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RESONANT CHARGE EXCHANGE INVOLVINGHIGHLY EXCITED ATOMSE. A. Andreev a, P. V. Kashtanov b*, B. M. Smirnov baSemenov Institute of Chemial Physis, Russian Aademy of Sienes117977, Mosow, RussiabInstitute for High Temperatures, Russian Aademy of Sienes127412, Mosow, RussiaReeived Deember 14, 2005Transition of a lassial eletron between two Coulomb enters is analyzed on the basis of omputer simulations.The ontribution to the eletron transfer ross setion from a tunnel eletron transition is evaluated with thestrong mixing of highly exited eletron states due to motion of Coulomb enters taken into aount. Therate of transition of a highly exited eletron between two Coulomb ores with a �xed separation is evaluatedtogether with the ross setion of resonant harge exhange in slow ollisions. Typial times of hange of theeletron momentum as a result of eletron motion in the �eld of two Coulomb enters are determined.PACS: 31.15.Gy, 34.60.+z, 34.70.+e1. INTRODUCTIONThe resonant harge exhange proess is of impor-tane for transport proesses in nonequilibrium weaklyionized gases, in partiular, for osmi plasmas where,along with harged atomi partiles, exited atoms arepresent with a remarkable onentration (see, e.g., [1℄).The problem of resonant harge exhange with a transi-tion of a highly exited eletron is studied starting fromSena's papers [2, 3℄. He has shown that the transitionof a lassial eletron has an over-barrier harater, andthe maximum ross setion of the resonant harge ex-hange in this ase is�0 = �R20=2;where R0 is the distane between olliding partileswhen the barrier separating the �elds of the �rst andseond ores disappears. This ours in slow ollisionswhen, at distanes belowR0, the probability of the ele-tron loation near eah ore after the ollision is 1=2.At an arbitrary ollision veloity v, the ross setion� of the resonant harge exhange an be representedas [2℄ � = �0f(v=v0);*E-mail: Kashtan�maryno.net

where the typial eletron veloity v0 follows from therelation mev20 = e2R0(me is the eletron mass and e is its harge) and theuniversal funtion f(x) tends to unity at small x andbehaves as 1=x at large x.One an solve this problem more orretly and �ndthe eletron transfer ross setion by omputer simula-tions. Numerial solutions of the problem of transitionof a lassial eletron between two Coulomb ores as aresult of ollision of a highly exited atom with an ionis the subjet of this paper. Along with the ross se-tion of resonant harge exhange, omputer simulationof this problem allows analyzing other parameters ofeletron evolution inluding the hange in the eletronangular momentum and its binding energy. We analyzeollision of a Rydberg atom with an ion by omputersimulation of an exited lassial eletron.2. CHARACTER OF ELECTRON MOTION INTHE COURSE OF CHARGE EXCHANGEThe lassial transition of an exited eletron be-tween two Coulomb enters proeeds when the distaneR between olliding partiles is less than the ritial995



E. A. Andreev, P. V. Kashtanov, B. M. Smirnov ÆÝÒÔ, òîì 129, âûï. 6, 2006distane R0 at whih the barrier separating the �eldsof ions disappears. Beause the barrier is symmetriwith respet to the ion positions, its maximum is at themiddle point between the ions. The barrier is dereasedompared to the ontinuum-spetrum boundary due tothe eletron�ion interations, equal to 4e2=R at a dis-tane R between the nulei (we take the ion harge tobe equal to the eletron harge e). But we have dif-ferent results for the ritial distane depending on theharater of hange of the ion �elds [4℄. Indeed, in theadiabati limit, the eletron potential energy is givenby U = � 1r1 � 1r2 ;where r1 and r2 are the eletron distanes from theorresponding nuleus, R is the distane between thenulei, and we use the atomi units e2 = me = ~ = 1.At large distanes between the nulei, this �eld is splitbetween two regions of ation of eah nuleus, and theseregions are separated by a barrier. This barrier disap-pears at the distane R0 between the nulei determinedby the onditionU(r1 = r2 = R0=2) = "; (1)where " is the eletron energy. In the adiabati limit,at a distane R between the nulei, we have" = �J � 1R; (2)where J = 2=2is the atom ionization potential. The barrier vanishesat R0 = 3=J = 6=2:Aordingly, the ross setion of resonant harge ex-hange in this limit, whih orresponds to low ollisionveloities v � , is�ad = �R202 = 18�4 = 9�2J2 : (3a)In the diabati limit, the eletron energy is " = �J ,and ondition (1) implies thatR0 = 4=J:This gives the ross setion of barrier disappearane inthe diabati limit as�diab = �R202 = 32�4 = 8�J2 ; (3b)whih orresponds to high ollision veloities v � .This formula desribes the diabati way of ollisions,

suh that the seond ion does not hange the eletronenergy in the �eld of the �rst ion in the ourse of ol-lision. Thus, the adiabati and diabati ways in whihatomi partiles approah eah other lead to di�erentross setions of the eletron transfer.3. COMPUTER SIMULATION OF THETRANSITION OF A CLASSICAL ELECTRONBETWEEN TWO COULOMB CENTERSIn onsidering the problem of motion of a lassialeletron in the �eld of two moving Coulomb enters, wetake the eletron momentum to be zero or almost zero.It is then onvenient to hoose the boundary onditionthat the eletron veloity is zero or almost zero, andthe eletron distane from the parent Coulomb enteris r0 = e2=J:In this problem, the eletron motion is desribed by theNewton equationsmd2xidt2 = � �U�xi ; xi � x; y; z;U = �e2r � e2jr� �� vtj ; (4)where r =px2 + y2 + z2is the distane of the eletron from the �rst Coulombenter (where the eletron is loated at the beginning),� is the impat parameter of ollision of two Coulombenters, and v is the ollision veloity. Under theseassumptions, the ores are moving along straight tra-jetories. Taking the diretion of � along the x axisand the diretion of v along the y axis, we obtain theset of Newton equations in the formd2xdt2 = xr3 + x� �r32 ;d2ydt2 = yr3 + y + vtr32 ;d2zdt2 = zr3 + zr32 ; (5)where r2 =p(x� �)2 + (y � vt)2 + z2is the eletron distane from the seond atomi ore,and we introdue the redued distaner ! r=r0; �! �=r0;the redued veloity996
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Fig. 1. The probability of eletron transfer between twoCoulomb enters versus the impat parameter of olli-sion of Coulomb enters at given veloities aordingto omputer simulations. v = 0:01v0 (�), 0:02v0 (�),0:05v0 (?), 0:1v0 (N), v0 = e2=~v ! v=v0;and the redued time t! t=t0;where v0 =p2J=me; t0 = r0=v0:Within the omputer simulation framework, wesolve system (5) of Newton equations under di�erentinitial onditions for a given impat parameter of ol-lision, whih gives the probability for the eletron totransfer to the seond ore after the ollision and theprobability to hange the momentum and binding en-ergy at a given impat parameter of the ollision. Fromthis probability, we �nd the ross setion of resonantharge exhange at the given ollision veloities, anddispersions of the eletron binding energy and angularmomentum. Figure 1 shows the probability W (�; v)of the eletron transition into the �eld of another oreas a funtion of the impat parameter of ollision atsome ollision veloities. Eah dot results from aver-aging over 500 initial onditions that orrespond to arandom eletron loation on the sphere of the radiusr0 = e2=J entered at the �rst Coulomb enter, whereJ is the eletron binding energy at the beginning. Thisboundary ondition orresponds to zero eletron velo-ity at the beginning. Figure 2 shows the veloity depen-dene for the ross setion of resonant harge exhangeinvolving a highly exited atom with over-barrier ele-tron transitions taken into aount.Computer simulation of a lassial eletron in the�eld of two Coulomb enters exhibits large �utuations
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Fig. 2. The redued ross setions of resonant hargeexhange for a highly exited atom, given in units a20=4(a0 is the Bohr radius), versus the ollision veloity ex-pressed in e2=~. The ross setions of the over-barriereletron transfer follow from omputer simulations for alassial eletron in the �eld of two Coulomb enters

2 3 4 5 6 7 8

76.565.5Distane between ores0.02

0.04

0.06

0.08

0.10

0.12

0.002

0.006

0.010

0.014

Rateofeletron
transfer

Fig. 3. The rate of eletron transfer between twoCoulomb enters for a �xed distane between the en-ters. Dots are the rates of the over-barrier ele-tron transition due to omputer simulation, the solidline approximates these results by the dependene�(R) � a(R20 � R2) exp[b(R20 � R2)3℄ in aordanewith formula (13), the dashed line gives the rate of thetunnel eletron transition in aordane with (25) forn = 1= = 4. The redued rate is expressed in units~33=mee4 and the redued distane is given in unitsa0=2of eletron parameters at small distanes between theores due to their motion. To eliminate the e�et ofsmall distanes between the ores on the eletron pa-rameters, we formulate this problem di�erently and,�xing the distane between the ores, determine someeletron parameters. We let �(R) denote the averagerate of eletron transition between the ores at a givendistane R between the ores, whih allows determin-997
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Fig. 4. The relative �utuation of the eletron momen-tum �M2=hM2i at a typial time 1=� of the eletrontransition between Coulomb enters at a �xed distaneR between them aording to omputer simulationsing the probability of eletron transfer in slow ollisions.Figure 3 ontains this value for a lassial eletron, i.e.,with over-barrier transitions taken into aount. Fi-gure 4 shows the �utuation of the eletron momen-tum with respet to the initial Coulomb enter duringa typial transition time 1=�. This demonstrates a re-markable mixing of states of a lassial eletron in theourse of eletron transfer.Based on the rate �(R) of the eletron transfer be-tween two Coulomb ores, we have the following bal-ane equations for the probabilities P1(t) and P2(t) ofthe eletron loation at time t in the �eld of the �rstand the seond ore:dP1dt = ��(P1 � P2);dP2dt = ��(P2 � P1): (6)The solutions of these equations under the initial on-ditions P1(t = �1) = 1; P2(t = �1) = 0(with P1 + P2 = 1) are given byP1(t) = 12 + 12 exp0��2 tZ�1 �(t0) dt01A ;P2(t) = 12 � 12 exp0��2 tZ�1 �(t0) dt01A : (7a)If the transition probability after the ollision is small,it is given by the formula

P2(1) = 1� P1(1) = �(�) = 1Z�1 �(t) dt: (7b)Within the framework of the lassial model (we as-sume free relative motion of nulei, i.e., R2 = �2+v2t2),it follows from Eq. (7a) that the probability W (�; v) ofthe above-barrier eletron transition at a given impatparameter � of ollision is given byW (�; v) = P2(1) = 12 �� 12 exp0��2v R0Z� �(R) RdRpR2 � �21A : (8)From this, we �nd the ross setion � of resonantharge exhange under the assumption of a sharp de-pendene �(�), given by�(�) = �(�0) exp[��(�� �0)℄in a narrow range of �. Under these onditions, weevaluate the ross setion of resonant harge exhangeas� = 1Z0 W (�; v) � 2��d� == 1Z0 (1� exp [�2�(�)℄)�� d�: (9)Applying the general method in [5, 6℄ for evaluatingthe ross setion to this expression, we divide integral(9) into two parts,� = �1Z0 (1� exp [�2�(�)℄)��d�++ 1Z�1 (1� exp [�2�(�)℄)�� d�;and take �1 suh that, on the one hand, �(�1)� 1 and,on the other hand, the exponential dependene�(�) = �(�1) exp[��(�� �1)℄998



ÆÝÒÔ, òîì 129, âûï. 6, 2006 Resonant harge exhange involving highly exited atomsnear �1 is valid for �(�)� 1. Then the integral for theross setion redues to the form [5, 7℄� = ��212 + ��1 �1Z0 (1� exp(�2�)) d��� == ��1 ��1 + C + ln �1� � = ��202 ;�(�0) = e�C2 = 0:28; (10)
where �1 = �(�1), C = 0:577 is the Euler onstant, andwe use the expansion for �1 � 1. Equation (10) givesan asymptoti expression for the lassial ross setionof resonant harge exhange.The lassial rate of eletron transfer to the �eldof the other ore beomes zero when the barrier sepa-rating the ores vanishes, i.e., �(R0) = 0. Below, weuse omputer simulations to �nd the dependene �(R)near R0, where the eletron transfer rate is relativelysmall, and ompare it with the dependene obtainedon the basis of a simple and transparent model [8℄ inthe adiabati and diabati limits. In this model, theeletron transitions between two ores are onsidereda result of the �ux of a lassial eletron through theross setion in the middle between the nulei, wherethe lassial eletron may be loated. This ross se-tion, through whih a lassial eletron an transferbetween the ores, is equal to �(R20 �R2)=4 at a givendistane R between the nulei, and the eletron �uxthrough this ross setion is Neve=4, where Ne is theaverage eletron density near the separation plane ifthe eletron is loated in the �eld of the �rst nuleus,and ve is its veloity in the separation plane. Hene,within the framework of this model, we have�(R) = pR20�R2Z0 Neve4 � 2�b db; (11)where b is the distane from the axis joining the nu-lei in the symmetry plane that separates the e�ets of�elds of di�erent ores.In the lassial ase, we have N � 1=ve, whih givesthe rate of eletron transfer in the ase where the holeradius for the lassial eletron transition between theores is small as�(R) = a(R20 �R2); a = 1:2 � 10�3: (12)We �nd the fator a from the results of omputer sim-ulation in the limit of small ollision energies, but the

range of validity of approximation (12) is narrow. Weuse the approximation�(R) = a(R20 �R2) exp �b(R20 �R2)3� ; (13)and omputer simulation gives b = 6:2 � 10�5. Fromthis, we an �nd the transition probability in aor-dane with Eq. (8) and the lassial ross setion ofeletron transfer in aordane with Eq. (9) if we as-sume that W (�; v) = 1=2 for small impat parametersof ollisions, where approximation (13) is violated.We note a similarity law for the transition of a las-sial eletron with respet to the parameter  (the ion-ization potential is J = 2=2). The similarity law givesR � 1=2; v � ; � � 1=4; t � 1=3; � � 3;and this was used in Figs. 1 and 2. Correspond-ingly, the eletron transfer probability an be taken asW (�2; v=). We note that the parameter 1= is analo-gous to the prinipal quantum number for the hydrogenatom.We also give the limit expressions for the ross se-tion of resonant harge exhange if this proess resultsfrom a �ux of the lassial eletron through the las-sially available ross setion that separates the twoCoulomb ores [8℄. In the limit ases of small and largeollision veloities v, this model gives the following ex-pressions for the ross setion of eletron transfer:� =8>>><>>>: 184 "1� 0:8�v�2=5# ; v � ;12v5 ; v � : (14)Here, all the parameters are expressed in atomi units.We note that the analysis of this problem an bebased on the traditional lassial method [9℄ using las-sial trajetories for olliding partiles. In partiu-lar, this approah was used for alulating the hargeexhange in ollisions of hydrogen atoms with multi-harged ions [10, 11℄. In spite of the analogy of thisproess to the proess under onsideration, the las-sial desription of the hydrogen atom in the groundstate is problemati. This does not allow omparingthe results of di�erent proesses. The di�ulties inthe onsidered problem of ollision of a highly exitedatom and an ion are related to parameters of the inter-ation of olliding partiles at di�erent distanes be-tween them, whih are known orretly only at largedistanes. This fat ompels us to onstrut anothersheme of evaluation of the ross setion of resonantharge exhange, di�erent from the standard lassial999



E. A. Andreev, P. V. Kashtanov, B. M. Smirnov ÆÝÒÔ, òîì 129, âûï. 6, 2006sheme [9℄. Indeed, although information about theinteration parameters at low distanes between ollid-ing partiles is not orret, the average probability ofresonant harge exhange at low impat parameters is1/2. This allows us to determine the ross setion ofresonant harge exhange in aordane with Eq. (10),beause the ross setion is determined by large dis-tanes between olliding partiles, where the eletrontransfer rate is evaluated orretly.4. SEMICLASSICAL ELECTRON IN THEFIELDS OF TWO COULOMB CENTERSWe now analyze the eletron transfer between twoCoulomb enters from another standpoint, onsideringa highly exited eletron as a semilassial objet. Ifthe enters are motionless, we restrit ourselves by theadiabati limit and determine orretions due to addi-tional interations of the eletron with Coulomb en-ters. This allows us to �nd the riterion for the validityof approximation (3) with only the Coulomb interationof the eletron with the seond enter. The Shrödingerequation for an eletron in the �eld of two Coulomb en-ters is separated in ellipti oordinates [12, 13℄, and theeletron state is haraterized by the ellipti quantumnumbers n; n1; n2, and m. Ignoring additional intera-tions, we have the eletron energyE0 = � 12n2 � 1R: (15)Formula (15) is similar to formula (3) if the prinipalquantum number is n = 1=, and the ionization po-tential of a highly exited atom is J = 1=2n2. Equa-tion (15) holds at large distanes between the Coulombenters when the interation of the eletron with theseond Coulomb enter is redued to their Coulomb in-teration. We represent the eletron energy at largedistanes R between the enters in the form of an ex-pansion over a small parameter of the order of 1=R,and then represent the eletron energy asE = E0 +�E: (16)We take n � 1 for a highly exited eletron, assumethe eletron momentum projetion on the moleularaxis to be m = 0 in aordane with the above evalua-tions, and assume n1 � n2 for simpliity. Under theseonditions, we have [14℄�E = �5n4R3 + 7n6R4 : (17)We see that the small parameter of this expansion isproportional to n2=R.

From this, we an �nd that the expansion is validat some distanes between the Coulomb enters belowR0 = 6n2, at whih the barrier that separates the �eldsof two Coulomb enters ating on the eletron vanishes.Although formally applying the above expansion at dis-tanes R < R0 is not valid, we an use this expan-sion in some range of R where E0 � �E. Indeed, atR = R0 = 6n2, the ratio of terms in Eq. (16) isj�EjjE0j = 0:027:For R = 4n2, when a lassial eletron an freely trans-fer between the two enters, we havej�EjjE0j = 0:034:For R = 3n2, the above formula givesj�EjjE0j = 0:059;and for R0 = 2n2, we obtain the ratio of terms inEq. (16) as j�EjjE0j = 0:19:Thus, we use the Coulomb interation only for an ex-ited eletron that transfers between �elds of two ores,and this interation is desribed by Eqs. (3) and (15) forthe eletron energy. Of ourse, this holds for not smalldistanes between the Coulomb enters, but these for-mulas an be used in a range of distanes between theCoulomb enters where a lassial eletron an transferbetween the Coulomb enters freely. One an be surethat the above approximation for a lassial eletron isvalid for distanes between the nulei R > 2n2.Another problem is the number of eigenstates thatare present in a real state of a highly exited eletrontransferred between two olliding Coulomb enters. We�rst suppose that the eletron is in a state with quan-tum numbers n; l;m. Assuming the onservation of theeletron energy, i.e., of the prinipal quantum numbern, we then �nd the rate of eletron transition to neigh-boring states of the eletron momentum. In partiular,the ross setion of ollision of a highly exited atomwith an ion for the transition l ! l � 1, averaged overthe eletron momentum projetion on the impat pa-rameter diretion, is [4℄�l!l�1 = 6�n4v2a l + 12l + 1 ln v2an�l ; (18)where �l � 1 is the quantum defet for this state andva is the ollision veloity. We see that this ross setion1000



ÆÝÒÔ, òîì 129, âûï. 6, 2006 Resonant harge exhange involving highly exited atomssigni�antly exeeds the ross setion of lassial ele-tron transfer, i.e., suh transitions proeed e�etivelyin the range of distanes R � R0. This means thatthe states of di�erent eletron momenta are e�etivelymixed in the �eld of a given Coulomb enter in theourse of ollision. We note that during this ollision,the eletron momentum projetion onto the diretionperpendiular to the motion plane is onserved just asin the lassial ase. The prinipal quantum numberis onserved essentially due to the adiabati hara-ter of the eletron energy variation in slow ollisions(exluding small distanes between enters where theeletron re�ets many times from the moving ores).But other quantum numbers are mixed for a highly ex-ited eletron beause of the interation with the mov-ing Coulomb enters. Therefore, a real eletron stateat a given time is a mixture of many eigenstates of theeletron loated in the �eld of two Coulomb enters,and using ellipti and spherial eletron oordinates isequivalent to the quantum analysis of this problem. Be-low, we therefore use a simpler ase of spherial oor-dinates for a transferring eletron.We note one more peuliarity of this resonantharge exhange proess that follows from the aboveanalysis. Beause the eletron transfer ross setionis less than the ross setion (18) of transition betweenstates with neighboring eletron momenta, the splittingof exited levels an be negleted at ollision veloitieswhen the Massey parameter is small. This is true fornot small ollision veloitiesva � Æl=n2;where Æl is the quantum defet for a given exited state.5. TRANSITION OF A SEMICLASSICALELECTRONA ertain ontribution to the ross setion of theeletron transfer proess involving a highly exitedatom follows from the distanes where the lassialeletron transition is impossible. Therefore, we nowonsider the problem of eletron transfer from anotherstandpoint, based on the priniples of quantum me-hanis. Taking the transferring eletron in the s-statein the Coulomb �eld of two slowly moving ores, weassume that the exhange interation is small in om-parison with the energy of transition to a neighboringeletron state. We an then neglet the transitions toother eletron states, and the resonant harge exhangeresults from the interferene of even and odd eletron

states. Indeed, in this ase, the eletron wave funtionis 	 = 1p2 g exp0��i tZ�1 "gdt01A++ 1p2 u exp0��i tZ�1 "udt01A ; (19)where  g and  u are the even and odd eletron wavefuntions and "g and "u are the energies of these states.These values depend on the distane R between the nu-lei as a parameter, and the state symmetry refers tothe eletron re�etion with respet to the plane thatpasses through the middle of the axis joining the nuleiand bisets it. From this, we obtain the probability ofharge exhange at a given impat parameter of olli-sion as [15℄W = jh 2 j 	(t =1)ij2 = sin2 1Z�1 �2 dt; (20)where the exhange interation potential is� = "g � "u:It follows that the rate of the eletron transition be-tween two ores is now given by� = �2 ; (21)where we use the atomi units, as previously.We note that in the lassial ase, transition proba-bility (7) averaged over initial eletron positions variesmonotonially from 0 to 1=2; this is in ontrast to thisase of one eletron state in a highly exited atom,where the transition probability osillates between 0and 1. Indeed, we onsider the ase where the initialeletron state inludes a mixture of many eigenstates.Taking the eletron wave funtion in the atom in theform 	 =Xi j jand assuming the absene of transitions between thesestates, we obtain the transition probability asW (�) =Xi jj j2 sin2 1Z�1 �j2 dt ==Xi jj j2 sin2 �j(�); (22)1001



E. A. Andreev, P. V. Kashtanov, B. M. Smirnov ÆÝÒÔ, òîì 129, âûï. 6, 2006where the parameters �j(R) and�j(�) = 12 1Z�1 �jdtorrespond to a given eletron state. It follows thataveraging over states leads to a monotoni variation ofthe transition probability from 0 to 1=2, similarly toEq. (7) for a lassial eletron.Nevertheless, we have a di�erent harater of tran-sition in the quantum and lassial ases. Indeed, inthe quantum ase, we operate with the amplitudes ofeletron loation in the �eld of the �rst (a1j) and theseond (a2j) ores, and the Shrödinger equation forthese amplitudes has the form [6℄ia1j = �j2 a2j ;ia2j = �j2 a1j (23)if we neglet the transitions between eletron stateswith di�erent j. Therefore, introduing the transitionrate averaged over eletron states in the �eld of the �rstore, we an see that the dependenes in (22) and (7b)are di�erent when the transition probability is small.This di�erene follows from the di�erent harater ofthe quantum and lassial mehanis beause the �rstdeals with amplitudes and the seond with probabili-ties. In �nding the eletron transfer ross setion, weassume a sharp dependene �j(�), whih allows usingthe asymptoti theory [5℄ with the ross setion� = �R202 ; �(R0) = e�C2 = 0:28: (24)We note that in spite of the di�erene between the de-pendenes in (7) and (20) for the resonant harge ex-hange probabilities on the lassial and quantum num-bers, the ross setions of this proess are expressedthrough the eletron transfer rate by the same formu-las in aordane with Eqs. (10) and (24).Analyzing the eletron transfer from the quantumstandpoint, we use a simple model in whih a highlyexited s-eletron is loated in the �eld of two mov-ing Coulomb enters. In this ase, the rate of eletrontransition between two ores is determined by the ion�atom exhange interation potential, and below we �ndit both in the ase where a lassial eletron an passto the region of another ore and in the ase wherethis transition has the tunnel harater. Plaing ahighly exited eletron in the s-state, when its waveis isotropi with respet to angles, we obtain the fol-lowing general expression for the exhange interationpotential [15℄:

�(R) = �R 2�R2 � ; R > R0: (25a)Here,  (r) is the total wave funtion of the s-eletronloated in the �eld of two single-harged ores. Thisfuntion is taken at the midpoint between the nulei.This exhange interation gives the rate of the eletrontransition from one ore to the other as�(R) = �(R)=2;whih aounts for both over-barrier and tunnel ele-tron transitions. If the lassial transition of an ele-tron between the �elds of two ores is possible, i.e.,R < R0, the tunnel transition makes a ertain ontri-bution to the eletron transfer rate, given by�tun = �(R0)2 = �2R0 2�R02 � ; R < R0: (25b)Thus, mixing of exited states in the ourse of ollisionof a highly exited atom and ion leads to Firsov formula(25) for the rate of tunnel eletron transition, althoughthis formula initially desribes the transition betweentwo atomi s-states of a quantum system [15℄.We now ompare this with the rate obtained for alassial model [8℄, where the eletron transfer is on-sidered as a �ux through the symmetry plane loatedin the middle between the ores and biseting it. Thenthe eletron �ux is Neve=4, where Ne is the eletronnumber density and ve is the eletron veloity. Be-ause Ne � 1=ve in the lassial ase, the eletron �uxis independent of the ross setion point in the lassi-ally available region. Hene, the rate of transfer of alassial eletron is�l(R) = Neve4 �(R20 �R2)4 : (26)At the midpoint of the moleular axis, we haveR0 �R� R0, thenNe =  2�R2 � ; ve =s2� 4R � 4R0�:This gives the rate of transfer of a lassial eletronbetween the ores as�l(R) = �4p2 2�R2 � (R20 �R2)rR0 �RRR0 : (27)This leads to the ontribution of over-barrier transi-tions to the total eletron transfer rate given by2�l(R)�(R) = p2(R0 +R)4pR0 �R0 �RR �3=2 ==rR02 �3=2; (28)1002



ÆÝÒÔ, òîì 129, âûï. 6, 2006 Resonant harge exhange involving highly exited atoms� = R0 �RR0 � 1:In aordane with the de�nition, the ratio (R0�R)=Ris small, R0 �RR � 1;and we use it as a small parameter. We then �ndthat the ontribution of the lassial transfer dominateswhen R < R0, and these distanes are not su�ientlyshort.We an estimate the ontribution to the eletrontransfer rate from general onsiderations. Indeed, the dependene for the lassial rate of eletron transi-tion is �l(R) / 3;while the tunnel rate is�tun(R) / 4 (R � 1=2):Hene, for a highly exited eletron ( � 1), the rateof the over-barrier transition exeeds the rate for thetunnel transition in the range where the lassial ele-tron transfer is permitted (R < R0), exluding a rangenear the ritial distane.Using the assumption about the isotropy of the ele-tron wave funtion (in partiular, in order to pass fromthe three-dimensional to the one-dimensional ase), weobtain the following semilassial expressions for theeletron wave funtion (see, e.g., [16℄): = Crpp os0� rZ0 pdr � �41A (29a)in the region of lassial motion and = C2rpjpj exp0�� rZ0 jpj dr1A (29b)in the region where loation of a lassial eletron isforbidden. Here, C is a normalization fator, and inthe adiabati ase of ion�atom ollisions, the eletronmomentum is equal top =p2 ("� U); " = �22 � 1R;U = � 1r1 � 1r2 ; (30)

where R is the distane between the nulei, and r1 andr2 are the distanes between the eletron and the �rstand the seond nulei. In the limit of large separations,R2 � 1;Eqs. (25) give the general expressions for the wave fun-tion of a lassial eletron with zero momentum [4; 17℄.Above, we used the form of the Shrödinger equationfor the radial wave funtion, whih is similar to the one-dimensional Shrödinger equation if the radial wavefuntion is multiplied by r:To obtain the normalization fator C, we �nd theasymptoti expression for the radial wave funtion,whih has the form (r) = Ar1=�1e�r ; r2 � 1; (31a)where A = 3=2 (2)1=� (1=) (31b)in the ase where an exited eletron is loated in theCoulomb �eld of a ore. Evaluating wave funtion(29b) in the limit r2 � 1 and aounting for jpj = in this limit ( = 1=n), we obtain (r) = C2rpjpj exp0�� rZ0 jpj dr1A == C2rp exp0�� rZr0 r2 � 2r dr1A == Cr1=�1e�re1=2p(22)1=�1: (32)Comparing this expression with Eq. (31a), we �ndC = Ap e�1=2(22)1�1= == 2e�1=25=2�1=��1� 1� : (33)The Table ontains the values of the oe�ients A andC for integer values of n = 1=.We �rst onsider the over-barrier eletron transi-tion, where, averaging over the phase in formula (26a)in aordane with Eqs. (32) and (33), we have� = �C2Rr 6R � 2 ; C2 = 12� 2664Z d os � [r0;R=2℄Z0 drr2r + 2pr2 +R2 � 2Rr os � � 2R � 23775�1 : (34)1003



E. A. Andreev, P. V. Kashtanov, B. M. Smirnov ÆÝÒÔ, òîì 129, âûï. 6, 2006Coe�ients A and Cn = 1= A C1 2 2pe2 12p2 1e3 481p3 1e3=24 1768 43e2In this expression, we assume  to be a small param-eter,  � 1, and use Eq. (29a) for the eletron wavefuntion. The turning point r0 at a given polar angle �with respet to the axis is determined by the onditionp = 0, whih gives the equation2r0 + 2pr20 +R2 � 2Rr0 os � = 2R + 2: (35)A typial atom size is r � 1=2;and therefore C2 � r � 1=2and � � 1=:In Fig. 3, we present the semilassial eletron trans-fer rate �(R) in omparison with that of the lassialmodel.6. TRANSITION OF AN EXCITED ELECTRONBETWEEN TWO COULOMB CENTERSWe have onsidered two models for transition of ahighly exited eletron between two olliding Coulombenters. In the �rst model, an exited eletron is mov-ing in a lassially available region. Aording to sub-sequent estimations, this onsideration is valid for dis-tanes between enters R > 2n2. In this distanerange, the lassial model desribes eletron evolutionorretly, allowing us to �nd the ross setion of the res-onant harge proess, if this ross setion is averagedover initial onditions. Although the lassial modelleads to an error at small distanes between the nulei,

this is not important for resonant harge exhange be-ause the eletron transfer probability at strong inter-ation is equal to one half. We note that the lassialmodel does not aount for tunnel transitions, whihan make a large ontribution to the ross setion.The other model for resonant harge exhange isbased on the quantum harater of eletron transitionand therefore aounts for tunnel eletron transitions.But in this ase, we use a simple expression to modelthe eletron wave funtion, whih does not allow us tofollow the evolution of the eletron wave funtion neareah ore. In other words, the time variation of thewave funtion paket for the eletron is not taken intoaount in this approah.Nevertheless, we an use the advantages of eahmodel by mathing the eletron transfer rates as a fun-tion of the distane between the ores. We assume thatthe semilassial model gives a orret dependene ofthe eletron transfer rate on the separation R. We thenmath this dependene with that given by the lassi-al model in the range of separations with over-barriertransitions where the lassial model is orret.7. CONCLUSIONSIn onsidering the resonant harge exhangeproess with transition of a highly exited eletron,we use two models for the transferred eletron, thelassial and semilassial ones. The lassial modeldesribes the eletron behavior in a lassially availableregion and allows determining the ross setion ofover-barrier eletron transfer. The semilassial modelassumes the absene of transitions between eletronstates when the eletron is loated in the �eld of oneore, but simultaneously aounts for over-barrierand tunnel eletron transitions. Corretion of thesemilassial model based on the lassial modelin a lassially available region of eletron loationallows determining the eletron transfer probabilityin a wide range of impat parameters and separately�nding the ontributions of the over-barrier and tunneleletron transition to the ross setion of resonantharge exhange. Both models are not orret at smalldistanes between the Coulomb ores where the �eldsof both ores are mixed. But this is not essential forevaluation of the eletron transfer ross setion beausethe probability of resonant harge exhange is equal to1/2 for ollisions with suh impat parameters.This paper is partially supported by the RFBR(grant � 04-03-32736).1004
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