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THE SYMMETRY RELATING THE PROCESSES IN 2- AND4-DIMENSIONAL SPACE�TIMES, AND THE VALUE �0 = 1=4�OF THE BARE FINE STRUCTURE CONSTANTV. I. Ritus *Lebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaReeived April 22, 2005The symmetry manifests itself in exat mathematial relations between the Bogoliubov oe�ients for the pro-esses indued by an aelerated point mirror in 1 + 1-dimensional spae and the urrent (harge) densities forthe proesses aused by an aelerated point harge in 3 + 1-dimensional spae. The spetra of pairs of Bose(Fermi) massless quanta emitted by the mirror oinide with the spetra of photons (salar quanta) emittedby the eletri (salar) harge up to the fator e2=~. The integral relation between the propagator of a pairof oppositely direted massless partiles in 1 + 1-dimensional spae and the propagator of a single partile in3 + 1-dimensional spae leads to the equality of the vauum�vauum amplitudes for the harge and the mirrorif the mean number of reated partiles is small and the harge e = p~. Due to the symmetry, the mass shiftsof eletri and salar harges (the soures of Bose �elds with spin 1 and 0 in 3 + 1-dimensional spae) for thetrajetories with a subluminal relative veloity �12 of the ends and the maximum proper aeleration w0 areexpressed in terms of the heat apaity (or energy) spetral densities of Bose and Fermi gases of massless parti-les with the temperature w0=2� in 1 + 1-dimensional spae. Thus, the aeleration exites the 1-dimensionalosillations in the proper �eld of harges and the energy of osillations is partly deexited in the form of realquanta and partly remains in the �eld. As a result, the mass shift of an aelerated eletri harge is nonzero andnegative, while that of a salar harge is zero. The symmetry is extended to the mirror and harge interationswith the �elds arrying spae-like momenta and de�ning the Bogoliubov oe�ients �B;F . The traes tr�B;F ,whih desribe the vetor and salar interations of the aelerated mirror with a uniformly moving detetor,were found in analyti form for two mirror's trajetories with subluminal veloities of the ends. The symmetrypredits one and the same value e0 = p~ for the eletri and salar harges in 3 + 1-dimensional spae. Thearguments are addued in favor of the onlusion that this value and the orresponding value �0 = 1=4� of the�ne struture onstant are the bare, nonrenormalized values.PACS: 11.10.Jj, 11.10.Kk, 11.30.-j, 11.30.Na, 11.55.Fv, 03.65.Pm1. INTRODUCTIONThe Hawking mehanism for partile prodution atthe blak hole formation is analogous to the emissionfrom an ideal mirror aelerated in the vauum [1℄. Inits turn, there is a lose analogy between the radiationof pairs of salar (spinor) quanta from an aeleratedmirror in 1 + 1-dimensional spae and the radiationof photons (salar quanta) by an aelerated eletri(salar) harge in 3 + 1-dimensional spae [2; 3℄. Allthese proesses turn out to be mutually related. Inproblems with moving mirrors, the in-set �in !0 ; ��in !0*E-mail: ritus�lpi.ru

and the out-set �out !; ��out ! of the wave equation so-lutions are frequently used. For a massless salar �eld,they are given by�in !0(u; v) == 1p2!0 [exp(�i!0v)� exp(�i!0f(u))℄ ;�out !(u; v) == 1p2! [exp(�i!g(v))� exp(�i!u)℄ ; (1)with zero boundary ondition�jtraj = 0664



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :on the mirror's trajetory. Here, the variablesu = t� x; v = t+ xare used and the mirror (or harge) trajetory in theu; v plane is given by any of the two mutually inversefuntions vmir = f(u); umir = g(v):We refer the reader to [3℄ for the in- and out-setsof massless Dira equation solutions. Dira solutionsdi�er from Eqs. (1) by the presene of bispinor oe�-ients at the u- and v-plane waves. The urrent den-sities orresponding to these solutions have only tan-gential omponents at the boundary. Therefore, theboundary ondition for both salar and spinor �eld ispurely geometrial, it does not ontain any dimensionalparameters.The Bogoliubov oe�ients �!0! and �!0 ! ap-pear as the oe�ients of the expansion of the out-set solutions in the in-set solutions; the oe�ients��!0!; ��!0! arise as the oe�ients of the inverse ex-pansion. The upper and lower signs orrespond to thesalar (Bose) and spinor (Fermi) �elds. The expliitform of the Bogoliubov oe�ients is very simple:�B!0!; �B�!0! =r!0! 1Z�1 dv exp(i!0v � i!g(v)) == �r !!0 1Z�1 du exp(�i!u+ i!0f(u)): (2)The oe�ients �F!0! and �F�!0! for the Fermi �eld di�erfrom these representations by the substitutionsp!0=! !pg0(v); �p!=!0 !pf 0(u)in the integrands.Then the mean number d�n! of quanta radiated bythe aelerated mirror to the right half-spae with a fre-queny ! and wave vetor ! > 0, and the total meannumber �N of quanta are given by the integralsd�nB;F! = d!2� 1Z0 d!02� j�B;F!0! j2;�NB;F = 1ZZ0 d!d!0(2�)2 j�B;F!0! j2: (3)These expressions do not ontain ~, but their inter-pretation as mean numbers of quanta follows from the

seondary-quantized theory. The seondary-quantizedtheory allows onstruting all possible amplitudes ofmany-partile reation, annihilation, and sattering viaBogoliubov oe�ients [4�6℄.At the same time, the spetra of photons and salarquanta emitted by eletri and salar harges movingalong the trajetory x�(�) in 3 + 1-dimensional spaeare de�ned by the Fourier transforms of the eletriurrent density 4-vetor j�(x) and the salar hargedensity �(x),j�(k); �(k) = e Z d� f _x�(�); 1g exp(�ik�x�(�));j�(x); �(x) = e Z d� f _x�(�); 1gÆ4(x� x(�)); (4)and are given by the formulasd�n(1;0)k = 1~fjj�(k)j2; j�(k)j2gdk+dk�(4�)2 ;�N (1;0) = 1~ 1ZZ0 dk+dk�(4�)2 fjj�(k)j2; j�(k)j2g; (5)where the supersripts in d�n(s)k ; �N (s), and k� denotethe spin and 4-momentum of quanta,k2 = k21 + k2? � k20 = 0; k2? = k20 � k21 = k+k�;k� = k0 � k1;and it is supposed in Eqs. (5) that the trajetory x�(�)has only the x0 and x1 nontrivial omponents, as themirror's trajetory.In ontrast to the quantities in Eqs. (3), the d�n(s)kand �N (s) in Eqs. (5) ontain ~ beause the harge enter-ing the urrent and harge densities is onsidered a las-sial quantity. In essene, d�n(s)k and �N (s) an be on-sidered lassial quantities beause they are obtainedfrom a purely lassial radiation energy spetrum d �E(s)kdivided by the energy ~k0 of a single quantum, suhthat d�n(s)k = d �E(s)k~k0 ;�N (s) = Z d �E(s)k~k0 ; k0 = 12(k+ + k�): (6)The symmetry between the reation of Bose orFermi pairs by an aelerated mirror in 1 + 1-dimensio-nal spae and the emission of single photons or salarquanta by an eletri or salar harge in 3 + 1-dimen-665



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006sional spae onsists, �rst of all, in the oinidene ofthe spetra. If we set 2! = k+ and 2!0 = k�, thenj�B!0!j2 = 1e2 jj�(k+; k�)j2;j�F!0!j2 = 1e2 j�(k+; k�)j2: (7)Therefore, the spetra oinide as funtions of two vari-ables and funtionals of the ommon trajetory of themirror and the harge. The distintion in the fatore2=~ an be removed if we set e2 = ~.The symmetry under disussion onneting the las-sial and quantum theories in Minkowski spaes of4 and 2 dimensions in some sense resembles the du-ality of lassial and quantum desriptions in spaesof neighbor dimensions proposed by 't Hooft [7℄ andSusskind [8℄. Suh a duality was atually disoveredby Gubser, Klebanov, and Polyakov [9℄ and by Mal-daena [10℄ for di�erent types of semilassial super-gravity in anti-de Sitter spae and quantum onformaltheories on the boundary of this spae. It seems plau-sible that the general reason for suh dualities onsistsin the orrespondene between a single partile in thespae of the higher dimension and a pair of partiles inthe spae of the lower dimension. The desription ofa larger number of partiles in the spae of the lowerdimension is needed in aounting for the quantum me-hanial interferene e�ets.2. SYMMETRY AND PHYSICAL CONTENTAND THE DISTINCTION BETWEEN ��!0!AND �!0!It follows from the seondary-quantized theory thatthe absolute pair prodution amplitude and the single-partile sattering amplitude are related byhout!00!jini = �X!0 hout!00j!0ini��!0!: (8)This formula allows interpreting ��!0! as the amplitudeof a soure of a pair of massless partiles potentiallyemitted to the right and to the left with the respe-tive frequenes ! and !0 [6℄. While the partile withthe frequeny ! atually esapes to the right, the par-tile with the frequeny !0 propagates for some timeto the left and is then re�eted by the mirror and isatually emitted to the right with an altered frequeny!00. Then, in the time interval between pair reationand re�etion of the left partile, we have a virtual pairwith the energy k0, momentum k1, and mass m:k0 = ! + !0; k1 = ! � !0;m =p�k2 = 2p!!0: (9)

Apart from this polar time-like 2-vetor k�, veryimportant is the axial spae-like 2-vetor q�,q� = "��k� ; q0 = �k1 = �! + !0;q1 = �k0 = �! � !0 < 0: (10)In terms of k� and q�, the symmetry between the �and � oe�ients beomes expressed learly:s = 1; e�B�!0! = �q�j�(k)pk+k� ;e�B!0! = �k�j�(q)pk+k� ; (11)s = 0; e�F�!0! = �(k); e�F!0! = �(q): (12)We note that Eqs. (4) de�ne the urrent densityj�(k) and the harge density �(k) as funtionals of thetrajetory x�(�) and funtions of any 2- or 4-vetork�. It an be shown that in 1 + 1-dimensional spae,j�(k) and j�(q) are spae-like and time-like polar ve-tors if k� and q� are time-like and spae-like vetorsorrespondingly.In the vauum of a massless salar or spinor �eld,the boundary ondition at the mirror evokes the ap-pearane of vetor or salar disturbane waves bilinearin the massless �elds. There are two types of thesewaves:1) the waves with the amplitude �!0! (��!0!) thatarry a spae-like momentum direted to the left(right), and2) the waves with the amplitude ��!0! (�!0!) thatarry a time-like momentum with a positive (negative)frequeny.The waves with spae-like momenta appear even ifthe mirror is at rest or moves uniformly (Casimir ef-fet), while the waves with time-like momenta appearonly in the ase of an aelerated mirror.The pair of Bose (Fermi) partiles has spin 1 (0)beause its soure is the urrent density vetor (hargedensity salar), see [11℄ or problem 12.15 in [12℄.3. VACUUM�VACUUM AMPLITUDEhoutjini = eiW , SELF-ACTION, AND MASSSHIFTSIt follows from the seondary quantized theory thatin the vauum�vauum amplitudehoutjini = eiW ;666



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :the expression ImWB;F is well-de�ned. Aording toDeWitt [4℄, Wald [5℄, and others (inluding myself [6℄),2 ImWB;F = �12tr ln(1� �+�)or � tr ln(1� �+�) (13)in the respetive ases where the partile is idential ornonidential to the antipartile. We on�ne ourselvesby the last ase and by the smallness onditiontr�+� � 1:Then2 ImWB;F � tr (�+�)B;F �� 1ZZ0 d!d!0(2�)2 j�B;F!0! j2 = �NB;F : (14)In the integrand of �NB;F , we use representations (2) for�B;F , the variables x�(�) and x�(� 0) instead of u; f(u)and v; g(v), and hyperboli variables � and # insteadof ! and !0,d!d!0 = 12�d�d#; ! = 12�e#; !0 = 12�e�#;� = 2p!!0; # = lnr !!0 ; (15)to obtain the imaginary part of the ausal funtion in1 + 1-dimensional spae, Im�f2 (z; �), after integrationover #, and then the imaginary part of the ausal fun-tion in 3 + 1-dimensional spae, Im�f4 (z; �), after in-tegration over � = m, the variable that oinides withthe mass of the virtual pair aording to Eqs. (9). Thisresult is a speial ase of the very important integralrelation between the ausal funtions of wave equationsfor d- and d+ 2-dimensional spae�times [13℄,�fd+2(z; �) = 14� 1Z�2 dm2�fd(z;m): (16)The small mass parameter� = 2p!!0jmin 6= 0is introdued instead of zero to avoid the infrared di-vergene in what follows. We thus obtain2 ImWB;F == Im ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �);z� = x�(�) � x�(� 0): (17)

We an omit the Im symbols on both sides of thisequation and de�ne the ations for Bose and Fermi mir-rors in 1 + 1-dimensional spae asWB;F == 12 ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (18)This is to be ompared with the well-known ations foreletri and salar harges in 3 + 1-dimensional spae:W1;0 == 12 e2 ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (19)The symmetry would be omplete if e2 = 1, i.e., if the�ne struture onstant were � = 1=4�. This �ideal�value of �ne struture onstant for the harges wouldorrespond to the ideal, geometrial boundary ondi-tion at the mirror.The appearane of the ausal funtion �f4 (z; �) inthe ation has luid physial grounds.1. The ation must represent not only the radiationof real quanta but also the self-energy and polarizatione�ets. While the former e�ets are desribed by thesolutions of the homogeneous wave equation, the latterones require the inhomogeneous wave equation solu-tions that ontain information about the proper �eldof a soure. Suh solutions of the homogeneous andinhomogeneous wave equations are the funtions(1=2)�1 = Im�f ; �� = Re�f :2. While the appearane of Im�f in the imaginarypart of ation (17) is a onsequene of a mathemati-al transformation of the integral �NB;F (similar to thePlanherel theorem), the funtion�� � Re�fin the real part of the ation is unique if it appears asthe real part of the analyti ontinuation of the fun-tion i Im�f (z; �) to negative z2 that is even in z asIm�f itself.Both the propagator�f2 (z;m) of a virtual pair withthe mass m = � = 2p!!0in 2-dimensional spae�time and the mass spetrum ofthese pairs arise owing to the transition from the vari-ables ! and !0 to the hyperboli variables � and #,whih re�et the Lorentz symmetry of the problem.667



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006Further integration over the mass leads to the prop-agator �f4 (z; �) of a partile moving in 4-dimensionalspae�time with the mass � equal to the least mass ofvirtual pairs. Thus, relation (16) is immanent to theLorentz symmetry and the symmetry onneting theproesses in 2- and 4-dimensional spae�times.For point-like harges, the W1;0 ontain ultravioletdivergenes, whih must be eliminated. The removal ofultraviolet divergenes in the self-ations W1;0jF of a-elerated harges (with the fore F 6= 0) onsists in thesubtration of the orresponding self-ations W1;0jF=0of uniformly moving harges; as a result, the hanges�W1;0 =W1;0jF0 = W1;0jF �W1;0jF=0of the self-ations owing to aeleration do not ontainultraviolet singularities, have a positive imaginary part,Im�W1;0 > 0;and vanish together with the aeleration.The following representations for the self-ations ofuniformly moving eletri and salar harges are veryinstrutive:W1;0jF=0 == 12e2 ZZ d� d� 0f _x�(�) _x�(� 0); 1g�f4(z; �)jF=0 == � e24� 1� i2p2"�: (20)They arise if we introdue the integration variablex = � 0 � � instead of � 0, with z2 = �x2, set � = 0,and use the representation�f4 (z; �)j�=0 = � 14�2 ix2 � i" == 14�2 � "x4 + "2 � i x2x4 + "2� ; "! 0:The opposite signs of the self-ations are due to therepulsion of eletri harges of the same sign and tothe attration of salar ones. The oe�ients before �are the lassial proper energies �Æm1;0 of the hargestaken with the minus sign, and p2" haraterizes theharge dimension. Di�erent signs of ImW1;0jF=0 lead,in aordane with the amplitudes exp(iW1;0jF=0), tothe disappearane (sreening) of the eletri harge andto an unlimited growth (antisreening) of the salarharge.These extraordinary properties of the self-ationsour beause the harges are point-like. For the

vetor- and salar-�eld soures j�(x) and �(x) dis-tributed in spae and slowly varying in time, the self-ations are free from singularities and have no imagi-nary parts [11℄:W1;0 = Z dt�� Z d3x d3x04�jx� x0j fj�(x) j�(x0); �(x) �(x0)gt0=t: (21)In this form, the self-ations ontain the Ampere andCoulomb laws for urrent and harge interations andthe law of attration of salar harges of the same sign.Self-ations (20) and (21) are in aordane with thegeneral assertion that the interation of harges of thesame sign transferred by odd-spin quanta leads to re-pulsion and by even-spin quanta to attration.We give an example of the self-ation hanges�W1;0 of eletri and salar harges in the ase of a-elerated motion along the very important quasihyper-boli trajetoryx(t) = �21w0 � �1s �21w20 + t2; �1;2 = �th �2 ;�12 = �1 � �21� �1�2 = th �; (22)with the initial �1 and �nal �2 veloities at t = �1and proper aeleration �w0 at t = 0. The properaeleration at any moment is given by the formulaa(t) = � w0(1 + t2=t2)3=2 ; t = �1w0p1� �21 : (23)Therefore, the quasihyperboli motion is lose to thehyperboli one on the time interval jtj < t.The self-ation hanges �W1;0(�; �) are Lorentz-invariant funtions of the two variables� = Arth�12and � = �2=w20with singularities at � = 0 and � = �1.The ase where � ! 0 and � is arbitrary was on-sidered by the author in [13℄:�W1 = e28�2 ��� �th � � 1�+ i �� �th � � 1� �� ln 4(h � + 1)22�(h � � 1) + 2� ln 2� h � R(�)�� ; (24)668



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :�W0 = e28�2 ���1� �sh ��+ i ��1� �sh �� �� ln 4(h � + 1)22�(h � � 1) � 2 + ln 2 +R(�)�� ; (25)where  = 1:781 and R(�) is an even funtion of �related to the Euler dilogarithm L2(z) [14℄:R(�) = 1Z0 d� ln(h � + h�)h � + h� == L2(1� e�2�) + �2 � ln 2 � �sh � : (26)In the ase where � ! �1 and � is arbitrary, on-sidered in [15; 16℄,�W1;0 = �j �j e28�2 S1;0(�);Sn(�) = (�1)n+1 1Z0 dz exp�� i�2z��� �exp(iz)Kn(iz)�r �2iz � ; (27)where Kn(iz) is the Madonald funtion. As �! 0,S1(�) = �� � i�ln 42� � 1� ; S0(�) = �i: (28)For the trajetory with a subluminal relative velo-ity �12 of the ends, Re�W1;0 are given by the uniqueformulas independent of the trajetory details:Re�W1 = e28� � �th � � 1� ;Re�W0 = e28� �1� �sh �� : (29)As �12 ! 1, the trajetory atually beomes hyperboliwith the harge veloity�(�) = �thw0�at the proper time � , and� = w0(�2 � �1)!1:ThenRe�W1 = e2w08� (�2 � �1); Re�W0 = e28� ; (30)while the mass shifts of the uniformly aeleratedharges are �m = ���W��2 = e2w08�2 S(�); (31)

at �! 0; Re�m1 = �e2w08� ; Re�m0 = 0:The real parts of the ation hanges in (29) have in-teresting integral representations asending to Legend-re [17℄,Re�W1;0 = e24� 1Z0 dx sin xe�x=� � 1 ; � = Arth�12: (32)If �12 is lose to 1, then on a large interval of the quasi-hyperboli trajetory, the veloity�(�) � �thw0�;i.e., is the same as for the hyperboli trajetory, andthe parameter � � w0(�2 � �1);where �� = �2 � �1is the proper time interval within whih the hargemoves with the aeleration w0 and outside with theonstant initial and �nal veloities �1 and �2.In the aeleration interval, the mass shift of aharge an be de�ned by one of the two relationsRe�m = �� Re�W� �2 ; Reg�m = �Re�W�� : (33)In aordane with the �rst de�nition, using theLegendre representation and the formula� = w0(�2 � �1);we obtainRe�m1 = �e2w08� �th � � �sh2 �� ;Re�m0 = �e2w08� � th � � 1sh � ;Re�m1;0 = �e2 T 1Z0 d!2� sin 2!��! B;F (!=T );B;F (z) = z2ez(ez � 1)2 ; (34)
where T = w0=2� is the Davies �Unruh �tempera-ture� [18; 19℄ and B;F (!=T ) are the heat apaity spe-tral densities of Bose and Fermi gases of massless par-tiles in one-dimensional spae, see Ses. 49 and 105in [20℄.We have Re�m1;0 6 0 for all �nite � > 0; for � � 1,Re�m1 = 2Re�m0 = �e2w08� 23 �; (35)669



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006and for � !1,Re�m1 = �e2w08� ; Re�m0 = 0: (36)We note that as the aeleration duration �� !1,sin 2!��! ������!1 = � Æ(!): (37)The funtion in the left-hand side is the Fourier trans-form of the aeleration swithing funtion. The a-eleration interval an be regulated by resaling the�temperature� parameter and the frequeny, T ! kT ,! ! k!, at a onstant ratio !=T . Thus, the tempera-ture T = 2w0=� an also be used [16℄.In aordane with the seond de�nition,Re℄�m1 = �e2w08� �th � � 1�� ;Re℄�m0 = �e2w08� �1� � 1sh �� ;Re �̂m1;0 = �e2 1Z0 d!2� sin 2!��! !e!=T � 1 : (38)
In this ase, the spetral representation ontains theenergy spetral density of a Bose or Fermi gas of mass-less partiles in 1-dimensional spae. The quantities inboth representations are related byRe�m1;0 = T ��T Re �̂m1;0; (39)whih follows from the standard relationB;F (!=T ) = ��T � !e!=T � 1� (40)between heat apaity and energy, see Ses. 14 and 42in [20℄.As funtions of �, the shifts Re�m1;0 and Re �̂m1;0di�er in magnitude at � . 1, for example,Re�m1;0 = 2Re �̂m1;0; � � 1; (41)but have the same limit values (36) as � ! 1. Evi-dently, the mass shift formation requires proper timenot less than the inverse aeleration w�10 .Thus, aording to the spetral representations in(34) and (38), the symmetry being disussed also re-veals itself in the formation of the mass shifts of ele-tri and salar harges at aeleration. The vetor andsalar massless Bose �elds of the harges in 3 + 1-di-mensional spae again turn out to be related to themassless salar (Bose) and spinor (Fermi) �elds in

1+ 1-dimensional spae. The symmetry explaines whythe Legendre representations of the self-ation hangesand mass shifts of the eletri and salar harges, thesoures of Bose �elds, ontain the spetral distributionsharateristi of the Bose and Fermi �elds in 1-dimen-sional spae.The symmetry explaines the limit values (36) of themass shifts Re�m1;0 for uniformly aelerated ele-tri and salar harges in 3 + 1-dimensional spae interms of the nonzero and zero low-frequeny limits ofthe heat apaity (or energy) spetral densities for Boseand Fermi gases in 1 + 1-dimensional spae:B;F (!=T )��!=0 = 1; 0;uB;F (!) = !e!=T � 1 ����!=0 = T; 0: (42)The appearane of the heat quantum mehanialdistributions in the spetral representations of the dy-namial mass shifts �m1;0 is no less intriguing thantheir appearane in the Hawking e�et [1℄, espeiallywhen the absene of the horizons for the quasihyper-boli trajetory is taken into aount.Aording to the spetral formulas for�m and g�m,the proper �eld energy of the harges dereases at a-eleration due to radiation at the frequenies!n = �(n+ 1=2)2�� (43)with even n = 0; 2; : : : , and inreases due to exita-tion at the frequenies !n with odd n = 1; 3; : : : Wean say that the proper �eld releases (deon�nes) theexitations with even n and on�nes those with odd n.The resaling of T and ! does not hange this asser-tion. Eventually, for every �nite � > 0, the radiation�exitation balane leads toRe�m < 0; Re�W > 0; Im�W > 0:Simultaneous radiation and exitation of the proper�eld of a harge at aeleration is supported by the pos-itive and negative ontributions with even- and odd-nfrequenies !n to the imaginary part of the self-ationhange, Im�W = 1� Re�W � ln 1� + � � � ; (44)more preisely, to its leading, infrared part, see (24)and (25).Due to the symmetry, the quantities �WB;F and�mB;F for the mirror interating with massless Boseor Fermi �eld an be obtained from �W1;0 and �m1;0by the substitution e2 ! ~.670



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :4. ARGUMENTS IN FAVOR OF THE VALUE�0 = 1=4� OF THE BARE FINESTRUCTURE CONSTANTAt the ollisions of harged partiles (two eletrons,for example), emission of soft photons ours, whihdoes not a�et the motion of the olliding harges.As a result, the ross setion of the partile satteringwith the emission of n soft photons is given by formula(98.21) in [23℄,d� = d�sat w(n); w(n) = �nnn! e��n; (45)where w(n) is the probability of the emission of n softphotons in the appropriate frequeny interval (!1; !2)and �n is their mean number, whih an be foundfrom lassial eletrodynamis. In this paper, thevauum�vauum amplitude is onsidered whose modu-lus squared is equal to w(0) = e��n.It is important that the leading, logarithmi termof �n, �n = � 2� (� th � � 1)�ln !2!1 + f(�)� ; (46)(see Ses. 98, 120 in [23℄ and formula (24) in this pa-per, where 2 Im�W1 = �n, � = !1, and w0 = !2), isindependent of the details of the harge motion and isdetermined by the invariant momentum transfer� = q2m = pt2m = sh�2 ;whih together with the total energy p�s de�nes themain hard proess. Thus, independently of the hargemotion (�trajetory�) inside the forming region of thehard proess, the mean number of photons emittedby the harge is de�ned by the global parameter �the momentum transfer or the Lorentz-invariant ve-loity hange �12 of the harge in the above region,� = Arth�12.The quantity w(0) = e��n with the leading, logarith-mi term for �n is given by Abrikosov formula (136.11)in [23℄ for high energy and momentum transfer. It o-inides with (46) where!1 = !m; !2 = ":In the Abrikosov approximation, the e�etive (running)�ne struture onstant �eff (q2) [22; 23℄ does not di�erfrom �, �eff (q2) = �1� (�=3�)Ni ln(q2=m2i ) : (47)

Here, mi and Ni are the masses and numbers ofdi�erent-type vauum harges sreening the bareharge, mi < q. For ultrahigh momentum transfers,this formula does not work.If variant (b) of the Gell-Mann and Low paper [21℄is realized in quantum eletrodynamis, then on thedistanes less than some ultrashort ��1 � m�1, QEDis haraterized by a �nite point bare harge e0 and theharge density e0 Æ (x). In more detail, if the bare �nestruture onstant �0 = e204�~is �nite, then [21℄1) it is independent of the value of the �ne strutureonstant �;2) � must be less than �0;3) the harge density at very short distanes reduesto the delta-funtion e0Æ(x).Therefore, at a ollision of harges with the totalenergy p�s = 2Eand momentum transferpt � 2E � �;the ross setion d�sat is de�ned by the bare hargee0, and �n is given by the formula�n = �0 2� (� th � � 1)�ln !2!1 + f0(�)� (48)if the frequenies !1 and !2 satisfy the ondition� . !1 � !2 � E:In this ase, although the photon emission omes fromthe ultrashort region of the order ��1 where the hargeis point-like and equals e0, it no longer a�ets the dy-namis of the hard proess. Under these onditions, themotion of eah olliding harge is 1-dimensional andan be approximated by the lassial trajetory with�xed � = Arth�12 related to this ultrashort region.The symmetry disussed onsists in the oinideneof the number spetrum of pairs of Bose (Fermi) mass-less quanta emitted by a point mirror in 1 + 1-dimen-sional spae with the number spetrum of photons(massless salar quanta) emitted by a point eletri(salar) harge. The �rst one is obtained via quan-tum �eld theory with the orresponding zero boundaryondition at the mirror, while the seond is obtainedby dividing the lassial energy spetrum by ~!. Theorresponding spetra oinide as funtions of two vari-ables and funtionals of any ommon trajetory of the671



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006mirror and the harge. The only distintion in the fa-tor e2=~ an be removed if we set e2 = ~.This symmetry is a onsequene of1) the invariant struture of salar produts inquantum theory of salar and spinor �elds;2) the point-like struture of the mirror and theharge;3) the fat that quantum emission does not a�etthe mirror and harge motions;4) the spae 1-dimensionality of the motion.The 2-dimensional model of quantum �eld theorywith a point-like mirror interating with the seondary-quantized Bose (Fermi) massless �eld [4℄ is purely geo-metrial: it has no mass-dimension parameters and itsPlank onstant is dimensionless and equals 1. Theusual Plank onstant appears in the omparison ofthis quantum �eld theory model results with the resultsof QED, whih involves harge, mass, and momentaand energies instead of wave vetors and frequenies,or with the results of lassial eletrodynamis, whihinvolves harge, mass, and the energy of radiation.The dimensionless fator e2=~, whereby the num-ber spetrum of soft photons (~! � m2 in the propersystem of a harge) in QED di�ers from the numberspetrum of Bose pairs in the 2-dimensional quantum�eld theory model, is less than 1 beause the harge inQED has a �nite size of the order of ~=m due to thesreening, while the mirror (the soure of Bose pairs)is point-like.If QED has a �nite harge e0 of a vanishingly smallsize for the ultrahigh energy and momentum transfer,then this size annot be de�ned better than by settingit equal to the inverse energy ~=p�s of two head-onolliding harges. Therefore, it is reasonable to assumethat as p�s � pt!1;the spetrum of photons with frequenies� . ~! � p�semitted by the bare harge e0 does not di�er from thespetrum of Bose pairs radiated by a point mirror.Then e20 = ~ and �0 = 1=4�. The Gell-Mann�Lowproperties of �0 are ful�lled.We onsider the head-on ollision of two eletronswith mass m, harge e, and a very high energy E atin�nity. The elasti sattering ross setion dependson two invariants, s and t, whih in the enter-of-masssystem are equal tos = �4E2; t = 2p2(1� os#);

where E =pp2 +m2; p, and # are the eletron energy,momentum, and sattering angle in the enter-of-masssystem. At a �xed energy E, the smallest distane be-tween the harges is attained at the largest momentumtransfer, i.e., at # = �, when the harges move alongthe same straight line. In this ase, eah of them mostdeeply penetrates the sreening oat of the other. Ifwe suppose that the total energy is su�iently highto penetrate the region where the eletron harges be-ome bare, then the minimal distane between them isequal to rmin = �02E (49)in aordane with the lassial theory.But aording to quantum mehanis, at a distaner between the harges, the unertainty in their momen-tum is not less than �p � 1=r. It may be thought thatthe harges annot be separated by the distane lessthan rqmin, at whih the momentum unertainty givesthe energy greater than 2E. Then2E = 2pM2 +�p2; �p =pE2 �M2;where M is the mass of the bare harge. TheGell-Mann�Low point-like nature of the bare hargefores one to assume that M � E.For rqmin, we haverqmin = 1�p = 1pE2�M2 = 2E�0pE2�M2 rmin: (50)Beause the minimal quantum distane is distintlylarger than the lassial one, the turning point an beonsidered to be de�ned just by rqmin. Then the properaeleration of the harge at the turning point an befound from the equationM w0 = e204� rq 2min = �0 (E2 �M2): (51)The quantum motion of the harges is little a�eted bythe emission of photons with frequenies not greaterthan w0 beause the ratiow0E = �0 E2 �M2EM (52)is small if �0 is small and M � E. Therefore, for thealulation of soft photon emission, suh motion an beapproximated by the lassial trajetory with the ael-eration w0 at the turning point. As a result, for �n, weobtain formula (48) with !2 = w0 and the parameter �given by� = 2Arsh q2M ; q = �p =pE2 �M2: (53)672



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :At M � E, the fore ating on the harge e0 aordingto (51) is of the order of �0M2 and is small in ompar-ison both with the lassial fore M2=�0, when las-sial eletrodynamis beomes inonsistent, and withthe quantum fore M2, when QED requires quantumorretions, see Se. 75 in [24℄.About 45 years ago, Wigner remarked that speialrelativity is the physis of Lorentz transformations, andquantum mehanis is the physis of Fourier transfor-mations. Proesses indued by a point mirror in 1+ 1-dimensional spae are desribed by the simplest rel-ativisti quantum theory, whih is inarnated in theBogoliubov oe�ients. They are Lorentz-invariantsalar produts redued to Fourier transforms of mass-less salar and spinor wave equation solutions. Theyan be onsidered a onentrate of geneti informationabout proesses in 3 + 1-dimensional spae.5. SELF-ACTION CHANGES �W1;0 AND THETRACES tr�B;FThe basis for the symmetry between the proessesindued by the mirror in 2-dimensional and by theharge in 4-dimensional spae�time is relations (11) and(12) between the Bogoliubov oe�ients �B;F!0! and theurrent density j�(k) or harge density �(k) depend-ing on a time-like momentum k�. The squares of thesequantities represent the spetra of real pairs and parti-les radiated by the aelerated mirror and harge.The symmetry is extended to the self-ations ofthe mirror and the harge and to the orrespondingvauum�vauum amplitudes, f. (18) and (19). Inessene, it is embodied in the integral relation (16) bet-ween propagators of a massive pair in 2-dimensionalspae and of a single partile in 4-dimensional spae.Formula (18) forWB;F was obtained under the on-dition that the mean number �NB;F of pairs reated issmall and the interferene of two or more pairs is neg-ligible. In the general ase, WB;F is given by formula(13), whih an also be written as2 ImWB;F = �tr ln(�+�)B;F ; (54)beause �+�� �+� = 1;see [4; 6℄. As an be seen from (13), the imaginary partof the ation di�ers from zero and is then positive onlyif � 6= 0, i.e., if the radiation of real partiles has indeedourred.ForWB;F , formula (54) allows hoosing the expres-sion WB;F = �i tr ln �B;F ; (55)

whih was alled natural by DeWitt [4℄. However, thisexpression is by no means unique, the expressions in-volving �ei or �+ have the same imaginary part. Nev-ertheless, formula (55) is interesting as the de�nitionof both the real and imaginary parts of the self-ationsWB;F in terms of the Bogoliubov oe�ients �B;F!0! only,whih, aording to formulas (11) and (12), redue tothe urrent density j�(q) or to the harge density �(q)dependent on the spae-like momentum q�. This meansthat the �eld of the orresponding perturbations propa-gates in the vauum together with the mirror, omovesit, and, at the same time, ontains the informationabout the radiation of real quanta.Unfortunately, the author failed to �nd a simple in-tegral representation for the matrix ln �. Nevertheless,if we again assume that the mean number of emittedpartiles is small, we an onsider �, or i�, or �i�B;Flose to 1. The last phase fator is most aeptable, aswe see in what follows. Then, expanding ln(�i�B;F )near �i�B;F = 1 and on�ning ourselves to the �rstterm, we obtainWB;F = �i tr ln (�i�B;F ) � �i tr (�i�B;F � 1) == �tr�B;F + : : : (56)These qualitative arguments allow us to state that thefuntionals tr�B;F are similar to the orrespondingself-ations with the opposite sign and must thereforehave negative imaginary parts. This is on�rmed by thegeneral examples onsidered below, in whih at leastthe initial or the �nal veloity of the mirror is sublu-minal.However, as is shown in the next setion, the abovereasoning is very rude. The exat physial meaningof tr�B;F is onveyed by formula (99) or (102). As aresult, eah of the traes represents the mass shift of a�eld, entrained by an aelerated mirror, multiplied bythe e�etive proper time of shift formation. This timeis of the order of w�10 .6. INVARIANT STRUCTURE OF THEBOGOLIUBOV COEFFICIENTSHere, using the Bogoliubov oe�ients for hyper-boli motion of the mirror [25; 26℄�B;F!0! == 2p{{0 exp �i�!{ + !0{0��K1;0 2ir!!0{{0 ! == 2w0 exp�i �w0 h (#� �)�K1;0� i�w0� ; (57)5 ÆÝÒÔ, âûï. 4 673



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006�B;F�!0! = (�i)1;0 2p{{0 �� exp �i��!{ + !0{0��K1;0 2r!!0{{0 ! == (�i)1;0 2w0 exp ��i �w0 sh (#� �)�K1;0� �w0� (58)as an example, we onsider the invariant propertiesof the oe�ients with respet to Lorentz transforma-tions and the transformation properties with respet totransfer of the origin from one point on the trajetoryto another.The Bogoliubov oe�ients are funtionals of thetrajetory and funtions of the frequenies !; !0 andparameters {; {0. The latter haraterize the mirrortrajetory umir = g(v)near the oordinate origin u = v = 0 hosen on thetrajetory:umir = g(v) == 1{ �{0v + b({0v)2 + 13({0v)3 + : : :� : (59)The veloity and proper aeleration of the mirror atthe point u = v = 0 are equal to�0 = 1� {0={1 + {0={ ; a0 = �bp{{0: (60)Under the Lorentz transformation with the veloity� = th Æ, the parameters { and {0 are transformedjust as the frequenies ! and !0,~! = !��!p1��2 = ! e�Æ ; ~!0 = !0+�!0p1��2 = !0 eÆ; (61)and the produt ~!~!0 = !!0is invariant. Therefore, the frequenies !; !0 and pa-rameters {; {0 an be represented as! = p!!0 e#; !0 = p!!0 e�#;{ = p{{0 e�; {0 = p{{0 e��: (62)In the oordinate system moving with the veloity �Crelative to the laboratory system,� = �C = ! � !0! + !0 = th#; # = lnr !!0 ; (63)the frequenies ! and !0 of the re�eted and inidentwaves oinide and are equal to the invariant p!!0,while the vetorsk� = (k1; k0) = (! � !0; ! + !0);q� = (q1; q0) = (�! � !0; �! + !0); (64)

have only temporal and only spatial omponents orre-spondingly:k�C = �0; 2p!!0 � ; q�C = ��2p!!0; 0� : (65)These formulas were used in oe�ients (57) and (58)for the hyperboli trajetoryt(�) = sh (w0� � �) + sh�w0 ;x(�) = h�� h (w0� � �)w0 ; (66)for whih the proper aeleration is equal toa0 = �p{{0 = �w0:The veloity of the mirror on this trajetory at theinstant w0� is equal to�(w0�) = _x(w0�)_t(w0�) = �th (w0� � �): (67)The mirror passes the oordinate origin with the velo-ity �0 = �(0) = th�at the instant w0� = 0, passes the turning point atthe instant w0� = �; �(�) = 0, and at the instantsw0�1;2 = � � (# � �) before and after the turn, itsveloities are equal to�(w0�1;2) = �th (#� �) = � �C � �01� �C�0 = ��C0: (68)The veloities �C and �C0 are the veloities of the pairof waves ! and !0 in the laboratory system and in thesystem moving relative to the laboratory system withthe veloity �0. This last system is alled the systemof a detetor that moves with the onstant veloity �0and touhes the mirror at the point t = x = 0.Thus, the laboratory time intervals�t1;2 = t(w0�1;2)� t(�) = � sh (#� �)w0 (69)and the laboratory spae intervals�x1;2 = x(w0�1;2)� x(�) = �h (#� �) � 1w0 (70)ounted from the turning point de�ne the time andlength of the deeleration,w0�1 6 w0� 6 �;and aeleration, � 6 w0� 6 w0�2;674



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :intervals on the world trajetory of the mirror whereits veloity hanges monotonially in the interval��C0 6 � 6 �C0 (71)between the values opposite in sign to (68) and takeszero value at the turning point. It is assumed that# > �. In the ase where # < �, the instant �2 < �1 andthe deeleration and aeleration intervals are given byw0�2 6 w0� 6 � and � 6 w0� 6 w0�1 orrespondingly.We now show that the intervals �t1;2 and �x1;2 areLorentz-invariant, i.e., are unhanged under the transi-tion to another Lorentz oordinate system. Let the sys-tem ~K move with the veloity � = th Æ relative to thelaboratory system K. Then the mirror motion equa-tions in the system ~K beome~t(w0�) = t(w0�)� � x(w0�)p1� �2 == sh (�� Æ) + sh (w0� � �+ Æ)w0 ; (72)~x(w0�) = x(w0�)� � t(w0�)p1� �2 == h (� � Æ) + h (w0� � �+ Æ)w0 ; (73)di�ering from the nontransformed ones by the shift�! ~� = �� Æof the parameter �.The veloity of the mirror in the new system is~�(w0�) = _~x(w0�)_~t(w0�) = �th (w0� � �+ Æ): (74)At the instant w0� = 0 of passage through the origin,the veloity is equal to~�0 = ~�(0) = th (�� Æ);the turning point is passed at the instant w0� = �� Æ.Beause the frequenies ! and !0 go over into thefrequenies ~! and ~!0 under the Lorentz transformationwith the veloity � = th Æ, with~! = p!!0 e#�Æ; ~!0 = p!!0 e�#+Æ; (75)and di�er from the nontransformed ones by the shift#! ~# = #� Æof the parameter #, the veloity �C = th # of the pairof waves ! and !0 goes into the veloity~�C = th (#� Æ)

of the Lorentz-transformed pair of waves ~! and ~!0. Butthe relative veloity of this pair of waves and the de-tetor, ~�C0 = ~�C � ~�01� ~�C ~�0 = th (#� �) = �C0; (76)remains unhanges beause~#� ~� = #� �;see (62).In the new system, the time and length of the in-tervals of deeleration,w0~�1 = 2�� #� Æ 6 w0� 6 �� Æ;and aeleration,�� Æ 6 w0� 6 w0~�2 = #� Æ;from the same initial veloity~�(w0~�1) = th (#� �)to the same �nal veloity~�(w0~�2) = �th (#� �)are independent of the parameter Æ and remain theprevious funtions of the Lorentz-invariant di�erene#� � = ~#� ~�:�~t1;2 = ~t(w0~�1;2)� ~t(�� Æ) == � sh (#� �)w0 = �t1;2; (77)�~x1;2 = ~x(w0~�1;2)� ~x(�� Æ) == �h (#� �)� 1w0 = �x1;2: (78)This di�erene is nothing but the proper time (multi-plied by w0) of the deeleration or aeleration.For the parameter Æ = �, the system ~K moves withthe veloity �0 relative to the laboratory system and o-inides with the proper system of the detetor, touhedby the mirror at its turning point ~t = ~x = 0. The fre-quenies ~! and ~!0 of the waves of a pair in the detetorsystem are denoted by 
 and 
0:
 = !r{0{ ; 
0 = !0r {{0 : (79)Evidently, they are Lorentz-invariant quantities.675 5*



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006In this system, ~�0 = 0 and the invariant relativeveloity�C0 = ~�C0 = ~�C = 
�
0
+
0 = th� = th (#��);� = ln r 

0 = ln r!{0!0{ = #� �; (80)oinides with the veloity ~�C of the pair of waves 
and 
0 and is de�ned by the ratio 
=
0 of the trans-formed frequenies only.The intervals �~t1;2 and �~x1;2 are given by formulas(77) and (78), whereÆ = �; w0~�1;2 = �(#� �); ~t(0) = ~x(0) = 0:Therefore,�~t1;2 = ~t(w0~�1;2) = � sh (#� �)w0 = �t1;2; (81)�~x1;2 = ~x(w0~�1;2) = �h (#� �)� 1w0 = �x1;2: (82)At swithing o� the aeleration, the trajetory ofthe mirror oinides with the trajetory of the dete-tor, and �!0! beomes the matrix diagonal in frequen-ies (79): �B;F!0! = 2� Æ(
�
0): (83)Its funtional dependene on the trajetory then re-dues to the dependene on the parameter�0 = th� = th �lnp{={0 �or the Doppler fator p{={0 entering 
 and 
0.In the absene of aeleration, the frequenies ! and!0 satisfy the ondition 
 = 
0, and the veloities �Cand �0 oinide. Aeleration leads to nonzero Bogoli-ubov oe�ients �!0! 6= 0 and to the absene of therelation 
 = 
0 or �C = �0. The distintion betweenthe frequenies 
 and 
0 or the veloities �C and �0an be desribed by the invariant relative veloity �C0,see (68) and (76), and leads to the appearane of in-variant phases of the Bogoliubov oe�ients de�ned bythis parameter.With intervals (69) and (70), the Bogoliubov oef-�ients an be written as�B;F�!0! = 2w0 exp��i��x2 + i�w0�K1;0� i�w0� ;�B;F�!0! = 2(�i)1;0w0 exp(�i��t2)K1;0� �w0� ; (84)

i.e., in the form of eigenfuntions of the invariant ope-rators �i�=��x2 and i�=��t2:�i ����x2 = ���; i �����t2 = � ��; (85)with invariant eigenvalues of the momentum transfer�� and mass � orrespondingly.Thus, the phases of oe�ients (84) are de�ned bythe length �x1;2 or the time �t1;2 of motion of the mir-ror near the turning point, where the veloity of themirror hanges its sign and does not exeed in mag-nitude the veloity of a pair reated with a time-likemomentum.In one and the same laboratory system, two oor-dinate systems K and K 0 an be introdued that arerelated by a parallel shift of spae�time oordinatesx = x1 + x0; t = t1 + t0: (86)Monohromati in- and out-waves in the K andK 0 sys-tems di�er only by phase fatorsexp(�i!0v) = exp(�i!0v1) exp(�i!0v0);exp(�i!u) = exp(�i!u1) exp(�i!u0): (87)Therefore, the Bogoliubov oe�ients in the systemsK and K 0 also di�er by phase fators:�!0! = exp(�i(q�))�0!0! ;� (q�) = !0v1 � !u1;��!0! = exp(�i(k�))�0�!0!;� (k�) = !0v1 + !u1; (88)where �� = (x1; t1) is the 2-vetor of the shift, and k�and q� are the wave 2-vetors (9) and (10).In partiular, the origin x = t = 0 of the oordinatesystem K an be hosen at the point of the trajetorywhere the mirror has a nonzero veloity �0, and theorigin x0 = t0 = 0 of the oordinate system K 0 at theturning point, where �1 = 0. Then x1 and t1 are theoordinates of the turning point in the K-system. Inthis ase, for the hyperboli trajetory, we haveu1 = 1w0 � 1{ ; v1 = 1{0 � 1w0 ;w0 = p{{0; �0 = th�; � = ln r {{0 : (89)The phases of the orresponding fators in (88) areequal to the di�erenes of phases of Bogoliubov oef-676



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :�ients (57) and (58) with nonzero and zero values ofthe parameter �:� (q�) = !{ + !0{0 � ! + !0w0 == �w0 h (#� �)� �w0 h#;� (k�) = �!{ + !0{0 � �! + !0w0 == � �w0 sh (#� �) + �w0 sh#: (90)
The phases of the Bogoliubov oe�ients an bewritten as the salar produts!{ + !0{0 = �(q�x); �!{ + !0{0 = �(k�x) (91)of 2-vetors q� and k� de�ned only by the frequenies! and !0 and a spae-like 2-vetor �x� de�ned only bythe parameters { and {0:�x1 = 12{ + 12{0 ; �x0 = 12{0 � 12{ : (92)The length of �x� is given by 1=p{{0, whih is equalto 1=w0 for the hyperboli trajetory.Consequently, we have the following forms for thephases:� ���x2 � 1w0� = �(q�x) = �w0 h (#� �);� ��t2 = �(k�x) = � �w0 sh (#� �): (93)The vetor �x� is losely related to the aelera-tion 2-vetor a� that for the trajetory umir = g(v) isgiven by the expressiona� = (a1; a0) = � g004g02 (1+g0; 1�g0); g = g(v): (94)At the point u = v = 0, we obtaina�0 = a0 �x�p�x2 ; a0 = �bp{{0; (95)where a0 is the proper aeleration at zero point.The Lorentz-invariant quantity tr� was de�nedin [26℄ by the formulatr� == 1ZZ0 d!d!0(2�)2 �!0! 2� Æ r{0{ ! �r {{0!0! ;
 =r{0{ !; 
0 =r {{0!0; (96)

in whih the Lorentz-invariant argument of the Æ-funtion is the di�erene of the frequenies 
 and 
0 ofthe re�eted and inident waves in the proper systemof the mirror at zero point u = v = 0, where the mir-ror has the veloity �0 and aeleration a0 = �bp{{0.The fatorsp{0={ andp{={0 are the Doppler fatorsrelating the frequenies in the laboratory system andzero point proper system of the mirror (or the propersystem of the detetor).Thus, in the trae formation of the matrix �, itselements diagonal in the invariant frequenies are in-volved, i.e., the elements �!0! where !={ = !0={0.We note that the matrix elements �!0! and ��!0!, be-ing salar funtions of the frequenies ! and !0, anbe written in the detetor system if we perform thehanges !; !0 ! 
; 
0;u; v ! U =r {{0 u; V =r{0{ v;f(u); g(v)! F (U) =r{0{ f(u);G(V ) =r {{0 g(v); (97)
in their expressions (2). Then�!0! = A
0
; ��!0! = B�
0
; (98)and the diagonal elements A

 with 
 = 
0 = p!!0are involved in trae (96).For the trajetories in the Minkowski plane on theleft of their tangent line X�(� 0) at zero point, the o-ordinate z1 = X1(� 0)� x1(�) > 0:For these trajetories, tr� an be transformed to theform [26℄tr�B;F == �i ZZ d�d� 0( _x�(�) _X�(� 0)1 )�LR4 (z; �);z� = X�(� 0)� x�(�); (99)where the singular funtion �LR4 (z; �) di�ers fromthe ausal funtion �f4 (z; �) by omplex onjugationand the replaement � ! i� (or by the replaementz2 ! �z2; �! �):�LR4 (z; �) = 14� Æ(z2)� �8�pz2 �(z2)H(2)1 ��pz2 �++ i �4�2p�z2 �(�z2)K1 ��p�z2 � : (100)677



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006The expression obtained allows interpreting tr�B;Fas a funtional desribing the interation of two vetoror salar soures by means of exhange by vetor orsalar quanta with spae-like momenta. At the sametime, one of the soures moves along the trajetory ofthe mirror and the other moves along the line tangentto it at zero point. The last soure an be onsidereda probe or detetor of exitation reated by the ael-erated mirror in the vauum.Beause the detetor moves with a onstant veloity�0, its 2-veloity _X�(� 0) is independent of � 0. Conse-quently, _x�(�) _X�(� 0) = ��(�)is the relative Lorentz fator de�ned by the relativeveloity ��(�) of the mirror and detetor:�(�) = 1� �(�)�0p1� �2(�)p1� �20 = 1p1� �2�(�) ;��(�) = �(�) � �01� �(�)�0 ; (101)and is a Lorentz-invariant quantity for eah � . Thentr�B;F = �i Z d� ( �(�)1 ) J(�; �);J(�; �) = Z d� 0�LR4 (z(�; � 0); �): (102)It an be seen from this representation that at � 6=1,when the Lorentz fator �(�) is bounded on the wholetrajetory, both traes have the same qualitative be-havior as the parameter � ! 0. It is lear that theirinfrared (logarithmi) singularities in this parameterour due to the behavior of the integral J(�; �) as� ! �1. For the trajetories with subluminal rela-tive veloities �10 and �20 of the ends, both tr�B;Fhave infrared singularities at � = 0. Besides, the sin-gularities of tr�B di�er from those of tr�F only bythe values of the relative Lorentz fator �(�) for ini-tial and �nal ends of the trajetory, i.e., by the fators1=p1� �210 and 1=p1� �220. Beause the infrared sin-gularities from the initial and �nal ends our in tr�Fwith the fatorsp1� �2102�10 ; p1� �2202j�20j ; (103)they disappear in tr�F for the trajetories with luminalveloities of the ends, �10 = 1, �20 = �1, but remainin tr�B . The disappearane of singularities in tr�Ffor suh trajetories means that the funtion J(�; �)is integrable in � at � ! �1 even if � = 0. At the

same time, the funtion �(�) J(�; �) is integrable inthis region only at � 6= 0.The weakening of interation of salar harges withinreasing their relative veloity, ontrary to the on-stany of the interation of eletri harges, is relatedto a di�erent geometrial struture of salar and ve-tor �eld soures �(x) and j�(x). They are given byEq. (4) for point-like harges moving along the traje-tory x�(�).The harges of the salar and vetor �eld souresare de�ned by the spae integrals of their harge den-sities �(x; t) and j0(x; t), and for point-like soures areequal toQ0; Q1 = Z d3x f�(x; t); j0(x; t)g == e Z d�f1; _x0(�)g Æ(t � x0(�)) == ef�1(t); 1g; (104)beause d�dt0 = �1(t0) if t0 = x0(�):Obviously, the harge for the point-like soure T��(x)of a tensor �eld with spin 2 inreases as the partileenergy, Q2 = e(t):As an be seen from the regularized representationtr�B;F jreg = 12� 1Z0 ds24 1Z�1 dxn1; pG0(x)o �� exp(�is(G(x)� x))�r �ibs 35 ; s = !{ ; (105)obtained in [26℄, the ultraviolet divergenes in tr�B;Fare removed by subtration from the �rst integrand ofits asymptoti expansion in s as s!1. The invariantvariable s = !{ =r!!0{{0 = b�2w0is proportional to the momentum transfer � in units ofthe proper aeleration w0 of the mirror at the point ofits tangeny with the detetor. The subtrated term,being integrated over � up to a large but �nite �max,12� smaxZ0 dsr �ibs = 12�r��maxw0 (1� i); (106)is one and the same for Bose and Fermi ases and ex-pliitly depends on the aeleration.678



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :When the spae interval �x between the mirrorand the detetor beomes less than ~=2�p, the un-ontrolled momentum transfer between them beomesgreater than �p and leads to an ultraviolet divergenein nonregularized tr�B;F . Beause the mirror oordi-nate near the point of tangeny with detetor hangesin time aording to the lawx(t) = �w0t22 ;the time interval � neessary for the momentum trans-fer �p is of the order of� � 2s ~�pw0 = 2pw0�maxif we set �p = ~�max:Then the subtrated term that regularizes tr�B;F a-quires the form12�r��maxw0 (1� i) = 14�p��max(1� i)�;� � 2pw0�max : (107)As distint from (20), this term has the same sign forBose and Fermi ases. This an be understood as aonsequene of a positive momentum transfer from thedetetor to the mirror in both ases. The di�erenes inthe meaning of �max � 1p2"and � are more understandable.Unlike �W1;0, desribing the hange of self-ationof harges due to aeleration, the funtionals tr�B;Fdesribe the interation of the aelerated mirror withthe probe exeuting uniform motion along the tangentto the trajetory of the mirror at the point where it hasthe aeleration w0. This interation is transmitted byvetor or salar perturbations reated by the mirror inthe vauum of the Bose or Fermi �eld and arrying aspae-like momentum of the order of w0. Aording toEq. (100), at distanes of the order of w�10 from the mir-ror, the �eld of these perturbations dereases exponen-tially in time-like diretions and osillates with dampedamplitude in spae-like diretions. It an be said thatsuh a �eld moves together with the mirror and is its�proper �eld�. Hene, the probe interats with themirror for a time of the order of w�10 , while the hargeonstantly interats with itself and feels the hange ofinteration over all the aeleration time. Therefore, it

is not surprising that �tr�B;F oinide in essene with�W1;0 if in these latter we set�2 � �1 = 2�w0 ; e2 = 1:In other words, tr�B;F are the mass shifts of the mirrorproper �eld multiplied by a harateristi proper timeof their formation.7. INTERACTION WITH THE PROPER FIELDOF AN ACCELERATED MIRROR MOVINGWITH SUBLUMINAL VELOCITYFor a trajetory with subluminal veloities of theends, tr� is an invariant funtion of the relative velo-ities �12, �10, and �20 onneted by the relation�12 = �10 � �201� �10�20 :We onsider the regularized tr�B;F for two importanttrajetories.1. Quasihyperboli trajetory, given by formula(22), is time-reversed to itself. Its representation inthe (u; v)-variables isumir = g(v) = v h � � �1w0 sh � ++ sh �s�v � �21w0�2 + a2;a = �1p1� �21w0 ; �1 = th �2 : (108)The initial �1 and �nal �2 = ��1 veloities are sublu-minal.Using this expression in representation (2) and in-troduing the variablex = v � �21w0 ;we obtain�B!0! = 2r!0! exp�i! + !0w0 �21��� 1Z0 dx os[(!0 � ! h �)x℄�� exp��i! sh �px2 + a2 � : (109)Aording to formulas (9) and (15) in Se. 2.5.25 in [27℄,679



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006this integral redues to the modi�ed Bessel and Hankelfuntions, and we �nally have�B!0! = 2ia sh �s!!0Q exp�i! + !0w0 �210���K1 �apQ� ; if Q = !2 + !02 �� 2!!0 h � > 0;�B!0! = ��a sh �s!!0�Q exp�i! + !0w0 �210���H(2)1 �ap�Q� ; if Q = !2 + !02 �� 2!!0 h � < 0:
(110)

As usual, � = Arth�12is a Lorentz-invariant parameter de�ned by the relativeveloity of the ends.The orresponding Bogoliubov oe�ient for theFermi ase is more ompliated:�F!0! = a exp�i! + !0w0 �210� 1Z�1 dtrsh2t+ h2 �2 �� exp �ia�(!0�!)h�2 sh t�� (!0 + !) sh �2 h t�� : (111)Beause the veloity of the mirror at the pointu = v = 0 (and hene the detetor veloity) is equal tozero, �0 = 0, the initial and �nal veloities �1 and �2an be regarded as invariant relative veloities �1 = �10and �2 = �20 of the mirror and detetor at t = �1.Aording to de�nition (105), we obtaintr�B jreg = th �=22� ���2 � i(ln 2" � 1)� ;" = �w0 ; (112)tr�F jreg = 12� � 1sh �=2 ���2 � i(ln 2" � 1)�++ i �th �2 B(k) + ln h �=2sh �=2 �� ; (113)where B(k) = �=2Z0 os2 'd'p1� k2 sin2 '; k = th �2 ;

is one of the ellipti integrals [14℄.In both tr�B;F , the infrared singularities were re-moved by introduing the small parameter " (the leastmomentum transfer in w0 units), while the ultravioletsingularities were eliminated as was written above.The funtionR(�) = th �2 B(k) + ln h �=2sh �=2is equal to zero at k = 0, grows almost linearly with k,reahes the maximum value R � 1:28 at k � 0:97 andthen deays rapidly to 1 as k ! 1.2. The Airy semiparabola with the in-tangent lineto the in�etion point is given by
{umir(v) =8>>>>>>>>>><>>>>>>>>>>:

�1� b2 �{0v � b332 ;�1 < v 6 v0;{0v + b{02v2 + 13{03v3;v0 6 v <1; (114)
where the in�etion point is v0 = �b={0, b > 0, and > b2 beause the trajetory is time-like. The initialveloity is subluminal, but the �nal one is luminal.Using this trajetory in integral representations forthe Bogoliubov oe�ients, we �nd that�B!0! =rs0=s{{0 (s)�1=3 exp�i b (s�s0)�i23w3=2��� ��Ai(z)� i��Gi(z)� 1z�� ; (115)�F!0! = (s)�1=3p{{0(�+1) exp�i b (s�s0)�i23w3=2��� 24 ip�z + 1pw 1Z0 dtpt2 + �w �� exp��izt� it33 �35 ; (116)where Ai(z) and Gi(z) are the well-known Airy andSorer funtions de�ned as in [28℄, andz = (s)�1=3(s� s0)� w; w = (b=)2(s)2=3;s = !={; s0 = !0={0; � = =b2 � 1:The parameter � = 1� �102�10680



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :is de�ned by the initial relative veloity �10 of the mir-ror and the detetor, �20 = �1.In �nding tr�B , the integraltr�B = 12� 32(�+ 1) 1Z0 dw exp��i23w3=2��� ��Ai(�w)� i��Gi(�w) + 1w�� (117)appears, whih diverges at both the lower and the up-per limits. The infrared divergene is removed by in-troduing the nonzero lower limitw1 = � "2(�+ 1)2�2=3 ;where " = �=w0 � 1. To eliminate the ultraviolet di-vergene, we subtrat from the integrand the �rst termp�e�i�=4w�1=4 of its asymptoti expansion as w !1.It is then possible to turn the integration ontour by theangle ��=3 and, introduing the integration variablet = exp(i�=3)w;to bring the regularized integral to the formtr�B jreg = 12� 32(�+ 1)��8<:��3 � i 1Zt1 dtt exp��23t3=2�++ i 1Z0 dt �Gi(t) exp��23 t3=2�9=; : (118)In these transformations, we used the formulasAi�exp�2�i3 � t� == 12 exp� i�3 � [Ai(t)� iBi(t)℄;Gi�exp�2�i3 � t� = � exp� i�3 �Gi(t) ++ 12 exp�� i�6 � [Ai(t) + iBi(t)℄;1Z0 dt��Bi(t) exp��23 t3=2�� p�t1=4� = 0: (119)
The last integral in (118) is equal to23 + 29 ln 2:

As a result, we �nally obtaintr�B jreg = 12� (�+ 1)���2 �� i �ln 3(�+ 1)2" � 1� 13 ln 2�� ; " = �w0 : (120)The evaluation of tr�F follows a similar way. Theintegraltr�F = 12� 32p�+ 1 1Z0 dw exp��i23w3=2��� 24 1pw 1Z0 dtpt2 + �w �� exp�iwt� it33 �� iwp�35 (121)now appears instead of integral (117). The leadingterms of the asymptoti expansions of the integrandas w ! 0 and w ! 1 are idential to those of theintegrand in (117) and di�er from them only by extrafators p� and p�+ 1 orrespondingly. After elimi-nation of the infrared and ultraviolet divergenes andturning the integration ontour by the angle ��=3, weobtaintr�F jreg = 12� �p�(�+ 1) �� ���2 � i ln 3(�+ 1)2" �+ ip�+ 1 J(�)� ; (122)whereJ(�) = �3 1Z0 dx24exp��23x3� �� 1Z0 d�p�2 + �x2 exp�x2� � �33 ��� p�(1 + �)x35 : (123)S. L. Lebedev alled the author's attention to the fatthat the integral J(�) an be redued to elementaryfuntions. Indeed, it an be shown thatJ(�) = 1 +p�+ �� 23p�+ 1 ln �+p�(�+ 1)1 +p�+ 1 ++ p4 + �3 lnp�(4 + �)� �4 + 2p4 + � : (124)681



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006The funtion J(�) is equal toJ(�) = 1� 23 ln 2 = 0:5379 : : : at � = 0;attains the minimum valueJ(�) � 0:39 at � � 0:3;and then grows and behaves asJ(�) = �1 + 13 ln 2�p� as �!1:We note that �B;F!0! depend on two dimensionlessparameters b and , but the traes tr�B;F depend onlyon their ombination �, i.e., only on the subluminalrelative veloity �10.The Airy semiparabola with an out-tangent line istime-reversed to the onsidered trajetory and an beobtained from it by the hangesv � �u; { � {0:This leads to the hange s � s0 in the expressions for�B;F!0! . The quantities tr�B;F do not hange at all, butit must be understood that the parameter � is now de-�ned by the �nal (and negative) relative veloity �20 ofthe mirror and detetor:� = �1 + �202�20 > 0; while �10 = 1:The infrared logarithmi singularities of tr�B;Fwere regularized by a nonzero momentum transfer� � w0. Their oe�ients are in aordane withthe general onsideration in Se. 6. These singulari-ties disappear from tr�F jreg at luminal veloities of theends, and tr�F jreg beomes purely imaginary positive.The positive sign of Im tr�F jreg in this ase an be ex-plained by the large momentum transfer to the mirrorduring its ontat with the detetor, while the negativesigns of Im�m0 and Im�m1 are related to energy�momentum losses by the harge due to the hange ofself-interation at aeleration.We do not onsider the oe�ients �B;F�!0! here.They an be obtained from �B;F!0! by the hanges! ! �!; p! ! �ip!;and division by i in the Bose ase, see Eq. (2).8. CONCLUSIONThe symmetry being disussed reveals itself in theoinidene of the quantities bilinear in �!0!, suh asj�!0!j2; (�+�)!! = 1Z0 d!02� ��!0! �!0!;

�N = tr�+� = 1Z0 d!2� (�+�)!!;with the orresponding quantities desribing the emis-sion of vetor (salar) quanta by an eletri (salar)harge in 3 + 1-dimensional spae, see the Introdu-tion. Only similarly transforming frequenies are in-volved in eah summation entering these quantities andthe equality ! = !00 for the diagonal elements of thematrix (�+�)!!00 = 1Z0 d!02� ��!0!�!0!00 :On the other hand, the de�nition of the trae of thematrix �!0! with di�erently transforming indies ! and!0 required the Lorentz-invariant frequenies 
 and 
0oiniding with ! and !0 in the proper system of thedetetor, moving along the tangent line to the mirrortrajetory at the harateristi point. As a result, tr�beomes a funtional of not only the mirror trajetorybut also the detetor one. This allows onsidering tr�as an experimentally measurable quantity.The symmetry under disussion has been embodiedin several exat mathematial relations between impor-tant physial quantities. The most important of themare, of ourse, the fundamental relations (11) and (12)between the Bogoliubov oe�ients for the proessesindued by a mirror in 1+1-dimensional spae and theurrent and harge densities for the proesses induedby a harge in 3+ 1-dimensional spae. Another is theintegral relation in Eq. (16) between the propagator of apair of massless partiles sattered in 1+1-dimensionalspae in opposite diretions with frequenies ! and!0 (suh that the pair has a mass m = 2p!!0), andthe propagator of a single partile in 3+1-dimensionalspae. This relation provides the onnetion�W1;0 = e2�WB;Fbetween the self-ation hanges of a harge in 3 + 1-di-mensional spae and of a mirror in 1 + 1-dimensionalspae if tr�+� � 1.The other relations in whih the symmetry mani-fests itself are the spetral representations for the realparts of self-ation hanges (32) and of mass shifts (34)and (38) of eletri and salar harges in quasihyper-boli motion. The mass shifts of harges, the soures ofBose �elds with spins 1 and 0 in 3+1-dimensional spae,682



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the proesses in 2- and 4-dimensional spae�times : : :are represented by the spetral distributions of the heatapaity or the energy of Bose and Fermi gases of mass-less partiles in 1 + 1-dimensional spae. The spetralrepresentations allow onsidering the mass shift forma-tion as the balane between the radiation and exita-tion of the proper energy at aeleration.The symmetry between proesses indued by themirror in 2-dimensional and by the harge in 4-dimen-sional spae�times predits not only the value e20 = 1for the bare harge squared, whih orresponds to thebare �ne struture onstant �0 = 1=4�, but also theappearane of salar partiles in ultra high-energy ol-lisions in 3 + 1-dimensional spae and a derease intheir interation with a salar soure with inreasingthe energy.It is very interesting that the bare �ne strutureonstant has a purely geometri origin, and, also, thatits value is small: �0 = 1=4� � 1:The smallness of �0 has the essential meaning for thequantum eletrodynamis, where it explains the small-ness of � and a priori justi�es the appliability of theperturbation theory.I am grateful to M. A. Vasiliev for useful disussionsand omments.The work was arried out with �nanial sup-port of Sienti� Shools and the RFBR (grants�� 1578.2003.2 and 05-02-17217).REFERENCES1. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).2. A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz.108, 1121 (1995).3. V. I. Ritus, Zh. Eksp. Teor. Fiz. 110, 526 (1996).4. B. S. DeWitt, Phys. Rep. C 19, 295 (1975).5. R. M. Wald, Commun. Math. Phys. 45, 9 (1975).6. V. I. Ritus, Zh. Eksp. Teor. Fiz. 114, 46 (1998).7. G.'t Hooft, Utreht Preprint THU-93/26; E-printarhives gr-q/9310006.8. L. Susskind, J. Math. Phys. 36, 6377 (1995).
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