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Transition of a classical electron between two Coulomb centers is analyzed on the basis of computer simulations.
The contribution to the electron transfer cross section from a tunnel electron transition is evaluated with the
strong mixing of highly excited electron states due to motion of Coulomb centers taken into account. The
rate of transition of a highly excited electron between two Coulomb cores with a fixed separation is evaluated
together with the cross section of resonant charge exchange in slow collisions. Typical times of change of the
electron momentum as a result of electron motion in the field of two Coulomb centers are determined.
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1. INTRODUCTION

The resonant charge exchange process is of impor-
tance for transport processes in nonequilibrium weakly
ionized gases, in particular, for cosmic plasmas where,
along with charged atomic particles, excited atoms are
present with a remarkable concentration (see, e.g., [1]).
The problem of resonant charge exchange with a transi-
tion of a highly excited electron is studied starting from
Sena’s papers [2, 3]. He has shown that the transition
of a classical electron has an over-barrier character, and
the maximum cross section of the resonant charge ex-
change in this case is

oo = TR3/2,

where Ry is the distance between colliding particles
when the barrier separating the fields of the first and
second cores disappears. This occurs in slow collisions
when, at distances below Ry, the probability of the elec-
tron location near each core after the collision is 1/2.
At an arbitrary collision velocity v, the cross section
o of the resonant charge exchange can be represented
as [2]

o =oof(v/vo),
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where the typical electron velocity vy follows from the

relation

62

= R_O
(me is the electron mass and e is its charge) and the

universal function f(z) tends to unity at small z and
behaves as 1/ at large z.

meg

One can solve this problem more correctly and find
the electron transfer cross section by computer simula-
tions. Numerical solutions of the problem of transition
of a classical electron between two Coulomb cores as a
result of collision of a highly excited atom with an ion
is the subject of this paper. Along with the cross sec-
tion of resonant charge exchange, computer simulation
of this problem allows analyzing other parameters of
electron evolution including the change in the electron
angular momentum and its binding energy. We analyze
collision of a Rydberg atom with an ion by computer
simulation of an excited classical electron.

2. CHARACTER OF ELECTRON MOTION IN
THE COURSE OF CHARGE EXCHANGE

The classical transition of an excited electron be-
tween two Coulomb centers proceeds when the distance
R between colliding particles is less than the critical
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distance Ry at which the barrier separating the fields
of ions disappears. Because the barrier is symmetric
with respect to the ion positions, its maximum is at the
middle point between the ions. The barrier is decreased
compared to the continuum-spectrum boundary due to
the electron—ion interactions, equal to 4e?/R at a dis-
tance R between the nuclei (we take the ion charge to
be equal to the electron charge e). But we have dif-
ferent results for the critical distance depending on the
character of change of the ion fields [4]. Indeed, in the
adiabatic limit, the electron potential energy is given
by

where r; and ry are the electron distances from the
corresponding nucleus, R is the distance between the
nuclei, and we use the atomic units e> = m, = h = 1.
At large distances between the nuclei, this field is split
between two regions of action of each nucleus, and these
regions are separated by a barrier. This barrier disap-
pears at the distance Ry between the nuclei determined
by the condition

U(Tl =T2=R0/2)=E7 (1)

where ¢ is the electron energy. In the adiabatic limit,
at a distance R between the nuclei, we have

1
=—-J-= 2
= = e
where
J=7%/2
is the atom ionization potential. The barrier vanishes
at
R(] == 3/J = 6/’)/2

Accordingly, the cross section of resonant charge ex-
change in this limit, which corresponds to low collision
velocities v < 7, is

TR: 187 _ O

3~ T (32)

Oad =
In the diabatic limit, the electron energy is ¢ = —J,
and condition (1) implies that

Ro=4/J.

This gives the cross section of barrier disappearance in
the diabatic limit as
mRi 32m 8w

= (3b)

Odiab = = = —
diab 2 74 J27

which corresponds to high collision velocities v > 7.
This formula describes the diabatic way of collisions,

such that the second ion does not change the electron
energy in the field of the first ion in the course of col-
lision. Thus, the adiabatic and diabatic ways in which
atomic particles approach each other lead to different
cross sections of the electron transfer.

3. COMPUTER SIMULATION OF THE
TRANSITION OF A CLASSICAL ELECTRON
BETWEEN TWO COULOMB CENTERS

In considering the problem of motion of a classical
electron in the field of two moving Coulomb centers, we
take the electron momentum to be zero or almost zero.
It is then convenient to choose the boundary condition
that the electron velocity is zero or almost zero, and
the electron distance from the parent Coulomb center
is

ro = e?/J.

In this problem, the electron motion is described by the
Newton equations

i L A
dt2 - 8xi7 T — ’y7 Iy
2 2
r--C o (@)
r|r—p— vt

where
T:‘/$2+y2+22

is the distance of the electron from the first Coulomb
center (where the electron is located at the beginning),
p is the impact parameter of collision of two Coulomb
centers, and v is the collision velocity. Under these
assumptions, the cores are moving along straight tra-
jectories. Taking the direction of p along the z axis
and the direction of v along the y axis, we obtain the
set of Newton equations in the form

Pxr oz

_ rT—p
a2~ 3 rs
Py oy y+ot
ay_ Y 5
dt? r3+ rs (5)
2z oz z

:—-|——3/

a2~ 33

where

ro= @ —p + [y — vt + 2

is the electron distance from the second atomic core,
and we introduce the reduced distance
r—=r/ro, p— p/ro,

the reduced velocity
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Fig. 1. The probability of electron transfer between two

Coulomb centers versus the impact parameter of colli-

sion of Coulomb centers at given velocities according

to computer simulations. v = 0.01vg (m), 0.02vo (¢),
0.05v0 (%), 0.1vo (A), vo = e?~/h

v — v /vy,
and the reduced time
t — t/tq,

where
vo = \/2J/me,

Within the computer simulation framework, we
solve system (5) of Newton equations under different
initial conditions for a given impact parameter of col-
lision, which gives the probability for the electron to
transfer to the second core after the collision and the
probability to change the momentum and binding en-
ergy at a given impact parameter of the collision. From
this probability, we find the cross section of resonant
charge exchange at the given collision velocities, and
dispersions of the electron binding energy and angular
momentum. Figure 1 shows the probability W (p,v)
of the electron transition into the field of another core
as a function of the impact parameter of collision at
some collision velocities. Each dot results from aver-
aging over 500 initial conditions that correspond to a
random electron location on the sphere of the radius
ro = €?/.J centered at the first Coulomb center, where
J is the electron binding energy at the beginning. This
boundary condition corresponds to zero electron veloc-
ity at the beginning. Figure 2 shows the velocity depen-
dence for the cross section of resonant charge exchange
involving a highly excited atom with over-barrier elec-
tron transitions taken into account.

Computer simulation of a classical electron in the
field of two Coulomb centers exhibits large fluctuations
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Fig.2. The reduced cross sections of resonant charge
exchange for a highly excited atom, given in units a3 /~*
(ao is the Bohr radius), versus the collision velocity ex-
pressed in e?v/h. The cross sections of the over-barrier
electron transfer follow from computer simulations for a
classical electron in the field of two Coulomb centers
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Fig.3. The rate of electron transfer between two

Coulomb centers for a fixed distance between the cen-
ters. Dots are the rates of the over-barrier elec-
tron transition due to computer simulation, the solid
line approximates these results by the dependence
v(R) =~ a(R — R?)exp[b(R§ — R*)?] in accordance
with formula (13), the dashed line gives the rate of the
tunnel electron transition in accordance with (25) for
n = 1/4 = 4. The reduced rate is expressed in units
1*~® /mee* and the reduced distance is given in units

ao/v*

of electron parameters at small distances between the
cores due to their motion. To eliminate the effect of
small distances between the cores on the electron pa-
rameters, we formulate this problem differently and,
fixing the distance between the cores, determine some
electron parameters. We let v(R) denote the average
rate of electron transition between the cores at a given
distance R between the cores, which allows determin-
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Fig.4. The relative fluctuation of the electron momen-
tum AM?/(M?) at a typical time 1/v of the electron
transition between Coulomb centers at a fixed distance
R between them according to computer simulations

ing the probability of electron transfer in slow collisions.
Figure 3 contains this value for a classical electron, i.e.,
with over-barrier transitions taken into account. Fi-
gure 4 shows the fluctuation of the electron momen-
tum with respect to the initial Coulomb center during
a typical transition time 1/v. This demonstrates a re-
markable mixing of states of a classical electron in the
course of electron transfer.

Based on the rate v(R) of the electron transfer be-
tween two Coulomb cores, we have the following bal-
ance equations for the probabilities P;(t) and P»(t) of
the electron location at time ¢ in the field of the first
and the second core:

dP

@ = VPP,

dP, (6)
W = —I/(P2 — Pl)

The solutions of these equations under the initial con-
ditions

Pl(t:—OO)Zl, Pz(t:—OO)ZO
(with P, + P, = 1) are given by

t

1 1
Pi(t) = 5t gexp -2 / v(t)dt' |,
- (7a)
Py(t) = % — %exp -2 / v(t') dt’

— o

If the transition probability after the collision is small,
it is given by the formula

998

Py(sc) = 1= Pi(x) =C(p) = [ vit)ydt.  (7h)

/

Within the framework of the classical model (we as-
sume free relative motion of nuclei, i.e., R? = p?40%t?),
it follows from Eq. (7a) that the probability W (p, v) of
the above-barrier electron transition at a given impact
parameter p of collision is given by

1
W(p,v) = Pa(oo) = 5 -
1 2 ' RdR
sesp | =2 [ v ] ®
p

From this, we find the cross section ¢ of resonant
charge exchange under the assumption of a sharp de-
pendence ((p), given by

C(p) = ¢(po) exp[—a(p — po)]

in a narrow range of p. Under these conditions, we
evaluate the cross section of resonant charge exchange
as

ag =

W(p,v) - 2mpdp =

(1 —exp[=2¢(p)]) mpdp. (9)

0\8

Applying the general method in [5, 6] for evaluating
the cross section to this expression, we divide integral
(9) into two parts,

o= / (1 —exp [-2¢(p)]) mpdp +
0
+/(1—exp [—=2¢(p)]) mp dp,

and take p; such that, on the one hand, {(p;) > 1 and,
on the other hand, the exponential dependence

C(p) = ¢(p1) exp[—a(p — p1)]
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near p; is valid for {(p) < 1. Then the integral for the
cross section reduces to the form [5, 7]

1
2
_ TP —exn(—2cn) 36 _
o= T v [ (1= exp(-20)) 5 =
0
C+1 2 (10)
:7rp1<p1+Tn<1>:%a

el
C(po) = — =028,

where (1 = ((p1), C = 0.577 is the Euler constant, and
we use the expansion for ¢; > 1. Equation (10) gives
an asymptotic expression for the classical cross section
of resonant charge exchange.

The classical rate of electron transfer to the field
of the other core becomes zero when the barrier sepa-
rating the cores vanishes, i.e., v(Rog) = 0. Below, we
use computer simulations to find the dependence v(R)
near Ry, where the electron transfer rate is relatively
small, and compare it with the dependence obtained
on the basis of a simple and transparent model [8] in
the adiabatic and diabatic limits. In this model, the
electron transitions between two cores are considered
a result of the flux of a classical electron through the
cross section in the middle between the nuclei, where
the classical electron may be located. This cross sec-
tion, through which a classical electron can transfer
between the cores, is equal to 7(R2 — R?)/4 at a given
distance R between the nuclei, and the electron flux
through this cross section is N.v./4, where N, is the
average electron density near the separation plane if
the electron is located in the field of the first nucleus,
and v, is its velocity in the separation plane. Hence,
within the framework of this model, we have

v(R) = / sz‘f.mdb, (11)
0

where b is the distance from the axis joining the nu-
clei in the symmetry plane that separates the effects of
fields of different cores.

In the classical case, we have N ~ 1/v., which gives
the rate of electron transfer in the case where the hole
radius for the classical electron transition between the
cores is small as

v(R) =a(R} - R?*), a=12-10"%. (12)
We find the factor a from the results of computer sim-
ulation in the limit of small collision energies, but the

range of validity of approximation (12) is narrow. We
use the approximation

v(R) = a(R§ — R*) exp [b(R} — R*)*] (13)

and computer simulation gives b = 6.2 - 107°. From
this, we can find the transition probability in accor-
dance with Eq. (8) and the classical cross section of
electron transfer in accordance with Eq. (9) if we as-
sume that W (p,v) = 1/2 for small impact parameters
of collisions, where approximation (13) is violated.

We note a similarity law for the transition of a clas-
sical electron with respect to the parameter v (the ion-
ization potential is J = 42/2). The similarity law gives

R~1/9, o ~1/7" v~

v~ t~1/7°,

and this was used in Figs. 1 and 2. Correspond-
ingly, the electron transfer probability can be taken as
W (py%,v/7). We note that the parameter 1/ is analo-
gous to the principal quantum number for the hydrogen
atom.

We also give the limit expressions for the cross sec-
tion of resonant charge exchange if this process results
from a flux of the classical electron through the clas-
sically available cross section that separates the two
Coulomb cores [8]. In the limit cases of small and large
collision velocities v, this model gives the following ex-
pressions for the cross section of electron transfer:

18 2/5
—4[1—0.8 <2> s VK Y,
o=4" . i (14)
5 v > v
vy

Here, all the parameters are expressed in atomic units.

We note that the analysis of this problem can be
based on the traditional classical method [9] using clas-
sical trajectories for colliding particles. In particu-
lar, this approach was used for calculating the charge
exchange in collisions of hydrogen atoms with multi-
charged ions [10, 11]. In spite of the analogy of this
process to the process under consideration, the clas-
sical description of the hydrogen atom in the ground
state is problematic. This does not allow comparing
the results of different processes. The difficulties in
the considered problem of collision of a highly excited
atom and an ion are related to parameters of the inter-
action of colliding particles at different distances be-
tween them, which are known correctly only at large
distances. This fact compels us to construct another
scheme of evaluation of the cross section of resonant
charge exchange, different from the standard classical
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scheme [9]. Indeed, although information about the
interaction parameters at low distances between collid-
ing particles is not correct, the average probability of
resonant charge exchange at low impact parameters is
1/2. This allows us to determine the cross section of
resonant charge exchange in accordance with Eq. (10),
because the cross section is determined by large dis-
tances between colliding particles, where the electron
transfer rate is evaluated correctly.

4. SEMICLASSICAL ELECTRON IN THE
FIELDS OF TWO COULOMB CENTERS

We now analyze the electron transfer between two
Coulomb centers from another standpoint, considering
a highly excited electron as a semiclassical object. If
the centers are motionless, we restrict ourselves by the
adiabatic limit and determine corrections due to addi-
tional interactions of the electron with Coulomb cen-
ters. This allows us to find the criterion for the validity
of approximation (3) with only the Coulomb interaction
of the electron with the second center. The Schrodinger
equation for an electron in the field of two Coulomb cen-
ters is separated in elliptic coordinates [12, 13], and the
electron state is characterized by the elliptic quantum
numbers n,n, ns, and m. Ignoring additional interac-
tions, we have the electron energy

1 1 15
T TR =
Formula (15) is similar to formula (3) if the principal
quantum number is n = 1/v, and the ionization po-
tential of a highly excited atom is J = 1/2n>. Equa-
tion (15) holds at large distances between the Coulomb
centers when the interaction of the electron with the
second Coulomb center is reduced to their Coulomb in-
teraction. We represent the electron energy at large
distances R between the centers in the form of an ex-
pansion over a small parameter of the order of 1/R,
and then represent the electron energy as

Ey =

E = Ey+ AE. (16)

We take n > 1 for a highly excited electron, assume
the electron momentum projection on the molecular
axis to be m = 0 in accordance with the above evalua-
tions, and assume njy > ny for simplicity. Under these
conditions, we have [14]
5nt TnS

AFE = ~ + i (17)
We see that the small parameter of this expansion is
proportional to n?/R.

From this, we can find that the expansion is valid
at some distances between the Coulomb centers below
Ry = 6n?, at which the barrier that separates the fields
of two Coulomb centers acting on the electron vanishes.
Although formally applying the above expansion at dis-
tances R < Ry is not valid, we can use this expan-
sion in some range of R where Ey > AE. Indeed, at
R = Ry = 6n?, the ratio of terms in Eq. (16) is

|AE]
| Eo|

= 0.027.

For R = 4n?, when a classical electron can freely trans-
fer between the two centers, we have

[AE]

= 0.034.
\Eo|

For R = 3n?, the above formula gives

|AE]
= 0.059,
| Eol ’
and for Ry = 2n?, we obtain the ratio of terms in
Eq. (16) as
|AE]
=0.19.
| Eol

Thus, we use the Coulomb interaction only for an ex-
cited electron that transfers between fields of two cores,
and this interaction is described by Egs. (3) and (15) for
the electron energy. Of course, this holds for not small
distances between the Coulomb centers, but these for-
mulas can be used in a range of distances between the
Coulomb centers where a classical electron can transfer
between the Coulomb centers freely. One can be sure
that the above approximation for a classical electron is
valid for distances between the nuclei R > 2n2.

Another problem is the number of eigenstates that
are present in a real state of a highly excited electron
transferred between two colliding Coulomb centers. We
first suppose that the electron is in a state with quan-
tum numbers n,l, m. Assuming the conservation of the
electron energy, i.e., of the principal quantum number
n, we then find the rate of electron transition to neigh-
boring states of the electron momentum. In particular,
the cross section of collision of a highly excited atom
with an ion for the transition [ — [ + 1, averaged over
the electron momentum projection on the impact pa-
rameter direction, is [4]

nt I+1  v2n

a1 A

O15141 =6 (18)

where A; < 1 is the quantum defect for this state and
v, 1s the collision velocity. We see that this cross section
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significantly exceeds the cross section of classical elec-
tron transfer, i.e., such transitions proceed effectively
in the range of distances R ~ Ry. This means that
the states of different electron momenta are effectively
mixed in the field of a given Coulomb center in the
course of collision. We note that during this collision,
the electron momentum projection onto the direction
perpendicular to the motion plane is conserved just as
in the classical case. The principal quantum number
is conserved essentially due to the adiabatic charac-
ter of the electron energy variation in slow collisions
(excluding small distances between centers where the
electron reflects many times from the moving cores).
But other quantum numbers are mixed for a highly ex-
cited electron because of the interaction with the mov-
ing Coulomb centers. Therefore, a real electron state
at a given time is a mixture of many eigenstates of the
electron located in the field of two Coulomb centers,
and using elliptic and spherical electron coordinates is
equivalent to the quantum analysis of this problem. Be-
low, we therefore use a simpler case of spherical coor-
dinates for a transferring electron.

We note one more peculiarity of this resonant
charge exchange process that follows from the above
analysis. Because the electron transfer cross section
is less than the cross section (18) of transition between
states with neighboring electron momenta, the splitting
of excited levels can be neglected at collision velocities
when the Massey parameter is small. This is true for
not small collision velocities

Va >>5l/n2.,

where d; is the quantum defect for a given excited state.

5. TRANSITION OF A SEMICLASSICAL
ELECTRON

A certain contribution to the cross section of the
electron transfer process involving a highly excited
atom follows from the distances where the classical
electron transition is impossible. Therefore, we now
consider the problem of electron transfer from another
standpoint, based on the principles of quantum me-
chanics. Taking the transferring electron in the s-state
in the Coulomb field of two slowly moving cores, we
assume that the exchange interaction is small in com-
parison with the energy of transition to a neighboring
electron state. We can then neglect the transitions to
other electron states, and the resonant charge exchange
results from the interference of even and odd electron

states. Indeed, in this case, the electron wave function
is

t

1 .
‘Il:ﬁngexp —2/6gdt' +
— o
. t
+ﬁ¢uexp —i/audt' . (19)

— o0

where 1, and 9, are the even and odd electron wave
functions and ¢4 and ¢, are the energies of these states.
These values depend on the distance R between the nu-
clei as a parameter, and the state symmetry refers to
the electron reflection with respect to the plane that
passes through the middle of the axis joining the nuclei
and bisects it. From this, we obtain the probability of
charge exchange at a given impact parameter of colli-
sion as [15]

W:Mﬂ@@:@ﬁzmﬁ/%m, (20)

—0

where the exchange interaction potential is
A=gy—cy.

It follows that the rate of the electron transition be-

tween two cores is now given by

V=

= (21)
where we use the atomic units, as previously.

We note that in the classical case, transition proba-
bility (7) averaged over initial electron positions varies
monotonically from 0 to 1/2; this is in contrast to this
case of one electron state in a highly excited atom,
where the transition probability oscillates between 0
and 1. Indeed, we consider the case where the initial
electron state includes a mixture of many eigenstates.
Taking the electron wave function in the atom in the

form
U=D et
i
and assuming the absence of transitions between these

states, we obtain the transition probability as

o0

A
W = E 12 qin2 = =
(p) - - |C] | sin / 2 dt

— o

:ZM%WMM(M
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where the parameters A;(R) and
1 oo
Gy =y [ At
—00

correspond to a given electron state. It follows that
averaging over states leads to a monotonic variation of
the transition probability from 0 to 1/2, similarly to
Eq. (7) for a classical electron.

Nevertheless, we have a different character of tran-
sition in the quantum and classical cases. Indeed, in
the quantum case, we operate with the amplitudes of
electron location in the field of the first (a1;) and the
second (as;) cores, and the Schrédinger equation for
these amplitudes has the form [6]

iay; = Tjam 23
A (23)
taz; = 7@1]‘

if we neglect the transitions between electron states
with different j. Therefore, introducing the transition
rate averaged over electron states in the field of the first
core, we can see that the dependences in (22) and (7b)
are different when the transition probability is small.
This difference follows from the different character of
the quantum and classical mechanics because the first
deals with amplitudes and the second with probabili-
ties. In finding the electron transfer cross section, we
assume a sharp dependence (;(p), which allows using
the asymptotic theory [5] with the cross section
2 -C
o= gy =" — o8, (24)
2 2

We note that in spite of the difference between the de-
pendences in (7) and (20) for the resonant charge ex-
change probabilities on the classical and quantum num-
bers, the cross sections of this process are expressed
through the electron transfer rate by the same formu-
las in accordance with Eqs. (10) and (24).

Analyzing the electron transfer from the quantum
standpoint, we use a simple model in which a highly
excited s-electron is located in the field of two mov-
ing Coulomb centers. In this case, the rate of electron
transition between two cores is determined by the ion—
atom exchange interaction potential, and below we find
it both in the case where a classical electron can pass
to the region of another core and in the case where
this transition has the tunnel character. Placing a
highly excited electron in the s-state, when its wave
is isotropic with respect to angles, we obtain the fol-
lowing general expression for the exchange interaction
potential [15]:

A(R) = tRy? <§) C R>Ry  (25)
Here, ¢ (r) is the total wave function of the s-electron
located in the field of two single-charged cores. This
function is taken at the midpoint between the nuclei.
This exchange interaction gives the rate of the electron
transition from one core to the other as

v(R) = A(R)/2,

which accounts for both over-barrier and tunnel elec-
tron transitions. If the classical transition of an elec-
tron between the fields of two cores is possible, i.e.,
R < Ry, the tunnel transition makes a certain contri-
bution to the electron transfer rate, given by

A(Ro) N ™

Viun = =

2 2

Rotp? (%) R < Ry. (25b)

Thus, mixing of excited states in the course of collision
of a highly excited atom and ion leads to Firsov formula
(25) for the rate of tunnel electron transition, although
this formula initially describes the transition between
two atomic s-states of a quantum system [15].

We now compare this with the rate obtained for a
classical model [8], where the electron transfer is con-
sidered as a flux through the symmetry plane located
in the middle between the cores and bisecting it. Then
the electron flux is N.v./4, where N, is the electron
number density and v, is the electron velocity. Be-
cause N, ~ 1/v, in the classical case, the electron flux
is independent of the cross section point in the classi-
cally available region. Hence, the rate of transfer of a
classical electron is

Vel (R)

_ Neve 7(R2 — R?)
T4 4 '

At the midpoint of the molecular axis, we have
Ry — R < Ry, then

_p2 (B _ 4_4
e (B) -3 2)

This gives the rate of transfer of a classical electron
between the cores as

(R = 70* (3 ) (7 - B

This leads to the contribution of over-barrier transi-
tions to the total electron transfer rate given by

(26)

Ry —R
RRy

(27)

= \/%63/2, (28)

2,(R) _ V2(Ro+ R) <R0 —R>3/2
A(R)  4yR, R
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Ry — R
= 1.
€ R <

In accordance with the definition, the ratio (Ry— R)/R
is small,

Ry —R
R
and we use it as a small parameter. We then find
that the contribution of the classical transfer dominates
when R < Ry, and these distances are not sufficiently
short.

We can estimate the contribution to the electron
transfer rate from general considerations. Indeed, the
~ dependence for the classical rate of electron transi-
tion 18 va(R) 737

<1,

while the tunnel rate is
(R~1/7%).

Hence, for a highly excited electron (y < 1), the rate
of the over-barrier transition exceeds the rate for the
tunnel transition in the range where the classical elec-
tron transfer is permitted (R < Ryp), excluding a range
near the critical distance.

Using the assumption about the isotropy of the elec-
tron wave function (in particular, in order to pass from
the three-dimensional to the one-dimensional case), we
obtain the following semiclassical expressions for the
electron wave function (see, e.g., [16]):

Viun(R) o 74

r

C
Y= ﬁ cos /pdr - % (29a)
0
in the region of classical motion and
C T
b= exp | = [ lpldr (20b)
2ry/|pl ,

in the region where location of a classical electron is
forbidden. Here, C' is a normalization factor, and in
the adiabatic case of ion—atom collisions, the electron
momentum is equal to

2
1
p= Q(E_U)a E:_%_Ev
1 1 (30)
U=————
1 T2
o . [ro,R/2]
1/:71-77 %= — /dcos@
R 6 2m
R Y

where R is the distance between the nuclei, and r; and
ro are the distances between the electron and the first
and the second nuclei. In the limit of large separations,

Ry > 1,

Eqgs. (25) give the general expressions for the wave func-
tion of a classical electron with zero momentum [4, 17].
Above, we used the form of the Schrodinger equation
for the radial wave function, which is similar to the one-
dimensional Schrédinger equation if the radial wave
function is multiplied by r.

To obtain the normalization factor C', we find the
asymptotic expression for the radial wave function,
which has the form

U(r) = Ar'/77leT™ ey > 1, (31a)

where

73 /2 (27)1/ v
I'(1/7)

in the case where an excited electron is located in the

Coulomb field of a core. Evaluating wave function

(29b) in the limit ry2? > 1 and accounting for |p| = v

in this limit (y = 1/n), we obtain

A= (31h)

C r
60) = 5o e —0/p| dr | =

C f / 2
= — 2 —d =
2r/y P / 7 r "
7o

— Crl/fyflefrﬂyel/QFyﬁ(Qﬂﬂ)l/fyfl. (32)

Comparing this expression with Eq. (31a), we find

C = ie—l/%(%?)l—l/v —
v

— 26—1/2775/2—1/71-‘—1 <%> ) (33)

The Table contains the values of the coefficients A and
C for integer values of n = 1/7.

We first consider the over-barrier electron transi-
tion, where, averaging over the phase in formula (26a)
in accordance with Eqs. (32) and (33), we have

dr

2
Z4
’ \/7' Vr2+ R2 —2Rrcosf R

5 — (34)
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Coefficients A and C

n=1/y A C

1 2 2
N

1 1

2 S -

22 e
3 4 1
81\/3 63/2

1

4 i _

768 3e2

In this expression, we assume v to be a small param-
eter, v < 1, and use Eq. (29a) for the electron wave
function. The turning point ry at a given polar angle #
with respect to the axis is determined by the condition
p = 0, which gives the equation

2 2 >
LA =Z 492 (35
ro  /r2+ R?—2Rrqcosf R ! (35)

A typical atom size is

r~1/97
and therefore
C? ~r ~1/)77
and
ve~1/7.

In Fig. 3, we present the semiclassical electron trans-
fer rate v¥(R) in comparison with that of the classical
model.

6. TRANSITION OF AN EXCITED ELECTRON
BETWEEN TWO COULOMB CENTERS

We have considered two models for transition of a
highly excited electron between two colliding Coulomb
centers. In the first model, an excited electron is mov-
ing in a classically available region. According to sub-
sequent estimations, this consideration is valid for dis-
tances between centers R > 2n%.  In this distance
range, the classical model describes electron evolution
correctly, allowing us to find the cross section of the res-
onant charge process, if this cross section is averaged
over initial conditions. Although the classical model
leads to an error at small distances between the nuclei,

this is not important for resonant charge exchange be-
cause the electron transfer probability at strong inter-
action is equal to one half. We note that the classical
model does not account for tunnel transitions, which
can make a large contribution to the cross section.

The other model for resonant charge exchange is
based on the quantum character of electron transition
and therefore accounts for tunnel electron transitions.
But in this case, we use a simple expression to model
the electron wave function, which does not allow us to
follow the evolution of the electron wave function near
each core. In other words, the time variation of the
wave function packet for the electron is not taken into
account in this approach.

Nevertheless, we can use the advantages of each
model by matching the electron transfer rates as a func-
tion of the distance between the cores. We assume that
the semiclassical model gives a correct dependence of
the electron transfer rate on the separation R. We then
match this dependence with that given by the classi-
cal model in the range of separations with over-barrier
transitions where the classical model is correct.

7. CONCLUSIONS

In considering the resonant charge exchange
process with transition of a highly excited electron,
we use two models for the transferred electron, the
classical and semiclassical ones. The classical model
describes the electron behavior in a classically available
region and allows determining the cross section of
over-barrier electron transfer. The semiclassical model
assumes the absence of transitions between electron
states when the electron is located in the field of one
core, but simultaneously accounts for over-barrier
and tunnel electron transitions. Correction of the
semiclassical model based on the classical model
in a classically available region of electron location
allows determining the electron transfer probability
in a wide range of impact parameters and separately
finding the contributions of the over-barrier and tunnel
electron transition to the cross section of resonant
charge exchange. Both models are not correct at small
distances between the Coulomb cores where the fields
of both cores are mixed. But this is not essential for
evaluation of the electron transfer cross section because
the probability of resonant charge exchange is equal to
1/2 for collisions with such impact parameters.

This paper is partially supported by the RFBR
(grant Ne04-03-32736).
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