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The symmetry manifests itself in exact mathematical relations between the Bogoliubov coefficients for the pro-
cesses induced by an accelerated point mirror in 1 + 1-dimensional space and the current (charge) densities for
the processes caused by an accelerated point charge in 3 4+ 1-dimensional space. The spectra of pairs of Bose
(Fermi) massless quanta emitted by the mirror coincide with the spectra of photons (scalar quanta) emitted
by the electric (scalar) charge up to the factor ¢?/fic. The integral relation between the propagator of a pair
of oppositely directed massless particles in 1 4+ 1-dimensional space and the propagator of a single particle in
3 + 1-dimensional space leads to the equality of the vacuum-vacuum amplitudes for the charge and the mirror
if the mean number of created particles is small and the charge ¢ = v/hce. Due to the symmetry, the mass shifts
of electric and scalar charges (the sources of Bose fields with spin 1 and 0 in 3 4+ 1-dimensional space) for the
trajectories with a subluminal relative velocity 312 of the ends and the maximum proper acceleration wy are
expressed in terms of the heat capacity (or energy) spectral densities of Bose and Fermi gases of massless parti-
cles with the temperature wo/27 in 1 + 1-dimensional space. Thus, the acceleration excites the 1-dimensional
oscillations in the proper field of charges and the energy of oscillations is partly deexcited in the form of real
quanta and partly remains in the field. As a result, the mass shift of an accelerated electric charge is nonzero and
negative, while that of a scalar charge is zero. The symmetry is extended to the mirror and charge interactions
with the fields carrying space-like momenta and defining the Bogoliubov coefficients a®*F. The traces tra®¥,
which describe the vector and scalar interactions of the accelerated mirror with a uniformly moving detector,
were found in analytic form for two mirror's trajectories with subluminal velocities of the ends. The symmetry
predicts one and the same value eg = v/Ac for the electric and scalar charges in 3 + 1-dimensional space. The
arguments are adduced in favor of the conclusion that this value and the corresponding value ag = 1/47 of the
fine structure constant are the bare, nonrenormalized values.

PACS: 11.10.Jj, 11.10.Kk, 11.30.-j, 11.30.Na, 11.55.Fv, 03.65.Pm

1. INTRODUCTION and the out-set doutw, Ohyu: ., Of the wave equation so-
lutions are frequently used. For a massless scalar field,
The Hawking mechanism for particle production at they are given by
the black hole formation is analogous to the emission
from an ideal mirror accelerated in the vacuum [1]. In Ginw (u,v) =
its turn, there is a close analogy between the radiation
of pairs of scalar (spinor) quanta from an accelerated

= = [exp(-is'o) = exp(=i f(u)]. .

mirror in 1 4+ 1-dimensional space and the radiation Gout o (U,0) =
of photons (scalar quanta) by an accelerated electric 1
(scalar) charge in 3 + 1-dimensional space [2,3]. All = NG [exp(—iwg(v)) — exp(—iwu)],
these processes turn out to be mutually related. In w
problems with moving mirrors, the in-set @i, o/, 05, . with zero boundary condition
*E-mail: ritus@lpi.ru qz&\tmj =0
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on the mirror’s trajectory. Here, the variables

u=t—x, v=t+zx

are used and the mirror (or charge) trajectory in the
u, v plane is given by any of the two mutually inverse
functions

V= ), um = g(v).

We refer the reader to [3] for the in- and out-sets
of massless Dirac equation solutions. Dirac solutions
differ from Eqs. (1) by the presence of bispinor coeffi-
cients at the u- and v-plane waves. The current den-
sities corresponding to these solutions have only tan-
gential components at the boundary. Therefore, the
boundary condition for both scalar and spinor field is
purely geometrical, it does not contain any dimensional
parameters.

The Bogoliubov coefficients ay:, and B, ap-
pear as the coefficients of the expansion of the out-
set solutions in the in-set solutions; the coefficients
aly,, Fhuw arise as the coefficients of the inverse ex-
pansion. The upper and lower signs correspond to the
scalar (Bose) and spinor (Fermi) fields. The explicit
form of the Bogoliubov coefficients is very simple:

ali, \/7/dve><p (iw'v Fiwg(v)) =
=i\/;/duexp(¢iwu+iw ). (@)

The coefficients ozf,w and 5,’; for the Fermi field differ
from these representations by the substitutions

VW' fw — f'(u)

in the integrands.

Then the mean number dni,, of quanta radiated by
the accelerated mirror to the right half-space with a fre-
quency w and wave vector w > 0, and the total mean
number N of quanta are given by the integrals

_ dw
anl " = 3 / BB,

°°d dw’

waw B,F

- // (27)2 B |2'
0

These expressions do not contain A, but their inter-
pretation as mean numbers of quanta follows from the

g'(v), w/w' =

secondary-quantized theory. The secondary-quantized
theory allows constructing all possible amplitudes of
many-particle creation, annihilation, and scattering via
Bogoliubov coefficients [4-6].

At the same time, the spectra of photons and scalar
quanta emitted by electric and scalar charges moving
along the trajectory z,(7) in 3 + 1-dimensional space
are defined by the Fourier transforms of the electric
current density 4-vector jo(z) and the scalar charge
density p(z),

ja(k), plk) = e / dr (3o (), 1} exp(—ik®za(r)),

(4)
x) = e/dT {ia(1), 1}04(x — 2(7)),

ja(l’), P

and are given by the formulas

ks dk
(4m)2 7

Ja(k), 1p(k)[*},

g™ = L {a (R, lo(h)?} s

N0 // dk+dk_
~ he (47)?

where the superscripts in dﬁzs), NG and k* denote
the spin and 4-momentum of quanta,

(5)

=24k - k2 =0, K =kE—k=hik_,

ky = E° + &Y

and it is supposed in Egs. (5) that the trajectory (1)
has only the 2° and z' nontrivial components, as the
mirror’s trajectory.

In contrast to the quantities in Eqs. (3), the dﬁf)
and N in Eqs. (5) contain & because the charge enter-
ing the current and charge densities is considered a clas-
sical quantity. In essence, dﬁff) and N) can be con-
sidered classical quantities because they are obtained
from a purely classical radiation energy spectrum dg,gs)
divided by the energy hk° of a single quantum, such
that

= ThE0

&’ 1 (©)
V() — 2 o_1
N / i K= Sk ko).

The symmetry between the creation of Bose or
Fermi pairs by an accelerated mirror in 1 4+ 1-dimensio-
nal space and the emission of single photons or scalar
quanta by an electric or scalar charge in 3 + 1-dimen-
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sional space consists, first of all, in the coincidence of
the spectra. If we set 2w = ky and 2w’ = k_, then

1.
WE’MP = e_2|.7a(k+7k*)‘27

1
B8 = 5ok )P

Therefore, the spectra coincide as functions of two vari-
ables and functionals of the common trajectory of the
mirror and the charge. The distinction in the factor
2 /hc can be removed if we set e? = he.

The symmetry under discussion connecting the clas-
sical and quantum theories in Minkowski spaces of
4 and 2 dimensions in some sense resembles the du-
ality of classical and quantum descriptions in spaces
of neighbor dimensions proposed by 't Hooft [7] and
Susskind [8]. Such a duality was actually discovered
by Gubser, Klebanov, and Polyakov [9] and by Mal-
dacena [10] for different types of semiclassical super-
gravity in anti-de Sitter space and quantum conformal
theories on the boundary of this space. It seems plau-
sible that the general reason for such dualities consists
in the correspondence between a single particle in the
space of the higher dimension and a pair of particles in
the space of the lower dimension. The description of
a larger number of particles in the space of the lower
dimension is needed in accounting for the quantum me-
chanical interference effects.

(7)

2. SYMMETRY AND PHYSICAL CONTENT
AND THE DISTINCTION BETWEEN 37,
AND o,

It follows from the secondary-quantized theory that
the absolute pair production amplitude and the single-
particle scattering amplitude are related by

(outw"wlin) = — Z(outw”\w'im Bl (8)
"

This formula allows interpreting 3, as the amplitude
of a source of a pair of massless particles potentially
emitted to the right and to the left with the respec-
tive frequences w and w' [6]. While the particle with
the frequency w actually escapes to the right, the par-
ticle with the frequency w’ propagates for some time
to the left and is then reflected by the mirror and is
actually emitted to the right with an altered frequency
w. Then, in the time interval between pair creation
and reflection of the left particle, we have a virtual pair

with the energy &%, momentum k', and mass m:
E=w+uw, kH=w-uw,

m=—k?=2Vwuw' ©)

Apart from this polar time-like 2-vector k%, very
important is the axial space-like 2-vector ¢<,

@ =—k=—w+,
!

¢d=-k"=-w-uw<o.

= cagk®,
o af (10)

In terms of £* and ¢®, the symmetry between the «
and [ coefficients becomes expressed clearly:

s=1, epBr = _ e (k)
) w'w /—k+k77 )
kaj®
eaB = _ J (Q)

s=0, eBy;, =pk), ealy,=plg). (12)

We note that Eqs. (4) define the current density
j%*(k) and the charge density p(k) as functionals of the
trajectory x®(7) and functions of any 2- or 4-vector
k*. Tt can be shown that in 1 + 1-dimensional space,
Jj%(k) and j*(q) are space-like and time-like polar vec-
tors if k% and ¢ are time-like and space-like vectors
correspondingly.

In the vacuum of a massless scalar or spinor field,
the boundary condition at the mirror evokes the ap-
pearance of vector or scalar disturbance waves bilinear
in the massless fields. There are two types of these
waves:

1) the waves with the amplitude o, (o) that
carry a space-like momentum directed to the left
(right), and

2) the waves with the amplitude 5%, (Suw) that
carry a time-like momentum with a positive (negative)
frequency.

The waves with space-like momenta appear even if
the mirror is at rest or moves uniformly (Casimir ef-
fect), while the waves with time-like momenta appear
only in the case of an accelerated mirror.

The pair of Bose (Fermi) particles has spin 1 (0)
because its source is the current density vector (charge
density scalar), see [11] or problem 12.15 in [12].

3. VACUUM-VACUUM AMPLITUDE
(out|in) = e*", SELF-ACTION, AND MASS
SHIFTS

It follows from the secondary quantized theory that
in the vacuum-vacuum amplitude

(out|in) = ™,
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the expression Im W5 ¥ is well-defined. According to
DeWitt [4], Wald [5], and others (including myself [6]),

2Im WhF = %tr In(14+ B7p)
+trln(1 £ B75)

(13)

in the respective cases where the particle is identical or
nonidentical to the antiparticle. We confine ourselves
by the last case and by the smallness condition

tr TR < 1.

Then

2Im W ~ tr (1 3)BF
_ OO dOde, B.F
=] e

0

In the integrand of NB:F', we use representations (2) for
BB-F | the variables v%(7) and x4 (7') instead of u, f(u)
and v, g(v), and hyperbolic variables p and ¥ instead
of w and w’,

2= NBT. (14)

1 1 1
[ = — 9 ! = — 719_
dwdw' = depdﬁ, w=gpet, w=gpe

p=2Vww', 19:1n,/%,

to obtain the imaginary part of the causal function in
1 + 1-dimensional space, Im A%c(z, p), after integration
over 1, and then the imaginary part of the causal func-
tion in 3 + 1-dimensional space, Im Aff(z,,u), after in-
tegration over p = m, the variable that coincides with
the mass of the virtual pair according to Eqs. (9). This
result is a special case of the very important integral
relation between the causal functions of wave equations
for d- and d + 2-dimensional space-times [13],

(15)

1 o0
A£+2(z,,u) = /dm2 Ag(z,m). (16)
P
The small mass parameter
H = 2v le‘min 7é 0

is introduced instead of zero to avoid the infrared di-
vergence in what follows. We thus obtain

2ImWE I =

=Im // dr dr' { gba(T)fa(T ) }Af:(z.,u), (17)

a = 2a(T) — 2o (7).
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We can omit the Im symbols on both sides of this
equation and define the actions for Bose and Fermi mir-
rors in 1 + 1-dimensional space as

WBF_

- %//drdr’{ i"(T)fa(Tl) }Aff(z.,u). (18)

This is to be compared with the well-known actions for
electric and scalar charges in 3 + 1-dimensional space:

Wio =
- %62/ deT'{ ia(T)fa(Tl) }Af(z,u). (19)

The symmetry would be complete if €2 = 1, i.e., if the
fine structure constant were o = 1/4m. This «ideal»
value of fine structure constant for the charges would
correspond to the ideal, geometrical boundary condi-
tion at the mirror.

The appearance of the causal function Aff(z,,u) in
the action has lucid physical grounds.

1. The action must represent not only the radiation
of real quanta but also the self-energy and polarization
effects. While the former effects are described by the
solutions of the homogeneous wave equation, the latter
ones require the inhomogeneous wave equation solu-
tions that contain information about the proper field
of a source. Such solutions of the homogeneous and
inhomogeneous wave equations are the functions

(1/2)A' =ImA/, A =ReAl.

2. While the appearance of Im A7 in the imaginary
part of action (17) is a consequence of a mathemati-
cal transformation of the integral NB:¥ (similar to the
Plancherel theorem), the function

A =ReAS

in the real part of the action is unique if it appears as
the real part of the analytic continuation of the func-
tion i Im Af(z, i) to negative 22 that is even in z as
Im Af itself.

Both the propagator Ag(z, m) of a virtual pair with

the mass
m=p=2Vww'

in 2-dimensional space—time and the mass spectrum of
these pairs arise owing to the transition from the vari-
ables w and w’' to the hyperbolic variables p and 4,
which reflect the Lorentz symmetry of the problem.
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Further integration over the mass leads to the prop-
agator Af(z, u) of a particle moving in 4-dimensional
space—time with the mass u equal to the least mass of
virtual pairs. Thus, relation (16) is immanent to the
Lorentz symmetry and the symmetry connecting the
processes in 2- and 4-dimensional space—times.

For point-like charges, the W ¢ contain ultraviolet
divergences, which must be eliminated. The removal of
ultraviolet divergences in the self-actions WLO\F of ac-
celerated charges (with the force F' # 0) consists in the
subtraction of the corresponding self-actions Wl,o\FZO
of uniformly moving charges; as a result, the changes

F F F=0
AWig=Wigly = Wipl" — Wiyl

of the self-actions owing to acceleration do not contain
ultraviolet singularities, have a positive imaginary part,

Im AWL() > 0,

and vanish together with the acceleration.

The following representations for the self-actions of
uniformly moving electric and scalar charges are very
instructive:

F=0

Wi

1
=3¢ [[ arar (i), 1 8l -
21—
=F— ——T.
Tin 2v/2¢

(20)

They arise if we introduce the integration variable
r = 7' — 7 instead of 7', with 22 = —z2, set u = 0,
and use the representation

1 i
Af (2 1) |u=0 = I
1 £ . 0
= — —i € .
4r2 \at +e2  at+e?)’

The opposite signs of the self-actions are due to the
repulsion of electric charges of the same sign and to
the attraction of scalar ones. The coefficients before T
are the classical proper energies —dm; o of the charges
taken with the minus sign, and /2 characterizes the
charge dimension. Different signs of Im WLO\F:O lead,
in accordance with the amplitudes exp(iW; o|*=?), to
the disappearance (screening) of the electric charge and
to an unlimited growth (antiscreening) of the scalar
charge.

These extraordinary properties of the self-actions
occur because the charges are point-like. For the
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vector- and scalar-field sources j*(z) and p(z) dis-
tributed in space and slowly varying in time, the self-
actions are free from singularities and have no imagi-
nary parts [11]:

WLO = /dt X
/ Brddz’
X

dr|x — x'| Ja

In this form, the self-actions contain the Ampere and
Coulomb laws for current and charge interactions and
the law of attraction of scalar charges of the same sign.
Self-actions (20) and (21) are in accordance with the
general assertion that the interaction of charges of the
same sign transferred by odd-spin quanta leads to re-
pulsion and by even-spin quanta to attraction.

We give an example of the self-action changes
AW g of electric and scalar charges in the case of ac-
celerated motion along the very important quasihyper-
bolic trajectory

() j%(@"), p(2) p(&') }o=s.  (21)

x(t) - ﬂ% - ﬂl B% + t27 61,2 = :tth ga
wo w? 2 (22)
_ Bi=Pa
Pra = 1— BB tho,

with the initial 5; and final 35 velocities at ¢ = Foo
and proper acceleration —wg at ¢t = 0. The proper
acceleration at any moment is given by the formula

P S
‘ woy/1— 3}

Therefore, the quasihyperbolic motion is close to the
hyperbolic one on the time interval |t| < t..

The self-action changes AW ¢(6,A) are Lorentz-
invariant functions of the two variables

Wo

a(t) = xR (23)

9 = Al‘th 512

and
A= p’ fwj

with singularities at A = 0 and 6§ = +oc.
The case where A — 0 and 6 is arbitrary was con-
sidered by the author in [13]:

2

e 0 )
4(chf + 1)?

nmw—m—chmw)”, (24)
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2

e 0 ) 0
A(chf + 1)

where v = 1.781 and R(f) is an even function of 6
related to the Euler dilogarithm Lo(z) [14]:

(chf+cha)

7daln—
chf +cha
0

R(6)

Ly(1—e720) 46> ~1n2-6
shf '

In the case where § — +o00 and A is arbitrary, con-
sidered in [15, 16],

(26)

2
e
AWLO = —‘ 9‘8? 51,0(/\)a

Sp(A) = (=1t /Oodzexp <—%> X (27)

0

X {exp(iz)l&’n(iz) - \/% } :

where K, (iz) is the Macdonald function. As A\ — 0,

Si(\) = —7 — i (m% - 1) , So(\) = —i. (28)

For the trajectory with a subluminal relative veloc-
ity (12 of the ends, Re AW, o are given by the unique
formulas independent of the trajectory details:

(@5-1)
(1-35)

~ shé
As 12 — 1, the trajectory actually becomes hyperbolic
with the charge velocity

2
Re AWl

(OO

(29)

oo|<'u OO|<'b
)

Re AWO =

B(r) = —thwet
at the proper time 7, and
6 =wo(m2 —11) — oc.

Then

2
(7’2—7‘1)7 RGAWOZe—,
8

6211)0

Re AWl

(30)
while the mass shifts of the uniformly accelerated

charges are

OAW
87’2

6211)0

A== B

S(N); (31)
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2
e~ Wo

N Re Amo =0.
™

at A\ — 0, ReAmy

The real parts of the action changes in (29) have in-
teresting integral representations ascending to Legend-
re [17],

sin x

m, 6 = Arth ﬂ12- (32)

ez [
RQAWLU = —/d$
47
0

If 12 is close to 1, then on a large interval of the quasi-
hyperbolic trajectory, the velocity

B(7) = —thwor,

i.e., is the same as for the hyperbolic trajectory, and
the parameter
f ~ U)(](TQ — Tl),

where
AT =19 — 7

is the proper time interval within which the charge
moves with the acceleration wg and outside with the
constant initial and final velocities $; and [s.

In the acceleration interval, the mass shift of a
charge can be defined by one of the two relations

0 Re AW Re AW

01 Re Am At

Re Am = — = —

(33)

In accordance with the first definition, using the
Legendre representation and the formula

0 = wo(r2 — 1),

we obtain
e%wyq 0
ReAml = — p <Cth0—m> N
2wy Hcthf — 1
Ampg=———7 ———
Redmo=——" —e
o0 . 34)
d 2wA (
Re Amy g = —e? /_w S 2WAT BF (w/T),
2m
0
2,z
BF,,_ %€
c (Z)_ (eZ:Fl)2"
where T' = wg /27 is the Davies—Unruh «tempera-

ture» [18,19] and ¢®:F (w/T) are the heat capacity spec-
tral densities of Bose and Fermi gases of massless par-
ticles in one-dimensional space, see Secs. 49 and 105
in [20].

We have Re Amy o < 0 for all finite 6 > 0; for § < 1,

2w 2
ewg_e’
3

Re Am1 = 2Re Amo = — (35)

™
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and for 6 — oo,

e2wyg
8r '

Re Amy = — Re Amg = 0. (36)

We note that as the acceleration duration At — oo,

sin 2wAT

wo(w). (37)

w AT—00

The function in the left-hand side is the Fourier trans-
form of the acceleration switching function. The ac-
celeration interval can be regulated by rescaling the
«temperature» parameter and the frequency, T — kT,
w — kw, at a constant ratio w/T. Thus, the tempera-
ture T' = 2wq /7 can also be used [16].

In accordance with the second definition,

— e%wyq 1
Ay = — he — =
Re Amq - <ct 0 9>,
— 62’(1)0 1 1
Amg = —
Re Amo <9 sh9> (38)
— 7 w sin 2WAT w
A = - .
Re mi,o / e‘*’/T ¥ 1

0

In this case, the spectral representation contains the
energy spectral density of a Bose or Fermi gas of mass-
less particles in 1-dimensional space. The quantities in
both representations are related by

Re Amy o = Ti Re A/;u/,g,

o7 (39)
which follows from the standard relation
0 w
T) R 4
" w/T) - ar <ew/T:|:1> (40)

between heat capacity and energy, see Secs. 14 and 42
in [20].
As functions of 0, the shifts Re Am;y o and Re Amy o
differ in magnitude at § < 1, for example,
Re Amy o = 2ReA/7—7\11/,0.,

h<1, (41)

but have the same limit values (36) as § — oco. Evi-
dently, the mass shift formation requires proper time
not less than the inverse acceleration wy, .

Thus, according to the spectral representations in
(34) and (38), the symmetry being discussed also re-
veals itself in the formation of the mass shifts of elec-
tric and scalar charges at acceleration. The vector and
scalar massless Bose fields of the charges in 3 + 1-di-
mensional space again turn out to be related to the
massless scalar (Bose) and spinor (Fermi) fields in
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1 4+ 1-dimensional space. The symmetry explaines why
the Legendre representations of the self-action changes
and mass shifts of the electric and scalar charges, the
sources of Bose fields, contain the spectral distributions
characteristic of the Bose and Fermi fields in 1-dimen-
sional space.

The symmetry explaines the limit values (36) of the
mass shifts Re Am; o for uniformly accelerated elec-
tric and scalar charges in 3 + 1-dimensional space in
terms of the nonzero and zero low-frequency limits of
the heat capacity (or energy) spectral densities for Bose
and Fermi gases in 1 4+ 1-dimensional space:

cB7F(w/T)|w:0 =1, 0;
w (42)

B,F(
e«/T F1

w) = =T, 0.

w=0

The appearance of the heat quantum mechanical
distributions in the spectral representations of the dy-
namical mass shifts Amj  is no less intriguing than
their appearance in the Hawking effect [1], especially
when the absence of the horizons for the quasihyper-
bolic trajectory is taken into account. -

According to the spectral formulas for Am and Am,
the proper field energy of the charges decreases at ac-
celeration due to radiation at the frequencies

w(n+1/2)
n= ———" 43
2AT (43)
with even n = 0, 2, ..., and increases due to excita-
tion at the frequencies w, with odd n =1, 3, ... We

can say that the proper field releases (deconfines) the
excitations with even n and confines those with odd n.
The rescaling of 7' and w does not change this asser-
tion. Eventually, for every finite 8 > 0, the radiation—
excitation balance leads to

ReAm <0, ReAW >0, ImAW > 0.

Simultaneous radiation and excitation of the proper
field of a charge at acceleration is supported by the pos-
itive and negative contributions with even- and odd-n
frequencies w, to the imaginary part of the self-action
change,

1 1
ImAW = —Re AW -In—+-- -, (44)
™ A
more precisely, to its leading, infrared part, see (24)
and (25).

Due to the symmetry, the quantities AWE:F and
AmP-F for the mirror interacting with massless Bose
or Fermi field can be obtained from AW; o and Amy o
by the substitution e? — Ac.
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4. ARGUMENTS IN FAVOR OF THE VALUE
ao = 1/47 OF THE BARE FINE
STRUCTURE CONSTANT

At the collisions of charged particles (two electrons,
for example), emission of soft photons occurs, which
does not affect the motion of the colliding charges.
As a result, the cross section of the particle scattering
with the emission of n soft photons is given by formula
(98.21) in [23],

do = dogeqr w(n), wn) (45)

where w(n) is the probability of the emission of n soft
photons in the appropriate frequency interval (w1, ws)
and 7 is their mean number, which can be found
from classical electrodynamics. In this paper, the
vacuum-vacuum amplitude is considered whose modu-
lus squared is equal to w(0) = e~ ™.

It is important that the leading, logarithmic term

of n,
i=a2(@cth—1) <ln % + f(0)> . (46)
™ 1

(see Secs. 98, 120 in [23] and formula (24) in this pa-
per, where 2Im AW, = n, u = wy, and wy = wa), is
independent of the details of the charge motion and is
determined by the invariant momentum transfer

Vi

€

0

&= 2m  2m _Shil’

which together with the total energy /—s defines the
main hard process. Thus, independently of the charge
motion («trajectory») inside the forming region of the
hard process, the mean number of photons emitted
by the charge is defined by the global parameter —
the momentum transfer or the Lorentz-invariant ve-
locity change (315 of the charge in the above region,
6 = Arth 612.

The quantity w(0) = e~™ with the leading, logarith-
mic term for 7 is given by Abrikosov formula (136.11)
in [23] for high energy and momentum transfer. It co-
incides with (46) where

W1 = W, W2 =2=¢.
In the Abrikosov approximation, the effective (running)
fine structure constant a.rs(q?) [22, 23| does not differ
from a,

@11 @) = T 3m) N )

(47)
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Here, m; and N; are the masses and numbers of
different-type vacuum charges screening the bare
charge, m; < ¢. For ultrahigh momentum transfers,
this formula does not work.

If variant (b) of the Gell-Mann and Low paper [21]
is realized in quantum electrodynamics, then on the
distances less than some ultrashort A= < m~1, QED
is characterized by a finite point bare charge eq and the
charge density egd (x). In more detail, if the bare fine
structure constant

2
€0

~ 4nhe

Qo

is finite, then [21]

1) it is independent of the value of the fine structure
constant a;

2) a must be less than «p;

3) the charge density at very short distances reduces
to the delta-function egd(x).

Therefore, at a collision of charges with the total

energy
V—s=2F

and momentum transfer
Vi~ 2E > A,

the cross section dog.q; is defined by the bare charge
eg, and 71 is given by the formula

2
n=ag—(Acthf —1) <1ng+f0(9)> (48)
™ w1
if the frequencies wy and ws satisfy the condition

ASwl <<OJ2<<E.

In this case, although the photon emission comes from
the ultrashort region of the order A~! where the charge
is point-like and equals eq, it no longer affects the dy-
namics of the hard process. Under these conditions, the
motion of each colliding charge is 1-dimensional and
can be approximated by the classical trajectory with
fixed & = Arth 815 related to this ultrashort region.
The symmetry discussed consists in the coincidence
of the number spectrum of pairs of Bose (Fermi) mass-
less quanta emitted by a point mirror in 1+ 1-dimen-
sional space with the number spectrum of photons
(massless scalar quanta) emitted by a point electric
(scalar) charge. The first one is obtained via quan-
tum field theory with the corresponding zero boundary
condition at the mirror, while the second is obtained
by dividing the classical energy spectrum by Aw. The
corresponding spectra coincide as functions of two vari-
ables and functionals of any common trajectory of the
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mirror and the charge. The only distinction in the fac-
tor e?/hc can be removed if we set e = fic.

This symmetry is a consequence of

1) the invariant structure of scalar products in
quantum theory of scalar and spinor fields;

2) the point-like structure of the mirror and the
charge;

3) the fact that quantum emission does not affect
the mirror and charge motions;

4) the space 1-dimensionality of the motion.

The 2-dimensional model of quantum field theory
with a point-like mirror interacting with the secondary-
quantized Bose (Fermi) massless field [4] is purely geo-
metrical: it has no mass-dimension parameters and its
Planck constant is dimensionless and equals 1. The
usual Planck constant appears in the comparison of
this quantum field theory model results with the results
of QED, which involves charge, mass, and momenta
and energies instead of wave vectors and frequencies,
or with the results of classical electrodynamics, which
involves charge, mass, and the energy of radiation.

The dimensionless factor €2 /hc, whereby the num-
ber spectrum of soft photons (hw < mc? in the proper
system of a charge) in QED differs from the number
spectrum of Bose pairs in the 2-dimensional quantum
field theory model, is less than 1 because the charge in
QED has a finite size of the order of i/mec due to the
screening, while the mirror (the source of Bose pairs)
is point-like.

If QED has a finite charge ey of a vanishingly small
size for the ultrahigh energy and momentum transfer,
then this size cannot be defined better than by setting
it equal to the inverse energy fic/\/—s of two head-on
colliding charges. Therefore, it is reasonable to assume
that as

V=sx~Vt— 0,

the spectrum of photons with frequencies
AShw g V-s

emitted by the bare charge eq does not differ from the
spectrum of Bose pairs radiated by a point mirror.
Then e} = hc and ag = 1/4x. The Gell-Mann-Low
properties of aq are fulfilled.

We consider the head-on collision of two electrons
with mass m, charge e, and a very high energy E at
infinity. The elastic scattering cross section depends
on two invariants, s and ¢, which in the center-of-mass
system are equal to

s=—4E? t=2p*(1— cos)

3
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where E = /p? + m2, p, and 9 are the electron energy,
momentum, and scattering angle in the center-of-mass
system. At a fixed energy FE, the smallest distance be-
tween the charges is attained at the largest momentum
transfer, i.e., at ¥ = 7, when the charges move along
the same straight line. In this case, each of them most
deeply penetrates the screening coat of the other. If
we suppose that the total energy is sufficiently high
to penetrate the region where the electron charges be-
come bare, then the minimal distance between them is
equal to
c _ %
min — ﬁ
in accordance with the classical theory.
But according to quantum mechanics, at a distance
r between the charges, the uncertainty in their momen-
tum is not less than Ap ~ 1/r. It may be thought that
the charges cannot be separated by the distance less
than 74 at which the momentum uncertainty gives

min’

the energy greater than 2F. Then

2F =2/ M?2 + Ap2, Ap=+/E2?2 — M?2,

where M is the mass of the bare charge. The
Gell-Mann-Low point-like nature of the bare charge
forces one to assume that M ~ E.

q
For r; .., we have

b 1 1 B 2F e
min = Ap T VBRI agVB 3D ™"
Because the minimal quantum distance is distinctly
larger than the classical one, the turning point can be
considered to be defined just by r! . . Then the proper
acceleration of the charge at the turning point can be
found from the equation

r (49)

(50)

2

e

0

MU)(] = 4T
T min

= ag (E? — M?). (51)
The quantum motion of the charges is little affected by
the emission of photons with frequencies not greater
than wqy because the ratio

wo E? — M?
Wo _ o 2227

E EM
is small if aq is small and M ~ E. Therefore, for the
calculation of soft photon emission, such motion can be
approximated by the classical trajectory with the accel-
eration wq at the turning point. As a result, for n, we
obtain formula (48) with ws = wp and the parameter 6
given by

(52)

q

= 2Arsh
0 s 5L

q=Ap=+E%* - M?2.

(53)
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At M ~ E, the force acting on the charge e according
to (51) is of the order of agM? and is small in compar-
ison both with the classical force M?/ag, when clas-
sical electrodynamics becomes inconsistent, and with
the quantum force M?, when QED requires quantum
corrections, see Sec. 75 in [24].

About 45 years ago, Wigner remarked that special
relativity is the physics of Lorentz transformations, and
quantum mechanics is the physics of Fourier transfor-
mations. Processes induced by a point mirror in 1 + 1-
dimensional space are described by the simplest rel-
ativistic quantum theory, which is incarnated in the
Bogoliubov coefficients. They are Lorentz-invariant
scalar products reduced to Fourier transforms of mass-
less scalar and spinor wave equation solutions. They
can be considered a concentrate of genetic information
about processes in 3 4+ 1-dimensional space.

5. SELF-ACTION CHANGES AW;,, AND THE
TRACES tr a®F

The basis for the symmetry between the processes
induced by the mirror in 2-dimensional and by the
charge in 4-dimensional space—time is relations (11) and
(12) between the Bogoliubov coefficients ﬂf,f and the
current density j*(k) or charge density p(k) depend-
ing on a time-like momentum k®. The squares of these
quantities represent the spectra of real pairs and parti-
cles radiated by the accelerated mirror and charge.

The symmetry is extended to the self-actions of
the mirror and the charge and to the corresponding
vacuum-vacuum amplitudes, cf. (18) and (19). In
essence, it is embodied in the integral relation (16) bet-
ween propagators of a massive pair in 2-dimensional
space and of a single particle in 4-dimensional space.

Formula (18) for WB-F was obtained under the con-
dition that the mean number NB:F of pairs created is
small and the interference of two or more pairs is neg-
ligible. In the general case, W5 is given by formula
(13), which can also be written as

2Im WEE = +tr In(ata)BF, (54)

because
ataFprp =1,

see [4,6]. As can be seen from (13), the imaginary part
of the action differs from zero and is then positive only
if 8 # 0, i.e., if the radiation of real particles has indeed
occurred.

For WBF formula (54) allows choosing the expres-
sion

WBE = +itr In o®F, (55)

5 ZKOT®, Beim. 4
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which was called natural by DeWitt [4]. However, this
expression is by no means unique, the expressions in-
volving ae?” or at have the same imaginary part. Nev-
ertheless, formula (55) is interesting as the definition
of both the real and imaginary parts of the self-actions
WBF in terms of the Bogoliubov coefficients a2, only,
which, according to formulas (11) and (12), reduce to
the current density j®(¢) or to the charge density p(q)
dependent on the space-like momentum ¢®. This means
that the field of the corresponding perturbations propa-
gates in the vacuum together with the mirror, comoves
it, and, at the same time, contains the information
about the radiation of real quanta.

Unfortunately, the author failed to find a simple in-
tegral representation for the matrix In a. Nevertheless,
if we again assume that the mean number of emitted
particles is small, we can consider a, or ia, or +ia®¥
close to 1. The last phase factor is most acceptable, as
we see in what follows. Then, expanding In(+ia®T)
near +ia?¥ = 1 and confining ourselves to the first
term, we obtain

WhEE = £itr In (£ia® ") x~ +itr (£ia®F - 1) =

=—tra®F 4 ... (56)

These qualitative arguments allow us to state that the
functionals tra®¥ are similar to the corresponding
self-actions with the opposite sign and must therefore
have negative imaginary parts. This is confirmed by the
general examples considered below, in which at least
the initial or the final velocity of the mirror is sublu-
minal.

However, as is shown in the next section, the above
reasoning is very crude. The exact physical meaning
of traB¥ is conveyed by formula (99) or (102). As a
result, each of the traces represents the mass shift of a
field, entrained by an accelerated mirror, multiplied by
the effective proper time of shift formation. This time
is of the order of wy '

6. INVARIANT STRUCTURE OF THE
BOGOLIUBOV COEFFICIENTS

Here, using the Bogoliubov coefficients for hyper-
bolic motion of the mirror [25, 26]
ww!
!

ch (0 — a)} Kio (;—’;> (57)

B.F _

w'w T

2 !

exp [z <3 ¥ w—)} Kio <2z'
! x A '
{4 P
1

«a

Wo

2
= —exp
Wo
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* ) 2
B = (=)~ x
v a
! !
X exp 1 _£+W_ I(lg 2 we =
»x k !
(1,0 2 P . P
= (=)0 = —ish (¥ —a)| F £ 58
(002 exp =i (0 - 0)| Ko ()59

as an example, we consider the invariant properties
of the coefficients with respect to Lorentz transforma-
tions and the transformation properties with respect to
transfer of the origin from one point on the trajectory
to another.

The Bogoliubov coefficients are functionals of the
trajectory and functions of the frequencies w, w' and
parameters s, »'. The latter characterize the mirror
trajectory

mar

u™" = g(v)

near the coordinate origin v = v = 0 chosen on the
trajectory:

1
<%’v +b(5v)? + se(v)3 + .. ) . (59)
» 3
The velocity and proper acceleration of the mirror at
the point u = v = 0 are equal to

ag = —bv .

1=

/80_ 1_'_%,/%7

(60)

Under the Lorentz transformation with the velocity
B = thd, the parameters s and »' are transformed
just as the frequencies w and w’,

— ! !
oo OTPY ey = Y s (61)
\/1-p2 \/1-p2
and the product
0o = ww'

is invariant. Therefore, the frequencies w, w' and pa-
rameters », »' can be represented as

w=Vww e, v =vVww e ?;
. (62)
x =V e, ' = Ve .

In the coordinate system moving with the velocity S
relative to the laboratory system,

_ !
YT _th, 9=1In,/Z,
w4+ w! w!

the frequencies w and w' of the reflected and incident
waves coincide and are equal to the invariant vww!’,
while the vectors

B = (k' k) = (w—u', w4+ w),
" =(q", ¢") = (~w—w', —w+w),

B =bc= (63)

(64)

674

have only temporal and only spatial components corre-
spondingly:
k¢ = (0, 2\/ww’) . qe = (—2\/ww’, 0) . (65)

These formulas were used in coefficients (57) and (58)
for the hyperbolic trajectory

h — h
Hr) = (twor wj) s =

cha — ch (weT — @) (66)

2(r) = ;

wWo

for which the proper acceleration is equal to

!

ag = —Vxx' = —wp.

The velocity of the mirror on this trajectory at the
instant wgT is equal to

(woT)

t(woT)

B(woT) = —th (weT — ). (67)
The mirror passes the coordinate origin with the velo-
city

Bo = B(0) =tha

at the instant wgr 0, passes the turning point at
the instant wor = «, f(a) = 0, and at the instants
woT1,2 = a F (¥ — a) before and after the turn, its
velocities are equal to

Be = Po
1 - Bcbo

The velocities So and B¢cg are the velocities of the pair
of waves w and w' in the laboratory system and in the
system moving relative to the laboratory system with
the velocity Bo. This last system is called the system
of a detector that moves with the constant velocity /g
and touches the mirror at the point t =z = 0.

Thus, the laboratory time intervals

ﬁ(’onLz) = +th (19 — a) =4 = :tﬂco. (68)

sh (¥ —a
At1’2 = t(w0T1’2) — t(O{) = :Fi( ) (69)
wo
and the laboratory space intervals
ch(¥—a) -1
A‘Tl’z = l‘(w0T1’2) - a/:(a) = —7( wo ) (70)

counted from the turning point define the time and
length of the deceleration,

woT1 S WoT < a,
and acceleration,

a < weT < WoTy,
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intervals on the world trajectory of the mirror where
its velocity changes monotonically in the interval

—Bco < B < Beo (71)

between the values opposite in sign to (68) and takes
zero value at the turning point. It is assumed that
¥ > a. In the case where 1 < a, the instant 75 < 7 and
the deceleration and acceleration intervals are given by
woTy < worT < a and a < woT < wory correspondingly.

We now show that the intervals Aty » and Az, o are
Lorentz-invariant, i.e., are unchanged under the transi-
tion to another Lorentz coordinate system. Let the sys-
tem K move with the velocity 3 = thd relative to the
laboratory system K. Then the mirror motion equa-
tions in the system A become

- t(wor) — Ba(weT) _

t(wer) = i
:sh(a—5)+sh(wor—a+5) (72)
wo
F(wor) = z(wor) — Bt(wor) _
Ve
:ch(a—6)+ch(wor—a+5) (73)

Wo

differing from the nontransformed ones by the shift
a—-a=a—-9

of the parameter a.
The velocity of the mirror in the new system is

~ Z(woT)

B(on) = =

= —th (weT — a + 9). (74)

At the instant wor = 0 of passage through the origin,
the velocity is equal to

Bo = B(0) = th (a — 0);

the turning point is passed at the instant wor = a — 6.

Because the frequencies w and w’ go over into the
frequencies @ and @’ under the Lorentz transformation
with the velocity f = thd, with

O=Vww e’ =

and differ from the nontransformed ones by the shift

ww' e+ (75)

9—=Id=09-46

of the parameter ¥, the velocity Sc = th ¢ of the pair
of waves w and w’ goes into the velocity

Bo = th () - 6)
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of the Lorentz-transformed pair of waves © and &'. But
the relative velocity of this pair of waves and the de-
tector,
= Bo—Po
1= Bepo
remains unchanges because

d—a=19—a,

see (62).
In the new system, the time and length of the in-
tervals of deceleration,

woTr =2a — 19 — 6 < wer < a— 0,
and acceleration,
a—0 < wer <weTo =9 — 6,

from the same initial velocity

B(woﬁ) = th (19 — a)

to the same final velocity

ﬂ(wgf'g) = —th (19 - a)

are independent of the parameter ¢ and remain the
previous functions of the Lorentz-invariant difference
Y—a=19-a:

AtNLQ = tN(lU(]%l,g) — tN(a — 5) =
sh (¥ — a)

=F———==Aty», (77)
wWo

Ajl’z = i‘(wg;f'lg) — 5:(04 — 6) =
=)=l (s
Wo
This difference is nothing but the proper time (multi-
plied by wg) of the deceleration or acceleration.

For the parameter § = a, the system A moves with
the velocity g relative to the laboratory system and co-
incides with the proper system of the detector, touched
by the mirror at its turning point ¢ = & = 0. The fre-
quencies @ and @' of the waves of a pair in the detector
system are denoted by Q and Q'

!
Q=w i, O =uw /= (79)
» !

Evidently, they are Lorentz-invariant quantities.

5*
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In this system, BO = 0 and the invariant relative
velocity

!

= B = B = —— =th© = th (J—
Bco = Beo = Be 0 th@ = th (V—a),

[ Q fws!
O =1In W:ln E:'ﬂ—a,

coincides with the velocity B¢ of the pair of waves Q
and Q' and is defined by the ratio Q/Q' of the trans-
formed frequencies only.

The intervals Aty » and A% » are given by formulas
(77) and (78), where

(80)

6=a, woTip=FW—a), #0)=2(0)=0
Therefore,
- - sh (¥ —a
Aty o = t(woTy2) = :F¥ = Aty 0, (81)
Wo
- - . ch(¥—a)—-1
A‘Tl’z = x(onl,Q) = —% = A$1’2. (82)

At switching off the acceleration, the trajectory of
the mirror coincides with the trajectory of the detec-
tor, and ay,,, becomes the matrix diagonal in frequen-
cies (79):

aBl = or s - Q). (83)
Its functional dependence on the trajectory then re-
duces to the dependence on the parameter

By = tha = th (mW)

or the Doppler factor \/s/s entering Q and Q.

In the absence of acceleration, the frequencies w and
w' satisfy the condition Q = Q', and the velocities B¢
and [y coincide. Acceleration leads to nonzero Bogoli-
ubov coefficients [, 7# 0 and to the absence of the
relation Q = Q' or B¢ = By9. The distinction between
the frequencies 2 and Q' or the velocities S and [
can be described by the invariant relative velocity Bcoo,
see (68) and (76), and leads to the appearance of in-
variant phases of the Bogoliubov coefficients defined by
this parameter.

With intervals (69) and (70), the Bogoliubov coef-
ficients can be written as

R ‘ '
f,’f = —exp <—z’pr2 + 2) Kip <£> ;
w w w
* 2(o_i)L0 0 0 (84)
BEE = 2 exp(—ipAts) K1 o <£> 7
Wo Wo
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i.e., in the form of eigenfunctions of the invariant ope-
rators —id/0 Az, and i0/0At:

Ja 3 _oB*
oAz, . PY 'Ban, T

—i P ﬂ* ) (85)
with invariant eigenvalues of the momentum transfer
—p and mass p correspondingly.

Thus, the phases of coefficients (84) are defined by
the length Az 5 or the time At; » of motion of the mir-
ror near the turning point, where the velocity of the
mirror changes its sign and does not exceed in mag-
nitude the velocity of a pair created with a time-like
momentum.

In one and the same laboratory system, two coor-
dinate systems K and K' can be introduced that are
related by a parallel shift of space—time coordinates

r=x+2, t=t +1t. (86)
Monochromatic in- and out-waves in the K and K' sys-
tems differ only by phase factors

exp(—iw'v) = exp(—iw'vy) exp(—iw'v'), (87)
exp(—iwu) = exp(—iwu ) exp(—iwu').

Therefore, the Bogoliubov coefficients in the systems
K and K’ also differ by phase factors:

i = exp(—i(ga))ag,,
— (qA) = w'vy —wuy,
B = exp(—i(kA) S
— (kA) = w'vy + wuy,

(88)

where A® = (21, t1) is the 2-vector of the shift, and £
and ¢* are the wave 2-vectors (9) and (10).

In particular, the origin # = ¢t = 0 of the coordinate
system K can be chosen at the point of the trajectory
where the mirror has a nonzero velocity 5y, and the
origin ' = t' = 0 of the coordinate system K’ at the
turning point, where 5y = 0. Then z; and ¢; are the
coordinates of the turning point in the K-system. In
this case, for the hyperbolic trajectory, we have

1 1 1 1
m= T M=
0 0 (89)
»
wo =Vxx, fo=tha, a=In,/—
>

The phases of the corresponding factors in (88) are
equal to the differences of phases of Bogoliubov coef-
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ficients (57) and (58) with nonzero and zero values of
the parameter a:

!

w o ow w+w
Sy =4S otre
Va V4 Wo
=L (¥ —a)— ichﬁ,
Wo , w0+ , (90)
w o w —w4w
x V4 Wo

=L (¥ —a)+ L sh.
Wo Wo

The phases of the Bogoliubov coefficients can be
written as the scalar products

(JJI
x s

w W
x

(¢Az), (kAz)  (91)
of 2-vectors ¢® and k® defined only by the frequencies
w and w' and a space-like 2-vector Axz® defined only by

the parameters s and '
Azt = —
2 +

The length of Az® is given by 1/v/3¢¢', which is equal
to 1/wy for the hyperbolic trajectory.

Consequently, we have the following forms for the
phases:

o[anmt)
wWo

- pAtQ = —(kASU)

(qAz) = Lch (¥ — ),
o (93)

p
—Psh—a).
wos (¥ — a)

The vector Az® is closely related to the accelera-
tion 2-vector a® that for the trajectory u™" = g(v) is
given by the expression

n

49'2

(1+g,7 ]-_gl)a 9= g(v) (94)

At the point u = v = 0, we obtain

Ax®
, ag = —bVrA,

Vi (95)

ao = Qo
where ag is the proper acceleration at zero point.
The Lorentz-invariant quantity tra was defined
in [26] by the formula

tra =
T dwds! [
wdw P P
= 1y 2 — — !
0/ on)? Qi 7r5< e %/w>’ (96)
!
Q=4/—~w, Q= ﬁw',
P2 !
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in which the Lorentz-invariant argument of the J-
function is the difference of the frequencies Q and Q' of
the reflected and incident waves in the proper system
of the mirror at zero point © = v = 0, where the mir-
ror has the velocity o and acceleration ag = —bv/2¢3'.
The factors /> /5c and /5¢/ > are the Doppler factors
relating the frequencies in the laboratory system and
zero point proper system of the mirror (or the proper
system of the detector).

Thus, in the trace formation of the matrix «, its
elements diagonal in the invariant frequencies are in-
volved, i.e., the elements a,, where w/» = w'/3.
We note that the matrix elements oy, and 37, , be-
ing scalar functions of the frequencies w and w’, can
be written in the detector system if we perform the
changes

w,w — Q)

> !
u,v=>U=/—u, V=4/—u,
\ s P

— (97)
F(u), gv) = F(U) =/ Z f(w),
[ 2
P
in their expressions (2). Then
aw’w = AQIQ-, ﬂ:/w = B;)/Q./ (98)
and the diagonal elements Aqgq with Q = Q' = Vww'

are involved in trace (96).

For the trajectories in the Minkowski plane on the
left of their tangent line X*(7') at zero point, the co-
ordinate

21:

Xl(Tl)
For these trajectories, tra can be transformed to the
form [26]

—z'(1) > 0.

B,F _

tra
= 4 // deT'{ gba(T)fa(T’) }AfR(z,u), (99)
g on(,,_l) _ x“(r),

where the singular function ALF(z,v) differs from
the causal function Af: (z, ) by complex conjugation
and the replacement p — iv (or by the replacement
22— =22 u—v):

1 v
ARR(; 1) = Ea(ﬁ)—gﬂ—@e(z?m{?) (y\/z_2) +

(—22) K, (U\/j) . (100)

vi— 2 g
i Y
42/ —22
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The expression obtained allows interpreting tr a?:¥

as a functional describing the interaction of two vector
or scalar sources by means of exchange by vector or
scalar quanta with space-like momenta. At the same
time, one of the sources moves along the trajectory of
the mirror and the other moves along the line tangent
to it at zero point. The last source can be considered
a probe or detector of excitation created by the accel-
erated mirror in the vacuum.

Because the detector moves with a constant velocity
Bo, its 2-velocity X*(r') is independent of 7'. Conse-
quently,

ta (1) X?(r') = —7(7)

is the relative Lorentz factor defined by the relative
velocity B,(7) of the mirror and detector:

vo(7) = 1= B(7) Bo _ 1
\/1_62(7-) \/1_6(2) \/1_63(7)’ (101)
Bu(r) = B(r) = Bo
: 1—5(7') 50’

and is a Lorentz-invariant quantity for each 7. Then

tra®f = —i/dr{ V*iT) }J(T-,l/)a

J(1,v) =/dT' ALR (1,7, v).

(102)

It can be seen from this representation that at 6 # oo,
when the Lorentz factor v, (7) is bounded on the whole
trajectory, both traces have the same qualitative be-
havior as the parameter v — 0. It is clear that their
infrared (logarithmic) singularities in this parameter
occur due to the behavior of the integral J(r,v) as
T — £oo. For the trajectories with subluminal rela-
tive velocities Bi9 and B of the ends, both tra®F
have infrared singularities at ¥ = 0. Besides, the sin-
gularities of tra®? differ from those of traf only by
the values of the relative Lorentz factor 7. (7) for ini-
tial and final ends of the trajectory, i.e., by the factors
1/4/1 = B}, and 1/1/1 — j33,. Because the infrared sin-
gularities from the initial and final ends occur in tr o’
with the factors

V1- P53,

2810

V1 - B3

2[Ba0|

(103)

they disappear in tr af” for the trajectories with luminal
velocities of the ends, 819 = 1, 0 = —1, but remain
in tra®. The disappearance of singularities in tr o’
for such trajectories means that the function J(7, v)
is integrable in 7 at 7 — 400 even if v = 0. At the

678

same time, the function v.(7).J(7,v) is integrable in
this region only at v # 0.

The weakening of interaction of scalar charges with
increasing their relative velocity, contrary to the con-
stancy of the interaction of electric charges, is related
to a different geometrical structure of scalar and vec-
tor field sources p(z) and j*(z). They are given by
Eq. (4) for point-like charges moving along the trajec-
tory (7).

The charges of the scalar and vector field sources
are defined by the space integrals of their charge den-
sities p(x,t) and j°(x,t), and for point-like sources are
equal to

Qo, Q1 = /d%{p(x,t)., 1)} =
= e/dr{l., j;o(r)}d(t—xo(r)) =

=e{y7'(1), 1}, (104)

because
T —1/4
- = t
=)
Obviously, the charge for the point-like source T%5(x)
of a tensor field with spin 2 increases as the particle
energy,

if ' =a207).

Qa2 = ey(t).

Asg can be seen from the regularized representation

oo
1
traB7F|reg = g/ds
0

x exp(—is(G(z) —x)) —

oo

/dm{l,\/G’—(x)} X

— 00

™

ibs (105)

w
§=—,
>

obtained in [26], the ultraviolet divergences in tr a®¥

are removed by subtraction from the first integrand of
its asymptotic expansion in s as § — oo. The invariant

variable

w !

S = — =
x

ww'  bp

N 2’(1)0

!

is proportional to the momentum transfer p in units of
the proper acceleration wg of the mirror at the point of
its tangency with the detector. The subtracted term,
being integrated over p up to a large but finite ppqz,

1 7T 1 [7pmaa .

= oas ===/ 1- 1

2 / \ibs 2 wo (1=1), (106)
0

is one and the same for Bose and Fermi cases and ex-
plicitly depends on the acceleration.
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When the space interval Az between the mirror
and the detector becomes less than h/2Ap, the un-
controlled momentum transfer between them becomes
greater than Ap and leads to an ultraviolet divergence
in nonregularized tr o®¥'. Because the mirror coordi-
nate near the point of tangency with detector changes
in time according to the law

Wo t2

x(t) = 5

the time interval 7 necessary for the momentum trans-
fer Ap is of the order of

[ h 2
TR 2 =
Ap Wo V WoPmaz

Ap = hpmaz -

if we set

Then the subtracted term that regularizes tr a®F ac-

quires the form

1 7Tpmaz
27 wo

1
(1-1)= Eﬁpmazu — )T,
_ 2
V wOpmax‘

As distinct from (20), this term has the same sign for
Bose and Fermi cases. This can be understood as a
consequence of a positive momentum transfer from the
detector to the mirror in both cases. The differences in
the meaning of

(107)

TR

1
pmam ~ \/%

and 7 are more understandable.

Unlike AW o, describing the change of self-action
of charges due to acceleration, the functionals tr a®:¥
describe the interaction of the accelerated mirror with
the probe executing uniform motion along the tangent
to the trajectory of the mirror at the point where it has
the acceleration wg. This interaction is transmitted by
vector or scalar perturbations created by the mirror in
the vacuum of the Bose or Fermi field and carrying a
space-like momentum of the order of wg. According to
Eq. (100), at distances of the order of w, ! from the mir-
ror, the field of these perturbations decreases exponen-
tially in time-like directions and oscillates with damped
amplitude in space-like directions. It can be said that
such a field moves together with the mirror and is its
«proper field». Hence, the probe interacts with the
mirror for a time of the order of wy ', while the charge
constantly interacts with itself and feels the change of
interaction over all the acceleration time. Therefore, it

B,F

is not surprising that —tr a coincide in essence with

AW g if in these latter we set

2T
To —T1 = —,
wWo

e =1.
In other words, tr a® ¥ are the mass shifts of the mirror

proper field multiplied by a characteristic proper time
of their formation.

7. INTERACTION WITH THE PROPER FIELD
OF AN ACCELERATED MIRROR MOVING
WITH SUBLUMINAL VELOCITY

For a trajectory with subluminal velocities of the
ends, tr v is an invariant function of the relative veloc-
ities B12, B10, and B¢ connected by the relation

P10 — B

Pra = 1— 1020

We consider the regularized tr a?¥ for two important
trajectories.

1. Quasihyperbolic trajectory, given by formula
(22), is time-reversed to itself. Its representation in

the (u, v)-variables is

u™" = g(v) =vchf — &Shé +
wo
B2\’
+shé <v - —1> + a2, (108)
wWo
— 2
g BVIZB g0
Wo 2
The initial 3y and final f» = —f3; velocities are sublu-

minal.
Using this expression in representation (2) and in-
troducing the variable

we obtain

w' w+w
ab = QVUQXP <z ;;0 ﬂf) X

X /dx cos[(w' — wch@)x] x
0

X exp (—iw shf a2+ a2) . (109)

According to formulas (9) and (15) in Sec. 2.5.25 in [27],
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this integral reduces to the modified Bessel and Hankel
functions, and we finally have

ww' w4 w

) exp <Zw—05%0> x

x[x”l(a\/@), if Q=w?4+w?-
—2ww'chd >0,

ab = 2iash#

(110)

! !
ab = —mashé Liué exp (i%,@%) X
X Hl(Z) (a\/—Q) ,if Q=wr4w'? -
—2ww'chd < 0.

As usual,
6 = Arth ﬂ12

is a Lorentz-invariant parameter defined by the relative
velocity of the ends.

The corresponding Bogoliubov coefficient for the
Fermi case is more complicated:

, oo
Z
wrw ﬁfo> / dt \/sh2t + ch?Z x
Wo 2

X exp {ia ((w'—w)chg sht—

F  _ .
Qi = @exXp <z

- (w'+w)shgcht>}. (111)

Because the velocity of the mirror at the point
u = v = 0 (and hence the detector velocity) is equal to
zero, o = 0, the initial and final velocities 5; and [
can be regarded as invariant relative velocities 5, = S
and 83 = B2 of the mirror and detector at t = Foo.

According to definition (105), we obtain

tra®P| e, = cthb/2 1 m _ z'(lni -1)
g 21 2 e ’ (112)
v
e=—,
wWo

1 (1 . 2
traFpgg = — § —— |2 —i(ln = 1
vl lreg 27r{sh9/2[ 5 ~illn 2 )}+

ny {th "B + %} } . (113)

where

is one of the elliptic integrals [14].

In both tra® ¥ the infrared singularities were re-
moved by introducing the small parameter ¢ (the least
momentum transfer in wp units), while the ultraviolet
singularities were eliminated as was written above.

The function

0 In ch6/2
R(A) = th 3 B(k) + YR

is equal to zero at k = 0, grows almost linearly with £,
reaches the maximum value R ~ 1.28 at k£ =~ 0.97 and
then decays rapidly to 1 as k& — 1.

2. The Airy semiparabola with the in-tangent line
to the inflection point is given by

seu™ " (v) = (114)
7 v+ b0 + —exd303,
vg L U < 00,
where the inflection point is vy = —b/x'¢, b > 0, and

¢ > b% because the trajectory is time-like. The initial
velocity is subluminal, but the final one is luminal.

Using this trajectory in integral representations for
the Bogoliubov coefficients, we find that

F (cs)7'/® < b "2 3/2)
a exp | i—(s—s')—i-w X
W' TRy ~(s—5)
o0
|-z a 1 3
X [7 + —w dt\/t?2 + aw x
0

where Ai(z) and Gi(z) are the well-known Airy and
Scorer functions defined as in [28], and

z=(es) V(s —s")—w, w=(b/c)(cs)*/?,

s=w/x, s =w/)x, a=c/b®-1.

The parameter
o= 1= Pio
2510
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is defined by the initial relative velocity 1o of the mir-
ror and the detector, o0 = —1.
In finding tr a®, the integral

traf = % g(a +1) /Oodw exp (—i§w3/2> x
x {wAi(—w) —i (FGi(—w)+%>:| (117)

appears, which diverges at both the lower and the up-
per limits. The infrared divergence is removed by in-
troducing the nonzero lower limit

2/3
_ £
e <2<a+1>2> ’

where ¢ = v/wg < 1. To eliminate the ultraviolet di-
vergence, we subtract from the integrand the first term
Vme~ /4w =1/4 of its asymptotic expansion as w — co.
It is then possible to turn the integration contour by the
angle —7 /3 and, introducing the integration variable

t =exp(im/3)w

to bring the regularized integral to the form

13
tra® e, = o E(a +1)
X —z—z ﬂexp(— t3/2>+
3
ty
~ . 2.3/2
+ i | dtwGi(t) exp —gt (118)
0
In these transformations, we used the formulas
2mi
Aj —|t) =
(e (5))
= [Ai(r) ~ Bi)
5 €XP 3 i iBi(t)],
271'2 _ X Gift
exp =—exp |+ i(t) + (119)
1
2

( ) [AI(r) + iBi(0)],

/dt <7rBi(t) exp <—§t3/2> - t%) =0.
0

The last integral in (118) is equal to

2 2
4 Zme.
3tg™

As a result, we finally obtain

1 m
traBregzﬂ(oc—l—l){—g—
1)2 1
—ilan——m}}, c= 2 (120)
ve 3 wo

The evaluation of tr a follows a similar way. The
integral

F

13 T 2
tra’ = — Va+1 /dwexp —izw?/?) x
2w 2 3

now appears instead of integral (117). The leading
terms of the asymptotic expansions of the integrand
as w — 0 and w — oo are identical to those of the
integrand in (117) and differ from them only by extra
factors \/a and v/a + 1 correspondingly. After elimi-
nation of the infrared and ultraviolet divergences and
turning the integration contour by the angle —m/3, we
obtain

1
tra’ | e, = %{ ala+1) x

x (—g—iln?’(O‘%>+zx/ﬁJ( )}, (122)

where

r 2
J(a) = —3/dx exp <—§x3> X
0
3

oo
X /dr\/mexp <x2T—T—> -
0

3

—Vr(l+a)x (123)

S. L. Lebedev called the author’s attention to the fact
that the integral J(a) can be reduced to elementary
functions. Indeed, it can be shown that

a—2 a+y/ala+1)

n
3va+1 1++Va+1

+\/4+a1n\/a(4+a)—a
3 4+2y4+a

J(@)=1++a+

(124)

681



V. I. Ritus

MWITD, Tom 129, Bem. 4, 2006

The function J(a) is equal to

2
J(a)=1- §1n2:0.5379... at a=0,
attains the minimum value

J(a) = 0.39 at a=0.3,

and then grows and behaves as

1
J(a) <1+§1n2>\/a as a — 00.

We note that af,’f depend on two dimensionless
parameters b and ¢, but the traces tr a®¥ depend only
on their combination a, i.e., only on the subluminal
relative velocity Sio.

The Airy semiparabola with an out-tangent line is
time-reversed to the considered trajectory and can be
obtained from it by the changes

/
v —u, x & .

This leads to the change s 2 s’ in the expressions for
af,’f. The quantities tr a® ¥ do not change at all, but
it must be understood that the parameter « is now de-
fined by the final (and negative) relative velocity (a9 of

the mirror and detector:
1+ P
2f320

The infrared logarithmic singularities of tra
were regularized by a nonzero momentum transfer
v & wq. Their coefficients are in accordance with
the general consideration in Sec. 6. These singulari-
ties disappear from tr o’ lreq at luminal velocities of the
ends, and tr af’|,., becomes purely imaginary positive.
The positive sign of Im tr o’ |reg in this case can be ex-
plained by the large momentum transfer to the mirror
during its contact with the detector, while the negative
signs of Im Amg and Im Am; are related to energy—
momentum losses by the charge due to the change of
self-interaction at acceleration.

We do not consider the coefficients ﬁf,’f* here.
They can be obtained from ozf,’f by the changes

Vw = —iv,

and division by 7 in the Bose case, see Eq. (2).

while

- >07 ﬂlO =1

B.F

w— —w,

8. CONCLUSION

The symmetry being discussed reveals itself in the
coincidence of the quantities bilinear in S, such as
OOd ,
W
|ﬂw’w|2-, (/6+ﬂ)ww = /%ﬂ:/w ﬂw’wa

0
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N = tI‘BJrB = / (21_:; (ﬂ+6)ww7
0

with the corresponding quantities describing the emis-
sion of vector (scalar) quanta by an electric (scalar)
charge in 3 + 1-dimensional space, see the Introduc-
tion. Only similarly transforming frequencies are in-
volved in each summation entering these quantities and
the equality w = w" for the diagonal elements of the
matrix

(8" B = /OO k

0

o B:ﬂwﬂw’w’“

On the other hand, the definition of the trace of the
matrix a,, with differently transforming indices w and
w' required the Lorentz-invariant frequencies Q and Q'
coinciding with w and w’ in the proper system of the
detector, moving along the tangent line to the mirror
trajectory at the characteristic point. As a result, tr a
becomes a functional of not only the mirror trajectory
but also the detector one. This allows considering tr «
as an experimentally measurable quantity.

The symmetry under discussion has been embodied
in several exact mathematical relations between impor-
tant physical quantities. The most important of them
are, of course, the fundamental relations (11) and (12)
between the Bogoliubov coefficients for the processes
induced by a mirror in 1+ 1-dimensional space and the
current and charge densities for the processes induced
by a charge in 3 4+ 1-dimensional space. Another is the
integral relation in Eq. (16) between the propagator of a
pair of massless particles scattered in 1+ 1-dimensional
space in opposite directions with frequencies w and
w' (such that the pair has a mass m = 2vww'), and
the propagator of a single particle in 3 + 1-dimensional
space. This relation provides the connection

AWLO = GQAWB’F

between the self-action changes of a charge in 3 + 1-di-
mensional space and of a mirror in 1 + 1-dimensional
space if tr T8 < 1.

The other relations in which the symmetry mani-
fests itself are the spectral representations for the real
parts of self-action changes (32) and of mass shifts (34)
and (38) of electric and scalar charges in quasihyper-
bolic motion. The mass shifts of charges, the sources of
Bose fields with spins 1 and 0 in 34 1-dimensional space,
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are represented by the spectral distributions of the heat
capacity or the energy of Bose and Fermi gases of mass-
less particles in 1 + 1-dimensional space. The spectral
representations allow considering the mass shift forma-
tion as the balance between the radiation and excita-
tion of the proper energy at acceleration.

The symmetry between processes induced by the
mirror in 2-dimensional and by the charge in 4-dimen-
sional space-times predicts not only the value e = 1
for the bare charge squared, which corresponds to the
bare fine structure constant ag = 1/4nw, but also the
appearance of scalar particles in ultra high-energy col-
lisions in 3 + 1-dimensional space and a decrease in
their interaction with a scalar source with increasing
the energy.

It is very interesting that the bare fine structure
constant has a purely geometric origin, and, also, that
its value is small:

Qg = 1/471' < 1

The smallness of ag has the essential meaning for the
quantum electrodynamics, where it explains the small-
ness of a and a priori justifies the applicability of the
perturbation theory.
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and comments.
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