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We theoretically consider a superlattice formed by thin conducting layers spatially separated between insulating
layers. The dispersion of two coupled phonon—plasmon modes of the system is analyzed by using the Maxwell
equations, with the retardation effect included. Both transmission for the finite plate and the absorption for the
semi-infinite superlattice in the infrared are calculated. Reflectance minima are determined by the longitudinal
and transverse phonon frequencies in the insulating layers and by the density-state singularities of the coupled
modes. We also evaluate the Raman cross section from the semi-infinite superlattice.

PACS: 63.22.+m, 73.21.Cd, 78.30.-j
1. INTRODUCTION

Coupling of collective electron oscillations (plas-
mons) to optical phonons in polar semiconductors was
predicted more than four decades ago [1], experimen-
tally observed using Raman spectroscopy in n-doped
GaAs [2], and extensively investigated since then (see,
e.g., [3]). On the contrary, the interaction of optical
phonons with plasmons in semiconductor superlattices
is much less studied. A two-dimensional electron gas
(2DEG) created at the interface of two semiconductors
has the properties that differ drastically from the prop-
erties of its three-dimensional counterpart. In particu-
lar, the plasmon spectrum of the 2DEG is gapless [4]
owing to the long-range nature of the Coulomb inter-
action of carriers, w?(k) = virok/2, where vp is the
Fermi velocity and kg is the inverse static screening
length in the 2DEG. Coupling of 2D plasmons to op-
tical phonons has been considered in Refs. [5,6] for a
single 2DEG layer. The resulting coupling is usually
nonresonant because the characteristic phonon energies
(30-50 meV) are several times larger than typical plas-
mon energies. Still, hybrid plasmon-optical-phonon
modes are of considerable interest in relation to po-
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laronic transport phenomena [7], Raman spectroscopy,
and infrared optical absorption experiments.

Plasmon excitations in a periodic system of the elec-
tron layers have been discussed in a number of theoreti-
cal papers [8, 9], disregarding the phonon modes. In the
present paper, we analyze the coupled phonon—plasmon
modes for a superlattice of 2D electron layers placed be-
tween insulating layers and demonstrate the possibility
of a stronger resonant coupling of plasmons to optical
phonons excited in the insulator. This enhancement oc-
curs in superlattices due to the interaction of plasmons
in different layers that spreads the plasmon spectrum
into a mini-band spanning the energies from zero up
to the new characteristic energy vp+/ko/d, where d is
the interlayer distance [10]. This value could exceed
typical phonon frequencies leading to formation of res-
onant hybrid modes around crossings of phonons and
band plasmons.

The coupled phonon—plasmon modes are usually
considered in the so-called electrostatic approximation,
with the retardation effect ignored and the terms of w/c
in the Maxwell equations neglected in comparison with
the terms having values of the wave vector k. This is
correct if the Raman scattering is studied, when w has
the meaning of the frequency transfer. Then, w is much
less than the incident frequency w’ ~ ck. But if we are
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interested in absorption for the infrared region, where
w is the frequency of incident light and corresponds to
the optical phonon frequency, w and ck are compara-
ble. In this case, the retardation effect must be fully
included.

The plan of this paper (preliminary results were
published in Ref. [11]) is as follows. In Sec. 2, the
Maxwell equations for the periodic system of thin con-
ducting layers sandwiched between the insulating layers
are solved, yielding the spectrum of coupled phonon—
plasmon modes. In Sec. 3, we consider absorption of a
finite sample of layers and reflectance of a semi-infinite
system in the infrared region. In Sec. 4, we analyze the
Raman light scattering from a semi-infinite system of
layers.

2. SPECTRUM OF COUPLED MODES

We consider a superlattice formed by periodically
grown layers of two polar semiconductors (e.g., GaAs
and AlGaAs) with 2DEG layers formed in the interface
regions (Fig. 1).

For simplicity, we assume a superlattice with a sin-
gle period d and the thickness of a 2DEG layer much
less than the period. We also neglect the difference in
bulk phonon properties of the two materials. Optical
phonons in polar semiconductors are most conveniently
described within the dielectric continuum model, which
yields the familiar phonon contribution to the dielectric
function,
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Fig.1. The stack of conducting 2D layers sandwiched

between dielectric layers of thickness d with the di-

electric constant £(w); zo and z1 are the boundaries

(dashed lines) of the sample if a finite stack is consid-
ered
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where wpo and wpo are the frequencies of longitudi-
nal and transverse optical phonons respectively, and
[ is the the phonon width (we do not distinguish the
widths of the TO and LO modes).

Collective modes of our system are described by the
Maxwell equations, which in the Fourier representation
with respect to time have the form

4riw

2
V(V-E) - V’E=c—FE + —2j,
C C

(1)
where the last term involves the in-plane electric cur-
rents j induced in the 2DEG layers by the electric field
E. As usual, when the frequency of the collective mode
lies above the electron—hole continuum, it is sufficient
to use the Drude conductivity to describe the in-plane
electric currents,

ie’n,

jjw,z,2) = m(wtin)

] Z 0(z=zn)Ej(w,2,2), (2)
n
where z, = nd are positions of interfaces (n is an in-
teger corresponding to the periodicity of the stack),
ne = p%/27h? and m are the electron density (per the
surface unit) and the effective mass, v is the electron
collision frequency, and x and z are the coordinates
along and perpendicular to the interfaces, respectively.
We consider the case of p-polarization, where the
field E lies in the zz plane and therefore the cur-
rent j has then only the z-component. Using the
Fourier transformations with respect to the z coordi-
nate, E o exp(ik,x), we can rewrite Maxwell equa-
tions (1) as

. dE, d’E, w? 4dmiw |
ey TR Tt g e
. dE, 2 w?
Zk‘z dz + <kx — SC—2> Ez =0.
Eliminating
ik, dE,
k2 dz

we obtain the equation for E,,

2

dz2?

—n2+2n025(2—zn)> E,(w, ke, 2) =0, (3)

where

2K w2

2’

2mnee

= =1/k2—=¢
ew(w +iy)m

At the interfaces z = z,, the E,-component must be
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Fig.2. The phonon-like (@) and plasmon-like (b) modes w4 (kz, k.) (their character is defined at small wave vectors k)
of an infinite number of 2D metallic layers (with the carrier concentration in every layer n. = 3 - 10" cm™?) sandwiched
between dielectric layers of thickness d. The frequencies w+ (kz, k.) in units of the phonon frequency wro are plotted as
functions of the in-plane wave vector k, and the quasi-momentum k. < 7/d (both in units 1/d). The parameters used here
are reported in the literature for GaAs: wro = 36.5 meV, wro = 33.6 meV, o = 10.6; the thickness is taken as d = 1/ko,

the screening length ko = 2me?/h?eoo = 2.5 -10°% cm

continuous and the z-component of the electric induc-
tion ¢E, has a jump,

E(Ez‘z:nd—&-o - E;|::nd—0) =
nd+0
=A4r /

nd—0

pw, ke, 2)dz,  (4)

where the carrier density is connected to current (2) by
the continuity equation

p(kax-,z) :jx(kaxvz>kx/w' (5)

For the infinite stack of layers, —oo < n < oo, in-
dependent solutions of Egs. (3) and (4) represent two
Bloch states E,(z) = f1(z) moving along positive and
negative directions of the z axis,

f+(z) = exp(xik.nd) {sh[k(z—nd)] — exp(Fik.d) x
xshle(z = (n+1)d)]}, nd<z<(n+1)d, (6)

with the quasi-momentum £, determined from the dis-
persion equation

cos(k.d) = ch(kd) — C sh(kd). (7)

The quasi-momentum k&, can be restricted to the
Brillouin half-zone 0 < k., < =w/d if the phonon and
electron damping vanishes. In the general case, we
fix the choice of the eigenfunctions in Eq. (6) by the
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condition Imk, > 0, such that the solution fy de-
creases in the positive direction z. Equation (7) im-
plicitly determines the spectrum wy (k;, k) of two cou-
pled plasmon-optical-phonon modes shown in Fig. 2 as
functions of the in-plane wave vector k, and the quasi-
momentum k.. These modes are undamped if the elec-
tron collision rate and the phonon width are small. The
modes arise from the interaction of the plasmon branch
in the 2DEG and the phonon LO mode in the 3D insu-
lator. They have a definite character far from the in-
tersection of the corresponding dispersion curves. For
instance, at small values of k,, the wy (k;, k,) mode is
mainly the phonon mode, whereas the w_ (k,, k.) mode
has mainly the plasmon character. At large values of
k., they interchange their character.

We note that k, = k. = 0 is a saddle point for both
branches w4 (k;, k). In the vicinity of this point, the
frequency grows as a function of k, and decreases with
increasing k.. This is evident from Fig. 3 and can be
explicitly shown in the limit of k; > w|e(w)|/¢, when
the retardation effects of the electromagnetic field are
negligible. Then, k ~ k, and Eq. (7) yields two solu-
tions,

. 1 . .
W (ke e) = S(0 + i)

1/2

+ - [(2* + wip)® — 4Q%w50 , (8)

DO | =
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Dispersion of coupled phonon—plasmon modes of an infinite number of 2D metallic layers sandwiched between

dielectric layers. The frequencies w4 (kz, k.) (in units of wro) are plotted as functions of (a) the in-plane wave vector k, for

two values of the quasi-momentum k. and (b) the quasi-momentum k. for two values of the in-plane wave vector ky; kz,

. in

z

units of the inverse period 1/d = 2.5-10° cm™". The dash-dotted lines represent the upper boundary w4 (kz, k. = 0) of two
phonon—plasmon modes and the solid lines mark the lower boundary corresponding to w+ (kz, k. = m/d). The parameters
are the same as in Fig. 2

where we introduced the notation
sh(k,d)

02 (ky, k) = W(Q)(kx)ch(kzd) —cos(kzd) ’

2mnee’k,

w(%(kZ) e
o0

and omitted the phonon and electron damping. The
frequency wq (k) is the conventional square-root spect-
rum of 2D plasmons in the limit of layer separation
large compared to the wavelength, d > k;!. The
quantity Q(k,, k.) describes the plasmon spectrum that
would exist in a superlattice consisting of nonpolar
semiconductors (when wro = wro).

The mode wy (k;,k,) has a gap, while the other
mode has a linear dispersion, w_ (k;, k.) = s(k.)|k.| at
ke < d=', k., with the velocity given by

Kod
s(he) = v [ ST cos(hd)]

where kg = 2me?/h%c,, is the static screening ra-
dius in the 2DEG. For a fixed value of the in-plane
wave vector k,, every mode develops a band (with
respect to the quasi-momentum k,) with boundaries,
Wupper (k) < w(ka, k) < Wiower (kz), where

: ; ked
wipper = Qz(kmv 0) = wé(km) cth ;
for the upper boundary and
T ked
wl20wer = (kx-, E) = W(Z)(kx) th ;
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for the lower boundary. Figure 3b illustrates the be-
havior of the gapless, so-called acoustic mode for small
values of k., < k., where it acquires a gap. We see
that the frequency of this mode decreases rapidly in
the region k, > k,.

In the rest of the paper, we analyze various ex-
perimental implications resulting from the existence of
hybrid plasmon—phonon modes. Such modes can be
observed in both the infrared absorption and Raman
spectroscopy.

3. INFRARED ABSORPTION ON COUPLED
PLASMON-PHONON MODES

We now calculate the reflectance and the transmis-
sion of a plane wave with the p-polarization, incident
from the vacuum on a thin plate consisting of a stack of
layers. We suppose that the boundaries of the sample
are parallel to the layers and intersect the z axis at zg
and z; = Nd + Z; with 0 < zg, 2; < d (see Fig. 1). We
assume that

E.(z) = exp [ikL(z — z0)] + Aexp [—iki(z — 20)]

in the vacuum (z < zg), where k! = \/(w/c)? — k2 and

A is the amplitude of the reflected wave. In the region
z > z1, the transmitted wave has the form

E.(2) = Texp[iki(z —21)],
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Fig. 4. Calculated p-polarized reflection-absorption spectra of GaAs plates (of the thickness I = 300d) with the superlattices
of different electron concentrations in a layer: o — n. = 0; b —n. = 510" em™%, ¢ — n. = 6 - 10" cm™2; d —

ne = 1.2-10'% ecm™2,

The frequencies, the phonon width T' = 0.01, and the electron relaxation frequency v = 0.01 are

given in units of wro. The incidence angle is # = 7/4. Other parameters are the same as in Fig. 2

and we seek the field inside the plate as a sum of two
solutions (6),

Ey(2) = O fr(2) + C-f-(2),

with the definite values of k;, w, and k, = k.(w, k)
obeying dispersion equation (7).

As usual, the boundary conditions at zg and z; re-
quire the continuity of the z-component E, of the elec-
tric field parallel to the layers and of the z-component
D, of the electric induction normal to the layers. The
second condition rewritten via the electric field E,
gives, e.g., at z = 2y,

RS

L2 ECIE(ZO_)'

&
EE;(ZM) =

The boundary conditions give the following equa-
tions for C,C_, A, and T

1+ A=C4fi(z0) + C-f-(20),
—1+ A= [Cifl(20) + C_fl(20)] ekl /ir?,
T =Cifi(z1) + C—f-(=1),
—T = [C4 £} (z1) + O f(21)] ekl Jir®.

Solving these equations, we find the transmitted am-
plitude

_ 2eki fi(z1)f-(21) = f+(21) fL(21)

1K2

T

a11a22 — A12a21

10%*
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Fig.5.  Interference in the sample of thickness

1 =3000d, d =4-1077 cm; the electron concentration
is 10 ecm™2

and the reflected amplitude

21121f—(20) - a22f+(20)
ai1as — a12as1 ’

A=-1+

where
a1 = [} (20)ekl/ir® — f1(20),

ass = fL(z1)ekl/iv? + f-(21),
ais = fL(20)eki/ik? — f—(z0),
as = fi(z1)ekl )ik + fi(21).

The transmission |T'|? and reflection |A|? coeffi-
cients are shown in Fig. 4 for samples with vari-
ous electron concentrations n.. The incidence an-
gle is taken # = w/4. Other parameters are as fol-
lows: the thickness [ = Nd = 300d, the lattice period
d =1/kg = 41077 cm, the phonon width I' = 0.02wr.0,
and the electron scattering rate v = 0.0lwro. For all
concentrations, k,d < 1, and there are many layers on
the wave length of the field. Therefore, the reflectance
is not sensitive to the sample surface positions zg and
Z1. But if the thickness d is larger, as shown in Fig. 5,
an interference phenomenon is seen.

To avoid the interference effect, we have calculated
the reflectance for a semi-infinite sample. The results
can be seen in Fig. 6, where the theoretical curves are
presented for the various electron concentrations and
the lattice periods. There is a singularity at wro. For
d = 1/ko and the intermediate electron concentration
in the layer (the dashed lines in Fig. 6), there are two
regions (one is at higher frequencies and the other is

just below wro= 0.9wr0), where the sample with lay-
ers is more transparent than the sample without any
(shown by the dashed-dotted lines).

This is an effect of the coupled phonon—plasmon
modes: the minima of the reflection coefficient corre-
spond to the density-state singularities of the phonon—
plasmon coupled modes at k. = 0 and k, — 0 (see
Fig. 3a). The frequencies of these singularities are de-
termined by Eq. (8) with Q2 = 4mn.e?/mde. For
a large electron concentration (solid lines in Fig. 6),
the reflection is incomplete only in the narrow interval
bounded by the singularities at wro and wro. Finally,
the reflection coefficient tends to unity at low frequen-
cies because the skin depth of the metallic system goes
to infinity in this case. For the sample with the large
period d = 5/ko (Fig. 6b), the effect of carriers is seen
at a higher concentration.

4. RAMAN SCATTERING FROM COUPLED
MODES

We now consider the Raman scattering of the radia-
tion incident from a vacuum with the vector potential
A, the frequency w’, and the wave vector k on the
sample occupying the semi-infinite space z > zg, where
0 < zg < d. The corresponding quantities in the scat-
tered wave are denoted by A?®, w?®, and k*.

In addition to these fields, an electric field E is
excited in the Raman light scattering in polar crys-
tals along with the longitudinal optical vibrations u.
The field E corresponds to the excitation of plas-
mons, whereas the vibrations u are associated with the
phonon excitations.

These processes can be described by the effective
Hamiltonian

H:/frﬂmﬂ@mﬂ%@ﬂ, ()
where the operator
'/vj (t,l‘) = g?jkﬂi(tvr) +gi€kEi(tvr) (10)

is linear in the phonon u and photon E operators.

We are interested in the inelastic scattering on the
phonon—plasmon coupled modes. Therefore, we assume
that the frequency transfer w = w? — w?* is of the order
of the phonon frequencies wz o, but the frequencies w’
and w® of the incident and scattered fields are much
greater than the phonon frequencies. We can then ig-
nore the effect of carriers in the layers on the prop-
agation of both scattered A®(t,r) as well as incident
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Fig.6. Calculated p-polarized reflection—absorption spectra for the semi-infinite superlattice versus the frequency in units of

wro at the incidence angle # = 7/4 for different electron concentrations: n. = 0 (dash-dotted lines); n. = 2-10** cm™?

(dashed lines), and n. = 10*? cm™2 (solid lines); the lattice period is d = 1/k0 = 4 - 107" cm (a) and d = 5/ko (b); the
phonon width is ' = 0.01 and the electron relaxation rate is v = 0.01 (in units wro)

Ai(t,r) light, taking the incident field in the sample
(z > 20) in the form

t; explikl(z — 2p)],

normalized to the incident flow; t; is the trans-
mission coefficient from the vacuum to the sample,
= e(wi)(wi/e)? — k2.
When the scattered field A*® is taken as a variable
in Hamiltonian (9), we obtain an additional current
(),

0H

_C(;A; r)Ak(t7

r), (11)

:]]s(tr) = —C

ik (t7

in the Maxwell equation for this field. The phonon
and plasmon fields in the operator Nji(t,r) are the
source of the Raman scattering, whereas the incident
field Ai(t,r) is considered as an external force for scat-
tering.

Eliminating the z-component, we write the Maxwell
equation for the p-polarization of the scattered field (22
is the scattering plane) as

&2 5
- $2(05V | BS (0 k5. 2) = I(ws. k5. 2).
{dﬂ TR )} 2(W' kg, 2) = I(w® K, 2),
where
T K 2) = ——
we(w?)

7z7)
dz

itz g, g B
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and k2 (w?®) = y/e(w*)(w*/c)?
ponent of the wave vector in the medium for the scat-
tered wave.

The scattered field in the vacuum 2z < zg is ex-
pressed in terms of I(w®, kS, 2):

— k22 is the normal com-

2e(w®)w® cosB® /c
ks + e(w)ws cos 5 /c°

x exp [—i(z — zg)w® cos 6% /],

Ej(w®, k] X

s gy

)_

I 6°
B kg, = e

s gy

z) = B (w®, k3, 2),

where

Iy =

o / ds' exp [ik3(2' = )] T(w*, k5, ')  (13)

and 6% is the propagation angle of scattered wave in
the vacuum.

The energy flow from the surface of the sample is
given by |ES(ws, k3,2 < z9)[?. Therefore, we have to

calculate

(I"(w* k3, 2) I (W, K3, 21)) (14)
averaged quantum-mechanically and statistically,
where according to Eqs. (12) and (11), we meet the

Fourier transform of the correlation function

Nk (8 )N (t, 1)),

Kjpjow (t,e;t'0") =

Because this correlator depends on the differences ¢ —#'
and z—2', we can expand it in the Fourier integral with



L. A. Falkovsky, E. G. Mishchenko

MWITD, Tom 129, Bhm. 4, 2006

respect to these differences. Then, we have the Fourier
transform K jip (w, kg, 2, 2'), which can be expressed
in terms of the generalized susceptibility according to
the fluctuation—dissipation theorem:

I(jk,j’k’ (w7 km', z, Z,) =

= o 0 ik (@, R, 2, 27).

The generalized susceptibility vk, j & (W, kz, 2, 2") is

involved in the response

<'N']'k(wa kx,2)> =

oo
= —/dz'xjk,jzkz(w,kx,z,z’)Ujrkz(w,kx,z’) (15)

Zo

to the force

Ujk(w =w’ —wky = k; — k3, 2)

= A;(ws,k;,z)Az(wi,k;,z) o =%,
where ¢, = ki + kS.
To calculate the generalized susceptibility
Xjkj k' (W, ke, 2,2'),  we write the equations for

the averaged phonon u and plasmon E fields. In the
right-hand side of the motion equation for the phonon
field,

(w%o —w? —iwl)u;(w, kg, 2) =

7
Ei(wakmaz) -
P

gi;'k U]k (OJ, k.’m Z)a

- (16)
the variation of Hamiltonian (9) with respect to the
vibrations u gives an additional term to the force from
the electric field; p is the density of the reduced mass
and Z is the effective charge.

The equation for the plasmon field E can be ob-
tained if this field is taken as a variable in Hamilto-
nian (9):

V- (E + 47P) = 4rp. (17)

The charge density p is connected to the current by
Eq. (5). The polarization P includes the dipole mo-
ment Zu, the contribution Yy~ E of the filled electron
state, and the variational term —dH /dE:

P = Zu; + X0 B — gﬁkUjk.

Here, we can put u; from Eq. (16). In Eq. (17), we
obtain the term with eoo = 14 47xoe and g5, — 3/,

ng = 951@ + (18)
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Equation (17) can be substantially simplified in
the case under consideration where the the wave vec-
tors k?, k®, and consequently the momentum transfer
k = k? — k® are determined by the frequency of the in-
cident optical radiation, whereas the frequency transfer
w of the excited fields E and u is much less than the in-
cident frequency, w = w' —w*® <« w'. Therefore, we can
neglect the retardation terms w/c compared to k, (so
that k = k;) and introduce the potential, E = —V¢.
We obtain the following equation for the potential:

(s

d2?

K+ 20,0 Y 6z = 2) ) o b 2) =

dr (.
= <zkzgfjk

e(w)

The solution of this equation is found by using the
Green’s function obeying the same Eq. (19) but with
the d(z — 2') function in the right-hand side. As is
very well known, the Green’s function is expressed in
terms of the solutions of the corresponding homoge-
neous equation. With fi(w,k,,z) from Eq. (6), we
write

#ifu ) Uneo ke 2). (19

= Dnsin (kod) sh (rd) |
y { Fe@ =),

f-()f+ (&),
where the quasi-momentum k., = k,(w®, ) has to be
determined from dispersion relation (7) ignoring the
retardation, k = k,.

According to the T; symmetry of the GaAs lat-
tice, the Raman tensors g%, and 95‘1@ have only two
independent components, gy, and gu,., in the crystal
axes. Let the scattered light be always polarized in the
xz plane. We now consider two geometries. For the
parallel scattering geometry (a), the incident light is
considered to be polarized in the = direction, then the
z-components of the exited phonon and plasmon fields
can be active in the Raman scattering due to ¢,u..
For the crossed geometry (b), the incident light is po-
larized in the y direction. Then, z-components of the
exited fields are active and we take the terms with g,
into account. Thus, for the generalized susceptibility
Xez,zz (W, ke, 2, 2") defined by Eq. (15), we have

G(z,2')

2> 7,

z <2 (20)

9%2./p

who—w?—iwl
2
Ak

e(w)

Xzz,zz(wakzvz',zl) = 2 6(2_2,)_

~E
Yzza

G(z,2"). (21)
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Raman intensity versus the frequency transfer (in units wro): (a) for three values of the carrier concentration

(ne =0.8-10" cm™! (curve 1), n. = 1.4-10*? cm™" (curve 2), and n. = 2-10'2 cm™! (curve 3)) in the parallel-pola-

rization geometry with the scattering direction making the angle of 7/4 with the backscattering direction and (b) for the

crossed polarization with the scattering angle varying from 0 (bottom) to 7/2 (top) by the step of 7/10 and the carrier
concentration n, = 2 -10'? cm™2. The values of the other parameters are the same as in Fig. 2

To obtain the Raman cross section, Eq. (14), we
evaluate the integral

oo

/ dzdz' exp[i(qzzl - q:Z)] Im Xij,ij (k, W, 2, Z,)a

<0

where the asterisk denotes a complex conjugation. For
the terms with G(z,2'), we obtain

oo oo

tut = [ def-(2) [ fo() explilazs — g22] +

Z0 z

+ [ dafete) [ d (@ esplita’ - a22))

where the first term is

/ dzf(2) / d2' 1 () expli(g:+' — g22)] =

[
= Z expli(q: — ¢2)nd + i(k: — gz)md] X
n,m=0
zo+d z+d

« [ asr) [ @t elitees - a2 (22)
) z
The sum over the integer n can be extended to in-

finity, being then equal to §/2d, if the thickness of
the sample is larger compared to the skin-depth ¢ of

the incident or scattered waves. The sum over m re-
duces to a nonvanishing factor only under the Bragg
condition k. — ¢. = 27n/d, which expresses the mo-
mentum conservation law in the exciting processes of
the phonon—plasmon coupled modes. In the macro-
scopic limit, when the wave length of the exited mode
is large compared to the period d, only the main Bragg
maximum (n = 0) is observed for each of the coupled
modes. In this case, we can expand the matrix element
in Eq. (22) in powers of k,d and k.d.

Omitting the overall factors, we have the Raman
intensity for the parallel geometry (a) in the form

B GrzalP
Int,, (wv kﬂv) = Im {"0%0_("‘)—2_M
2 2
FE ggmxz/p 471'/610
23

and for the crossed geometry (b),

2

Int,y (w, kz) = Im {%
wro — w? —iwl

u 2 7I
gxyZZ/p 4 qg
L . (24
+<9W+ 2o—w2—iwl ) (k2—q2)e(w) 2y

The wave vector k, of the coupled phonon—plasmon
mode is determined by Eq. (7). For example, if the in-
cidence is normal to the sample surface and # is the

scattering angle, then

NS EmT
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where we take into account that w’ &~ w®.

In Egs. (23) and (24), we dropped slowly vary-
ing factors depending on the parameters of the inci-
dent and scattered radiations, for instance, their di-
electric constants as well as the temperature factor
1/[1+ exp (—w/T)]. In numerical calculations, we used
the relation between the vertices ¢* and g% known from
experiments and given by the Faust — Henry constant

Cru = g"Z/g" pwio = —0.5.

The results of calculations are shown in Fig. 7.

We note that for the case of normal propagation of
both incident and scattered radiation, k, = 0, the se-
cond term in Eq. (23) vanishes, and the Raman peak
at parallel polarizations (geometry a) is situated at the
frequency wro. The other peaks in Fig. Ta correspond
to the excitations of the coupled phonon—plasmons.
But for the crossed polarizations (geometry (b)) and
k. — 0, the dispersion equation (7) with C — 0
gives k., = ik,. Then, using Eq. (24) and the rela-
tion w? ) — wro = 47 Z% [esop between the frequencies
of the LO and TO phonons, we see that the peak occurs
only at wro, because the terms with poles at wro are
cancelled. This peak corresponds to a zero of dielec-
tric constant e(w). At other scattering angles, a peak
appears at wpo independently of the scattering angle.
Two other peaks on each curves in Fig. 7b correspond
to the excitation of the phonon—plasmons.

5. CONCLUSIONS

In this work, we investigated the infrared absorbtion
and Raman scattering on the coupled phonon—plasmon
modes with the help of a simple model of superlattices
formed by thin conducting layers separated with insu-
lating layers. This model admits a dispersion relation
of an analytical form. Our results for the reflectance
and the Raman spectra show that the observed picture
can be drastically modified by means of the carrier con-
centration, the superlattice period, and the frequency.
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