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The effect of Rashba spin-orbit interaction on the supercurrent in S—2DEG-S proximity junctions is investi-
gated in the clean limit. A generalization of Beenakker's formula for Andreev levels to the case of spin-orbit
scattering is presented. Spin-orbit-induced splitting of Andreev bound states is predicted for an infinite-width
junction with nonvanishing normal backscattering at S—-N interfaces. However, a semiclassical average of the
Josephson current is insensitive to the Rashba coupling as long as the electron-electron interaction in 2DEG is

neglected.
PACS: 74.50.+r, 74.25.Sv, 71.70.Ej

1. INTRODUCTION

Josephson junctions of two superconductors via
two-dimensional electron gas (most usually imple-
mented in the Nb/InAs/Nb structures) were actively
studied both experimentally and theoretically, see,
e.g., [1-6]. A generic feature of all these devices is
strong reduction of the experimentally measured prod-
uct I.Ry with respect to the theoretical predictions.
In particular, this discrepancy is known for short junc-
tions with high-quality S-N interfaces, demonstrated
by measurement of a nonsinusoidal current—phase re-
lation [6]. At the temperatures much below T, the
parameter IRy =~ 0.22 mV was measured in Ref. [6],
to be compared with the Niobium superconductive gap
A = 1.5 meV. It therefore seems natural to look for
some effects that were not taken into account in the
existing theory, see, e.g., [7, 8], but could be responsi-
ble for such a drastic suppression of the critical current.

An obvious candidate to be explored is the Rashba
spin-orbit interaction [9] Hr = afo x p] - n, known
to exist in the 2DEG structures due to the up—down
asymmetry of the quantum well (here, n is the
unit vector normal to the plane of the 2DEG). In
the InAs heterostructures, this term is especially
large (see Ref. [10]), leading to the band splitting
Agr = 2app ~ 5 meV, i.e., is considerably larger than
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the Niobium superconductive gap. Therefore, it seems
natural that taking the Rashba term into account might
be important for the analysis of the Josephson current
in these devices. In this relation, we also note pa-
per [11], where it was shown that persistent currents
in mesoscopic metal rings should be strongly modified
by spin-orbit coupling, which seems to indicate the ex-
istence of a similar effect on the Josephson current.

However, it is frequently assumed that the spin-or-
bit interaction cannot influence the proximity effect
in superconductive structures, because it respects the
But this argument is not
valid when the critical Josephson current is consid-
ered, because the presence of a current already violates
the time-reversal symmetry. More detailed arguments
seem to come from recent papers [12, 13|, where the ef-
fect of both the Rashba coupling and the Zeeman mag-
netic field on the critical current of S-N-S junctions
was considered. In both these papers, it was found that
in the absence of the Zeeman term, the Rashba inter-
action (if treated within the simplest model of equal
Fermi velocities on both chiral branches) totally can-
cels out from the equations for Andreev levels. We
show, however, that this cancellation is not generic;
rather, it is due to different simplifications used in the
papers mentioned: a model of completely transparent
S—N interfaces was employed in Ref. [12], and a purely
one-dimensional model was used in Ref. [13].

time-reversal invariance.
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It is shown below that in the general case where
some normal backscattering at an arbitrary incidence
angle occurs at the S—N boundaries, the spin-orbit cou-
pling does affect the energies of the Andreev levels and
the supercurrent they carry on. We show that the spin-
orbit interaction effect can be understood as being due
to modification of the transmission channels defined
by the scattering matrix S that describes the junction
properties in the normal state. For a model junction
with an infinite length (or periodic boundary condi-
tions) in the direction transverse to the supercurrent, a
spin-orbit splitting of transmission eigenvalues is found,
which results in splitting of each Andreev level into a
pair of spin-polarized levels, with a phase-dependent
energy difference dE(y). We note that §E(0) = 0, in
agreement with the time-reversal invariance restored
in the absence of the phase bias. The idea that the
Andreev levels can be spin-splitted due to the spin-
orbit coupling was proposed in Ref. [14] for a narrow
(few-channel) junction. The spin-orbit effect we dis-
cuss in this paper is different from the one presented in
Ref. [14].

In this paper, we consider the simplest two-dimen-
sional model of a ballistic S—2DEG —S junction (see,
e.g., Ref. [8]) of an infinite width in the lateral direction
transverse to the current flow, see Fig. 1. We neglect
possible potential barriers at the S-N interfaces, as-
suming that the normal backscattering is due to a Fer-
mi-velocity mismatch only, and consider ballistic elec-
tron propagation along the 2D structure between su-
perconductive terminals. In Sec. 2, we show that in the
short-junction limit (junction length L < & = hwp /A,
where vp is the Fermi velocity of 2DEG), the positions
of the Andreev levels can be expressed via the transmis-
sion eigenvalues 7 of the full scattering matrix S in pre-
cisely the same way as was found by Beenakker [16] for
junctions with spin-independent scattering. In Sec. 3,
we then present calculations of the scattering matrix
S for the simplest two-dimensional model of a ballis-
tic S—-2DEG S junction (see, e.g., Ref. [8]) of infinite
width in the lateral direction transverse to the cur-
rent flow, see Fig. 1. We explicitly demonstrate the
spin-splitting of the transmission probabilities T (py)
for the transmission channels characterized by the mo-
mentum component p,. We then show that the dis-
tribution function for the transmission probabilities
P(T) coincides with the one discussed by Melsen and
Beenakker [18] in the absence of spin-orbit coupling.
In Sec. 4, we derive an expression for the Josephson
current of a short junction and demonstrate that the
average current is insensitive to the Rashba coupling.
In Sec. 5, we go beyond the short-junction limit: we
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Fig.1. Two-dimensional model of a superconduc-
tor/Rashba 2DEG /superconductor Josephson junction
infinite in the direction perpendicular to the current
(along the y axis). The Rashba 2DEG region has a
thickness L; m/my, is the effective mass and v /v, is
the Fermi velocity in the S/2DEG; ¢ is the angle be-
tween the velocity direction of a quasiparticle and the
x axis in the 2DEG region; n is a unit vector normal to
the plane of the 2DEG

derive an equation for spin-splitted Andreev levels for
the junction with an arbitrary L/& ratio and demon-
strate that their contribution to the average (semiclas-
sical) supercurrent is insensitive to the spin-orbit cou-
pling. Section 6 is devoted to the discussion of the
applicability of our results to S—2DEG—S junctions of
finite width and possible ways to detect spin-splitted
Andreev levels. Finally, in Sec. 7, we present our con-
clusions and discuss open problems; in particular, it is
proposed that the account of the electron-electron in-
teraction together with the Rashba coupling might be
able to explain the Josephson current.

2. SPECTRUM OF ANDREEV LEVELS

The excitation spectrum consists of the positive
eigenvalues of the Bogolyubov—de Gennes (BdG) equa-
tion,

eu® = [£ +U]% u” + Av®,

1
€+ U*]aﬁvﬁ + A*u®, @

€, 0%

where (U*)® 5 = §"*(U(v, 1))*gus, a and § are spinor
indices, § = i6, is a metric tensor in spin space,
& = p?/2m — Er is the kinetic energy of a quasiparticle
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(energies are measured relative to the Fermi energy),
and

() = ( u(r 1) ) |

u(r ) @)
Ua = Japu®, u® =upg’®,
U(Unu) = UO.H'

In our model, in the normal region (mapped as «Rashba
2DEG» in Fig. 1), the operator U = afo X p] - n is
the spin-orbit interaction, which preserves the time-
reversal invariance. In superconductors, the Rashba
term is absent, U = 0. The superconducting gap A is
assumed to be a step-like function: it is equal to zero
in the normal region and its modulus |A] is constant
and has the same value in both superconductors.

The equation that relates the excitation spectrum
of the Josephson junction to the scattering matrix in
the normal state S was derived in Ref. [16]:

det[1 — rhege(e)rehgh(e)] =0, (3)

where
The = YTA, Teh = ’}/T*Aa
eix/2 0
ra = ( 0 e*iX/Z > 9 (4)
v = e—iarccos(e/A)

rhe 18 the Andreev reflection matrix for the e — h scat-
tering in the space of channels incident (reflected) on
the left and right N-S boundaries, £y/2 are the phases
of the left (right) superconductor, and S‘E(h) is the elec-
tron (hole) scattering matrix of the normal state.

When no spin-dependent scattering is present, the
normal scattering matrix S, is trivial in spin space,
i.e., proportional to the unit matrix 6y. Furthermore,
in the short-junction limit I < &g, the scattering ma-
trices 5‘67;2 are independent of energy, and, moreover,
S, = S*. Therefore, Eq. (3) can be transformed to
an explicit solution [16] for spin-degenerate Andreev
levels, e; = +4/1 — 7;sin*(x/2), where T; is the jth
eigenvalue of the transmission probability matrix 777
(eigenvectors of this matrix define scattering channels).
Below, we show that a solution of the same kind can
be obtained when the spin-orbit scattering is present.

In the presence of the spin-orbit interaction, the
scattering matrix in (3) becomes spin-dependent but
still obeys the time-reversal invariance. This allows
generalizing Beenakker’s derivation for the Andreev
levels in a short junction [20] using the following set
of relations for the S-matrix:
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Sst=1, ST(_py) = gTS*(py)g,
Sh(eapy) = gTS:(—G, _py)g-,
where the superscript «T'» denotes the full matrix
transposition. The first relation in (5) is just the unitar-
ity condition, the second follows from the time-reversal
invariance (we here used the time-reversal transforma-
tion of the wavefunctions ¥'~"(p,) = g¥*(—p,)). Fi-
nally, the third relation in (5) is due to a special symme-
try of the BAG equations: 15, (e,py) = 970} (—€, —py).
It is important to note the sign change of the param-
eter p, in the second and the third relations above:
when all scattering states are characterized by a con-
served momentum (p, ), the time-conjugation operation
involves complex conjugation and the p, — —p, in-
version, because time reversal of the scattering matrix
should change the sign of p, only, while keeping p,
intact. In other words, the additional p, = —p, op-
eration is needed due to the use of scattering channels
characterized by complex eigenfunctions proportional
to eP»¥. In calculations of this kind, a real basis of
transmission channels is typically used, in which case
such an additional operation is absent.
Using relations (5), we can transform Eq. (3) to the
form

(5)

1. 7¢ . T & .
det ;gTSe*(apy)gTZ — 119" S (—e,py)g| = 0. (6)
For a short contact L < &y, we neglect the energy de-
pendence of the scattering matrix in Eq. (6) and obtain
a second-order equation for €2, which results in the so-
lution

conlp) =08 1= Tt L, (0

where n = £ and 7;(p,) are transmission probabili-
ties — the eigenvalues of the matrix T"T., depending on
the spin index s = £ and the conserved momentum p,.
In general, T (py) # T-(py), and therefore four non-
degenerate Andreev levels correspond to each p, value,
as shown in Fig. 3 below. We note, however, that the
full family of Andreev levels still contains pairwise de-
generacy within our model. Namely, degeneracy exists
between states with p, = %|p,|. Below, we consider a
specific example of the scattering problem relevant to
S—2DEG - S structures, and calculate the 7, (p,) eigen-
values.

3. SS-MATRIX AND TRANSMISSION

EIGENVALUES

We are interested in specific spin-orbit effects and
hence consider the simplest model of S-N boundaries,
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assuming that normal electron reflection is due to the
Fermi velocity mismatch only, vs # v, (where vs; and
vy, are the respective Fermi velocities in the supercon-
ductive metal and in the 2DEG). An additional source
of reflection due to an effective potential barrier at the
interface (see, e.g., Ref. [§8]) can be present, but does
not affect our results qualitatively. Because the effec-
tive mass m,, in the 2DEG differs strongly from the
effective mass m in the metallic superconductor (typi-
cally, m,, /m = 0.03 for 2D structures with InAs), the
difference of these masses should be taken into account
explicitly. Our first goal is now to find the reflec-
tion/transmission amplitudes on single S-N interfaces
(for the normal state of the superconductive metal S).
We follow Ref. [15] and use the continuity equations
that follow from the Schrodinger equation with a space-
dependent mass m(x) and spin-orbit parameter a(z),

|

where F |3, denotes F(z = —L/2+0)—F(x = —L/2-0)
for the left interface (cf. Fig. 1) and similarly for the
right interface located at z = L/2. We let Pp = mu,
and pp = m,v, denote the respective Fermi momenta
in the S metal and in the 2DEG; usually, pr < Pr,
whereas v; and v, are of the same order of magnitude.
Below, we assume that the parameter a/v, < 1 mea-
suring the relative strength of the Rashba interaction is
small in comparison with the Fermi-velocity mismatch,
ie., a < |vs — vy|. Under this condition, the reflection
amplitudes at each of the S—N boundaries are deter-
mined by the ratio v, /vs only. Then the reflection and
transmission amplitudes are trivial in the spin space,
e.g., T“fﬁ = §*f7 . For an incident wave incoming

Da
m(z)

- a(az)} WIS=0, w[E=0, (8

from z = —oc, the reflection and transmission ampli-
tudes on the left (1) interface are

_ 2
S l+w’

_w—l
14w’

_)

- T

1 (9)
where w = vy, /vs, is the ratio of the z-components of
the electron velocities, with v,, = v, cosy and v, =
/2

~

[v2 — (M /m)?v? sin® cp]l vs. Here, o is the
angle between the velocity direction and the x axis in
the 2DEG; we note that v,, is very close to vg for
any angle ¢ because (m,/m)> < 1. The other re-
flection /transmission amplitudes are determined as fol-

lows:

(10)
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The total scattering matrix S of the S—Rashba
2DEG -S junction in the normal state, formed out of
the «single boundary» amplitudes, Eq. (9), is given by
(similar equations can be written for T and R,)

. R R . 1—1
T= 758" [1- 71(8) 7 78] 7,
Rl = ?1(5'[)_1?)257« X (].].)
R . 1—1
X [1 — ?1(;9[)717)257} t'] + T>1,

where R and T are the reflection and transmission
blocks of the scattering matrix,

(

and the subscript «1» in the amplitudes R and T in
Eq. (11) indicates that the equations are written for
the case of an electron propagating from left to right.
The matrices in the spin space S describe spin rota-
tion during the electron propagation across the 2DEG
region with the Rashba coupling between the two S—
N boundaries. The explicit form of these matrices can
be obtained by transformation of the plane-wave eigen-
modes with a definite chirality to the spin basis with a
definite S, projection,

T,
Ry

Ry
T

(12)

87 = ¢ [cos A—i sin Asin &, +isin A cos 6],

N

(817! = e [cos A— (13)
—isin Asin pd, — isin A cos ¢d.],

where £(e¢) = k(e)L, with k(e) = k + me/k and

k = prcosep, is the main semiclassical phase and

A = myalL/cosy is the additional phase due to the
spin rotation by the Rashba coupling. Within our ap-
proximation o /v, < 1, the whole effect of the Rashba
coupling is contained in the phase A, which is not small
if the length L of the junction is comparable with or
larger than the spin-rotation length Lo = h/m,a.

For further convenience, we define a new parame-
ter @ = 1g[(1 +w)/(1 — w)], where w is defined after
Eq. (9). Then, combining Eqs. (11) and (13), we ob-
tain the transmission matrix as

T1 =To+T16, + T35,

. (14)
Ty =To+T16, — T35,
with
To = tsh(x —i&) cos A,
T, = —itch(x — i) sin Asin ¢, (15)

T3 = itsh(xz — i) sin A cos p,
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where we set

shx

t = - . 16
sh? (z — i) + sin® Asin® ¢ (16)
The reflection matrix R is given by
Ri = Ro+ Ride + Rady, an
Ry = Ry + R16, — R20,y
with
L9, .9 sin§ )
Ry =t |chx sin®A sin“p —i——=sh(z —if)| ,
sha
R, = %tsin 2Asin g, (18)
Ry = % tsin® A sin 2.

We now use Eqgs. (14) and (15) to obtain the trans-
mission probabilities as the eigenvalues of the matrix
T =TT,

sh? z
T (& x = , 19
L ey gy S
where the phase 8 defined by
cos f = 1 — 2sin® psin® A (20)

is due to the Rashba interaction. Equation (19) ex-
plicitly demonstrates spin-splitting of the transmission
eigenvalues 7. We note that § = 0 and the splitting
is absent for trajectories with ¢ = 0, which is the case
of a purely 1-dimensional (single-channel) contact [13].
In the absence of normal reflection, i.e., at z — oo,
all transmission eigenvalues are equal to unity and the
spin-orbit effects disappear as well [12].

The spin-orbit effect on 71 reduces, according to
Eq. (19), to the shift £ — £+ 3/2 of the main semiclas-
sical phase, in agreement with the result in Eq. (1) in
Ref. [11]. An example of the dependence of the trans-
mission eigenvalues 71 on the incidence angle is shown
in Fig. 2. An important point to mention is that this
dependence is even with respect to the ¢ — —¢ re-
flection, cf. Eq. (20). This symmetry is a «trace» of
the Kramers degeneracy, which is known to exist for the
transmission eigenvalues defined within the real basis of
scattering states (we note that the proof of the Kramers
degeneracy of transmission eigenvalues is by far more
complicated [17] than of the original Kramers theorem
for the degeneracy of energy levels). We character-
ize scattering states by complex traveling waves ePv¥,
which leads to violation of time invariance. Therefore,
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Fig.2. The spin-splitted transmission eigenvalues T,
+1, as functions of the angle of propagation
¢ of the quasiparticles inside the 2DEG, plotted for
a realistic S-2DEG-S junction with the parameters
vs = 7-10" ecm/s, vy, = 5-107 cm/s, m = m,,
mn 0.035me, mna/h 510" cm™', and
L = 190 nm. For these parameters and for the value
of the superconducting gap A = 1.4 meV: (1) the
length of the contact L is shorter than the coherence
length, &0 = hvs /A = 330 nm; (2) the Rashba velocity
is much smaller than the Fermi velocity in the 2DEG,
af/v, = 0.03; (3) the system is in the semiclassical
limit, prL/h = myv,L/h =~ 30; (4) the spin-orbit
splitting 2apr ~ 3.3 meV is larger than the super-
conducting gap A; (5) the S-N interfaces are almost
transparent (vs/v, & 1.4), which allows a large exper-
imental value of the critical current

s =

es/A
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Fig.3. The four spin-splitted Andreev levels =e;,
s = =1, as functions of the superconducting phase
difference , plotted for a value of the angle of
propagation ¢ 7/5, and for realistic S—2DEG-
S junctions with the parameters v, = 7 - 107 cm/s,
v, = 5-10" cm/s, a = 0.2-107 cm/s, m
m, = 0.035m., and L =190 nm

~
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the Kramers theorem is not applicable to our model
and spin splitting demonstrated in Eq. (19) may occur.

It follows from Eq. (19) that a semiclassical average
of any physical quantity that can be expressed as a sum
of terms containing individual 7 variables (i.e., does
not contain cross-terms like 7,7_), is independent of
the spin-orbit coupling. Indeed, calculation of any aver-
age quantity in our model involves integration over the
momentum component p, parallel to the interfaces (or
over the propagation angle ¢, defined as p, = pr sin ).
The integrand, as a function of ¢, contains fast oscilla-
tions with the characteristic scale 1/pp L and relatively
slow dependence on cosp. It is convenient first to av-
erage over fast oscillations by going to the probability
distribution of transmission eigenvalues defined as

P(Ta) = / BT - Tela(p)de.  (21)

Clearly, the presence of the +/ phase shift does not
alter the form of the probability distribution, which is
of the same form as considered, e.g., in Ref. [18] and
independent of the spin-orbit coupling:

thx

T TV TVT — e

As the simplest example, we next consider calculation
of the average conductivity of a junction in the normal
state. It can be written as

(22)

w/2

G =Gg / cosgod?gp/pr(T d

—7/2

(23)

The universality of the distribution function Py (7)
leads to the independence of the average conductance
G, as well as of other quantities that can be expressed
through this distribution functions, from the spin-orbit
phase A (we recall that we neglected weak effects of
the order of a/v,, < 1). We note once again that the
above simple considerations cannot be applied to calcu-
lation of any quantity that is not additive as a function
of different transmission channels, i.e., which contains
products of different transmission eigenvalues.

4. JOSEPHSON CURRENT

Equation (7) for the Andreev levels together with
Eq. (19) for transmission eigenvalues constitute the
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central result in this paper. We can now calculate the
Josephson current [16] as

eA?
I(y) = S sin y x
Lydp, €s,+ (%)
: 24
/ 27h Zj:l €s + 2T ( )

Equation (24) is applicable to the temperature-
dependent Josepshson current in the short-junction
limit. In the semiclassical limit ppL — oo, the average
Josephson current can be calculated with the use of
the distribution function P,(7) given by Eq. (22) as
follows:

A

_eA 0 Cos

100 =5 / O
—7/2

’Tsmx

X
/ 2 X
1 _
T sin? 5
AJ1—Tsin? X
V 2
th .

2T

< [ Pum)

X (25)
Equation (25) demonstrates the independence of the
average Josephson current from the spin-orbit coupling.
Such an average current is a meaningful characteristic
of a junction with both lateral sizes much longer than
the Fermi wavelength, L, L, > h/pr.

Oscillations of I. as a function of the electron den-
sity were discussed theoretically in Ref. [8] within the
model very similar to the present one (but without
the Rashba coupling). It was argued that oscillations
should appear due to the presence of normal resonances
in a double-barrier structure, like the ones described in
our Eq. (19) as a function of £ = ppLcosy. A strong
spin-rotation effect expected at L > Ly produces an
additional phase 8 ~ 1, which leads to splitting of the
resonances as a function of pr L. As aresult, at L > Ly,
the oscillations discussed in Ref. [8] have a twice shorter
period and reduced amplitude.

5. SPECTRUM EQUATION AND CURRENT
FOR THE JUNCTION OF AN ARBITRARY
LENGTH

In this section, we find equations determining the
Andreev levels for an arbitrary length of the contact,
with the main purpose to demonstrate that the semi-
classical average of the Josephson current is indepen-
dent of the spin-orbit coupling for any L /&, ratio. Here,
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we use an alternative method of calculation: instead
of expressing the Andreev levels via the transmission
eigenvalues, we use direct matching of the wavefunc-
tions obeying the BdG equations in the 2DEG and both
superconductive regions. To simplify the calculations
in this section, we consider the model with equal effec-
tive masses, m,, = m.

Eigenfunctions of the BdG equation for the
S—2DEG -S junction can be represented as 8-dimen-
sional vectors, because they contain three two-dimen-
sional blocks: i) electron and hole components, ii) two
spin projections, and iii) two direction of momentum
along the z axis, p, = £pp|cosp|. Matching condi-
tions for the wavefunctions on both S-N interfaces
consist of 16 scalar equations that relate 8 wavefunc-
tion components in the 2DEG region to 4 components
in each of the superconductive terminals (in the case
of subgap Andreev levels, which decay exponentially
into the bulk of superconductors). The next step is
to reduce this system of 16 equations to 8 equations
that couple 4 + 4 = 8 amplitudes of wavefunctions in
superconductors. The solvability condition for this
system of 8 linear equations is equivalent to the con-
dition of vanishing of the corresponding determinant,
g(e,x) = 0, which is equivalent to the one defined in
Eq. (6). After some tedious calculations, the equation
g(€e,x) = 0 can be transformed to the form

gle,x) = g+(€,x)g-(6,x) =0,

where
gx(e.x) = c0s26 — Qos B+ /1 - Q?sin B, (26)
where the parameter 8 is defined in Eq. (20),
272 A2
¥ = 2arctg 2kie + ¢,

(K2 + k2)VAZ — 2

with & = 2meL/k being the energy-dependent part of
the phase £(e). Equations (26) demonstrate that in the
presence of the Rashba interaction, the Andreev lev-
els are generically spin-splitted for the contact of an
arbitrary length.

In the limit of vanishing spin-orbit interaction
Q 0, as well as for electron trajectories with
py = ¢ = 0, spectrum equation (26) reduces to the
standard equation cos2¢ = @ with a two-fold degen-
erate (due to the spin) solutions. In the special case
of ideally transparent boundaries pp = Pp, general
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spectrum equation (26) also reduces to the standard
equation cos2¢ = @), which then simplifies to
€
—& + 2arccos —

COS ( A

For a relatively short contact with 0 < £ < 1, we
expand Andreev spectrum equation (26) in powers of
the small parameter K = mAL/k and find the first cor-
rection to the result (7) obtained in Sec. 2 in the limit
as Kk = 0,

€x = Ay /1Ty sin’ % (1—;@7;3/2 ‘sin%‘ cthx) ., (29)

where T4 are defined in Eq. (19).

In the general case of an arbitrary length of the
contact, spectral equation (26) is too complicated to
be solved explicitly for the energies of the Andreev lev-
els. Moreover, one should remember that for a junction
with an arbitrary L/¢ ratio, the continuous part of the
spectrum (scattering states) contributes to the Joseph-
son current as well as the localized levels we have con-
sidered. However, the total Josephson current (carried
by both the localized Andreev levels and the continu-
ous part of the spectrum) can be found following the
method in Ref. [21], in terms of the spectral function
g(e, x) itself.

We use Eqs. (1.9), (A.48), and (A.49) in Ref. [21],
modified in our case due to the presence of the spin
splitting and the continuous scattering channels char-
acterized by the transverse momentum p,. Therefore,
the total current contains an integral over all p,,

= COS X. (28)
)

Itotal(X) =
4e

where the summation ranges over positive Matsubara
frequencies w = 27T (n+1/2), n =0,1,...

In the semiclassical limit (Lpp > 1), the calcula-
tion of the integral over p, in Eq. (30) can be simplified
by the same method that was used in the last part of
Sec. 3. Namely, we first average over the period of fast
oscillations of cos{ = cos(kL) at a fixed angle ¢ and

dpy

S5 O OvIngs(iw.x).  (30)

Wy >0

then do the integration over . The integration [ d¢. ..
0

in Eq. (30) leads to the result that does not contain the
spin-orbit phase j:

Itotal(X) =
w/2
4e dy 0\ Q
=—Lypr—=T / L cosp——"22—,  (31)
K2 wnz>0_7r/2 ™ V1= Q3
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where @ = Q(e = iw,, x) in accordance with Eq. (27),
and we took into account that dp, = prcospdp.
Equation (31) demonstrates that the semiclassical av-
erage of the Josephson current through the S—Rashba
2DEG - S contact is independent of the Rashba cou-
pling constant, and this result is valid for an arbitrary
Fermi velocity mismatch and arbitrary length of the
contact. We note, however, that this result is valid as
long as the electron-electron interaction in the 2DEG
region is neglected.

6. DISCUSSION

The above results were obtained for a model of an
infinitely long junction in the direction perpendicular
to the current, in the case where the motion along the
y axis was completely determined by the wavevector
py of the corresponding plane wave due to the transla-
tional invariance. An obvious generalization of such a
model system would be a junction with periodic bound-
ary conditions in the g direction. In this case, all our
results would stay intact, up to replacement of continu-
ous py by the discrete set of wavevectors p, = 2mn/L,.
Although somewhat exotic for SNS junctions, such a
geometry does not seem to be impossible if we take
the recent advances in fabrication of complicated InAs
structures into account, cf., e.g., [22]. Usually, however,
the S—2DEG —S structure is of a finite length L, in the
y direction with closed boundary conditions, and there-
fore the channel eigenstates are characterized by stand-
ing waves — the mixtures of plane waves e’?vv and
e vy Tn the presence of the Rashba term, the direc-
tion of the electron momentum is coupled to the direc-
tion of its spin, and hence determination of the correct
standing-wave eigenstates is nontrivial. The major ef-
fect of a finite L, > Lg is the existence of a discrete
set of transmission channels, Ny, = 2L, /Ap, where Ap
is the Fermi wavelength of the 2DEG. However, some
qualitative effects of closed boundary conditions then
occur: because a real basis of scattering states is then
used, the Kramers theorem for the transmission eigen-
values [17] becomes applicable. This means that for
closed boundary conditions and in the short-junction
limit L/& — 0, no spin splitting of the Andreev levels
may occur. In other terms, in a closed (in the y direc-
tion) system, the Rashba coupling modifies transmis-
sion eigenvalues but does not split them. How can we
reconcile this with a natural idea that for very long L,,
the type of boundary conditions should not be impor-
tant? The point is that the total Andreev spectrum of
the system is doubly degenerate for the periodic bound-

ary conditions as well as for the closed ones. In the first
case, the degeneracy is due to the symmetry of T4 (p,)
under the p, — —p, reflection, whereas in the second
case, it is due to the Kramers theorem. In order to
obtain a global Andreev spectrum without degeneracy,
the time-reversal symmetry should be broken. In par-
ticular, this happens if a nonzero L/, ratio is taken
into account, as reported in Ref. [14]. Another pos-
sibility might be related to an open sample geometry
like the one used in Ref. [5], where an additional cur-
rent can be passed in the direction transverse to the
supercurrent.

The individual Andreev levels could possibly be ob-
served experimentally by microwave spectroscopy or
by measurement of the tunnelling conductance into
the 2DEG region from an additional point-like junc-
tion. One version of the former type of experiment
was proposed theoretically, for a single-channel junc-
tion, in Ref. [19]. In this case, the resonant frequency
is very high, of the order of A/h, because the only
possible transitions are between the positive and nega-
tive Andreev levels. This frequency is about 0.4 THz
for Nb terminals (considerably lower frequencies can be
found in the case of a very small reflection probability,
1 -7 « 1 and a phase difference y ~ 7). In many-
channel junctions, the energy spacing between neigh-
boring Andreev levels is reduced as de ~ A/N,p, but it
is usually (without the spin-orbit coupling) impossible
to observe microwave-induced transitions between lev-
els belonging to different conduction channels. The rea-
son is the momentum conservation: different transmis-
sion channels are characterized by different wavevectors
py/h, which are spaced by 7/L,, whereas the photon
wavelength Ay, = he/de is much longer than L, their
ratio is of the order of (E2PEY/A)(c/v,) ~ 104 Tt
seems possible that this selection rule will not be effec-
tive in the considered situation with the Rashba cou-
pling, which modifies conduction channels considerably
at Ly > Lg. The point is that conduction channels will
then be defined in the entangled space of orbital and
spin variables, and therefore there seems to be no rea-
son for the vanishing of the inter-channel photon matrix
element. However, this question certainly needs further
investigation.

7. CONCLUSIONS

We investigated the dependence of the Joseph-
son currents in clean S—Rashba 2DEG—S proximity
junctions on the Rashba spin-orbit interaction. We
have generalized the Beenakker formula for the An-
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dreev levels to the case of spin-orbit scattering and
found that for an infinitely wide junction (in the di-
rection transverse to the current), the Andreev levels
are spin-splitted. This result is in agreement with pa-
pers [12,13], where the effect of the Rashba spin-orbit
interaction on the supercurrent was studied either in
the case of the absence of normal backscattering at the
interfaces (pp = Pr) [12] or in the one-dimensional
case [13]. We have shown that the semiclassical average
of the Josephson current is insensitive to the Rashba
coupling as long as the electron-electron interaction in
2DEG is neglected.

Our results therefore show that the account of the
Rashba spin-orbit interaction for the usual model of
a SNS junction without the electron-electron interac-
tion in the normal region is not sufficient to explain
the experimentally observed strong suppression of the
I. Ry parameter with respect to its theoretical value.
We believe that to explain this suppression, the elect-
ron-electron interaction should be taken into account
together with the spin-orbit effects. We note that
electron-electron interactions in both density-density
and spin-spin channels are not weak in 2DEG struc-
tures.

A related open problem is to find the average spin
polarization (S,) in the 2DEG region, which is ex-
pected to exist at a nonzero supercurrent in the S—
2DEG-S structure due to symmetry considerations,
see, e.g., Ref. [14]. We note that in the presence of the
electron-electron interaction, a supercurrent-induced
average spin polarization will induce an effective Zee-
man field that may strongly modify the Andreev levels
as well as the Josephson current.
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