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Two experimental arrangements consisting of coupled spontaneous parametric down-converters with type-l phase
matching pumped simultaneously by a powerful optical field in a coherent state through the balanced beam
splitter and linear optical elements are proposed for conditional preparation of macroscopic entangled states in
output pumping modes of the studied system. Successful generation of the macroscopic entangled state in the
pumping modes is unambiguously heralded by coincident detection of two photons in the generated signal and
idler modes of the system. We calculate the amount of entanglement and success probabilities to observe the
X(Q) macroscopic entangled states in the total wave function. We show that the proposed schemes can be used
to obtain a new type of macroscopic entangled states.
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1. INTRODUCTION

The theory of quantum computation promises to
revolutionize the future of computer technology in fac-
toring large integers [1] and combinational searches [2].
For quantum communication purposes, entangled
states of light fields are of particular interest. Such
states can also be used, for example, for quantum key
distribution [3] and quantum teleportation [4]. The
entangled states are useful for quantum processing, but
they are hard to produce and tend to decohere fast.
The spontaneous noncollinear parametric down-con-
verter with type-II phase matching is well known to
produce true entanglement along certain directions of
propagation of the generated optical beams [5]. It is
well known that at certain angles between the pump
beam and the optical axis of the crystal, namely, along
two intersection directions, the emitted light becomes
unpolarized or entangled [5].

In recent years, the problem of physical produc-
tion of entangled states has been intensively studied.
But despite enormous progress in generating entangled
states of photons [5], deterministic generation of the
states remaing an elusive entity [6]. Indeed, the ma-
jority of current experiments in optics is based on the
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use of spontaneous parametric down-conversion, which
is inherently random. Consequently, we can determine
whether a pair of photons has been generated only by
postselection produced by detectors. In certain appli-
cations, for example, in testing Bell inequalities [7],
the randomness of the generated pair is not essential.
Nevertheless, the conditional preparation of entangled
states is required in some applications of quantum in-
formation, for example, in experiments involving mul-
tiple photon pairs [8] and in construction of quantum
controlled sign gate [9]. Therefore, it is important to
study the problem of conditional preparation of entan-
gled states by optical methods [10].

Here, we present the idea of conditional prepara-
tion of macroscopic entangled states in output pump-
ing modes of the system of two spontaneous parametric
down-converters with type-I phase matching (SPDCI)
pumped simultaneously through a balanced beam split-
ter. We say that such states x(2) are macroscopic en-
tangled states and use the symbol y(?) in regard to the
second-order susceptibility of the crystal, to differenti-
ate them from other macroscopic entangled states. Be-
fore we consider the problem of conditional preparation
of the y®) macroscopic entangled states, we develop a
simplified theory of the SPDCI based on the three-mo-
de Hamiltonian with a quantized pumping mode to
take depletion of the pumping mode into account [11].
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Specifically, we propose two experimental setups both
with and without beam splitters to project the output
wave function of the coupled SPDCI onto one of the two
x® macroscopic entangled states. In other words, we
draw attention to nonclassical properties of the state
in the pumping mode leaving the SPDCI. As was first
noted in [11], the output state of the pumping mode can
be squeezed after the SPDCI. In [11], numerical analy-
sis has been done under the assumption of a large value
of the product of the amplitude of the input coherent
state and the coupling coefficient of the SPDCI. Here,
we consider another possibility for the output pumping
modes to manifest their nonclassical (more precisely,
nonlocal) properties. We show that the produced states
in the output modes are entangled and differ both from
tensor product of two coherent states and from a vani-
shing state. We calculate both the probabilities for the
macroscopic entangled states to be observed in the to-
tal wave function and the amount of the entanglement
stored in the states.

We note that the generated x(®) entangled states
resemble the well-known entangled Schrédinger cats
formed by coherent states of light. A coherent field is a
fundamental tool in quantum optics, and linear super-
position of two coherent states may be considered as a
realistic model of realizable macroscopic quantum sys-
tems [12]. Therefore, the entangled states of two coher-
ent states are considered to be applicable in both quan-
tum teleportation [13] and quantum computation [14].
The generation of the entangled Schrédinger cats re-
quires the Kerr medium with high Y susceptibil-
ity [14]. But it is well known the y(3) susceptibility
is weaker than the () susceptibility (y*) > y®)).
Thus, our proposal with the second-order susceptibil-
ity of the crystals allows realizing other more reliable
resources of macroscopic entangled states, which can
also be used in quantum information processing. Our
analysis of the problem of conditional preparation of
macroscopic entangled states by means of a medium
with the x) susceptibility is simplified by use of spe-
cial detectors discriminating between one- and multi-
photon number states [15].

2. CONDITIONAL PREPARATION WITH THE
HELP OF BEAM SPLITTERS

The proposed setup consists of two SPDCI (Fig. 1a)
and a passive optical circuit (Fig. 1b) reducing the
output state of the SPDCI to macroscopic entangled
states. Before we start analyzing the optical projective
systems in Fig. 1b and Fig. 2, we consider the system
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Fig.1. o — Experimental arrangement to condition-

ally produce y® macroscopic entangled states in the
pumping modes. The system involves two SPDCI si-
multaneously pumped by a powerful mode through the
balanced beam splitter. b — The optical scheme with
two Hadamard gates to distinguish the mode entangled
states |\I/§1234)) and \\1151234)> from each other. Here,
the white surface indicates the one from which a sign
change occurs upon reflection. The modes 1, 2, 3, and
4 are the input ones and the modes 1', 2/, 3', and 4’
are the output ones

of two down-converted crystals pumped simultaneously
by a powerful field in the coherent state as shown in
Fig. 1a. We label the participating modes with the cor-
responding annihilation operators. Let ai, as, as, and
a4 be the modes of down-converted photons. The oper-
ators a; and as describe the modes of the first crystal
(directions 1 and 2) and the operators a3 and a4 de-
scribe the modes of the second down-converted crystal
(directions 3 and 4). The operators a,, and a,, are
responsible for the modes of the powerful beams that
simultaneously pump the first and second down-con-
verted crystals through the balanced beam splitter.
The responses of the two down-converted crystals in



MWITD, Tom 129, BHIM. 4, 2006

Con

ditional preparation of y(2) macroscopic entangled states

1
|a>1 /
. > p1
|&)p1 X
|5‘>p2
4 3
2
y b2 \}
4
1
Y
37

Fig.2. The optical scheme is adjusted to conditionally

produce x® macroscopic entangled states. A holo-

graphic scheme in auxiliary generated modes is used
for a Bell-state measurement

Fig. 1a are considered to be identical to each other.
If we take quantization and depletion of the pumping
mode into account, neglect the multi-frequency struc-
ture of the pump, and use narrowband filters in order
to choose only those generated modes that satisfy the
phase matching condition, then the simplified three-
mode Hamiltonian governing the down-converted pro-
cesses in Fig. 1 a is given by [11]

H=H +H, =
ihr(

2
where the respective Hamiltonians H; and H» are re-
ferred to as the first (the first two terms) and the second
(the two subsequent terms) SPDCI and the coupling
coefficient r is related to the nonlinear second-order
susceptibility tensor y(2). As the input condition to
Hamiltonian (1), we take the coherent state |a)q|0)2,
where the subscripts «1» and «2» refer to the respec-
tive pumping modes. The state |a)1|0)2 is transformed

to the state
>II1 >:D2

after the balanced beam splitter, where the subscripts
p1 and py refer to the first and second pumping modes.
Applying 7/2-phase shifter to the second pumping
mode py, we get the state |a),, |a)p,. The two SPDCI
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processes described by Hamiltonian (1) with the input
a a

condition
V2 >m V2 >p2

are independent of each other and give rise to the out-
put wave function

‘\I’m> =

[Wout) = |T12)|Ts4),

where |¥5) and |¥34) are the respective wave functions
of the first and second SPDCI.

We now consider the output of one of the Hamil-
tonians (Eq. 1), for example, H;. The wave function
|¥12) of the SPDCI is then given by

oo

|‘I’12> = Z |‘I’2n>a

n=0

(3a)

where the partial wave function |¥5,,) has the form

n+1
20y = S £ (51 8) k= 1)1 [k —1)2[n—k+1),. (3D)
k=1

Here, the quantity f,§2n)(s; ) is the wave amplitude of
the corresponding tensor product of the photon num-
ber states in the first generated, second generated, and
pumping modes. The wave amplitudes f,§2n) (s;3) obey
the system of linear differential equations [11]

deSZn)
ds

=B (k=) —k+2 2 -

— kvn—k+ lflgj_?) . (3¢)
where 8 = rL/2c is the coupling constant, s = ct/L is
the dimensionless distance along the crystal (s € [0;1]),
and L is the crystal length. Because we take the coher-
ent state with the real amplitude «,

) = exp <

as the input to the SPDCI with the signal and the idler
modes injected to the SPDCI in vacuum states, the in-
put conditions

n al?\ am n
= () S A0 =0
k=2,...,n+1,

are imposed on the set of linear differential equations
(3c). We note that the wave amplitudes take real val-
ues because we use a real value of the coherent state.
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The output wave function |¥q3) of the first SPDCI
(Eq. (3a)) can be rewritten as

[T15) = [n)1|n)alr™),,, (4a)

where the partial wave functions |[¢)(™), in the pump-
ing mode are given by

|¢(n)>p1

o0 m+n ¢(2(m+n))
a2> Q™ fu(B)
=exp|—— m)y,, (4b
() X o e
where the function ffli(r+n)) (3) is the output wave am-
plitude,
T B) = LA s = 1:8).

We note that the wave functions f,§2n)(s;ﬂ) used in
Eq. (4b) evolve in accordance with Eqgs. (3¢), but now
with the input conditions f1(2n) (0) =1 and f,52n)(0) =0
for any numbers £k =2,... ,n + 1.

The treatment developed above allows writing the
wave functions |¥y5) and |¥34), each of which is a part
of the output wave function |¥,,:) (Eq. (2)), as

[T12) = [m)1ln)altr ™)y, (5a)
n=0
[Waa) = [n)s|n)alp™),, (5Db)

where [¢(™), and [)(")),, are the corresponding out-
put states in the first and second pumping output ports.
We use only those states in the output wave function
|Pout) (Eq. (2)) that have precisely two generated pho-
tons in the signal and idler modes. Such states can
be identified by special detectors in the Bell-state mea-
surement system shown in Fig. 1b. These detectors
must be able to discriminate between a one-photon
click and all other clicks caused by the states with the
number of photons greater than one. In other words,
the detectors must initiate different responses to one-
and multi-photon states. Such detectors are known to
exist only in a prototype form [15]. In other words,
ideal detectors monitoring the generated modes and
projecting them onto the one-photon Fock state |1)(1]
are supposed to be used. If we have the detectors that
discriminate between one- and multi-photon number
states, we can write the wave function of the system of
coupled SPDCI as

W) = o (\1100>1234\w‘“>m @)+

10011} 13546y, [0, ) (62)
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where now the states in the pumping modes are defined

by
~12
W >;D1,pg = exp <_%> %
= am ()
” mzz:o o Mpipes (6D)
~12
|w 1 >p1,p2 = exp <_%> %
>, amf{Amt) ()
’ r;] B+/(m + 1)! [m)pspas (60C)

with @ = «/v/2. Henceforth, the subscripts of the
states are related to the optical modes of photons [16].
For example, the state [1100)1234 in Eq. (6a) is a tensor
product of four modes, where the modes 1 and 2 are
occupied by two photons and the modes 3 and 4 have
zero photons.

State (6a) is a superposition state consisting of two
photons that simultaneously take four auxiliary modes
(1-4) and two modified coherent states in the respective
pumping modes p; and ps. State (6a) can be rewritten
as

|T) = ap (@‘W$234)>‘A$1’p2)>+
vl S NG )

where we introduce the normalized states for the signal
and idler modes (modes 1-4) and the pumping modes
(p1 and p») as

1

V) = 5 {11100) £ 0010} gy, (82)
NI
= o {WO®) £ O} (sb)
2p4 pips
and
ps = WO W) OOy + WO (80

are the normalized coefficients for the respective states
IAPP2)y and |APP2)y The states [AP72)) (Eq. (8b))
can be expressed as

APy = N {0 V) £ [V)U)) (9a)

pip2’

where the normalized wave functions |U) and |V) are

given by
1

\/L_l ‘lp(l))mapm

|U>p1 2 T (9b)
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1
Vowpn = = 01 o, (9c)  where
l L )
. - . jaf* = (UV)?
with the normalization coefficients

o= <¢(0)\¢(0)>, I - <¢(1)|¢(1)>. and the magnitudes N and M have the form

The normalization coefficient is given by N = <¢(”\¢“)><¢(°) ‘¢(0)> = exp (—2‘07‘2) x
N S 1 o) 3o BT SENE) g,

T 20 xap) 0O M/N) | = 32ml(k +1)! ’

o AP AP ) A (3 17 (B) 157 ()
M = (D 10OV (O MY = exp (—2(G12 | 1 1 2 2 . of
(@O D] = exp (-2| \)7;”; NS VTS (99)

A note about the notation used in Eqs. (9e) and
(9f) is in order. The expressions f>™2(8) and
f2(2(k+1))2(6) denote the quantities fl(Zm) (8) and
f2(2(k+1))(,6’) squared, and the expression |a[2("+k) is
the amplitude |@| raised to the power 2(m + k).

We now consider conditional preparation of the y(?)
macroscopic entangled states |A(ip1p2)). For this, the
auxiliary modes 1-4 must be subjected to the Bell-state
measurement. For the conditional preparation of the
x? macroscopic entangled states |A(ip1p2)>, we use the
Bell-measurement setup presented in Fig. 1 to distin-
guish the mode-entangled states \‘IJ(+1234)) and \‘119234))
from each other. According to Fig. 1b, the first and
third beams are directed to the top beam splitter act-

ing in Fig. 1b as an Hadamard gate,
(10) + 11)) (0] + (10) = 1) ¢1
\/5 )
while the second and fourth beams are directed to the

same lower Hadamard gate. Straightforward calcula-
tions show that

H =

|\I/$234)> 4 |‘IJ$’2’3’4’)> _
1

7 {11100 + [0011)},905.,

(10a)

|\I'(_1234)> _) |lI,(_1’2’3’4’)> _

1
= 75 {11001+ 0110}y, (10D)

where the modes 1’, 2/, 3’, and 4’ are the output modes
of the corresponding Hadamard gates in Fig. 15. As can
be seen from Eqs. (10a)-(10b), the states |\Il(i1,213,4,))
are identified by simultaneous clicks of different pairs
of the registering detectors. As a consequence, the co-

incident detection of two photons by any pair of the

619

detectors in Fig. 1b reduces the state |¥) (Eq. (7)) to
either the state |A$’1p2)) with the success probability

a?B2p, (Eq. (8¢)) or the state |AP172)) with the suc-
cess probability a?3?p_ (Eq. (8c)) depending on the
outcome of the Bell-state measurement.

3. ASYMPTOTIC DECOMPOSITION OF THE
WAVE AMPLITUDES

We now show that the macroscopic states |A$’1p2)>

and |A(_plp2)> (Egs. (8h)) are actually entangled states.
For this, we are use the asymptotic decomposition of
the wave amplitudes f,§2n)(s;ﬂ) that directly follows
from Egs. (3¢). Some particular analytic solutions for
the output wave amplitudes f,g%) (8) with the number
of photons n = 1-4 are presented in the Appendix. We
note that the parameter § always takes very small val-
ues in real experiments. The smallness of the param-
eter f < 1 allows decomposing the wave amplitudes
f,§2n) (8) into asymptotic series in 3. We first restrict
the decomposition of the wave amplitudes by the first
term. We then have from Eq. (3¢) that

s B) m 1, £ (5:8) ~ BV,
187 (5:8) & (38)2V/n(n — 1), ,
FE (51 8) = (sB)™ ' /n(n —1) ... (n —m +2),

and so on for any m < n + 1. Taking s = 1, we deal
with the output wave amplitudes:

f,gi_(r+n))(ﬂ) o B"\/(m +n)m+n—1)...(m+1).
Substituting the asymptotic wave amplitudes
f7(z2+(§n+"))(ﬂ) in Eqs. (4a) and (4b), we obtain the

output states
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in the pumping mode for any number n. In other words,
the output wave function |¥5) of the SPDCI with the
first term of the asymptotic decomposition in the pa-
rameter § < 1 taken into account is given by

o

= Z(aﬂ)”\n>1\n>2|a>m

n=0

|12) (11)

It can be shown that the output wave function |¥,)

(Eq. (11)) obeys a geometrical distribution with the
norm 1
Upp|Up)xr ——~ 1446
(U1a]W12) -5 +0,
where
5 = |ap?

in the classical-pump approximation. We note that the
obtained wave function [¥,) (Eq. (10)) is similar to
the wave function

o0

Z (th(xt))

|95 n)ifn)s

stemming from the classical-pump approximation [17],
where the parameter yt in |\Ilggl)) [17] plays the same
part as the parameter a3 in our case.

The wave function \A(f””)> becomes simply a ten-

sor product of two coherent states

AP = |@),, 16) g

while

‘A(_pwz)) -0

and the parameter M/N becomes equal to 1 in the
classical-pump approximation (Eq. (11)). But from the
physical standpoint, this is evidently wrong. The sys-
tem of two coupled SPDCI presented in Fig. 1a makes
its own contribution to the distribution of the photon
number states in the coherent states |&),, »,. We can
consider the output pumping modes remaining in the
coherent states only in the classical-pump approxima-
tion [17]. The difference between the output state of
the SPDCIT and a coherent state can be observed in the
second term of the asymptotic expansion of the wave
amplitudes f,g%) (8). Because we deal with the out-
put wave functions [¢/(9), ., and [y (D), ., (Eqgs. (6b)
and (6¢)), we present only the first two terms of the
#")(8) and

asymptotic series for the wave amplitudes f1(

£ o)

£ (B a1 - mf (12a)
f2(2(m+1))(,6’) ~ 6m_ﬂ3\/m+(15(5m+1). (12b)
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From the asymptotic expansion in (12a) and (12b), we
have the nonnormalized modified coherent states

2

6= {8 - 0}
2
e (L R3] SRS
where
T1) = <—%> n;] %m' |m), (13c)
i) = éeXp <_°‘T Z:: %’:j” my. (13d)

Using Eqgs. (13a)-(13d), we obtain the probabilities

Py (Eq. (8¢c)) for the macroscopic entangled states
|APP2)Y in the leading order in 3 as
P, ~2a°3%, (14a)
46
P~ O‘f . (14b)

The probability to generate the state |AY (P1P2)y 5 higher

than the probability to generate the state |Af'1p2)>.

We now apply expressions (13a)—(13d) to the cal-
culation of some parameters of the states \Af1p2)>.
Calculations of the quantity M/N characterizing the
degree of orthogonality of the states |U),, and [V),,
(pi = p1,p2) give the result

N
_ 1-p?/3-8Ja>8*/3+47|a|* 8" /18+13]a|*B* /9
T 1-p%/3-8|a|22/3+47|a|* 34 /18+14|al251/9 T

%I_M’
9

(15)

where we neglect higher powers of the parameter ag.
Because M /N < 1 in accordance with (15), the macro-
scopic states |U)p, and |V),, are not equal to each
other. We note that the quantity M /N can take values
in the range from 0 to 1. If M /N = 0, then we can talk
about the full orthogonality,

Di <U/V>:Di =

of the macroscopic states |U),, and |V),, in Eqgs. (9b)
and (9c). If M/N =1, then we deal with the opposite
case, where

‘U>pi = |V>p'-

i
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Because the states |A$’1p2)> are not pairwise orthog-

onal, i.e.,
pi <U/V>pi 75 0

for any & and S, we should calculate the amount of
entanglement stored in the generated macroscopic en-
tangled states |A§flp2)). To quantify the entanglement
degree of the macroscopic entangled state, we consider
concurrency of the state. The concurrence for a pure
state |¢) in a tensor product H4 @ Hp of two (finite-di-
mensional) Hilbert spaces H4 and Hp for two systems
A and B is defined by

C(l¥)) = \/2(1 = Sp(p%)) .

where the reduced density matrix p4 is obtained by
taking the trace over the subsystem B. We note that
the concurrence of a separable state is equal to zero,
while the maximally entangled state has unit concur-
rence. We first construct an orthonormal basis

{1005, D) }

for each pumping mode p; as

|6>:Dz' = |U>:Di7
— ‘V>:Dz — a‘U>:m )
V1—a?

The state |A$’1p2)> can then be represented in terms of
the basis states as

(16a)

D)5, (16b)

|A$71p2)> —
= Ny {2a0)/0)+V1=a? (0) D+DI0) } . (160)
p1p2
Finally, the concurrence of the state \Aflm)) is given
by
C(jaP™))) = 2N (1-a?) =
1-a> 1-M/N
= = (1
1+a> 1+ M/N (16d)

Again using the estimate for the parameter M/N
in Eq. (15), we obtain an approximate expression for

the concurrence of the macroscopic entangled state
‘A5f1p2)> as

‘&‘254
9

C (jagm)) =

The other macroscopic entangled state \A(flm)> in or-
thonormal basis (16a), (16b) has the form
1 Joe o~
APy — o L10)[T) — |1)(0 17
| ) ﬂ{Hl)l)H} (17)

p1p2
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It is evident from expression (17) that
C (‘A(_pwz))) -1

irrespective of the values of « and 3.

Thus, the proposed scheme in Fig. la,b allows us
to conditionally generate two y(?) macroscopic entan-
gled states in the output pumping modes provided that
we have special detectors discriminating between one-
and multi-photon number states. The studied scheme
enables conditionally producing the macroscopic entan-
gled state |A$’1p2)) with a very small amount of entan-
glement (Eq. (16d)) but with a sufficiently large suc-
cess probability (Eq. (14a)). The problem under in-
vestigation is to develop some methods to decrease the
parameter M /N to make it close to zero in order to in-
crease the amount of entanglement of the macroscopic
entangled state |A$’”’2)>. A natural way to do this by
enhancement of the parameter |&|3 may be restricted
by experimental conditions in practice. Nevertheless,
there may exist other ways to solve the problem, such
as the use of the output of the system in Fig. 1a as
an input to the next system of the coupled SPDCI,
and so on. From the physical standpoint, such a pro-
cedure may be naturally considered as an increase in
the parameter |@|3 and, as a consequence, it may lead
to a decrease in the parameter M/N. The same sys-
tem provides us with the possibility to conditionally
obtain the macroscopic entangled state \A(_plpﬂ> with
the concurrence, albeit with a very small success prob-
ability (Eq. (14b)). We estimate the range of values for

iinlm)) and

|AP1P2)y in Egs. (8b) and the value of the concurrence

of the macroscopic entangled state \Aflm)}. We con-
sider a down-converter with the standard value of the
second-order susceptibility. We then estimate the value
of the probability Py in Eq. (14a) as a?/3? ~ 1072
10~%. This value of the probability to generate the
macroscopic entangled state |A$’”’2)> is comparable
with the probability to observe two-photon mode en-
tangled states |\I!$234)> or \‘119234)) (Eq. (8a)) at the
output of the system. The concurrence of the macro-
scopic entangled state \A$1p2)> is 32 times less than
the probability P, and takes small values. The order of
af3 can be estimated as a?$* ~ 1074-1078. The prob-

ability P_ in (14b) to observe the maximally entangled
101102)>

the probabilities of the generated states |A

\ take a value /2 times less
than the quantity a*8%. It is supposed that the prob-
ability P_ can be enhanced if we deal with resonance
nonlinear three-photon processes leading to huge val-
ues of Y(? and take the absolute value of the coherent
state sufficiently large.

macroscopic state |A(
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4. CONDITIONAL PREPARATION WITHOUT
BEAM SPLITTERS

We now discuss another possibility to condition-
ally prepare one of the two \(2) macroscopic entangled
states |A$’”’2)) or |[AP1P2)y (Eqs. (8b)), without the
balanced beam splitters. For this, the linear optical
circuit as shown in Fig. 2 is placed after the system of
coupled SPDCI. The two optical beams converge in one
of the two detectors in Fig. 2. The detected modes are
the sum of the generated signal and idler modes given
by

and

respectively, where the factor 1/\/5 in the quantum op-
erators of the detected modes is introduced to satisfy
the commutation relations. As a consequence of this
geometry of experiment, the coincidence count rate be-
comes

(W e ed e ) = 1,

which means projection of the total state |¥) (Eq. (7))
onto the macroscopic entangled state |AP'72)) in the
pumping modes after the registration of two simulta-
neous clicks by two detectors. The same coincidence

count rate for the state |\I'(_1234)) is
(W |dteted v ) = 0.

This is essentially the destructive two-photon inter-
ference effect in registering detectors, first observed
in [18].

The experimental arrangement in Fig. 2 can also
be adjusted for the opposite case to condltlonally pro-
duce the other macroscopic entangled state |AP'7?)Y in
the pumping modes. In this case, the auxiliary optical
scheme must be supplied by the w-phase shifter in one
of the four auxiliary modes to change the sign of state
\\I/(+1234)) to the opposite and vice versa. Then, detect-
ing two photons by trigger detectors in Fig. 2 would
provide a priori 1nf0rmat10n that the x(®) macroscopic
entangled state |AY (P1P2)y s generated in the pumping
modes. Information about the other y(2) macroscopic
entangled state |A$’1p2)> is erased due to the interfer-
ence effect in auxiliary modes [18]. Therefore, the Bell-
state measurement scheme in Fig. 2 also enables con-
ditionally preparing one of the two x(® macroscopic
entangled states, either A (P1p2)y o [AP1P2)y We note
that the optical scheme for conditional preparation of
the x) macroscopic entangled state presented in Fig. 2
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requires special detectors discriminating between one-
and multi-photon number states [15].

5. CONCLUSION AND DISCUSSION

We have proposed two optical schemes consisting
of a system of two spontaneous parametric down-con-
verters with type-I phase matching combined with
Bell-state measurement arrangement in the generated
modes to conditionally produce the x() macroscopic
entangled states. One of the proposed schemes for the
Bell-state measurement uses a pair of the ancillary pho-
tons in the signal and idler modes to direct them to
two Hadamard gates. A pair of Hadamard gates con-
structed on the base of the beam splitters is used in
identification of the outcome of the states in auxiliary
modes and is therefore applicable to the identification
of the Y macroscopic states in the output pumping
modes. The other projection scheme is based on a
«holographic» type of coincidence counting of photons
and can work without the Hadamard gates. Deleterious
contribution of one of the two projected states vanishes
due to the well-known destructive two-photon interfer-
ence effect [18]. Our analysis has been done under the
assumption of the presence of ideal detectors able to
distinguish one-photon clicks from all other ones.

We have shown that it is possible to observe the
macroscopic entangled state |A$’1p2)) with a suffi-
ciently large success probability P, but with a small
amount of entanglement. The nonlinear effect, al-
though comparable with the effect of generating the
signal-idler pair, is typically too weak to generate the
macroscopic entangled state \A(f”m) with better en-
tanglement with current technology. The problem of
generating the macroscopic entangled state |A (P1p2)y
with a larger value of stored entanglement requires fur-
ther study. The same optical scheme allows obtalmng
the macroscopic maximally entangled state |A (p1p2)y
with unit concurrence. Performance of the optical
schemes presented in Figs. 1a,b, and 2 is plausible with
current technologies.

APPENDIX

Some particular analytic solutions for the wave
probabilities

The probability P, (a: B), x = |a?], is entirely de-
termined by the first term of the coherent state distri-
bution

z). (A1)

P (z; 8) = exp(~
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Conditional preparation of \(2) macroscopic entangled states

The probabilities to find the corresponding tensor prod-

ucts consisting of either one pumping or two signals and

idler photons in superposition state (3b) are given by
P1(2) (x;8) = xexp(—x

) cos® 3, (A.2a)

P2(2) (z; B) = xexp(—x)sin? 3.

The next probabilities with n = 2 are given by

(A.2b)

), 227 exp(—x) cos (V6 3) ?
(A.3a)
4)(x;ﬂ) _z exlg( sin (\/_ﬂ) (A.3h)
Py (:8) = W (1—cos (\/6,6’))2 (A.3c)

The probabilities for the states forming the partial wave
function |¥4) are given by

23 exp(—x

1752 ){(\/ﬁ+7) X
xcos( 10—@5)+(\/ﬁ—7) X

PO (z;8) =

><cos< 1o+\/ﬁ/3>}2., (A.4a)

23 exp(—x

i ){(\/ﬁw) 10 — V73 x
xsin( 10—\/ﬁﬁ>+(\/ﬁ—7) 10 + V73 x

P (z;8) =

X sin < 10+ V73 6) }2, (A.4b)

23 exp(—x

P?fﬁ)(ﬁv;ﬁ): ™ ){cos< 10—M5>_

—cos< 1o+\/ﬁﬂ>}2, (A.4c)

922 exp(—z
P (2;8) = 772( )

{sin(x/lO—\/ﬁB)_

10 — /73
sin (\/10 V73 ,8) }2

(A.4d)

10 +/73

The probabilities with n = 4 pumping photons are

4
8), o T exp(—x)
(#:9) = —roas6m2 {(1“297”61) x

1
X COS <\/25 — V207 B) + (17\/29_7— 261) X

2
X cos< 25—}—\/@5) +48\/ﬁ} . (A.5a)

4

8), o T exp(—x)
(@ 8) = ToT7 14688 <

x {(17\/297+261) 25 — V297 x

><sin< 25—\/ﬁﬂ> +(17\/29_7—261) X

x /25 4+ V297 sin <\/25 + /297 ﬂ) }2, (A.5b)

8) (. ay _
(#:8) = 3554056

X COS (\/25—\/ﬁﬁ> + (4\/29—7—18) X
X €08 <\/25+\/29_75> - 2\/?}2, (A.5¢)

rtexp(—z) { (4\/29_7-|-18) y

P® (z;8) = v exp(—a) { (25 ¥ \/29_7) «

3550272

x \/25-+/297 sin <\/25—\/29_7 ,8) - (25—@) x
x 1/ 25 + /297 sin < 25 + /297 B) }2, (A.5d)

8) exp
: 2 V207
(2:6) = 221892 { ot 9

><cos<\/25—\/_ﬂ> (25—\/_7) x
X COs <\/25+\/ﬁ5> —2\/29_7}2. (A.5¢)
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