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TWO-DIMENSIONAL S�N�S JUNCTIONWITH THE RASHBA SPIN-ORBIT INTERACTIONO. V. Dimitrova *, M. V. Feigel'manLandau Institute for Theoretial Physis119334, Mosow, RussiaReeived November 1, 2005The e�et of Rashba spin-orbit interation on the superurrent in S � 2DEG� S proximity juntions is investi-gated in the lean limit. A generalization of Beenakker's formula for Andreev levels to the ase of spin-orbitsattering is presented. Spin-orbit-indued splitting of Andreev bound states is predited for an in�nite-widthjuntion with nonvanishing normal baksattering at S�N interfaes. However, a semilassial average of theJosephson urrent is insensitive to the Rashba oupling as long as the eletron-eletron interation in 2DEG isnegleted.PACS: 74.50.+r, 74.25.Sv, 71.70.Ej1. INTRODUCTIONJosephson juntions of two superondutors viatwo-dimensional eletron gas (most usually imple-mented in the Nb/InAs/Nb strutures) were ativelystudied both experimentally and theoretially, see,e.g., [1�6℄. A generi feature of all these devies isstrong redution of the experimentally measured prod-ut IRN with respet to the theoretial preditions.In partiular, this disrepany is known for short jun-tions with high-quality S�N interfaes, demonstratedby measurement of a nonsinusoidal urrent�phase re-lation [6℄. At the temperatures muh below T, theparameter IRN � 0:22 mV was measured in Ref. [6℄,to be ompared with the Niobium superondutive gap� � 1:5 meV. It therefore seems natural to look forsome e�ets that were not taken into aount in theexisting theory, see, e.g., [7, 8℄, but ould be responsi-ble for suh a drasti suppression of the ritial urrent.An obvious andidate to be explored is the Rashbaspin-orbit interation [9℄ HR = �[� � p℄ � n, knownto exist in the 2DEG strutures due to the up�downasymmetry of the quantum well (here, n is theunit vetor normal to the plane of the 2DEG). Inthe InAs heterostrutures, this term is espeiallylarge (see Ref. [10℄), leading to the band splitting�R = 2�pF � 5 meV, i.e., is onsiderably larger than*E-mail: olgadim�itp.a.ru

the Niobium superondutive gap. Therefore, it seemsnatural that taking the Rashba term into aount mightbe important for the analysis of the Josephson urrentin these devies. In this relation, we also note pa-per [11℄, where it was shown that persistent urrentsin mesosopi metal rings should be strongly modi�edby spin-orbit oupling, whih seems to indiate the ex-istene of a similar e�et on the Josephson urrent.However, it is frequently assumed that the spin-or-bit interation annot in�uene the proximity e�etin superondutive strutures, beause it respets thetime-reversal invariane. But this argument is notvalid when the ritial Josephson urrent is onsid-ered, beause the presene of a urrent already violatesthe time-reversal symmetry. More detailed argumentsseem to ome from reent papers [12, 13℄, where the ef-fet of both the Rashba oupling and the Zeeman mag-neti �eld on the ritial urrent of S�N�S juntionswas onsidered. In both these papers, it was found thatin the absene of the Zeeman term, the Rashba inter-ation (if treated within the simplest model of equalFermi veloities on both hiral branhes) totally an-els out from the equations for Andreev levels. Weshow, however, that this anellation is not generi;rather, it is due to di�erent simpli�ations used in thepapers mentioned: a model of ompletely transparentS�N interfaes was employed in Ref. [12℄, and a purelyone-dimensional model was used in Ref. [13℄.742



ÆÝÒÔ, òîì 129, âûï. 4, 2006 Two-dimensional S�N�S juntion : : :It is shown below that in the general ase wheresome normal baksattering at an arbitrary inideneangle ours at the S�N boundaries, the spin-orbit ou-pling does a�et the energies of the Andreev levels andthe superurrent they arry on. We show that the spin-orbit interation e�et an be understood as being dueto modi�ation of the transmission hannels de�nedby the sattering matrix �S that desribes the juntionproperties in the normal state. For a model juntionwith an in�nite length (or periodi boundary ondi-tions) in the diretion transverse to the superurrent, aspin-orbit splitting of transmission eigenvalues is found,whih results in splitting of eah Andreev level into apair of spin-polarized levels, with a phase-dependentenergy di�erene ÆE(�). We note that ÆE(0) = 0, inagreement with the time-reversal invariane restoredin the absene of the phase bias. The idea that theAndreev levels an be spin-splitted due to the spin-orbit oupling was proposed in Ref. [14℄ for a narrow(few-hannel) juntion. The spin-orbit e�et we dis-uss in this paper is di�erent from the one presented inRef. [14℄.In this paper, we onsider the simplest two-dimen-sional model of a ballisti S � 2DEG�S juntion (see,e.g., Ref. [8℄) of an in�nite width in the lateral diretiontransverse to the urrent �ow, see Fig. 1. We negletpossible potential barriers at the S�N interfaes, as-suming that the normal baksattering is due to a Fer-mi-veloity mismath only, and onsider ballisti ele-tron propagation along the 2D struture between su-perondutive terminals. In Se. 2, we show that in theshort-juntion limit (juntion length L� �0 = ~vF =�,where vF is the Fermi veloity of 2DEG), the positionsof the Andreev levels an be expressed via the transmis-sion eigenvalues T of the full sattering matrix �S in pre-isely the same way as was found by Beenakker [16℄ forjuntions with spin-independent sattering. In Se. 3,we then present alulations of the sattering matrix�S for the simplest two-dimensional model of a ballis-ti S � 2DEG�S juntion (see, e.g., Ref. [8℄) of in�nitewidth in the lateral diretion transverse to the ur-rent �ow, see Fig. 1. We expliitly demonstrate thespin-splitting of the transmission probabilities T�(py)for the transmission hannels haraterized by the mo-mentum omponent py. We then show that the dis-tribution funtion for the transmission probabilitiesP(T ) oinides with the one disussed by Melsen andBeenakker [18℄ in the absene of spin-orbit oupling.In Se. 4, we derive an expression for the Josephsonurrent of a short juntion and demonstrate that theaverage urrent is insensitive to the Rashba oupling.In Se. 5, we go beyond the short-juntion limit: we
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Fig. 1. Two-dimensional model of a superondu-tor/Rashba 2DEG/superondutor Josephson juntionin�nite in the diretion perpendiular to the urrent(along the y axis). The Rashba 2DEG region has athikness L; m/mn is the e�etive mass and vs/vn isthe Fermi veloity in the S/2DEG; ' is the angle be-tween the veloity diretion of a quasipartile and thex axis in the 2DEG region; n is a unit vetor normal tothe plane of the 2DEGderive an equation for spin-splitted Andreev levels forthe juntion with an arbitrary L=�0 ratio and demon-strate that their ontribution to the average (semilas-sial) superurrent is insensitive to the spin-orbit ou-pling. Setion 6 is devoted to the disussion of theappliability of our results to S � 2DEG�S juntions of�nite width and possible ways to detet spin-splittedAndreev levels. Finally, in Se. 7, we present our on-lusions and disuss open problems; in partiular, it isproposed that the aount of the eletron-eletron in-teration together with the Rashba oupling might beable to explain the Josephson urrent.2. SPECTRUM OF ANDREEV LEVELSThe exitation spetrum onsists of the positiveeigenvalues of the Bogolyubov�de Gennes (BdG) equa-tion, ��u� = [� + U ℄��u� +�v�;��v� = �[�� + U�℄��v� +��u�; (1)where (U�)�� = ĝ��(U(�; �))�ĝ�� , � and � are spinorindies, ĝ = i�̂y is a metri tensor in spin spae,� = p2=2m�EF is the kineti energy of a quasipartile743



O. V. Dimitrova, M. V. Feigel'man ÆÝÒÔ, òîì 129, âûï. 4, 2006(energies are measured relative to the Fermi energy),and u�(r) =  u(r ")u(r #) ! ;u� = ĝ��u� ; u� = u� ĝ��;U(�; �) = U��: (2)In our model, in the normal region (mapped as �Rashba2DEG� in Fig. 1), the operator U = �[� � p℄ � n isthe spin-orbit interation, whih preserves the time-reversal invariane. In superondutors, the Rashbaterm is absent, U = 0. The superonduting gap � isassumed to be a step-like funtion: it is equal to zeroin the normal region and its modulus j�j is onstantand has the same value in both superondutors.The equation that relates the exitation spetrumof the Josephson juntion to the sattering matrix inthe normal state �S was derived in Ref. [16℄:det[1� rhe �Se(�)reh �Sh(�)℄ = 0; (3)where rhe = rA; reh = r�A;rA =  ei�=2 00 e�i�=2 ! ; = e�i aros(�=�); (4)rhe is the Andreev re�etion matrix for the e! h sat-tering in the spae of hannels inident (re�eted) onthe left and right N�S boundaries, ��=2 are the phasesof the left (right) superondutor, and �Se(h) is the ele-tron (hole) sattering matrix of the normal state.When no spin-dependent sattering is present, thenormal sattering matrix �Se is trivial in spin spae,i.e., proportional to the unit matrix �̂0. Furthermore,in the short-juntion limit L � �0, the sattering ma-tries �Se;h are independent of energy, and, moreover,�Sh = �S�e . Therefore, Eq. (3) an be transformed toan expliit solution [16℄ for spin-degenerate Andreevlevels, �j = �q1� Tj sin2(�=2), where Tj is the jtheigenvalue of the transmission probability matrix T̂ yT̂(eigenvetors of this matrix de�ne sattering hannels).Below, we show that a solution of the same kind anbe obtained when the spin-orbit sattering is present.In the presene of the spin-orbit interation, thesattering matrix in (3) beomes spin-dependent butstill obeys the time-reversal invariane. This allowsgeneralizing Beenakker's derivation for the Andreevlevels in a short juntion [20℄ using the following setof relations for the �S-matrix:

�S �Sy = 1; �ST (�py) = ĝT �S(py)ĝ;�Sh(�; py) = ĝT �S�e (��;�py)ĝ; (5)where the supersript �T� denotes the full matrixtransposition. The �rst relation in (5) is just the unitar-ity ondition, the seond follows from the time-reversalinvariane (we here used the time-reversal transforma-tion of the wavefuntions  t�r(py) = ĝ �(�py)). Fi-nally, the third relation in (5) is due to a speial symme-try of the BdG equations:  h(�; py) = ĝT �e (��;�py).It is important to note the sign hange of the param-eter py in the seond and the third relations above:when all sattering states are haraterized by a on-served momentum (py), the time-onjugation operationinvolves omplex onjugation and the py ! �py in-version, beause time reversal of the sattering matrixshould hange the sign of px only, while keeping pyintat. In other words, the additional py ! �py op-eration is needed due to the use of sattering hannelsharaterized by omplex eigenfuntions proportionalto eipyy. In alulations of this kind, a real basis oftransmission hannels is typially used, in whih asesuh an additional operation is absent.Using relations (5), we an transform Eq. (3) to theformdet � 1 ĝT �S�e (�; py)ĝr�A � r�AĝT �S�e (��; py)ĝ� = 0: (6)For a short ontat L � �0, we neglet the energy de-pendene of the sattering matrix in Eq. (6) and obtaina seond-order equation for �2, whih results in the so-lution �s;�(py) = ��r1� Ts(py) sin2 �2 ; (7)where � = � and Ts(py) are transmission probabili-ties � the eigenvalues of the matrix T̂ yT̂ , depending onthe spin index s = � and the onserved momentum py.In general, T+(py) 6= T�(py), and therefore four non-degenerate Andreev levels orrespond to eah py value,as shown in Fig. 3 below. We note, however, that thefull family of Andreev levels still ontains pairwise de-generay within our model. Namely, degeneray existsbetween states with py = �jpyj. Below, we onsider aspei� example of the sattering problem relevant toS � 2DEG�S strutures, and alulate the Ts(py) eigen-values.3. S-MATRIX AND TRANSMISSIONEIGENVALUESWe are interested in spei� spin-orbit e�ets andhene onsider the simplest model of S�N boundaries,744



ÆÝÒÔ, òîì 129, âûï. 4, 2006 Two-dimensional S�N�S juntion : : :assuming that normal eletron re�etion is due to theFermi veloity mismath only, vs 6= vn (where vs andvn are the respetive Fermi veloities in the superon-dutive metal and in the 2DEG). An additional soureof re�etion due to an e�etive potential barrier at theinterfae (see, e.g., Ref. [8℄) an be present, but doesnot a�et our results qualitatively. Beause the e�e-tive mass mn in the 2DEG di�ers strongly from thee�etive mass m in the metalli superondutor (typi-ally, mn=m � 0:03 for 2D strutures with InAs), thedi�erene of these masses should be taken into aountexpliitly. Our �rst goal is now to �nd the re�e-tion/transmission amplitudes on single S�N interfaes(for the normal state of the superondutive metal S).We follow Ref. [15℄ and use the ontinuity equationsthat follow from the Shrödinger equation with a spae-dependent mass m(x) and spin-orbit parameter �(x),� p̂xm(x) � �(x)�	 jSN= 0 ; 	 jSN= 0; (8)where F jSN denotes F (x = �L=2+0)�F (x = �L=2�0)for the left interfae (f. Fig. 1) and similarly for theright interfae loated at x = L=2. We let PF = mvsand pF = mnvn denote the respetive Fermi momentain the S metal and in the 2DEG; usually, pF � PF ,whereas vs and vn are of the same order of magnitude.Below, we assume that the parameter �=vn � 1 mea-suring the relative strength of the Rashba interation issmall in omparison with the Fermi-veloity mismath,i.e., �� jvs � vnj. Under this ondition, the re�etionamplitudes at eah of the S�N boundaries are deter-mined by the ratio vn=vs only. Then the re�etion andtransmission amplitudes are trivial in the spin spae,e.g., �!r ��1 = Æ���!r 1. For an inident wave inomingfrom x = �1, the re�etion and transmission ampli-tudes on the left (1) interfae are�!r 1 = w � 11 + w ; �!t 1 = 21 + w ; (9)where w = vnx=vsx is the ratio of the x-omponents ofthe eletron veloities, with vnx = vn os' and vsx == �v2s � (mn=m)2v2n sin2 '�1=2 � vs. Here, ' is theangle between the veloity diretion and the x axis inthe 2DEG; we note that vsx is very lose to vs forany angle ' beause (mn=m)2 � 1. The other re-�etion/transmission amplitudes are determined as fol-lows: �r 2 = �!r 1;  �t 2 = �!t 1; �r 1 = �!r 2 = ��!r 1;  �t 1 = �!t 2 = 2w1 + w : (10)

The total sattering matrix �S of the S �Rashba2DEG�S juntion in the normal state, formed out ofthe �single boundary� amplitudes, Eq. (9), is given by(similar equations an be written for T̂2 and R̂2)T̂1 = �!t 2Ŝr h1� �r 1(Ŝl)�1�!r 2Ŝri�1�!t 1;R̂1 = �t 1(Ŝl)�1�!r 2Ŝr �� h1� �r 1(Ŝl)�1�!r 2Ŝri�1�!t 1 +�!r 1; (11)where R̂ and T̂ are the re�etion and transmissionbloks of the sattering matrix,�S =  R̂1 T̂2T̂1 R̂2 ! ; (12)and the subsript �1� in the amplitudes R̂ and T̂ inEq. (11) indiates that the equations are written forthe ase of an eletron propagating from left to right.The matries in the spin spae Ŝr(l) desribe spin rota-tion during the eletron propagation aross the 2DEGregion with the Rashba oupling between the two S�N boundaries. The expliit form of these matries anbe obtained by transformation of the plane-wave eigen-modes with a de�nite hirality to the spin basis with ade�nite Sy projetion,Ŝr = ei� [osA�i sinA sin'�̂x+i sinA os'�̂z ℄ ;(Ŝl)�1 = ei� [osA��i sinA sin'�̂x � i sinA os'�̂z ℄ ; (13)where �(�) = k(�)L, with k(�) = k + m�=k andk = pF os', is the main semilassial phase andA = mn�L= os' is the additional phase due to thespin rotation by the Rashba oupling. Within our ap-proximation �=vn � 1, the whole e�et of the Rashbaoupling is ontained in the phase A, whih is not smallif the length L of the juntion is omparable with orlarger than the spin-rotation length L0 = ~=mn�.For further onveniene, we de�ne a new parame-ter x = lg[(1 + w)=(1� w)℄, where w is de�ned afterEq. (9). Then, ombining Eqs. (11) and (13), we ob-tain the transmission matrix asT̂1 = T0 + T1�̂x + T3�̂z ;T̂2 = T0 + T1�̂x � T3�̂z (14)with T0 = t sh(x� i�) osA;T1 = �it h(x� i�) sinA sin';T3 = it sh(x� i�) sinA os'; (15)745



O. V. Dimitrova, M. V. Feigel'man ÆÝÒÔ, òîì 129, âûï. 4, 2006where we sett = shxsh2 (x� i�) + sin2A sin2 ': (16). The re�etion matrix R̂ is given byR̂1 = R0 +R1�̂x +R2�̂y ;R̂2 = R0 +R1�̂x �R2�̂y (17)withR0 = t �hx sin2A sin2'� i sin �shx sh(x� i�)� ;R1 = i2 t sin 2A sin';R2 = i2 t sin2A sin 2': (18)We now use Eqs. (14) and (15) to obtain the trans-mission probabilities as the eigenvalues of the matrixT̂ = T̂ yT̂ ,T�(�; x(')) = sh2 xsh2 x+ sin2(� � �=2) ; (19)where the phase � de�ned byos� = 1� 2 sin2 ' sin2A (20)is due to the Rashba interation. Equation (19) ex-pliitly demonstrates spin-splitting of the transmissioneigenvalues T�. We note that � = 0 and the splittingis absent for trajetories with ' = 0, whih is the aseof a purely 1-dimensional (single-hannel) ontat [13℄.In the absene of normal re�etion, i.e., at x ! 1,all transmission eigenvalues are equal to unity and thespin-orbit e�ets disappear as well [12℄.The spin-orbit e�et on T� redues, aording toEq. (19), to the shift � ! ���=2 of the main semilas-sial phase, in agreement with the result in Eq. (1) inRef. [11℄. An example of the dependene of the trans-mission eigenvalues T� on the inidene angle is shownin Fig. 2. An important point to mention is that thisdependene is even with respet to the � ! �� re-�etion, f. Eq. (20). This symmetry is a �trae� ofthe Kramers degeneray, whih is known to exist for thetransmission eigenvalues de�ned within the real basis ofsattering states (we note that the proof of the Kramersdegeneray of transmission eigenvalues is by far moreompliated [17℄ than of the original Kramers theoremfor the degeneray of energy levels). We harater-ize sattering states by omplex traveling waves eipyy,whih leads to violation of time invariane. Therefore,
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TsFig. 2. The spin-splitted transmission eigenvalues Ts,s = �1, as funtions of the angle of propagation' of the quasipartiles inside the 2DEG, plotted fora realisti S � 2DEG� S juntion with the parametersvs = 7 � 107 m/s, vn = 5 � 107 m/s, m = me,mn = 0:035me, mn�=~ = 5 � 104 m�1, andL = 190 nm. For these parameters and for the valueof the superonduting gap � = 1:4 meV: (1) thelength of the ontat L is shorter than the oherenelength, �0 = ~vs=� = 330 nm; (2) the Rashba veloityis muh smaller than the Fermi veloity in the 2DEG,�=vn � 0:03; (3) the system is in the semilassiallimit, pFL=~ = mnvnL=~ � 30; (4) the spin-orbitsplitting 2�pF � 3:3 meV is larger than the super-onduting gap �; (5) the S�N interfaes are almosttransparent (vs=vn � 1:4), whih allows a large exper-imental value of the ritial urrent
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Fig. 3. The four spin-splitted Andreev levels ��s,s = �1, as funtions of the superonduting phasedi�erene �, plotted for a value of the angle ofpropagation ' = �=5, and for realisti S � 2DEG�S juntions with the parameters vs = 7 � 107 m/s,vn = 5 � 107 m/s, � � 0:2 � 107 m/s, m = me,mn = 0:035me , and L = 190 nm746



ÆÝÒÔ, òîì 129, âûï. 4, 2006 Two-dimensional S�N�S juntion : : :the Kramers theorem is not appliable to our modeland spin splitting demonstrated in Eq. (19) may our.It follows from Eq. (19) that a semilassial averageof any physial quantity that an be expressed as a sumof terms ontaining individual T variables (i.e., doesnot ontain ross-terms like T+T�), is independent ofthe spin-orbit oupling. Indeed, alulation of any aver-age quantity in our model involves integration over themomentum omponent py parallel to the interfaes (orover the propagation angle ', de�ned as py = pF sin').The integrand, as a funtion of ', ontains fast osilla-tions with the harateristi sale 1=pFL and relativelyslow dependene on os'. It is onvenient �rst to av-erage over fast osillations by going to the probabilitydistribution of transmission eigenvalues de�ned asP'(T�) = Z Æ(T � T�(�; x(')) d�: (21)Clearly, the presene of the �� phase shift does notalter the form of the probability distribution, whih isof the same form as onsidered, e.g., in Ref. [18℄ andindependent of the spin-orbit oupling:P'(T ) = thx2T p1� TpT � th2 x: (22)As the simplest example, we next onsider alulationof the average ondutivity of a juntion in the normalstate. It an be written asG = GQ �=2Z��=2 os'd'� Z T P'(T ) dT : (23)The universality of the distribution funtion P'(T )leads to the independene of the average ondutaneG, as well as of other quantities that an be expressedthrough this distribution funtions, from the spin-orbitphase A (we reall that we negleted weak e�ets ofthe order of �=vn � 1). We note one again that theabove simple onsiderations annot be applied to alu-lation of any quantity that is not additive as a funtionof di�erent transmission hannels, i.e., whih ontainsproduts of di�erent transmission eigenvalues.4. JOSEPHSON CURRENTEquation (7) for the Andreev levels together withEq. (19) for transmission eigenvalues onstitute the

entral result in this paper. We an now alulate theJosephson urrent [16℄ asI(�) = e�22~ sin��� Z Lydpy2�~ Xs=�1 Ts(py)�s;+(�) th �s;+(�)2T : (24)Equation (24) is appliable to the temperature-dependent Josepshson urrent in the short-juntionlimit. In the semilassial limit pFL!1, the averageJosephson urrent an be alulated with the use ofthe distribution funtion P'(T ) given by Eq. (22) asfollows:I(�) = e�2~ +�=2Z��=2 d' os'� �� Z P'(T ) dT T sin�r1� T sin2 �2 �� th �r1� T sin2 �22T : (25)Equation (25) demonstrates the independene of theaverage Josephson urrent from the spin-orbit oupling.Suh an average urrent is a meaningful harateristiof a juntion with both lateral sizes muh longer thanthe Fermi wavelength, L;Ly � ~=pF .Osillations of I as a funtion of the eletron den-sity were disussed theoretially in Ref. [8℄ within themodel very similar to the present one (but withoutthe Rashba oupling). It was argued that osillationsshould appear due to the presene of normal resonanesin a double-barrier struture, like the ones desribed inour Eq. (19) as a funtion of � = pFL os'. A strongspin-rotation e�et expeted at L � L0 produes anadditional phase � � 1, whih leads to splitting of theresonanes as a funtion of pFL. As a result, at L � L0,the osillations disussed in Ref. [8℄ have a twie shorterperiod and redued amplitude.5. SPECTRUM EQUATION AND CURRENTFOR THE JUNCTION OF AN ARBITRARYLENGTHIn this setion, we �nd equations determining theAndreev levels for an arbitrary length of the ontat,with the main purpose to demonstrate that the semi-lassial average of the Josephson urrent is indepen-dent of the spin-orbit oupling for any L=�0 ratio. Here,747



O. V. Dimitrova, M. V. Feigel'man ÆÝÒÔ, òîì 129, âûï. 4, 2006we use an alternative method of alulation: insteadof expressing the Andreev levels via the transmissioneigenvalues, we use diret mathing of the wavefun-tions obeying the BdG equations in the 2DEG and bothsuperondutive regions. To simplify the alulationsin this setion, we onsider the model with equal e�e-tive masses, mn = m.Eigenfuntions of the BdG equation for theS � 2DEG�S juntion an be represented as 8-dimen-sional vetors, beause they ontain three two-dimen-sional bloks: i) eletron and hole omponents, ii) twospin projetions, and iii) two diretion of momentumalong the x axis, px = �pF j os'j. Mathing ondi-tions for the wavefuntions on both S�N interfaesonsist of 16 salar equations that relate 8 wavefun-tion omponents in the 2DEG region to 4 omponentsin eah of the superondutive terminals (in the aseof subgap Andreev levels, whih deay exponentiallyinto the bulk of superondutors). The next step isto redue this system of 16 equations to 8 equationsthat ouple 4 + 4 = 8 amplitudes of wavefuntions insuperondutors. The solvability ondition for thissystem of 8 linear equations is equivalent to the on-dition of vanishing of the orresponding determinant,g(�; �) = 0, whih is equivalent to the one de�ned inEq. (6). After some tedious alulations, the equationg(�; �) = 0 an be transformed to the formg(�; �) � g+(�; �)g�(�; �) = 0;whereg�(�; �) = os 2� �Q os� �p1�Q2 sin�; (26)where the parameter � is de�ned in Eq. (20),Q = os	 + 4k2K2�2 (os	 + os�)(K2 � k2)2 (�2 � �2) ;	 = 2 artg 2kK�(K2 + k2)p�2 � �2 + E ; (27)with E = 2m�L=k being the energy-dependent part ofthe phase �(�). Equations (26) demonstrate that in thepresene of the Rashba interation, the Andreev lev-els are generially spin-splitted for the ontat of anarbitrary length.In the limit of vanishing spin-orbit interation� = 0, as well as for eletron trajetories withpy = ' = 0, spetrum equation (26) redues to thestandard equation os 2� = Q with a two-fold degen-erate (due to the spin) solutions. In the speial aseof ideally transparent boundaries pF = PF , general

spetrum equation (26) also redues to the standardequation os 2� = Q, whih then simpli�es toos��E + 2aros ��� = os�: (28)For a relatively short ontat with 0 < E � 1, weexpand Andreev spetrum equation (26) in powers ofthe small parameter � = m�L=k and �nd the �rst or-retion to the result (7) obtained in Se. 2 in the limitas �! 0,�� = �r1�T� sin2 �2 �1��T 3=2� ���sin �2 ��� thx� ; (29)where T� are de�ned in Eq. (19).In the general ase of an arbitrary length of theontat, spetral equation (26) is too ompliated tobe solved expliitly for the energies of the Andreev lev-els. Moreover, one should remember that for a juntionwith an arbitrary L=� ratio, the ontinuous part of thespetrum (sattering states) ontributes to the Joseph-son urrent as well as the loalized levels we have on-sidered. However, the total Josephson urrent (arriedby both the loalized Andreev levels and the ontinu-ous part of the spetrum) an be found following themethod in Ref. [21℄, in terms of the spetral funtiong(�; �) itself.We use Eqs. (I.9), (A.48), and (A.49) in Ref. [21℄,modi�ed in our ase due to the presene of the spinsplitting and the ontinuous sattering hannels har-aterized by the transverse momentum py. Therefore,the total urrent ontains an integral over all py,Itotal(�) == Ly 4e~ T Xs=� Z dpy2�~ X!n>0 �� ln gs(i!; �); (30)where the summation ranges over positive Matsubarafrequenies ! = 2�T (n+ 1=2), n = 0; 1; : : :In the semilassial limit (LpF � 1), the alula-tion of the integral over py in Eq. (30) an be simpli�edby the same method that was used in the last part ofSe. 3. Namely, we �rst average over the period of fastosillations of os � � os(kL) at a �xed angle ' andthen do the integration over '. The integration �R0 d� : : :in Eq. (30) leads to the result that does not ontain thespin-orbit phase �:Itotal(�) == �LypF 4e~2T X!n>0 �=2Z��=2 d'� os' ��Qpj1�Q2j ; (31)748



ÆÝÒÔ, òîì 129, âûï. 4, 2006 Two-dimensional S�N�S juntion : : :where Q � Q(� = i!n; �) in aordane with Eq. (27),and we took into aount that dpy = pF os'd'.Equation (31) demonstrates that the semilassial av-erage of the Josephson urrent through the S �Rashba2DEG�S ontat is independent of the Rashba ou-pling onstant, and this result is valid for an arbitraryFermi veloity mismath and arbitrary length of theontat. We note, however, that this result is valid aslong as the eletron-eletron interation in the 2DEGregion is negleted.6. DISCUSSIONThe above results were obtained for a model of anin�nitely long juntion in the diretion perpendiularto the urrent, in the ase where the motion along they axis was ompletely determined by the wavevetorpy of the orresponding plane wave due to the transla-tional invariane. An obvious generalization of suh amodel system would be a juntion with periodi bound-ary onditions in the y diretion. In this ase, all ourresults would stay intat, up to replaement of ontinu-ous py by the disrete set of wavevetors pn = 2�n=Ly.Although somewhat exoti for SNS juntions, suh ageometry does not seem to be impossible if we takethe reent advanes in fabriation of ompliated InAsstrutures into aount, f., e.g., [22℄. Usually, however,the S � 2DEG�S struture is of a �nite length Ly in they diretion with losed boundary onditions, and there-fore the hannel eigenstates are haraterized by stand-ing waves � the mixtures of plane waves eipyLy ande�ipyLy . In the presene of the Rashba term, the dire-tion of the eletron momentum is oupled to the dire-tion of its spin, and hene determination of the orretstanding-wave eigenstates is nontrivial. The major ef-fet of a �nite Ly � L0 is the existene of a disreteset of transmission hannels, Nh = 2Ly=�F , where �Fis the Fermi wavelength of the 2DEG. However, somequalitative e�ets of losed boundary onditions thenour: beause a real basis of sattering states is thenused, the Kramers theorem for the transmission eigen-values [17℄ beomes appliable. This means that forlosed boundary onditions and in the short-juntionlimit L=�0 ! 0, no spin splitting of the Andreev levelsmay our. In other terms, in a losed (in the y dire-tion) system, the Rashba oupling modi�es transmis-sion eigenvalues but does not split them. How an wereonile this with a natural idea that for very long Ly,the type of boundary onditions should not be impor-tant? The point is that the total Andreev spetrum ofthe system is doubly degenerate for the periodi bound-

ary onditions as well as for the losed ones. In the �rstase, the degeneray is due to the symmetry of T�(py)under the py ! �py re�etion, whereas in the seondase, it is due to the Kramers theorem. In order toobtain a global Andreev spetrum without degeneray,the time-reversal symmetry should be broken. In par-tiular, this happens if a nonzero L=�0 ratio is takeninto aount, as reported in Ref. [14℄. Another pos-sibility might be related to an open sample geometrylike the one used in Ref. [5℄, where an additional ur-rent an be passed in the diretion transverse to thesuperurrent.The individual Andreev levels ould possibly be ob-served experimentally by mirowave spetrosopy orby measurement of the tunnelling ondutane intothe 2DEG region from an additional point-like jun-tion. One version of the former type of experimentwas proposed theoretially, for a single-hannel jun-tion, in Ref. [19℄. In this ase, the resonant frequenyis very high, of the order of �=~, beause the onlypossible transitions are between the positive and nega-tive Andreev levels. This frequeny is about 0.4 THzfor Nb terminals (onsiderably lower frequenies an befound in the ase of a very small re�etion probability,1 � T � 1 and a phase di�erene � � �). In many-hannel juntions, the energy spaing between neigh-boring Andreev levels is redued as Æ� � �=Nh, but itis usually (without the spin-orbit oupling) impossibleto observe mirowave-indued transitions between lev-els belonging to di�erent ondution hannels. The rea-son is the momentum onservation: di�erent transmis-sion hannels are haraterized by di�erent wavevetorspy=~, whih are spaed by �=Ly, whereas the photonwavelength �ph = h=Æ� is muh longer than Ly, theirratio is of the order of (E2DEGF =�)(=vn) � 104. Itseems possible that this seletion rule will not be e�e-tive in the onsidered situation with the Rashba ou-pling, whih modi�es ondution hannels onsiderablyat Ly � L0. The point is that ondution hannels willthen be de�ned in the entangled spae of orbital andspin variables, and therefore there seems to be no rea-son for the vanishing of the inter-hannel photon matrixelement. However, this question ertainly needs furtherinvestigation. 7. CONCLUSIONSWe investigated the dependene of the Joseph-son urrents in lean S �Rashba 2DEG�S proximityjuntions on the Rashba spin-orbit interation. Wehave generalized the Beenakker formula for the An-749



O. V. Dimitrova, M. V. Feigel'man ÆÝÒÔ, òîì 129, âûï. 4, 2006dreev levels to the ase of spin-orbit sattering andfound that for an in�nitely wide juntion (in the di-retion transverse to the urrent), the Andreev levelsare spin-splitted. This result is in agreement with pa-pers [12; 13℄, where the e�et of the Rashba spin-orbitinteration on the superurrent was studied either inthe ase of the absene of normal baksattering at theinterfaes (pF = PF ) [12℄ or in the one-dimensionalase [13℄. We have shown that the semilassial averageof the Josephson urrent is insensitive to the Rashbaoupling as long as the eletron-eletron interation in2DEG is negleted.Our results therefore show that the aount of theRashba spin-orbit interation for the usual model ofa SNS juntion without the eletron-eletron intera-tion in the normal region is not su�ient to explainthe experimentally observed strong suppression of theIRN parameter with respet to its theoretial value.We believe that to explain this suppression, the elet-ron-eletron interation should be taken into aounttogether with the spin-orbit e�ets. We note thateletron-eletron interations in both density-densityand spin-spin hannels are not weak in 2DEG stru-tures.A related open problem is to �nd the average spinpolarization hSyi in the 2DEG region, whih is ex-peted to exist at a nonzero superurrent in the S �2DEG�S struture due to symmetry onsiderations,see, e.g., Ref. [14℄. We note that in the presene of theeletron-eletron interation, a superurrent-induedaverage spin polarization will indue an e�etive Zee-man �eld that may strongly modify the Andreev levelsas well as the Josephson urrent.We are grateful to C. W. J. Beenakker, Ya. M. Blan-ter, I. V. Bobkova, A. M. Finkelstein, F. Giazotto,P. M. Ostrovsky, N. M. Shhelkahev, and H. Ta-kayanagi for many useful disussions. This researh wassupported by the Dynasty Foundation and Landau�Jülih Sholarship (O. D.), by the RFBR grants04-02-16348 and 04-02-08159, by the Program �Quan-tum Marosphysis� of the Russian Aademy of Si-enes, and by the Russian Ministry of Eduation andSiene via the ontrat RI-112/001/417. Part of thisresearh was aomplished during the stay of O. Dim-itrova at Laboratoire des Solides Irradies (Eole Poly-tehnique, Paris) within the sope of the ENS�Landauollaboration program.REFERENCES1. B. J. van Wees et al., Physia B 203, 285 (1994)
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