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THE SYMMETRY RELATING THE PROCESSES IN 2- AND4-DIMENSIONAL SPACE�TIMES, AND THE VALUE �0 = 1=4�OF THE BARE FINE STRUCTURE CONSTANTV. I. Ritus *Lebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiaRe
eived April 22, 2005The symmetry manifests itself in exa
t mathemati
al relations between the Bogoliubov 
oe�
ients for the pro-
esses indu
ed by an a

elerated point mirror in 1 + 1-dimensional spa
e and the 
urrent (
harge) densities forthe pro
esses 
aused by an a

elerated point 
harge in 3 + 1-dimensional spa
e. The spe
tra of pairs of Bose(Fermi) massless quanta emitted by the mirror 
oin
ide with the spe
tra of photons (s
alar quanta) emittedby the ele
tri
 (s
alar) 
harge up to the fa
tor e2=~
. The integral relation between the propagator of a pairof oppositely dire
ted massless parti
les in 1 + 1-dimensional spa
e and the propagator of a single parti
le in3 + 1-dimensional spa
e leads to the equality of the va
uum�va
uum amplitudes for the 
harge and the mirrorif the mean number of 
reated parti
les is small and the 
harge e = p~
. Due to the symmetry, the mass shiftsof ele
tri
 and s
alar 
harges (the sour
es of Bose �elds with spin 1 and 0 in 3 + 1-dimensional spa
e) for thetraje
tories with a subluminal relative velo
ity �12 of the ends and the maximum proper a

eleration w0 areexpressed in terms of the heat 
apa
ity (or energy) spe
tral densities of Bose and Fermi gases of massless parti-
les with the temperature w0=2� in 1 + 1-dimensional spa
e. Thus, the a

eleration ex
ites the 1-dimensionalos
illations in the proper �eld of 
harges and the energy of os
illations is partly deex
ited in the form of realquanta and partly remains in the �eld. As a result, the mass shift of an a

elerated ele
tri
 
harge is nonzero andnegative, while that of a s
alar 
harge is zero. The symmetry is extended to the mirror and 
harge intera
tionswith the �elds 
arrying spa
e-like momenta and de�ning the Bogoliubov 
oe�
ients �B;F . The tra
es tr�B;F ,whi
h des
ribe the ve
tor and s
alar intera
tions of the a

elerated mirror with a uniformly moving dete
tor,were found in analyti
 form for two mirror's traje
tories with subluminal velo
ities of the ends. The symmetrypredi
ts one and the same value e0 = p~
 for the ele
tri
 and s
alar 
harges in 3 + 1-dimensional spa
e. Thearguments are addu
ed in favor of the 
on
lusion that this value and the 
orresponding value �0 = 1=4� of the�ne stru
ture 
onstant are the bare, nonrenormalized values.PACS: 11.10.Jj, 11.10.Kk, 11.30.-j, 11.30.Na, 11.55.Fv, 03.65.Pm1. INTRODUCTIONThe Hawking me
hanism for parti
le produ
tion atthe bla
k hole formation is analogous to the emissionfrom an ideal mirror a

elerated in the va
uum [1℄. Inits turn, there is a 
lose analogy between the radiationof pairs of s
alar (spinor) quanta from an a

eleratedmirror in 1 + 1-dimensional spa
e and the radiationof photons (s
alar quanta) by an a

elerated ele
tri
(s
alar) 
harge in 3 + 1-dimensional spa
e [2; 3℄. Allthese pro
esses turn out to be mutually related. Inproblems with moving mirrors, the in-set �in !0 ; ��in !0*E-mail: ritus�lpi.ru

and the out-set �out !; ��out ! of the wave equation so-lutions are frequently used. For a massless s
alar �eld,they are given by�in !0(u; v) == 1p2!0 [exp(�i!0v)� exp(�i!0f(u))℄ ;�out !(u; v) == 1p2! [exp(�i!g(v))� exp(�i!u)℄ ; (1)with zero boundary 
ondition�jtraj = 0664



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the pro
esses in 2- and 4-dimensional spa
e�times : : :on the mirror's traje
tory. Here, the variablesu = t� x; v = t+ xare used and the mirror (or 
harge) traje
tory in theu; v plane is given by any of the two mutually inversefun
tions vmir = f(u); umir = g(v):We refer the reader to [3℄ for the in- and out-setsof massless Dira
 equation solutions. Dira
 solutionsdi�er from Eqs. (1) by the presen
e of bispinor 
oe�-
ients at the u- and v-plane waves. The 
urrent den-sities 
orresponding to these solutions have only tan-gential 
omponents at the boundary. Therefore, theboundary 
ondition for both s
alar and spinor �eld ispurely geometri
al, it does not 
ontain any dimensionalparameters.The Bogoliubov 
oe�
ients �!0! and �!0 ! ap-pear as the 
oe�
ients of the expansion of the out-set solutions in the in-set solutions; the 
oe�
ients��!0!; ��!0! arise as the 
oe�
ients of the inverse ex-pansion. The upper and lower signs 
orrespond to thes
alar (Bose) and spinor (Fermi) �elds. The expli
itform of the Bogoliubov 
oe�
ients is very simple:�B!0!; �B�!0! =r!0! 1Z�1 dv exp(i!0v � i!g(v)) == �r !!0 1Z�1 du exp(�i!u+ i!0f(u)): (2)The 
oe�
ients �F!0! and �F�!0! for the Fermi �eld di�erfrom these representations by the substitutionsp!0=! !pg0(v); �p!=!0 !pf 0(u)in the integrands.Then the mean number d�n! of quanta radiated bythe a

elerated mirror to the right half-spa
e with a fre-quen
y ! and wave ve
tor ! > 0, and the total meannumber �N of quanta are given by the integralsd�nB;F! = d!2� 1Z0 d!02� j�B;F!0! j2;�NB;F = 1ZZ0 d!d!0(2�)2 j�B;F!0! j2: (3)These expressions do not 
ontain ~, but their inter-pretation as mean numbers of quanta follows from the

se
ondary-quantized theory. The se
ondary-quantizedtheory allows 
onstru
ting all possible amplitudes ofmany-parti
le 
reation, annihilation, and s
attering viaBogoliubov 
oe�
ients [4�6℄.At the same time, the spe
tra of photons and s
alarquanta emitted by ele
tri
 and s
alar 
harges movingalong the traje
tory x�(�) in 3 + 1-dimensional spa
eare de�ned by the Fourier transforms of the ele
tri

urrent density 4-ve
tor j�(x) and the s
alar 
hargedensity �(x),j�(k); �(k) = e Z d� f _x�(�); 1g exp(�ik�x�(�));j�(x); �(x) = e Z d� f _x�(�); 1gÆ4(x� x(�)); (4)and are given by the formulasd�n(1;0)k = 1~
fjj�(k)j2; j�(k)j2gdk+dk�(4�)2 ;�N (1;0) = 1~
 1ZZ0 dk+dk�(4�)2 fjj�(k)j2; j�(k)j2g; (5)where the supers
ripts in d�n(s)k ; �N (s), and k� denotethe spin and 4-momentum of quanta,k2 = k21 + k2? � k20 = 0; k2? = k20 � k21 = k+k�;k� = k0 � k1;and it is supposed in Eqs. (5) that the traje
tory x�(�)has only the x0 and x1 nontrivial 
omponents, as themirror's traje
tory.In 
ontrast to the quantities in Eqs. (3), the d�n(s)kand �N (s) in Eqs. (5) 
ontain ~ be
ause the 
harge enter-ing the 
urrent and 
harge densities is 
onsidered a 
las-si
al quantity. In essen
e, d�n(s)k and �N (s) 
an be 
on-sidered 
lassi
al quantities be
ause they are obtainedfrom a purely 
lassi
al radiation energy spe
trum d �E(s)kdivided by the energy ~k0 of a single quantum, su
hthat d�n(s)k = d �E(s)k~k0 ;�N (s) = Z d �E(s)k~k0 ; k0 = 12(k+ + k�): (6)The symmetry between the 
reation of Bose orFermi pairs by an a

elerated mirror in 1 + 1-dimensio-nal spa
e and the emission of single photons or s
alarquanta by an ele
tri
 or s
alar 
harge in 3 + 1-dimen-665
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e 
onsists, �rst of all, in the 
oin
iden
e ofthe spe
tra. If we set 2! = k+ and 2!0 = k�, thenj�B!0!j2 = 1e2 jj�(k+; k�)j2;j�F!0!j2 = 1e2 j�(k+; k�)j2: (7)Therefore, the spe
tra 
oin
ide as fun
tions of two vari-ables and fun
tionals of the 
ommon traje
tory of themirror and the 
harge. The distin
tion in the fa
tore2=~
 
an be removed if we set e2 = ~
.The symmetry under dis
ussion 
onne
ting the 
las-si
al and quantum theories in Minkowski spa
es of4 and 2 dimensions in some sense resembles the du-ality of 
lassi
al and quantum des
riptions in spa
esof neighbor dimensions proposed by 't Hooft [7℄ andSusskind [8℄. Su
h a duality was a
tually dis
overedby Gubser, Klebanov, and Polyakov [9℄ and by Mal-da
ena [10℄ for di�erent types of semi
lassi
al super-gravity in anti-de Sitter spa
e and quantum 
onformaltheories on the boundary of this spa
e. It seems plau-sible that the general reason for su
h dualities 
onsistsin the 
orresponden
e between a single parti
le in thespa
e of the higher dimension and a pair of parti
les inthe spa
e of the lower dimension. The des
ription ofa larger number of parti
les in the spa
e of the lowerdimension is needed in a

ounting for the quantum me-
hani
al interferen
e e�e
ts.2. SYMMETRY AND PHYSICAL CONTENTAND THE DISTINCTION BETWEEN ��!0!AND �!0!It follows from the se
ondary-quantized theory thatthe absolute pair produ
tion amplitude and the single-parti
le s
attering amplitude are related byhout!00!jini = �X!0 hout!00j!0ini��!0!: (8)This formula allows interpreting ��!0! as the amplitudeof a sour
e of a pair of massless parti
les potentiallyemitted to the right and to the left with the respe
-tive frequen
es ! and !0 [6℄. While the parti
le withthe frequen
y ! a
tually es
apes to the right, the par-ti
le with the frequen
y !0 propagates for some timeto the left and is then re�e
ted by the mirror and isa
tually emitted to the right with an altered frequen
y!00. Then, in the time interval between pair 
reationand re�e
tion of the left parti
le, we have a virtual pairwith the energy k0, momentum k1, and mass m:k0 = ! + !0; k1 = ! � !0;m =p�k2 = 2p!!0: (9)

Apart from this polar time-like 2-ve
tor k�, veryimportant is the axial spa
e-like 2-ve
tor q�,q� = "��k� ; q0 = �k1 = �! + !0;q1 = �k0 = �! � !0 < 0: (10)In terms of k� and q�, the symmetry between the �and � 
oe�
ients be
omes expressed 
learly:s = 1; e�B�!0! = �q�j�(k)pk+k� ;e�B!0! = �k�j�(q)pk+k� ; (11)s = 0; e�F�!0! = �(k); e�F!0! = �(q): (12)We note that Eqs. (4) de�ne the 
urrent densityj�(k) and the 
harge density �(k) as fun
tionals of thetraje
tory x�(�) and fun
tions of any 2- or 4-ve
tork�. It 
an be shown that in 1 + 1-dimensional spa
e,j�(k) and j�(q) are spa
e-like and time-like polar ve
-tors if k� and q� are time-like and spa
e-like ve
tors
orrespondingly.In the va
uum of a massless s
alar or spinor �eld,the boundary 
ondition at the mirror evokes the ap-pearan
e of ve
tor or s
alar disturban
e waves bilinearin the massless �elds. There are two types of thesewaves:1) the waves with the amplitude �!0! (��!0!) that
arry a spa
e-like momentum dire
ted to the left(right), and2) the waves with the amplitude ��!0! (�!0!) that
arry a time-like momentum with a positive (negative)frequen
y.The waves with spa
e-like momenta appear even ifthe mirror is at rest or moves uniformly (Casimir ef-fe
t), while the waves with time-like momenta appearonly in the 
ase of an a

elerated mirror.The pair of Bose (Fermi) parti
les has spin 1 (0)be
ause its sour
e is the 
urrent density ve
tor (
hargedensity s
alar), see [11℄ or problem 12.15 in [12℄.3. VACUUM�VACUUM AMPLITUDEhoutjini = eiW , SELF-ACTION, AND MASSSHIFTSIt follows from the se
ondary quantized theory thatin the va
uum�va
uum amplitudehoutjini = eiW ;666



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the pro
esses in 2- and 4-dimensional spa
e�times : : :the expression ImWB;F is well-de�ned. A

ording toDeWitt [4℄, Wald [5℄, and others (in
luding myself [6℄),2 ImWB;F = �12tr ln(1� �+�)or � tr ln(1� �+�) (13)in the respe
tive 
ases where the parti
le is identi
al ornonidenti
al to the antiparti
le. We 
on�ne ourselvesby the last 
ase and by the smallness 
onditiontr�+� � 1:Then2 ImWB;F � tr (�+�)B;F �� 1ZZ0 d!d!0(2�)2 j�B;F!0! j2 = �NB;F : (14)In the integrand of �NB;F , we use representations (2) for�B;F , the variables x�(�) and x�(� 0) instead of u; f(u)and v; g(v), and hyperboli
 variables � and # insteadof ! and !0,d!d!0 = 12�d�d#; ! = 12�e#; !0 = 12�e�#;� = 2p!!0; # = lnr !!0 ; (15)to obtain the imaginary part of the 
ausal fun
tion in1 + 1-dimensional spa
e, Im�f2 (z; �), after integrationover #, and then the imaginary part of the 
ausal fun
-tion in 3 + 1-dimensional spa
e, Im�f4 (z; �), after in-tegration over � = m, the variable that 
oin
ides withthe mass of the virtual pair a

ording to Eqs. (9). Thisresult is a spe
ial 
ase of the very important integralrelation between the 
ausal fun
tions of wave equationsfor d- and d+ 2-dimensional spa
e�times [13℄,�fd+2(z; �) = 14� 1Z�2 dm2�fd(z;m): (16)The small mass parameter� = 2p!!0jmin 6= 0is introdu
ed instead of zero to avoid the infrared di-vergen
e in what follows. We thus obtain2 ImWB;F == Im ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �);z� = x�(�) � x�(� 0): (17)

We 
an omit the Im symbols on both sides of thisequation and de�ne the a
tions for Bose and Fermi mir-rors in 1 + 1-dimensional spa
e asWB;F == 12 ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (18)This is to be 
ompared with the well-known a
tions forele
tri
 and s
alar 
harges in 3 + 1-dimensional spa
e:W1;0 == 12 e2 ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (19)The symmetry would be 
omplete if e2 = 1, i.e., if the�ne stru
ture 
onstant were � = 1=4�. This �ideal�value of �ne stru
ture 
onstant for the 
harges would
orrespond to the ideal, geometri
al boundary 
ondi-tion at the mirror.The appearan
e of the 
ausal fun
tion �f4 (z; �) inthe a
tion has lu
id physi
al grounds.1. The a
tion must represent not only the radiationof real quanta but also the self-energy and polarizatione�e
ts. While the former e�e
ts are des
ribed by thesolutions of the homogeneous wave equation, the latterones require the inhomogeneous wave equation solu-tions that 
ontain information about the proper �eldof a sour
e. Su
h solutions of the homogeneous andinhomogeneous wave equations are the fun
tions(1=2)�1 = Im�f ; �� = Re�f :2. While the appearan
e of Im�f in the imaginarypart of a
tion (17) is a 
onsequen
e of a mathemati-
al transformation of the integral �NB;F (similar to thePlan
herel theorem), the fun
tion�� � Re�fin the real part of the a
tion is unique if it appears asthe real part of the analyti
 
ontinuation of the fun
-tion i Im�f (z; �) to negative z2 that is even in z asIm�f itself.Both the propagator�f2 (z;m) of a virtual pair withthe mass m = � = 2p!!0in 2-dimensional spa
e�time and the mass spe
trum ofthese pairs arise owing to the transition from the vari-ables ! and !0 to the hyperboli
 variables � and #,whi
h re�e
t the Lorentz symmetry of the problem.667



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006Further integration over the mass leads to the prop-agator �f4 (z; �) of a parti
le moving in 4-dimensionalspa
e�time with the mass � equal to the least mass ofvirtual pairs. Thus, relation (16) is immanent to theLorentz symmetry and the symmetry 
onne
ting thepro
esses in 2- and 4-dimensional spa
e�times.For point-like 
harges, the W1;0 
ontain ultravioletdivergen
es, whi
h must be eliminated. The removal ofultraviolet divergen
es in the self-a
tions W1;0jF of a
-
elerated 
harges (with the for
e F 6= 0) 
onsists in thesubtra
tion of the 
orresponding self-a
tions W1;0jF=0of uniformly moving 
harges; as a result, the 
hanges�W1;0 =W1;0jF0 = W1;0jF �W1;0jF=0of the self-a
tions owing to a

eleration do not 
ontainultraviolet singularities, have a positive imaginary part,Im�W1;0 > 0;and vanish together with the a

eleration.The following representations for the self-a
tions ofuniformly moving ele
tri
 and s
alar 
harges are veryinstru
tive:W1;0jF=0 == 12e2 ZZ d� d� 0f _x�(�) _x�(� 0); 1g�f4(z; �)jF=0 == � e24� 1� i2p2"�: (20)They arise if we introdu
e the integration variablex = � 0 � � instead of � 0, with z2 = �x2, set � = 0,and use the representation�f4 (z; �)j�=0 = � 14�2 ix2 � i" == 14�2 � "x4 + "2 � i x2x4 + "2� ; "! 0:The opposite signs of the self-a
tions are due to therepulsion of ele
tri
 
harges of the same sign and tothe attra
tion of s
alar ones. The 
oe�
ients before �are the 
lassi
al proper energies �Æm1;0 of the 
hargestaken with the minus sign, and p2" 
hara
terizes the
harge dimension. Di�erent signs of ImW1;0jF=0 lead,in a

ordan
e with the amplitudes exp(iW1;0jF=0), tothe disappearan
e (s
reening) of the ele
tri
 
harge andto an unlimited growth (antis
reening) of the s
alar
harge.These extraordinary properties of the self-a
tionso

ur be
ause the 
harges are point-like. For the

ve
tor- and s
alar-�eld sour
es j�(x) and �(x) dis-tributed in spa
e and slowly varying in time, the self-a
tions are free from singularities and have no imagi-nary parts [11℄:W1;0 = Z dt�� Z d3x d3x04�jx� x0j fj�(x) j�(x0); �(x) �(x0)gt0=t: (21)In this form, the self-a
tions 
ontain the Ampere andCoulomb laws for 
urrent and 
harge intera
tions andthe law of attra
tion of s
alar 
harges of the same sign.Self-a
tions (20) and (21) are in a

ordan
e with thegeneral assertion that the intera
tion of 
harges of thesame sign transferred by odd-spin quanta leads to re-pulsion and by even-spin quanta to attra
tion.We give an example of the self-a
tion 
hanges�W1;0 of ele
tri
 and s
alar 
harges in the 
ase of a
-
elerated motion along the very important quasihyper-boli
 traje
toryx(t) = �21w0 � �1s �21w20 + t2; �1;2 = �th �2 ;�12 = �1 � �21� �1�2 = th �; (22)with the initial �1 and �nal �2 velo
ities at t = �1and proper a

eleration �w0 at t = 0. The propera

eleration at any moment is given by the formulaa(t) = � w0(1 + t2=t2
)3=2 ; t
 = �1w0p1� �21 : (23)Therefore, the quasihyperboli
 motion is 
lose to thehyperboli
 one on the time interval jtj < t
.The self-a
tion 
hanges �W1;0(�; �) are Lorentz-invariant fun
tions of the two variables� = Arth�12and � = �2=w20with singularities at � = 0 and � = �1.The 
ase where � ! 0 and � is arbitrary was 
on-sidered by the author in [13℄:�W1 = e28�2 ��� �th � � 1�+ i �� �th � � 1� �� ln 4(
h � + 1)2
2�(
h � � 1) + 2� ln 2� 
h � R(�)�� ; (24)668



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the pro
esses in 2- and 4-dimensional spa
e�times : : :�W0 = e28�2 ���1� �sh ��+ i ��1� �sh �� �� ln 4(
h � + 1)2
2�(
h � � 1) � 2 + ln 2 +R(�)�� ; (25)where 
 = 1:781 and R(�) is an even fun
tion of �related to the Euler dilogarithm L2(z) [14℄:R(�) = 1Z0 d� ln(
h � + 
h�)
h � + 
h� == L2(1� e�2�) + �2 � ln 2 � �sh � : (26)In the 
ase where � ! �1 and � is arbitrary, 
on-sidered in [15; 16℄,�W1;0 = �j �j e28�2 S1;0(�);Sn(�) = (�1)n+1 1Z0 dz exp�� i�2z��� �exp(iz)Kn(iz)�r �2iz � ; (27)where Kn(iz) is the Ma
donald fun
tion. As �! 0,S1(�) = �� � i�ln 4
2� � 1� ; S0(�) = �i: (28)For the traje
tory with a subluminal relative velo
-ity �12 of the ends, Re�W1;0 are given by the uniqueformulas independent of the traje
tory details:Re�W1 = e28� � �th � � 1� ;Re�W0 = e28� �1� �sh �� : (29)As �12 ! 1, the traje
tory a
tually be
omes hyperboli
with the 
harge velo
ity�(�) = �thw0�at the proper time � , and� = w0(�2 � �1)!1:ThenRe�W1 = e2w08� (�2 � �1); Re�W0 = e28� ; (30)while the mass shifts of the uniformly a

elerated
harges are �m = ���W��2 = e2w08�2 S(�); (31)

at �! 0; Re�m1 = �e2w08� ; Re�m0 = 0:The real parts of the a
tion 
hanges in (29) have in-teresting integral representations as
ending to Legend-re [17℄,Re�W1;0 = e24� 1Z0 dx sin xe�x=� � 1 ; � = Arth�12: (32)If �12 is 
lose to 1, then on a large interval of the quasi-hyperboli
 traje
tory, the velo
ity�(�) � �thw0�;i.e., is the same as for the hyperboli
 traje
tory, andthe parameter � � w0(�2 � �1);where �� = �2 � �1is the proper time interval within whi
h the 
hargemoves with the a

eleration w0 and outside with the
onstant initial and �nal velo
ities �1 and �2.In the a

eleration interval, the mass shift of a
harge 
an be de�ned by one of the two relationsRe�m = �� Re�W� �2 ; Reg�m = �Re�W�� : (33)In a

ordan
e with the �rst de�nition, using theLegendre representation and the formula� = w0(�2 � �1);we obtainRe�m1 = �e2w08� �
th � � �sh2 �� ;Re�m0 = �e2w08� � 
th � � 1sh � ;Re�m1;0 = �e2 T 1Z0 d!2� sin 2!��! 
B;F (!=T );
B;F (z) = z2ez(ez � 1)2 ; (34)
where T = w0=2� is the Davies �Unruh �tempera-ture� [18; 19℄ and 
B;F (!=T ) are the heat 
apa
ity spe
-tral densities of Bose and Fermi gases of massless par-ti
les in one-dimensional spa
e, see Se
s. 49 and 105in [20℄.We have Re�m1;0 6 0 for all �nite � > 0; for � � 1,Re�m1 = 2Re�m0 = �e2w08� 23 �; (35)669



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006and for � !1,Re�m1 = �e2w08� ; Re�m0 = 0: (36)We note that as the a

eleration duration �� !1,sin 2!��! ������!1 = � Æ(!): (37)The fun
tion in the left-hand side is the Fourier trans-form of the a

eleration swit
hing fun
tion. The a
-
eleration interval 
an be regulated by res
aling the�temperature� parameter and the frequen
y, T ! kT ,! ! k!, at a 
onstant ratio !=T . Thus, the tempera-ture T = 2w0=� 
an also be used [16℄.In a

ordan
e with the se
ond de�nition,Re℄�m1 = �e2w08� �
th � � 1�� ;Re℄�m0 = �e2w08� �1� � 1sh �� ;Re �̂m1;0 = �e2 1Z0 d!2� sin 2!��! !e!=T � 1 : (38)
In this 
ase, the spe
tral representation 
ontains theenergy spe
tral density of a Bose or Fermi gas of mass-less parti
les in 1-dimensional spa
e. The quantities inboth representations are related byRe�m1;0 = T ��T Re �̂m1;0; (39)whi
h follows from the standard relation
B;F (!=T ) = ��T � !e!=T � 1� (40)between heat 
apa
ity and energy, see Se
s. 14 and 42in [20℄.As fun
tions of �, the shifts Re�m1;0 and Re �̂m1;0di�er in magnitude at � . 1, for example,Re�m1;0 = 2Re �̂m1;0; � � 1; (41)but have the same limit values (36) as � ! 1. Evi-dently, the mass shift formation requires proper timenot less than the inverse a

eleration w�10 .Thus, a

ording to the spe
tral representations in(34) and (38), the symmetry being dis
ussed also re-veals itself in the formation of the mass shifts of ele
-tri
 and s
alar 
harges at a

eleration. The ve
tor ands
alar massless Bose �elds of the 
harges in 3 + 1-di-mensional spa
e again turn out to be related to themassless s
alar (Bose) and spinor (Fermi) �elds in

1+ 1-dimensional spa
e. The symmetry explaines whythe Legendre representations of the self-a
tion 
hangesand mass shifts of the ele
tri
 and s
alar 
harges, thesour
es of Bose �elds, 
ontain the spe
tral distributions
hara
teristi
 of the Bose and Fermi �elds in 1-dimen-sional spa
e.The symmetry explaines the limit values (36) of themass shifts Re�m1;0 for uniformly a

elerated ele
-tri
 and s
alar 
harges in 3 + 1-dimensional spa
e interms of the nonzero and zero low-frequen
y limits ofthe heat 
apa
ity (or energy) spe
tral densities for Boseand Fermi gases in 1 + 1-dimensional spa
e:
B;F (!=T )��!=0 = 1; 0;uB;F (!) = !e!=T � 1 ����!=0 = T; 0: (42)The appearan
e of the heat quantum me
hani
aldistributions in the spe
tral representations of the dy-nami
al mass shifts �m1;0 is no less intriguing thantheir appearan
e in the Hawking e�e
t [1℄, espe
iallywhen the absen
e of the horizons for the quasihyper-boli
 traje
tory is taken into a

ount.A

ording to the spe
tral formulas for�m and g�m,the proper �eld energy of the 
harges de
reases at a
-
eleration due to radiation at the frequen
ies!n = �(n+ 1=2)2�� (43)with even n = 0; 2; : : : , and in
reases due to ex
ita-tion at the frequen
ies !n with odd n = 1; 3; : : : We
an say that the proper �eld releases (de
on�nes) theex
itations with even n and 
on�nes those with odd n.The res
aling of T and ! does not 
hange this asser-tion. Eventually, for every �nite � > 0, the radiation�ex
itation balan
e leads toRe�m < 0; Re�W > 0; Im�W > 0:Simultaneous radiation and ex
itation of the proper�eld of a 
harge at a

eleration is supported by the pos-itive and negative 
ontributions with even- and odd-nfrequen
ies !n to the imaginary part of the self-a
tion
hange, Im�W = 1� Re�W � ln 1� + � � � ; (44)more pre
isely, to its leading, infrared part, see (24)and (25).Due to the symmetry, the quantities �WB;F and�mB;F for the mirror intera
ting with massless Boseor Fermi �eld 
an be obtained from �W1;0 and �m1;0by the substitution e2 ! ~
.670
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esses in 2- and 4-dimensional spa
e�times : : :4. ARGUMENTS IN FAVOR OF THE VALUE�0 = 1=4� OF THE BARE FINESTRUCTURE CONSTANTAt the 
ollisions of 
harged parti
les (two ele
trons,for example), emission of soft photons o

urs, whi
hdoes not a�e
t the motion of the 
olliding 
harges.As a result, the 
ross se
tion of the parti
le s
atteringwith the emission of n soft photons is given by formula(98.21) in [23℄,d� = d�s
at w(n); w(n) = �nnn! e��n; (45)where w(n) is the probability of the emission of n softphotons in the appropriate frequen
y interval (!1; !2)and �n is their mean number, whi
h 
an be foundfrom 
lassi
al ele
trodynami
s. In this paper, theva
uum�va
uum amplitude is 
onsidered whose modu-lus squared is equal to w(0) = e��n.It is important that the leading, logarithmi
 termof �n, �n = � 2� (� 
th � � 1)�ln !2!1 + f(�)� ; (46)(see Se
s. 98, 120 in [23℄ and formula (24) in this pa-per, where 2 Im�W1 = �n, � = !1, and w0 = !2), isindependent of the details of the 
harge motion and isdetermined by the invariant momentum transfer� = q2m = pt2m = sh�2 ;whi
h together with the total energy p�s de�nes themain hard pro
ess. Thus, independently of the 
hargemotion (�traje
tory�) inside the forming region of thehard pro
ess, the mean number of photons emittedby the 
harge is de�ned by the global parameter �the momentum transfer or the Lorentz-invariant ve-lo
ity 
hange �12 of the 
harge in the above region,� = Arth�12.The quantity w(0) = e��n with the leading, logarith-mi
 term for �n is given by Abrikosov formula (136.11)in [23℄ for high energy and momentum transfer. It 
o-in
ides with (46) where!1 = !m; !2 = ":In the Abrikosov approximation, the e�e
tive (running)�ne stru
ture 
onstant �eff (q2) [22; 23℄ does not di�erfrom �, �eff (q2) = �1� (�=3�)Ni ln(q2=m2i ) : (47)

Here, mi and Ni are the masses and numbers ofdi�erent-type va
uum 
harges s
reening the bare
harge, mi < q. For ultrahigh momentum transfers,this formula does not work.If variant (b) of the Gell-Mann and Low paper [21℄is realized in quantum ele
trodynami
s, then on thedistan
es less than some ultrashort ��1 � m�1, QEDis 
hara
terized by a �nite point bare 
harge e0 and the
harge density e0 Æ (x). In more detail, if the bare �nestru
ture 
onstant �0 = e204�~
is �nite, then [21℄1) it is independent of the value of the �ne stru
ture
onstant �;2) � must be less than �0;3) the 
harge density at very short distan
es redu
esto the delta-fun
tion e0Æ(x).Therefore, at a 
ollision of 
harges with the totalenergy p�s = 2Eand momentum transferpt � 2E � �;the 
ross se
tion d�s
at is de�ned by the bare 
hargee0, and �n is given by the formula�n = �0 2� (� 
th � � 1)�ln !2!1 + f0(�)� (48)if the frequen
ies !1 and !2 satisfy the 
ondition� . !1 � !2 � E:In this 
ase, although the photon emission 
omes fromthe ultrashort region of the order ��1 where the 
hargeis point-like and equals e0, it no longer a�e
ts the dy-nami
s of the hard pro
ess. Under these 
onditions, themotion of ea
h 
olliding 
harge is 1-dimensional and
an be approximated by the 
lassi
al traje
tory with�xed � = Arth�12 related to this ultrashort region.The symmetry dis
ussed 
onsists in the 
oin
iden
eof the number spe
trum of pairs of Bose (Fermi) mass-less quanta emitted by a point mirror in 1 + 1-dimen-sional spa
e with the number spe
trum of photons(massless s
alar quanta) emitted by a point ele
tri
(s
alar) 
harge. The �rst one is obtained via quan-tum �eld theory with the 
orresponding zero boundary
ondition at the mirror, while the se
ond is obtainedby dividing the 
lassi
al energy spe
trum by ~!. The
orresponding spe
tra 
oin
ide as fun
tions of two vari-ables and fun
tionals of any 
ommon traje
tory of the671
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harge. The only distin
tion in the fa
-tor e2=~
 
an be removed if we set e2 = ~
.This symmetry is a 
onsequen
e of1) the invariant stru
ture of s
alar produ
ts inquantum theory of s
alar and spinor �elds;2) the point-like stru
ture of the mirror and the
harge;3) the fa
t that quantum emission does not a�e
tthe mirror and 
harge motions;4) the spa
e 1-dimensionality of the motion.The 2-dimensional model of quantum �eld theorywith a point-like mirror intera
ting with the se
ondary-quantized Bose (Fermi) massless �eld [4℄ is purely geo-metri
al: it has no mass-dimension parameters and itsPlan
k 
onstant is dimensionless and equals 1. Theusual Plan
k 
onstant appears in the 
omparison ofthis quantum �eld theory model results with the resultsof QED, whi
h involves 
harge, mass, and momentaand energies instead of wave ve
tors and frequen
ies,or with the results of 
lassi
al ele
trodynami
s, whi
hinvolves 
harge, mass, and the energy of radiation.The dimensionless fa
tor e2=~
, whereby the num-ber spe
trum of soft photons (~! � m
2 in the propersystem of a 
harge) in QED di�ers from the numberspe
trum of Bose pairs in the 2-dimensional quantum�eld theory model, is less than 1 be
ause the 
harge inQED has a �nite size of the order of ~=m
 due to thes
reening, while the mirror (the sour
e of Bose pairs)is point-like.If QED has a �nite 
harge e0 of a vanishingly smallsize for the ultrahigh energy and momentum transfer,then this size 
annot be de�ned better than by settingit equal to the inverse energy ~
=p�s of two head-on
olliding 
harges. Therefore, it is reasonable to assumethat as p�s � pt!1;the spe
trum of photons with frequen
ies� . ~! � p�semitted by the bare 
harge e0 does not di�er from thespe
trum of Bose pairs radiated by a point mirror.Then e20 = ~
 and �0 = 1=4�. The Gell-Mann�Lowproperties of �0 are ful�lled.We 
onsider the head-on 
ollision of two ele
tronswith mass m, 
harge e, and a very high energy E atin�nity. The elasti
 s
attering 
ross se
tion dependson two invariants, s and t, whi
h in the 
enter-of-masssystem are equal tos = �4E2; t = 2p2(1� 
os#);

where E =pp2 +m2; p, and # are the ele
tron energy,momentum, and s
attering angle in the 
enter-of-masssystem. At a �xed energy E, the smallest distan
e be-tween the 
harges is attained at the largest momentumtransfer, i.e., at # = �, when the 
harges move alongthe same straight line. In this 
ase, ea
h of them mostdeeply penetrates the s
reening 
oat of the other. Ifwe suppose that the total energy is su�
iently highto penetrate the region where the ele
tron 
harges be-
ome bare, then the minimal distan
e between them isequal to r
min = �02E (49)in a

ordan
e with the 
lassi
al theory.But a

ording to quantum me
hani
s, at a distan
er between the 
harges, the un
ertainty in their momen-tum is not less than �p � 1=r. It may be thought thatthe 
harges 
annot be separated by the distan
e lessthan rqmin, at whi
h the momentum un
ertainty givesthe energy greater than 2E. Then2E = 2pM2 +�p2; �p =pE2 �M2;where M is the mass of the bare 
harge. TheGell-Mann�Low point-like nature of the bare 
hargefor
es one to assume that M � E.For rqmin, we haverqmin = 1�p = 1pE2�M2 = 2E�0pE2�M2 r
min: (50)Be
ause the minimal quantum distan
e is distin
tlylarger than the 
lassi
al one, the turning point 
an be
onsidered to be de�ned just by rqmin. Then the propera

eleration of the 
harge at the turning point 
an befound from the equationM w0 = e204� rq 2min = �0 (E2 �M2): (51)The quantum motion of the 
harges is little a�e
ted bythe emission of photons with frequen
ies not greaterthan w0 be
ause the ratiow0E = �0 E2 �M2EM (52)is small if �0 is small and M � E. Therefore, for the
al
ulation of soft photon emission, su
h motion 
an beapproximated by the 
lassi
al traje
tory with the a

el-eration w0 at the turning point. As a result, for �n, weobtain formula (48) with !2 = w0 and the parameter �given by� = 2Arsh q2M ; q = �p =pE2 �M2: (53)672
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esses in 2- and 4-dimensional spa
e�times : : :At M � E, the for
e a
ting on the 
harge e0 a

ordingto (51) is of the order of �0M2 and is small in 
ompar-ison both with the 
lassi
al for
e M2=�0, when 
las-si
al ele
trodynami
s be
omes in
onsistent, and withthe quantum for
e M2, when QED requires quantum
orre
tions, see Se
. 75 in [24℄.About 45 years ago, Wigner remarked that spe
ialrelativity is the physi
s of Lorentz transformations, andquantum me
hani
s is the physi
s of Fourier transfor-mations. Pro
esses indu
ed by a point mirror in 1+ 1-dimensional spa
e are des
ribed by the simplest rel-ativisti
 quantum theory, whi
h is in
arnated in theBogoliubov 
oe�
ients. They are Lorentz-invariants
alar produ
ts redu
ed to Fourier transforms of mass-less s
alar and spinor wave equation solutions. They
an be 
onsidered a 
on
entrate of geneti
 informationabout pro
esses in 3 + 1-dimensional spa
e.5. SELF-ACTION CHANGES �W1;0 AND THETRACES tr�B;FThe basis for the symmetry between the pro
essesindu
ed by the mirror in 2-dimensional and by the
harge in 4-dimensional spa
e�time is relations (11) and(12) between the Bogoliubov 
oe�
ients �B;F!0! and the
urrent density j�(k) or 
harge density �(k) depend-ing on a time-like momentum k�. The squares of thesequantities represent the spe
tra of real pairs and parti-
les radiated by the a

elerated mirror and 
harge.The symmetry is extended to the self-a
tions ofthe mirror and the 
harge and to the 
orrespondingva
uum�va
uum amplitudes, 
f. (18) and (19). Inessen
e, it is embodied in the integral relation (16) bet-ween propagators of a massive pair in 2-dimensionalspa
e and of a single parti
le in 4-dimensional spa
e.Formula (18) forWB;F was obtained under the 
on-dition that the mean number �NB;F of pairs 
reated issmall and the interferen
e of two or more pairs is neg-ligible. In the general 
ase, WB;F is given by formula(13), whi
h 
an also be written as2 ImWB;F = �tr ln(�+�)B;F ; (54)be
ause �+�� �+� = 1;see [4; 6℄. As 
an be seen from (13), the imaginary partof the a
tion di�ers from zero and is then positive onlyif � 6= 0, i.e., if the radiation of real parti
les has indeedo

urred.ForWB;F , formula (54) allows 
hoosing the expres-sion WB;F = �i tr ln �B;F ; (55)

whi
h was 
alled natural by DeWitt [4℄. However, thisexpression is by no means unique, the expressions in-volving �ei
 or �+ have the same imaginary part. Nev-ertheless, formula (55) is interesting as the de�nitionof both the real and imaginary parts of the self-a
tionsWB;F in terms of the Bogoliubov 
oe�
ients �B;F!0! only,whi
h, a

ording to formulas (11) and (12), redu
e tothe 
urrent density j�(q) or to the 
harge density �(q)dependent on the spa
e-like momentum q�. This meansthat the �eld of the 
orresponding perturbations propa-gates in the va
uum together with the mirror, 
omovesit, and, at the same time, 
ontains the informationabout the radiation of real quanta.Unfortunately, the author failed to �nd a simple in-tegral representation for the matrix ln �. Nevertheless,if we again assume that the mean number of emittedparti
les is small, we 
an 
onsider �, or i�, or �i�B;F
lose to 1. The last phase fa
tor is most a

eptable, aswe see in what follows. Then, expanding ln(�i�B;F )near �i�B;F = 1 and 
on�ning ourselves to the �rstterm, we obtainWB;F = �i tr ln (�i�B;F ) � �i tr (�i�B;F � 1) == �tr�B;F + : : : (56)These qualitative arguments allow us to state that thefun
tionals tr�B;F are similar to the 
orrespondingself-a
tions with the opposite sign and must thereforehave negative imaginary parts. This is 
on�rmed by thegeneral examples 
onsidered below, in whi
h at leastthe initial or the �nal velo
ity of the mirror is sublu-minal.However, as is shown in the next se
tion, the abovereasoning is very 
rude. The exa
t physi
al meaningof tr�B;F is 
onveyed by formula (99) or (102). As aresult, ea
h of the tra
es represents the mass shift of a�eld, entrained by an a

elerated mirror, multiplied bythe e�e
tive proper time of shift formation. This timeis of the order of w�10 .6. INVARIANT STRUCTURE OF THEBOGOLIUBOV COEFFICIENTSHere, using the Bogoliubov 
oe�
ients for hyper-boli
 motion of the mirror [25; 26℄�B;F!0! == 2p{{0 exp �i�!{ + !0{0��K1;0 2ir!!0{{0 ! == 2w0 exp�i �w0 
h (#� �)�K1;0� i�w0� ; (57)5 ÆÝÒÔ, âûï. 4 673



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006�B;F�!0! = (�i)1;0 2p{{0 �� exp �i��!{ + !0{0��K1;0 2r!!0{{0 ! == (�i)1;0 2w0 exp ��i �w0 sh (#� �)�K1;0� �w0� (58)as an example, we 
onsider the invariant propertiesof the 
oe�
ients with respe
t to Lorentz transforma-tions and the transformation properties with respe
t totransfer of the origin from one point on the traje
toryto another.The Bogoliubov 
oe�
ients are fun
tionals of thetraje
tory and fun
tions of the frequen
ies !; !0 andparameters {; {0. The latter 
hara
terize the mirrortraje
tory umir = g(v)near the 
oordinate origin u = v = 0 
hosen on thetraje
tory:umir = g(v) == 1{ �{0v + b({0v)2 + 13
({0v)3 + : : :� : (59)The velo
ity and proper a

eleration of the mirror atthe point u = v = 0 are equal to�0 = 1� {0={1 + {0={ ; a0 = �bp{{0: (60)Under the Lorentz transformation with the velo
ity� = th Æ, the parameters { and {0 are transformedjust as the frequen
ies ! and !0,~! = !��!p1��2 = ! e�Æ ; ~!0 = !0+�!0p1��2 = !0 eÆ; (61)and the produ
t ~!~!0 = !!0is invariant. Therefore, the frequen
ies !; !0 and pa-rameters {; {0 
an be represented as! = p!!0 e#; !0 = p!!0 e�#;{ = p{{0 e�; {0 = p{{0 e��: (62)In the 
oordinate system moving with the velo
ity �Crelative to the laboratory system,� = �C = ! � !0! + !0 = th#; # = lnr !!0 ; (63)the frequen
ies ! and !0 of the re�e
ted and in
identwaves 
oin
ide and are equal to the invariant p!!0,while the ve
torsk� = (k1; k0) = (! � !0; ! + !0);q� = (q1; q0) = (�! � !0; �! + !0); (64)

have only temporal and only spatial 
omponents 
orre-spondingly:k�C = �0; 2p!!0 � ; q�C = ��2p!!0; 0� : (65)These formulas were used in 
oe�
ients (57) and (58)for the hyperboli
 traje
toryt(�) = sh (w0� � �) + sh�w0 ;x(�) = 
h�� 
h (w0� � �)w0 ; (66)for whi
h the proper a

eleration is equal toa0 = �p{{0 = �w0:The velo
ity of the mirror on this traje
tory at theinstant w0� is equal to�(w0�) = _x(w0�)_t(w0�) = �th (w0� � �): (67)The mirror passes the 
oordinate origin with the velo-
ity �0 = �(0) = th�at the instant w0� = 0, passes the turning point atthe instant w0� = �; �(�) = 0, and at the instantsw0�1;2 = � � (# � �) before and after the turn, itsvelo
ities are equal to�(w0�1;2) = �th (#� �) = � �C � �01� �C�0 = ��C0: (68)The velo
ities �C and �C0 are the velo
ities of the pairof waves ! and !0 in the laboratory system and in thesystem moving relative to the laboratory system withthe velo
ity �0. This last system is 
alled the systemof a dete
tor that moves with the 
onstant velo
ity �0and tou
hes the mirror at the point t = x = 0.Thus, the laboratory time intervals�t1;2 = t(w0�1;2)� t(�) = � sh (#� �)w0 (69)and the laboratory spa
e intervals�x1;2 = x(w0�1;2)� x(�) = �
h (#� �) � 1w0 (70)
ounted from the turning point de�ne the time andlength of the de
eleration,w0�1 6 w0� 6 �;and a

eleration, � 6 w0� 6 w0�2;674
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esses in 2- and 4-dimensional spa
e�times : : :intervals on the world traje
tory of the mirror whereits velo
ity 
hanges monotoni
ally in the interval��C0 6 � 6 �C0 (71)between the values opposite in sign to (68) and takeszero value at the turning point. It is assumed that# > �. In the 
ase where # < �, the instant �2 < �1 andthe de
eleration and a

eleration intervals are given byw0�2 6 w0� 6 � and � 6 w0� 6 w0�1 
orrespondingly.We now show that the intervals �t1;2 and �x1;2 areLorentz-invariant, i.e., are un
hanged under the transi-tion to another Lorentz 
oordinate system. Let the sys-tem ~K move with the velo
ity � = th Æ relative to thelaboratory system K. Then the mirror motion equa-tions in the system ~K be
ome~t(w0�) = t(w0�)� � x(w0�)p1� �2 == sh (�� Æ) + sh (w0� � �+ Æ)w0 ; (72)~x(w0�) = x(w0�)� � t(w0�)p1� �2 == 
h (� � Æ) + 
h (w0� � �+ Æ)w0 ; (73)di�ering from the nontransformed ones by the shift�! ~� = �� Æof the parameter �.The velo
ity of the mirror in the new system is~�(w0�) = _~x(w0�)_~t(w0�) = �th (w0� � �+ Æ): (74)At the instant w0� = 0 of passage through the origin,the velo
ity is equal to~�0 = ~�(0) = th (�� Æ);the turning point is passed at the instant w0� = �� Æ.Be
ause the frequen
ies ! and !0 go over into thefrequen
ies ~! and ~!0 under the Lorentz transformationwith the velo
ity � = th Æ, with~! = p!!0 e#�Æ; ~!0 = p!!0 e�#+Æ; (75)and di�er from the nontransformed ones by the shift#! ~# = #� Æof the parameter #, the velo
ity �C = th # of the pairof waves ! and !0 goes into the velo
ity~�C = th (#� Æ)

of the Lorentz-transformed pair of waves ~! and ~!0. Butthe relative velo
ity of this pair of waves and the de-te
tor, ~�C0 = ~�C � ~�01� ~�C ~�0 = th (#� �) = �C0; (76)remains un
hanges be
ause~#� ~� = #� �;see (62).In the new system, the time and length of the in-tervals of de
eleration,w0~�1 = 2�� #� Æ 6 w0� 6 �� Æ;and a

eleration,�� Æ 6 w0� 6 w0~�2 = #� Æ;from the same initial velo
ity~�(w0~�1) = th (#� �)to the same �nal velo
ity~�(w0~�2) = �th (#� �)are independent of the parameter Æ and remain theprevious fun
tions of the Lorentz-invariant di�eren
e#� � = ~#� ~�:�~t1;2 = ~t(w0~�1;2)� ~t(�� Æ) == � sh (#� �)w0 = �t1;2; (77)�~x1;2 = ~x(w0~�1;2)� ~x(�� Æ) == �
h (#� �)� 1w0 = �x1;2: (78)This di�eren
e is nothing but the proper time (multi-plied by w0) of the de
eleration or a

eleration.For the parameter Æ = �, the system ~K moves withthe velo
ity �0 relative to the laboratory system and 
o-in
ides with the proper system of the dete
tor, tou
hedby the mirror at its turning point ~t = ~x = 0. The fre-quen
ies ~! and ~!0 of the waves of a pair in the dete
torsystem are denoted by 
 and 
0:
 = !r{0{ ; 
0 = !0r {{0 : (79)Evidently, they are Lorentz-invariant quantities.675 5*



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006In this system, ~�0 = 0 and the invariant relativevelo
ity�C0 = ~�C0 = ~�C = 
�
0
+
0 = th� = th (#��);� = ln r 

0 = ln r!{0!0{ = #� �; (80)
oin
ides with the velo
ity ~�C of the pair of waves 
and 
0 and is de�ned by the ratio 
=
0 of the trans-formed frequen
ies only.The intervals �~t1;2 and �~x1;2 are given by formulas(77) and (78), whereÆ = �; w0~�1;2 = �(#� �); ~t(0) = ~x(0) = 0:Therefore,�~t1;2 = ~t(w0~�1;2) = � sh (#� �)w0 = �t1;2; (81)�~x1;2 = ~x(w0~�1;2) = �
h (#� �)� 1w0 = �x1;2: (82)At swit
hing o� the a

eleration, the traje
tory ofthe mirror 
oin
ides with the traje
tory of the dete
-tor, and �!0! be
omes the matrix diagonal in frequen-
ies (79): �B;F!0! = 2� Æ(
�
0): (83)Its fun
tional dependen
e on the traje
tory then re-du
es to the dependen
e on the parameter�0 = th� = th �lnp{={0 �or the Doppler fa
tor p{={0 entering 
 and 
0.In the absen
e of a

eleration, the frequen
ies ! and!0 satisfy the 
ondition 
 = 
0, and the velo
ities �Cand �0 
oin
ide. A

eleration leads to nonzero Bogoli-ubov 
oe�
ients �!0! 6= 0 and to the absen
e of therelation 
 = 
0 or �C = �0. The distin
tion betweenthe frequen
ies 
 and 
0 or the velo
ities �C and �0
an be des
ribed by the invariant relative velo
ity �C0,see (68) and (76), and leads to the appearan
e of in-variant phases of the Bogoliubov 
oe�
ients de�ned bythis parameter.With intervals (69) and (70), the Bogoliubov 
oef-�
ients 
an be written as�B;F�!0! = 2w0 exp��i��x2 + i�w0�K1;0� i�w0� ;�B;F�!0! = 2(�i)1;0w0 exp(�i��t2)K1;0� �w0� ; (84)

i.e., in the form of eigenfun
tions of the invariant ope-rators �i�=��x2 and i�=��t2:�i ����x2 = ���; i �����t2 = � ��; (85)with invariant eigenvalues of the momentum transfer�� and mass � 
orrespondingly.Thus, the phases of 
oe�
ients (84) are de�ned bythe length �x1;2 or the time �t1;2 of motion of the mir-ror near the turning point, where the velo
ity of themirror 
hanges its sign and does not ex
eed in mag-nitude the velo
ity of a pair 
reated with a time-likemomentum.In one and the same laboratory system, two 
oor-dinate systems K and K 0 
an be introdu
ed that arerelated by a parallel shift of spa
e�time 
oordinatesx = x1 + x0; t = t1 + t0: (86)Mono
hromati
 in- and out-waves in the K andK 0 sys-tems di�er only by phase fa
torsexp(�i!0v) = exp(�i!0v1) exp(�i!0v0);exp(�i!u) = exp(�i!u1) exp(�i!u0): (87)Therefore, the Bogoliubov 
oe�
ients in the systemsK and K 0 also di�er by phase fa
tors:�!0! = exp(�i(q�))�0!0! ;� (q�) = !0v1 � !u1;��!0! = exp(�i(k�))�0�!0!;� (k�) = !0v1 + !u1; (88)where �� = (x1; t1) is the 2-ve
tor of the shift, and k�and q� are the wave 2-ve
tors (9) and (10).In parti
ular, the origin x = t = 0 of the 
oordinatesystem K 
an be 
hosen at the point of the traje
torywhere the mirror has a nonzero velo
ity �0, and theorigin x0 = t0 = 0 of the 
oordinate system K 0 at theturning point, where �1 = 0. Then x1 and t1 are the
oordinates of the turning point in the K-system. Inthis 
ase, for the hyperboli
 traje
tory, we haveu1 = 1w0 � 1{ ; v1 = 1{0 � 1w0 ;w0 = p{{0; �0 = th�; � = ln r {{0 : (89)The phases of the 
orresponding fa
tors in (88) areequal to the di�eren
es of phases of Bogoliubov 
oef-676



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the pro
esses in 2- and 4-dimensional spa
e�times : : :�
ients (57) and (58) with nonzero and zero values ofthe parameter �:� (q�) = !{ + !0{0 � ! + !0w0 == �w0 
h (#� �)� �w0 
h#;� (k�) = �!{ + !0{0 � �! + !0w0 == � �w0 sh (#� �) + �w0 sh#: (90)
The phases of the Bogoliubov 
oe�
ients 
an bewritten as the s
alar produ
ts!{ + !0{0 = �(q�x); �!{ + !0{0 = �(k�x) (91)of 2-ve
tors q� and k� de�ned only by the frequen
ies! and !0 and a spa
e-like 2-ve
tor �x� de�ned only bythe parameters { and {0:�x1 = 12{ + 12{0 ; �x0 = 12{0 � 12{ : (92)The length of �x� is given by 1=p{{0, whi
h is equalto 1=w0 for the hyperboli
 traje
tory.Consequently, we have the following forms for thephases:� ���x2 � 1w0� = �(q�x) = �w0 
h (#� �);� ��t2 = �(k�x) = � �w0 sh (#� �): (93)The ve
tor �x� is 
losely related to the a

elera-tion 2-ve
tor a� that for the traje
tory umir = g(v) isgiven by the expressiona� = (a1; a0) = � g004g02 (1+g0; 1�g0); g = g(v): (94)At the point u = v = 0, we obtaina�0 = a0 �x�p�x2 ; a0 = �bp{{0; (95)where a0 is the proper a

eleration at zero point.The Lorentz-invariant quantity tr� was de�nedin [26℄ by the formulatr� == 1ZZ0 d!d!0(2�)2 �!0! 2� Æ r{0{ ! �r {{0!0! ;
 =r{0{ !; 
0 =r {{0!0; (96)

in whi
h the Lorentz-invariant argument of the Æ-fun
tion is the di�eren
e of the frequen
ies 
 and 
0 ofthe re�e
ted and in
ident waves in the proper systemof the mirror at zero point u = v = 0, where the mir-ror has the velo
ity �0 and a

eleration a0 = �bp{{0.The fa
torsp{0={ andp{={0 are the Doppler fa
torsrelating the frequen
ies in the laboratory system andzero point proper system of the mirror (or the propersystem of the dete
tor).Thus, in the tra
e formation of the matrix �, itselements diagonal in the invariant frequen
ies are in-volved, i.e., the elements �!0! where !={ = !0={0.We note that the matrix elements �!0! and ��!0!, be-ing s
alar fun
tions of the frequen
ies ! and !0, 
anbe written in the dete
tor system if we perform the
hanges !; !0 ! 
; 
0;u; v ! U =r {{0 u; V =r{0{ v;f(u); g(v)! F (U) =r{0{ f(u);G(V ) =r {{0 g(v); (97)
in their expressions (2). Then�!0! = A
0
; ��!0! = B�
0
; (98)and the diagonal elements A

 with 
 = 
0 = p!!0are involved in tra
e (96).For the traje
tories in the Minkowski plane on theleft of their tangent line X�(� 0) at zero point, the 
o-ordinate z1 = X1(� 0)� x1(�) > 0:For these traje
tories, tr� 
an be transformed to theform [26℄tr�B;F == �i ZZ d�d� 0( _x�(�) _X�(� 0)1 )�LR4 (z; �);z� = X�(� 0)� x�(�); (99)where the singular fun
tion �LR4 (z; �) di�ers fromthe 
ausal fun
tion �f4 (z; �) by 
omplex 
onjugationand the repla
ement � ! i� (or by the repla
ementz2 ! �z2; �! �):�LR4 (z; �) = 14� Æ(z2)� �8�pz2 �(z2)H(2)1 ��pz2 �++ i �4�2p�z2 �(�z2)K1 ��p�z2 � : (100)677



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006The expression obtained allows interpreting tr�B;Fas a fun
tional des
ribing the intera
tion of two ve
toror s
alar sour
es by means of ex
hange by ve
tor ors
alar quanta with spa
e-like momenta. At the sametime, one of the sour
es moves along the traje
tory ofthe mirror and the other moves along the line tangentto it at zero point. The last sour
e 
an be 
onsidereda probe or dete
tor of ex
itation 
reated by the a

el-erated mirror in the va
uum.Be
ause the dete
tor moves with a 
onstant velo
ity�0, its 2-velo
ity _X�(� 0) is independent of � 0. Conse-quently, _x�(�) _X�(� 0) = �
�(�)is the relative Lorentz fa
tor de�ned by the relativevelo
ity ��(�) of the mirror and dete
tor:
�(�) = 1� �(�)�0p1� �2(�)p1� �20 = 1p1� �2�(�) ;��(�) = �(�) � �01� �(�)�0 ; (101)and is a Lorentz-invariant quantity for ea
h � . Thentr�B;F = �i Z d� ( 
�(�)1 ) J(�; �);J(�; �) = Z d� 0�LR4 (z(�; � 0); �): (102)It 
an be seen from this representation that at � 6=1,when the Lorentz fa
tor 
�(�) is bounded on the wholetraje
tory, both tra
es have the same qualitative be-havior as the parameter � ! 0. It is 
lear that theirinfrared (logarithmi
) singularities in this parametero

ur due to the behavior of the integral J(�; �) as� ! �1. For the traje
tories with subluminal rela-tive velo
ities �10 and �20 of the ends, both tr�B;Fhave infrared singularities at � = 0. Besides, the sin-gularities of tr�B di�er from those of tr�F only bythe values of the relative Lorentz fa
tor 
�(�) for ini-tial and �nal ends of the traje
tory, i.e., by the fa
tors1=p1� �210 and 1=p1� �220. Be
ause the infrared sin-gularities from the initial and �nal ends o

ur in tr�Fwith the fa
torsp1� �2102�10 ; p1� �2202j�20j ; (103)they disappear in tr�F for the traje
tories with luminalvelo
ities of the ends, �10 = 1, �20 = �1, but remainin tr�B . The disappearan
e of singularities in tr�Ffor su
h traje
tories means that the fun
tion J(�; �)is integrable in � at � ! �1 even if � = 0. At the

same time, the fun
tion 
�(�) J(�; �) is integrable inthis region only at � 6= 0.The weakening of intera
tion of s
alar 
harges within
reasing their relative velo
ity, 
ontrary to the 
on-stan
y of the intera
tion of ele
tri
 
harges, is relatedto a di�erent geometri
al stru
ture of s
alar and ve
-tor �eld sour
es �(x) and j�(x). They are given byEq. (4) for point-like 
harges moving along the traje
-tory x�(�).The 
harges of the s
alar and ve
tor �eld sour
esare de�ned by the spa
e integrals of their 
harge den-sities �(x; t) and j0(x; t), and for point-like sour
es areequal toQ0; Q1 = Z d3x f�(x; t); j0(x; t)g == e Z d�f1; _x0(�)g Æ(t � x0(�)) == ef
�1(t); 1g; (104)be
ause d�dt0 = 
�1(t0) if t0 = x0(�):Obviously, the 
harge for the point-like sour
e T��(x)of a tensor �eld with spin 2 in
reases as the parti
leenergy, Q2 = e
(t):As 
an be seen from the regularized representationtr�B;F jreg = 12� 1Z0 ds24 1Z�1 dxn1; pG0(x)o �� exp(�is(G(x)� x))�r �ibs 35 ; s = !{ ; (105)obtained in [26℄, the ultraviolet divergen
es in tr�B;Fare removed by subtra
tion from the �rst integrand ofits asymptoti
 expansion in s as s!1. The invariantvariable s = !{ =r!!0{{0 = b�2w0is proportional to the momentum transfer � in units ofthe proper a

eleration w0 of the mirror at the point ofits tangen
y with the dete
tor. The subtra
ted term,being integrated over � up to a large but �nite �max,12� smaxZ0 dsr �ibs = 12�r��maxw0 (1� i); (106)is one and the same for Bose and Fermi 
ases and ex-pli
itly depends on the a

eleration.678



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the pro
esses in 2- and 4-dimensional spa
e�times : : :When the spa
e interval �x between the mirrorand the dete
tor be
omes less than ~=2�p, the un-
ontrolled momentum transfer between them be
omesgreater than �p and leads to an ultraviolet divergen
ein nonregularized tr�B;F . Be
ause the mirror 
oordi-nate near the point of tangen
y with dete
tor 
hangesin time a

ording to the lawx(t) = �w0t22 ;the time interval � ne
essary for the momentum trans-fer �p is of the order of� � 2s ~�pw0 = 2pw0�maxif we set �p = ~�max:Then the subtra
ted term that regularizes tr�B;F a
-quires the form12�r��maxw0 (1� i) = 14�p��max(1� i)�;� � 2pw0�max : (107)As distin
t from (20), this term has the same sign forBose and Fermi 
ases. This 
an be understood as a
onsequen
e of a positive momentum transfer from thedete
tor to the mirror in both 
ases. The di�eren
es inthe meaning of �max � 1p2"and � are more understandable.Unlike �W1;0, des
ribing the 
hange of self-a
tionof 
harges due to a

eleration, the fun
tionals tr�B;Fdes
ribe the intera
tion of the a

elerated mirror withthe probe exe
uting uniform motion along the tangentto the traje
tory of the mirror at the point where it hasthe a

eleration w0. This intera
tion is transmitted byve
tor or s
alar perturbations 
reated by the mirror inthe va
uum of the Bose or Fermi �eld and 
arrying aspa
e-like momentum of the order of w0. A

ording toEq. (100), at distan
es of the order of w�10 from the mir-ror, the �eld of these perturbations de
reases exponen-tially in time-like dire
tions and os
illates with dampedamplitude in spa
e-like dire
tions. It 
an be said thatsu
h a �eld moves together with the mirror and is its�proper �eld�. Hen
e, the probe intera
ts with themirror for a time of the order of w�10 , while the 
harge
onstantly intera
ts with itself and feels the 
hange ofintera
tion over all the a

eleration time. Therefore, it

is not surprising that �tr�B;F 
oin
ide in essen
e with�W1;0 if in these latter we set�2 � �1 = 2�w0 ; e2 = 1:In other words, tr�B;F are the mass shifts of the mirrorproper �eld multiplied by a 
hara
teristi
 proper timeof their formation.7. INTERACTION WITH THE PROPER FIELDOF AN ACCELERATED MIRROR MOVINGWITH SUBLUMINAL VELOCITYFor a traje
tory with subluminal velo
ities of theends, tr� is an invariant fun
tion of the relative velo
-ities �12, �10, and �20 
onne
ted by the relation�12 = �10 � �201� �10�20 :We 
onsider the regularized tr�B;F for two importanttraje
tories.1. Quasihyperboli
 traje
tory, given by formula(22), is time-reversed to itself. Its representation inthe (u; v)-variables isumir = g(v) = v 
h � � �1w0 sh � ++ sh �s�v � �21w0�2 + a2;a = �1p1� �21w0 ; �1 = th �2 : (108)The initial �1 and �nal �2 = ��1 velo
ities are sublu-minal.Using this expression in representation (2) and in-trodu
ing the variablex = v � �21w0 ;we obtain�B!0! = 2r!0! exp�i! + !0w0 �21��� 1Z0 dx 
os[(!0 � ! 
h �)x℄�� exp��i! sh �px2 + a2 � : (109)A

ording to formulas (9) and (15) in Se
. 2.5.25 in [27℄,679



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006this integral redu
es to the modi�ed Bessel and Hankelfun
tions, and we �nally have�B!0! = 2ia sh �s!!0Q exp�i! + !0w0 �210���K1 �apQ� ; if Q = !2 + !02 �� 2!!0 
h � > 0;�B!0! = ��a sh �s!!0�Q exp�i! + !0w0 �210���H(2)1 �ap�Q� ; if Q = !2 + !02 �� 2!!0 
h � < 0:
(110)

As usual, � = Arth�12is a Lorentz-invariant parameter de�ned by the relativevelo
ity of the ends.The 
orresponding Bogoliubov 
oe�
ient for theFermi 
ase is more 
ompli
ated:�F!0! = a exp�i! + !0w0 �210� 1Z�1 dtrsh2t+ 
h2 �2 �� exp �ia�(!0�!)
h�2 sh t�� (!0 + !) sh �2 
h t�� : (111)Be
ause the velo
ity of the mirror at the pointu = v = 0 (and hen
e the dete
tor velo
ity) is equal tozero, �0 = 0, the initial and �nal velo
ities �1 and �2
an be regarded as invariant relative velo
ities �1 = �10and �2 = �20 of the mirror and dete
tor at t = �1.A

ording to de�nition (105), we obtaintr�B jreg = 
th �=22� ���2 � i(ln 2
" � 1)� ;" = �w0 ; (112)tr�F jreg = 12� � 1sh �=2 ���2 � i(ln 2
" � 1)�++ i �th �2 B(k) + ln 
h �=2sh �=2 �� ; (113)where B(k) = �=2Z0 
os2 'd'p1� k2 sin2 '; k = th �2 ;

is one of the ellipti
 integrals [14℄.In both tr�B;F , the infrared singularities were re-moved by introdu
ing the small parameter " (the leastmomentum transfer in w0 units), while the ultravioletsingularities were eliminated as was written above.The fun
tionR(�) = th �2 B(k) + ln 
h �=2sh �=2is equal to zero at k = 0, grows almost linearly with k,rea
hes the maximum value R � 1:28 at k � 0:97 andthen de
ays rapidly to 1 as k ! 1.2. The Airy semiparabola with the in-tangent lineto the in�e
tion point is given by
{umir(v) =8>>>>>>>>>><>>>>>>>>>>:

�1� b2
 �{0v � b33
2 ;�1 < v 6 v0;{0v + b{02v2 + 13
{03v3;v0 6 v <1; (114)
where the in�e
tion point is v0 = �b={0
, b > 0, and
 > b2 be
ause the traje
tory is time-like. The initialvelo
ity is subluminal, but the �nal one is luminal.Using this traje
tory in integral representations forthe Bogoliubov 
oe�
ients, we �nd that�B!0! =rs0=s{{0 (
s)�1=3 exp�i b
 (s�s0)�i23w3=2��� ��Ai(z)� i��Gi(z)� 1z�� ; (115)�F!0! = (
s)�1=3p{{0(�+1) exp�i b
 (s�s0)�i23w3=2��� 24 ip�z + 1pw 1Z0 dtpt2 + �w �� exp��izt� it33 �35 ; (116)where Ai(z) and Gi(z) are the well-known Airy andS
orer fun
tions de�ned as in [28℄, andz = (
s)�1=3(s� s0)� w; w = (b=
)2(
s)2=3;s = !={; s0 = !0={0; � = 
=b2 � 1:The parameter � = 1� �102�10680



ÆÝÒÔ, òîì 129, âûï. 4, 2006 The symmetry relating the pro
esses in 2- and 4-dimensional spa
e�times : : :is de�ned by the initial relative velo
ity �10 of the mir-ror and the dete
tor, �20 = �1.In �nding tr�B , the integraltr�B = 12� 32(�+ 1) 1Z0 dw exp��i23w3=2��� ��Ai(�w)� i��Gi(�w) + 1w�� (117)appears, whi
h diverges at both the lower and the up-per limits. The infrared divergen
e is removed by in-trodu
ing the nonzero lower limitw1 = � "2(�+ 1)2�2=3 ;where " = �=w0 � 1. To eliminate the ultraviolet di-vergen
e, we subtra
t from the integrand the �rst termp�e�i�=4w�1=4 of its asymptoti
 expansion as w !1.It is then possible to turn the integration 
ontour by theangle ��=3 and, introdu
ing the integration variablet = exp(i�=3)w;to bring the regularized integral to the formtr�B jreg = 12� 32(�+ 1)��8<:��3 � i 1Zt1 dtt exp��23t3=2�++ i 1Z0 dt �Gi(t) exp��23 t3=2�9=; : (118)In these transformations, we used the formulasAi�exp�2�i3 � t� == 12 exp� i�3 � [Ai(t)� iBi(t)℄;Gi�exp�2�i3 � t� = � exp� i�3 �Gi(t) ++ 12 exp�� i�6 � [Ai(t) + iBi(t)℄;1Z0 dt��Bi(t) exp��23 t3=2�� p�t1=4� = 0: (119)
The last integral in (118) is equal to23 + 29 ln 2:

As a result, we �nally obtaintr�B jreg = 12� (�+ 1)���2 �� i �ln 3(�+ 1)2
" � 1� 13 ln 2�� ; " = �w0 : (120)The evaluation of tr�F follows a similar way. Theintegraltr�F = 12� 32p�+ 1 1Z0 dw exp��i23w3=2��� 24 1pw 1Z0 dtpt2 + �w �� exp�iwt� it33 �� iwp�35 (121)now appears instead of integral (117). The leadingterms of the asymptoti
 expansions of the integrandas w ! 0 and w ! 1 are identi
al to those of theintegrand in (117) and di�er from them only by extrafa
tors p� and p�+ 1 
orrespondingly. After elimi-nation of the infrared and ultraviolet divergen
es andturning the integration 
ontour by the angle ��=3, weobtaintr�F jreg = 12� �p�(�+ 1) �� ���2 � i ln 3(�+ 1)2
" �+ ip�+ 1 J(�)� ; (122)whereJ(�) = �3 1Z0 dx24exp��23x3� �� 1Z0 d�p�2 + �x2 exp�x2� � �33 ��� p�(1 + �)x35 : (123)S. L. Lebedev 
alled the author's attention to the fa
tthat the integral J(�) 
an be redu
ed to elementaryfun
tions. Indeed, it 
an be shown thatJ(�) = 1 +p�+ �� 23p�+ 1 ln �+p�(�+ 1)1 +p�+ 1 ++ p4 + �3 lnp�(4 + �)� �4 + 2p4 + � : (124)681



V. I. Ritus ÆÝÒÔ, òîì 129, âûï. 4, 2006The fun
tion J(�) is equal toJ(�) = 1� 23 ln 2 = 0:5379 : : : at � = 0;attains the minimum valueJ(�) � 0:39 at � � 0:3;and then grows and behaves asJ(�) = �1 + 13 ln 2�p� as �!1:We note that �B;F!0! depend on two dimensionlessparameters b and 
, but the tra
es tr�B;F depend onlyon their 
ombination �, i.e., only on the subluminalrelative velo
ity �10.The Airy semiparabola with an out-tangent line istime-reversed to the 
onsidered traje
tory and 
an beobtained from it by the 
hangesv � �u; { � {0:This leads to the 
hange s � s0 in the expressions for�B;F!0! . The quantities tr�B;F do not 
hange at all, butit must be understood that the parameter � is now de-�ned by the �nal (and negative) relative velo
ity �20 ofthe mirror and dete
tor:� = �1 + �202�20 > 0; while �10 = 1:The infrared logarithmi
 singularities of tr�B;Fwere regularized by a nonzero momentum transfer� � w0. Their 
oe�
ients are in a

ordan
e withthe general 
onsideration in Se
. 6. These singulari-ties disappear from tr�F jreg at luminal velo
ities of theends, and tr�F jreg be
omes purely imaginary positive.The positive sign of Im tr�F jreg in this 
ase 
an be ex-plained by the large momentum transfer to the mirrorduring its 
onta
t with the dete
tor, while the negativesigns of Im�m0 and Im�m1 are related to energy�momentum losses by the 
harge due to the 
hange ofself-intera
tion at a

eleration.We do not 
onsider the 
oe�
ients �B;F�!0! here.They 
an be obtained from �B;F!0! by the 
hanges! ! �!; p! ! �ip!;and division by i in the Bose 
ase, see Eq. (2).8. CONCLUSIONThe symmetry being dis
ussed reveals itself in the
oin
iden
e of the quantities bilinear in �!0!, su
h asj�!0!j2; (�+�)!! = 1Z0 d!02� ��!0! �!0!;

�N = tr�+� = 1Z0 d!2� (�+�)!!;with the 
orresponding quantities des
ribing the emis-sion of ve
tor (s
alar) quanta by an ele
tri
 (s
alar)
harge in 3 + 1-dimensional spa
e, see the Introdu
-tion. Only similarly transforming frequen
ies are in-volved in ea
h summation entering these quantities andthe equality ! = !00 for the diagonal elements of thematrix (�+�)!!00 = 1Z0 d!02� ��!0!�!0!00 :On the other hand, the de�nition of the tra
e of thematrix �!0! with di�erently transforming indi
es ! and!0 required the Lorentz-invariant frequen
ies 
 and 
0
oin
iding with ! and !0 in the proper system of thedete
tor, moving along the tangent line to the mirrortraje
tory at the 
hara
teristi
 point. As a result, tr�be
omes a fun
tional of not only the mirror traje
torybut also the dete
tor one. This allows 
onsidering tr�as an experimentally measurable quantity.The symmetry under dis
ussion has been embodiedin several exa
t mathemati
al relations between impor-tant physi
al quantities. The most important of themare, of 
ourse, the fundamental relations (11) and (12)between the Bogoliubov 
oe�
ients for the pro
essesindu
ed by a mirror in 1+1-dimensional spa
e and the
urrent and 
harge densities for the pro
esses indu
edby a 
harge in 3+ 1-dimensional spa
e. Another is theintegral relation in Eq. (16) between the propagator of apair of massless parti
les s
attered in 1+1-dimensionalspa
e in opposite dire
tions with frequen
ies ! and!0 (su
h that the pair has a mass m = 2p!!0), andthe propagator of a single parti
le in 3+1-dimensionalspa
e. This relation provides the 
onne
tion�W1;0 = e2�WB;Fbetween the self-a
tion 
hanges of a 
harge in 3 + 1-di-mensional spa
e and of a mirror in 1 + 1-dimensionalspa
e if tr�+� � 1.The other relations in whi
h the symmetry mani-fests itself are the spe
tral representations for the realparts of self-a
tion 
hanges (32) and of mass shifts (34)and (38) of ele
tri
 and s
alar 
harges in quasihyper-boli
 motion. The mass shifts of 
harges, the sour
es ofBose �elds with spins 1 and 0 in 3+1-dimensional spa
e,682
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esses in 2- and 4-dimensional spa
e�times : : :are represented by the spe
tral distributions of the heat
apa
ity or the energy of Bose and Fermi gases of mass-less parti
les in 1 + 1-dimensional spa
e. The spe
tralrepresentations allow 
onsidering the mass shift forma-tion as the balan
e between the radiation and ex
ita-tion of the proper energy at a

eleration.The symmetry between pro
esses indu
ed by themirror in 2-dimensional and by the 
harge in 4-dimen-sional spa
e�times predi
ts not only the value e20 = 1for the bare 
harge squared, whi
h 
orresponds to thebare �ne stru
ture 
onstant �0 = 1=4�, but also theappearan
e of s
alar parti
les in ultra high-energy 
ol-lisions in 3 + 1-dimensional spa
e and a de
rease intheir intera
tion with a s
alar sour
e with in
reasingthe energy.It is very interesting that the bare �ne stru
ture
onstant has a purely geometri
 origin, and, also, thatits value is small: �0 = 1=4� � 1:The smallness of �0 has the essential meaning for thequantum ele
trodynami
s, where it explains the small-ness of � and a priori justi�es the appli
ability of theperturbation theory.I am grateful to M. A. Vasiliev for useful dis
ussionsand 
omments.The work was 
arried out with �nan
ial sup-port of S
ienti�
 S
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