +
+ d25n,0)\P7P*af)af)*a77»B>> = 07

where d, = 1/, dj, = 1, and we combine these coeffi-
cients into the r-dimensional vectors
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d=(di,....d), d*=(d,....d").

It is helpful to rewrite the boundary conditions in
toric coordinates on the target space:

Oiln] = —== (X{ 0] = i Xiln)
Rifn] = V;—ma:[n]mxi[n])., »
ls] = ﬂ_mwz ] - pitsls]).
oils] = mw ] + pitils).
Then Eqs. (38) and (39) become
-2 )
-3 (B - B ) - s]) B) =0,
- 3 (50 + Ba ) i-a1) 130 =0
<R][—]+%< Z—;Q;jJr %Q”>R,[n]— (41)
-2 ( By - By sl

+ \/Mzé ) 1B)) =0,
< <\/ZT] \/’ZZQ]> Riln]+
. (ﬁia + /50 ) o) 1B) =0,

Because the toric coordinates (6;, R;) are real, we must
impose the reality constraint

* Hj =
Q= 2205 42
g (42)

The linear Fock-space B-type Ishibashi state in the
NS sector is given by the standard expression [35, 36]

IT e (—%(X:[—nm:kxk[—nh

n=1

+ XZ[—n]QZkX,:[—n])> X

lp,p", 01, B)) =

x T explin(wil-riQdul—r] +
r=1/2
+ i [—r]Quf[—7])) x

x |p,p*,—Q"p—d,—(Q")p* —d*). (43)

4.2, A-type Ishibashi states in the Fock module

The A-type Ishibashi states in the Fock module can
be found similarly. The linear ansatz for the fermions
has the form

(%*[ ]_ZnYUQZJJ[ ])‘P-,P*af’vf’*an-,A» :07
(Wilr] — in X505 [=rDlp, p*. B. B", 1, 4)) =0,
where T;; and Y7, are arbitrary nondegenerate matri-

ces. Substituting these relations in (37) and using (2),
we find

(44)

Yir X5, = Okn,
Yijd; = dj,
pe = —Yp; —di, P, =—Yjrpj —dj,
(e X;[n] + Xi[—n] + dibno) x (45)
x |p,p*,p,p", 1, 4)) =0
(Y5 X7 [n ]+ Xik[-n] + dibno) ¥
x |p,p*, B, 0"\ 1, A)) =

Yrd; = d;,

LV

In toric coordinates (40), the conditions become

<ai[s]—%<\/m_u+\/mlf> 5i[—s]+

3 (L - ) Bi-s1) ) =
(e + (e = v ) ool
i

2 (s + v ) i) 14 =

<Rj[—n]+% (\/%
: VI ) Bilnl+

+ VI ) Rl (40

T,
_I_
2 <\/NZIUJ
+ 2d;6n’0> |A)) =0,

<9j[_n]+g<ﬁl_m VY, ) Riil-

5 (o + Vi ) 0l ) 140) =

The reality constraint takes the form

1 -
i = —17;. (47)
1] e v)
The linear A-type Ishibashi state in the NS sector
is given similarly to the B-type one,
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p.p*, Y,n, A) =

= H exp <—%(Xi[—n]rikxk[_n]+

+ X[ [-n] Y5 X [-n])) x
X H exp(in (i [—r] Cigtbr[—7] +
r=1/2
+ F [—r] Thdr[—r])) x
x [p,p*.—(X")Tp* —d,-YTp—d7). (48)

5. PERMUTATION ISHIBASHI STATES IN
THE PRODUCT OF MINIMAL MODELS

5.1. B-type permutation Ishibashi states

The free-field realizations of the irreducible modules
described in Secs. 1 and 2 and the constructions in (43)
and (48) suggest that the Ishibashi states in the prod-
uct of minimal models can also be represented by the
free fields. We consider the following superposition of
B-type Fock-modules Ishibashi states (43):

|Ih797an>> = 6(Qh - h) X

>

PP, 20, B)), (49)

Cp,p*

(p,p*)€Eln
\J 1
= Foix gy 21 gy
) 3
= Fi 1 4., = F 1
L

(here, h is an integer taking values from 0 to u—2). The
arrows in this diagram are given by the same operators
as in diagram (18).

Hence, the right-moving Fock modules have to form
the dual resolution

= Q0
=1

where the coefficients cp p+ are arbitrary and the sum-
mation is performed over the momenta of the butterfly
resolution C};. Because the partition function is diago-
nal, the delta-function 6(Qh — h) has been inserted. It
is clear that this state satisfies relations (36).

Before the Gliozzi—Scherk—Olive projection, the
closed-string states of the model that can interact with
Ishibashi state (49) come from the product of the left-
moving and right-moving Fock modules

Fppr @ F_qrp_a,—(a)Tp*—d+;

where (p,p*) € T'n. The left-moving modules in su-
perposition (49) constitute the butterfly resolution Cf,,
whose cohomology is given by the module My. What
about the Fock modules in the right-moving sector?
To have a nontrivial interaction with the states in the
model, the right-moving Fock modules must also form
the product of resolutions of minimal models (18). But
this contradicts the relations between left-moving and
right-moving momenta in (39). This contradiction may
be resolved if we allow the right-moving Fock modules
to form the product of resolutions each of which is dual
o (18). The dual resolution C} to the minimal-model
resolution (18) is given by the diagram

(50)
Flfi,flfthu - F27%,717h+u -
) 3
F17%,717h+2u - F27i,717h+2p -
) 3

and the matrices Q7 and (2*)T have to map the set of
left-moving momenta I'y, onto a set of momenta I'y, that
has to be isomorphic to I',. Therefore, we conclude
that Q7 has to be an element of the direct product of
the permutation groups 91, on r;-elements

QeEN,, v =9, 0N, ...0N,, (51)
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which are determined by the sets ry,...,ry of coin-
ciding elements in the vector p. In other words, it is
implied here that

M1 = oo = Hryy  Mpi41 = oo = fppdrgy e
In view of (42), we also have
oy = (52)

Therefore, relations (41) take the form

(0i[s] — inQi;5;[—s])|B)) =
(vils] = inQ;9;[—s])|B)) = 0,

(Rj[—n] QR + \/Nza> By -0, O

(6[=n] + Qi;8i[n])| B)) = 0.

Hence, the ith minimal model in the right-moving sec-
tor interacts with the Q~'(i)th minimal model in the
left-moving sector.

With the matrix 2 fixed by (51), we can define the
coefficients cp p+ from the BRST-invariance condition.
It is a straightforward generalization of the condition
found for the N = 2 minimal models in [22]. To formu-
late this condition, we must describe the total space of
states of the model in terms of free fields.

For this, we first form the product of complexes
Ct @ Gt to build the complex

oGP Ol s LG = (54)

which is graded by the sum of the ghost numbers g + g
and, for an arbitrary ghost number I, the space C| is
given by the sum of products of the Fock modules from
the resolution Cf, and Cf; such that g+ g = I. The dif-
ferential ¢ of the complex is defined by the differentials
d and 9 of the complexes Cy, and CY,

Slvg @ Ug) = |0v, @ Tg) + (—1)?|v, @ Ivy), (55)

where |vy) is an arbitrary vector from the complex C};
with ghost number g, while |;) is an arbitrary vec-
tor from the complex C'}*‘ with ghost number g and
g+ g = 1. The cohomology of complex (54) is nonzero
only at grade 0 and is given by the product of irre-
ducible modules

Mh & Mh,t:2h',

where Mh,tzgh is the product of antichiral modules of
minimal models.

The Ishibashi state that we seek can be considered
a linear functional on the Hilbert space of the product

of models; it then has to be an element of the homol-
ogy group. Therefore, the BRST-invariance condition
for the state can be formulated as follows.

We define the action of the differential § on the state
|Tn, Q2,m, B)) as

<<5*(Iha9-,7773)|vg ®’D§> =
= <<Ih7Q-,77aB|5g+§|Ug ®’D§>7 (56)

where v, @5 is an arbitrary element from C{"7. Then
the BRST-invariance condition means that

5| I, Q. 1, B)) = 0. (57)

As a straightforward generalization of Theorem 2
in [22], we find that superposition (49) satisfies
BRST-invariance condition (57) if the coefficients cp p+
take values +1 in accordance with the expression

T
Cp.pr = V2co0s ((2gp,p* + 1)2) Co,h; (58)

where gp p+ is the ghost number.

Thus, superposition (49) respects the singular vec-
tor structure of the product of minimal N=2 Virasoro
algebra representations and gives an explicit construc-
tion of permutation Ishibashi states. We also note that
the BRST-condition does not fix the phase of the ove-
rall coefficient ¢ n.

We now consider the closed-string transition am-
plitude between a pair of permutation Ishibashi states
with the permutations Q' and Q. It is given by

<<Ih’ ) QI7 1, B|(_1)Q(Q,’Q) X
~ qL[O]_C/MU‘][O]Hh, an’ B>> —

=4§(h —h)5(Qh' —h)6(Qh — h) x
« Z (_I)Q(Q"Q”cp’p* 2 o (50)
(P,p*)€TH

X 5(QQ'p — p)d(Q'Qp* —p*) x
< ((p,p*, ', | (—1)9(2 Q) g L0l —e/24,, TI0]
x ‘p’p*797n,B>>.

Due to the insertion of (—1)9(%?) | the amplitude is cal-
culated according to the ghost number of the intermedi-
ate closed-string states, and the ghost number operator
g9(QY', Q) depends on the permutation matrices. To sim-
plify the calculation, we set the number /N of permuta-
tion groups equal to 1 (and hence g = ... = p, = p).
Due to the factor

57 p —p)s(YQ p* — p),
the summation is restricted to the subspace of I'y, that
is invariant with respect to the permutation Q'Q~'.
This allows us to write
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((p,p*, 7| (—1)9 D)

g 02470 p, p*, 0, B)) =

_ q(1/2)(\5\1(2p1p1+p1+p1/u)+---\E\y(s)(2p3(5)py(s)+py(s)+pu =) /m)—c/24

WEh BT/ n=p) - +[El = (Plz) /m=P=) (oscillator contribution),  (60)

where |Z|; is the length of ith cycle of the permutation
E = Q7! and v(Z) is the number of cycles of the
permutation.

The oscillator contribution can be conveniently cal-
culated for the bosons and fermions separately. The
bosonic contribution can be calculated as follows. First,
from (43), we have

H<p, p*-, _(QI)TP - da _(QI)TP* - d*| X
1
X H exp <_EX;[n]XQ’(a)[n]> X
n=1
q" .
L X, [—m]XE [~
T e (=S omi ol )
X |p7p ) QTP - d7 _QTP* d*> =

1
=1 > Z Okl!...kr!ll!...lrlx

n=1ky,.. kr=01l1,...,l,=
l1+...+l,
x (p,p*, — () p—d,—(2)p* —d* x
X (X;m)* (KXo @y [n)™ ... x
x (X)) (X)) x
 (Xy [=n])" (X5 [=n])" .. x
X (X [=n])'" (X [=n])" x
x |p,p*,—Qp—d,-Q"p* —d*) =
= H(l _ qn\Eh)*l (11— qn\E\u(s))*1. (61)
n=1

Similarly,

H(p,p*,
e (g Xalri )
« T e (=S Sagol-m) )

X |p7p*7 _QTP - d7 _QTP* - d*> =

= H(l _ qn\Eh)ﬂ (1= qn\E\v(s))*l. (62)

The first part of the fermionic contribution is given
by

X

—~(@)Tp —d, —(@)Tp" — | x

H<p, p*a _(QI)TP - d7 _(QI)TP* - d*| X

b.d

X H (1 — iy [rldbg-1 () []) %
r=1/2
X H (1 + inu™" g*Pal—s]g ) [—5]) x
s=1/2

x |p7p*7—QTp—d -0"p*

=] ZTrE\Akvu q*%, (63)

s=1/2 k=0

—dY) =

where Tr(Z)|,ry denotes the trace of the matrix
Z = Q'Q°! acting by permuting components in the
space AV for the r-dimensional real vector space V.
We see that the last expression can be rewritten simi-

larly to (61),

TP ~(2)"p —d, ~()"p* —d*| x
b.d
< T Q= in@i [ -1mr)
r:l/Z
X H (1 + inu™"¢*Yal—s]g a) [—5]) x
s=1/2
« |p7p*’ _QTP _ d, _QTp* _ d*> —
= T (1= (=)EhuEhge=h)
s=1/2
x (1= (=1)Fl@yEh@ g Ble) (64)
Analogously,

H<pa p*7 _(Q,)Tp - da _(QI)TP* - d*| X

a,c

x ] (= ingilrld@) -1 (ar])

r=1/2
X H (1
s=1/2
x |p7p*7 _QTP - da _QTP* - d*> =
= ] @ - (=n=huEhg =y x
s=1/2

x (1 - (-1

+iu ¢ e[ s]vg o) [—5])

)\E\U(E)U\E\u(s)qs\a‘"@)). (65)
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Collecting the results, we obtain

(I, Q' , B|(=1)2 D gh0l=e/24y TOl 1, 0 3y, B)) =
=6(h — h’)(S(Q h — h)§(Qh — h)|con|® x
x Y (-1 D5(2p - p)i(Ep* - p*) x
(p.p*)€ETn
w g1/ 21 2] pictpitri /m) /24, S5 B (07 /n—pi) o
1:[ T - ()l Eligtnt/2Eky
=1 n=1
( ( E‘zu‘ ‘z (n— 1/2)‘5‘1')(1_(]71\5\1')*2. (66)
|
<<Ih’7Q
x> (=1 N5(Ep - p)a(Ep” — pr)g! /i

(p,p*)ETH

We now fix the dependence of the ghost-number
operator on the permutation matrices. Taking repre-
sentation (20) into account, we find that the amplitude
is given by the product of minimal-model characters if

v(E)
= Z gi-
i=1

Thus, the ghost number receives the contribution g;
from the ith invariant subspace of I'y,. In other words,
we consider the space of intermediate closed-string
states as the product of the v(Z) minimal-model but-
terfly resolutions (18). Hence, the amplitude is given
by the product of minimal-model characters as

((Iw. Q9. B|(=1)*®

(68)

Q',Q) L[O]fc/24uJ[

q % x
|Ih70777'/B>> =
— §(h — )6(Q'h — h)5(Qh — h)|eo.n|® X

v(E)

h;
exp <—i7r(1 - El)—> X
it U

) |E|i> . (69)

X

1-—
X Xh; <T7U+T

where f is the fermion-number operator and we use the
relation

Trag,, ((=1) (1= El)7 g(Lil0]=ei/24), Jil0]) —

= exp <—i7r(1 - |E|2)E> X
I

1—1|=2];
X Xh; <T7U+ | | (70)

The transition amplitude between

w, Y, =1, B))
and
[T, 2,1, B))
is given by a similar expression. Indeed, the change

n — —n affects only the fermionic contribution in
(63)-(65) and therefore

—n, B|(=1)9(2) gL0l=e/24,J0l 1, () . B)) = §(h — h')§(Q2'h — h)§(Qh — h)|co u|* x

SiS) Bl @i pitpite; /u)—e/24, SV 12 (0} /n-pi) o

(n=1/2)[Eli) (1 — lBlig(n=1/2)Eliy (1 — ¢nEli)=2 " (67)
Analogously,
(T, 0, =, BI(=1)7( 2 M0 /20,70

X |In,Q,n,B)) =
— 6(h— h’)(S(Q’h — h)§(Qh — h)|co.n|? X

e (-n) o (ro ). )

It was mentioned in Sec. 2 that the irreducible rep-
resentations are generated by the spectral flow action.
Hence, for an arbitrary module My, (h,t) € A, the
Ishibashi state is generated by the action of the spec-
tral flow operators on Ishibashi state (49). It is easy to
verify that the state

|Ih7t791n7 HUt Q ) 1 >> (72)
satisfies the B-type boundary conditions if
Ot —t=0. (73)

we must take into account that the
right-moving space of states of the model is governed by
the dual butterfly resolutions (twisted by the right-mo-
ving spectral flow operators). A representative of the
chiral primary field from the dual resolution is

However,
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1

vhGgt E—h} .Gt

.

—;,—1—h>~‘—ﬂ —1> (74)

1

Thus, the highest-weight vectors of the model are given by the products of the minimal-model states as

t;
i

Pi = p;:hi_tz

Therefore, Ishibashi states (72) nontrivially overlap
with states (75) if, in addition to (73), we have

hq-1¢i) = hi,

(76)
hi—2ti—l:0mod,ui.

It is easy to see from (12) that this state satisfies
boundary conditions (38), (39). Hence, (36) is fulfilled.
The state is also BRST-closed because the spectral flow
commutes with screening charges.

The transition amplitude between such states is a
spectral-flow twist of amplitudes (69) and (71),

) (Q',Q) 100=e/24,, 7100 o

‘Ih,ta Q-, 7, B>> =
=6(h—h")5(Q'h — h)§(Qh — h)§™ (t —t') x
»(E)

4 _ hi =2t
X |con|? H exp <—z7r(1 — 12— - Z) X

i=1

((In e, ', BI(—

—

1_ =
X Xhi t: <T,’U + %) , (77)

L[0]—c/24,,[0] o

<<Ih’ t/ Q y — 1, B‘(
X ‘Ih,tag',an» =
=4§(h —h')§(Q'h — h)§(Qh — h)§*H) (t — t') x

v(E)

hi — 2t;
X |conl? H exp <—27r - > X

i=1

)QQ)

1
X Xhi s <T-,U + 5) - (78)

5.2. A-type permutation Ishibashi states

We consider the free-field representation for A-type
Ishibashi states. It is obvious that A-type Ishibashi
states are given by superpositions like (49).

Similarly to the B-type case, we can conclude that
the matrix Y7 is proportional to the element of the
permutation group N,,. .. More precisely,

T:M191®®/J/NQN,
1 1 M
T*:—Ql®~-~®_QN7 ( )
M1 KN

1+ hi—t;—1
pi=——————""

i (75)

where Q; e N,,, 1 =1,... N.

Boundary conditions (46) take the form that is mir-
ror to (53),

(ils] s])|A4)) =0,
(vils] + ini;3;[=s])[A)) = 0,

(Rj[—n] QR + \/HZ> apy=o, &0
0

(0;[=n] — Qi;6:[n])|4)) =

— iS5~

The BRST-condition for A-type states is slightly
different from that in the B-type case. The reason is
that in accordance with (44) and (45), the application
of one of the left-moving BRST charges, e.g., Q;L to
an A-type state gives the right-moving BRST charge
Qa_l(i) multiplied by p;, as opposed to the B-type
case. In fact, we are free to arbitrarily rescale the right-
moving BRST charges because this does not change the
cohomology of the complex in the right-moving sector
and the cohomology of the total complex (54). Hence,
we define the right-moving BRST charges such that this
effect is canceled,

9]

¥
s

Il

msiiﬂ* exp(s; X*)(2),
5

= inuisiv exp(pis; X)(2), (81)

f dzSE(z

As a result, the BRST-invariant A-type Ishibashi
state |In, Q,1, A)) is given by a formula similar to (49)
and (58) with the restriction 6(2h — h), and, similarly
to the B-type case, the phase of the coefficient cg 1 is
also arbitrary.

The A-type version of transition amplitude (69) can
be calculated similarly to the B-type case, with the re-
sult given by
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(T, ', 1, A|(=1)9( D) gHOT /245, 7101 5
X |Ih7 Q', 1, A>> =
— §(h — 1)6(Q'h — h)5(Qh — h)[eon|® X

v(E)

X H exp <—m(1 - 5)%) X

=1
1=
).

X Xh; <T.,v+

where 2 = ’Q~! and we have set the number N of
permutation groups equal to 1 for simplicity.

For an arbitrary module Mp ¢, (h,t) € A, the A-ty-
pe Ishibashi state is generated by the action of spectral
flow operators. It is easy to verify that the state

Tne, 2m, A)) = [JUF T In, Q. A)) (83)

satisfies the A-type boundary condition if the spectral
flow parameter t satisfies (73). Although the right-mo-
ving space of states of the model is governed by the dual
butterfly resolutions (twisted by right-moving spectral
flow operators), the only restrictions on h and t are

Qh=h, Qt=t. (84)

The corresponding transition amplitude is given simi-
larly to the B-type case as

(T, ', AJ(=1)9( D) gL L0 me/20, 10T
X |Ih,t7 Q', 17, A>> =
— 5(h — W)5(Q'h — h)§(Qh — h)S* (¢ — ')|con|” X

v(E)

hi — 2t;
X exp <—i7r(1 —2;) — Z) X
i=1 K
1

_2|E|i> . (85)

X Xhi t; <T,’U +

(I g7, Q' =1, A|(=1)9( ) gL L0]=e/24,, T0]
X |Ih’t, Q./ T}’ A>> =
= §(h —h')5(Q'h — h)5(Qh — h)o* (t — t')|co.u|? x

v(E)
hi — 2t; 1
X Zl;ll exp (—iﬂ' . - Z) Xhi ts <T,U+ 5) . (86)

Thus, expressions (77) and (85) reproduce the cor-
responding results in [6] correctly (with the correct
fermionic contribution). This allows us to use the solu-
tion of Cardy’s constraint found for permutation branes
in [6] to construct the free-field representation of per-
mutation branes.

6. FREE-FIELD REPRESENTATION OF
PERMUTATION BRANES IN THE GEPNER
MODEL

6.1. A-type boundary states in the Calabi—Yau
extension

It has already been noted that a product of minimal
models cannot be applied straightforwardly to describe
string theory on a Calabi-Yau manifold in the bulk.
Instead, the so-called simple-current orbifold, whose
partition function is a diagonal modular-invariant par-
tition function with respect to orbit characters (32),
must be introduced. The extension of this technique
to conformal field theory with a boundary has been
developed in [1, 5,6, 8, 31].

As we have seen, the BRST invariance fixes the
free-field permutation Ishibashi states up to an arbi-
trary constant cn¢. Hence, our problem is to apply
the (simple current) orbifold construction and Cardy’s
constraint to the superposition of free-field permuta-
tion Ishibashi states to fix the coefficients cp ¢. Fortu-
nately, Cardy’s constraint for the permutation branes
has been found in [6]. It therefore suffices only to quote
the solution.

Thus, the free-field realization of permutation A-ty-
pe branes can be given as follows. We start from the
spectral-flow-invariant permutation boundary states

(0]
|[A,)\],970,A>> = ?

> 6(Qh—h)s(Qt —t) x

k—1
X W}:;Q exp (12mnJ[0]) x

m,n=0

X U™U™ |Ine, Qn, A))  (87)

(o is the normalization constant). They are labeled
by the spectral-flow orbit classes [A, A] of the vectors
(A, ) € A. The coefficients W}:;Q that solve Cardy’s
constraint are given by [6]
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ht _
Waxa =

v(Q)
H (Aara) (hasta) (S(O,O)’(ha,ta))fl/ﬂma’

S(Aa,,\a)(ha,ta) = (88)

(ha — 2ta)(Aa — 2)a)
I

o = Qsin (w(h‘l +1)(A, + 1)) .
I I

The summation over n implements the J[0]-projection,
while the summation over m introduces spect-
ral-flow-twisted sectors. This state depends only on
the spectral-flow orbit class. Moreover, the restriction
of an integer J[0]-charge of the orbits [A, A] is necessary
for the self-consistency of expression (87).

We now apply the inner automorphism group of the
Gepner model to construct additional boundary states.
Namely, we use the operator

exp (—iQWZ@Ji[O]) cu)”

We consider the

)

= Sa,.h, exp(im

to generate new boundary states.
properties of the state

[[A, AL, Q,m, A>>¢ =
= exp (—iQﬂ'Z qﬁiJi[O]) [[A, A], Q,n, A)).  (89)

It satisfies the conditions similar to (37) except the re-
lations for fermionic fields,

(Gi[r] +1in Z exp (iz’QmﬁQ(i))Gg(i) [—r]) X

X |[A,)‘], 9777-,14>>¢ =0,

(¥§[r] — inpi exp (27 da ) ) Yo [—T]) x

(90)
x [[A, A}, Q,n, A>>¢ =0,
(%’[7’] - l% exp (_i27¢ﬂ(i))¢;}(i)[_r]> X
X |[ALA]LQ,n, A))g = 0.

This state is not invariant under the diagonal N = 2
Virasoro algebra unless

o, €Z, i=1,...r1 (91)

Hence, the group U(1)" reduces to Z". It is worth not-
ing that the case where all the ¢; are half-integer can
be ignored because of the cancelation achieved by the
n — —n redefinition. It is easy to see directly that the
states thus obtained are given by

ANQ A= 5 S Wh
(h t)eAq
k—1
X Z exp (i27nJ[0]) x
m,n=0

X exp (—z27rmz¢Z >U’”"Umv
X exp (—iQﬂ'Z o; i

2t;
) ‘Ih,t', 9777-, A>> =

Z HSAe,h (So.n.)~'%e/2 x
(h,t)€Aq e=1
X exp (iﬂ(Ae = 2Ac) (he = 2te)> x
7
12
he — 2t
X exp —iwi( c e) 22¢e+a N
H a=1
12/ &
X exp z47rmz era ) x
a=1 K
rk—1
x Y exp (i2nnJ[0) U™ U™ Iy e, 2.m, A)). (92)
m,n=0

Hence, the boundary states can be parameterized by
[[A,A], Q. 4)) =

= exp <_227TZ/\1J1[0]>|[A’0]597n514>>7 (93)

such that different boundary states are labeled by dif-
ferent values of

12/

|/\‘6:Z/\e+aa e=1,...
a=1

i ’/(Q)‘/

and spectral-flow-invariant boundary states are recove-
red when

5 V()
=3 ez (94)
H e=1
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2. B-type boundary states in the Calabi—Yau
extension

We let Aq denote the subset of A satisfying (73)
and (76). Then for an arbitrary pair of vectors
(A, ) € Acy, the free-field realization of a spectral-
flow-invariant B-type boundary state is given by

2 2 Wik

(h t €Aq

[A,A], 2,0, B

k—1
X Z exp (i2mnJ[0]) x

m,n=0

x U™ U™ Ing, .0, B)),  (95)

where the coefficients W}:;Q are given by (88). It
can be verified that this state depends only on the
spectral-flow orbit class [A, A] of the vectors (A, A). It
is also obvious that [A, A] has to be restricted to the set
of J[0]-integer charges by the reasons similar to those
given in the A-type case.

The other boundary states are generated by the in-
ner automorphism group of the Gepner model, simi-
larly to the A-type case. Namely, the state

|[A-,)\]-,QJ7-,B>>¢ =
= exp (—iQWZ@Ji[O])HAa)\]a Q,n,B)) (96)

satisfies the conditions similar to (90) and is not invari-
ant under the diagonal N = 2 Virasoro algebra unless

bi€Z, i=1,...,r (97)

Hence, the group U(1)" reduces to Z" and we can pa-
rameterize the boundary states by

A, A}, ©,m, B)) =

= exp <_227TZ)\1J2[0]>[Avo]vgaan»v (98)

such that different boundary states are labeled by dif-
ferent values of

12

Me = Netar e=1,...
a=1

In conclusion of this section, we make the following
remarks. First, our free-field construction allows in-
terpreting A/B-type gluing conditions (37) and (36)
geometrically. Indeed, in terms of the free fields, the B-
type gluing conditions, for example, are given by (53).

, ().

4 JKOT®, Brim. 6

Thus +1 eigenvalues of the permutation matrix  can
be interpreted as labeling the Neumann and Dirichlet
boundary conditions, while complex eigenvalues real-
ize mixed boundary conditions [33]. This result seems
to contradict the calculation of D-brane charges per-
formed in Refs. [23,24]. It has been found there that
DO0-branes correspond to transposition matrices per-
muting only one pair of minimal models. It follows
from (53) that in this case, we have only one Dirich-
let condition and the corresponding free-field bound-
ary state gives a codimension-one D-brane. We do not
know at the moment how to resolve or explain the con-
tradiction. Perhaps, a more profound geometric inves-
tigation of the open-string spectrum in terms of the
chiral de Rham complex has to be performed, but this
requires additional investigation.

Second, we note that the free-field representations
of permutation boundary states are determined modulo
BRST-exact states satisfying A- or B-type boundary
conditions. We interpret this ambiguity in the free-field
representation as a result of adding brane—antibrane
pairs annihilating under the tachyon condensation pro-
cess [37]. Strictly speaking, the BRST-exact state am-
biguity is not the usual brane—antibrane-pair ambiguity
and has to be considered in a generalized sense, be-
cause BRST-exact states also contain states with op-
posite charges in the NS sector. In this context, the
free-field representations of boundary states can be re-
garded as superpositions of branes flowing under the
(generalized) tachyon condensation process to nontri-
vial boundary states in Gepner models. It is also im-
portant to note that automorphisms (22) give different
free-field representations of boundary states because
the corresponding butterfly resolutions are not invari-
ant under these automorphisms. However, their coho-
mology are invariant. Hence, these different representa-
tions have to be identified and the free-field boundary
state construction is to be considered in the sense of
derived categories [38].

6.3. Free-field representation of permutation
boundary states in Gepner models

It is completely clear from (34) and (35) how to
incorporate the space—time degrees of freedom in our
construction in order to obtain a free-field construction
of permutation branes in the Calabi—Yau extension to
the case of Gepner models. This is straightforward

(see, e.g., [1,7,18,31]), and we do not give the details
here.
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