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ENERGY DIFFUSION IN STRONGLY DRIVEN QUANTUMCHAOTIC SYSTEMSP. V. Elyutin *Department of Physis, Lomonosov Mosow State University119992, Mosow, RussiaSubmitted 21 June 2005The energy evolution of a quantum haoti system under the perturbation that harmonially depends on timeis studied in the ase of a large perturbation, in whih the transition rate alulated from the Fermi golden ruleexeeds the frequeny of the perturbation. It is shown that the energy evolution retains its di�usive harater,with the di�usion oe�ient that is asymptotially proportional to the magnitude of the perturbation and tothe square root of the density of states. The results are supported by numerial alulation. Energy absorptionby the system and quantum�lassial orrelations are disussed.PACS: 05.45.-a, 42.50.Hz1. INTRODUCTIONThe problem of suseptibility of haoti systems toperturbations has attrated muh attention in the lastdeade [1�9℄. This problem is fundamental beause itinludes the determination of the response of a ma-terial system to an imposed external eletromagneti�eld, the setup that is typial for many experiments.Due to the sensitivity of lassial phase trajetories orquantum energy spetra and stationary wave funtionsof haoti systems to small hanges of their parameters,the problem is hallengingly di�ult. A onsistent andnonontroversial piture overing (albeit qualitatively)all the essential ases of the response has not yet beendrawn at present. From the standpoint of general the-ory, the problem is related to the appliability of theonept of quantum�lassial orrespondene to haotisystems, whih is a long-standing question in its ownright [10; 11℄.We study a one-partile system with the Hamilto-nian of the formĤ = Ĥ0 � F x̂ os(!0t);where Ĥ0(p̂; r̂) is the Hamiltonian of the unperturbedsystem; p̂ and r̂ are the operators of Cartesian ompo-nents of the partile momentum and position. The las-sial system with the Hamiltonian funtion H0(p; r) is*E-mail: pvelyutin�mtu-net.ru

assumed to be strongly haoti, that is, nearly ergodion the energy surfaes in a wide range of energy val-ues, a system with d � 2 degrees of freedom. In theperturbation operatorV̂ (t) = �F x̂ os(!0t);the ative variable x̂ is one of the Cartesian oordi-nates of the partile, oupled to the external uniformfore �eld. The amplitude F is alled the �eld in whatfollows. We onsider the semilassial ase, where thePlank onstant ~ is small in omparison with the a-tion sale of the system H0.Under the in�uene of the perturbation, the energyvalue E(t) � H0(t)varies in a quasirandom way. These variations anfrequently be desribed as the proess of energy dif-fusion [12; 13℄, when for the ensemble with the miro-anonial initial energy distribution H0(0) = E, theenergy dispersion inreases linearly with time,h�E2(t)i = 2Dt;where D(E;F; !0) is the energy di�usion oe�ient.If the external �eld F is su�iently small in om-parison with the appropriately averaged values of thefores ating on a partile in the unperturbed system,then the energy di�usion oe�ient D in the lassialmodel an be expressed through the harateristis of207



P. V. Elyutin ÆÝÒÔ, òîì 129, âûï. 1, 2006the unperturbed haoti motion of the ative oordi-nate as D = �2!20F 2Sx(E;!0); (1)where Sx(E;!0) is the power spetrum of the ativeoordinate (the Fourier transform of its autoorrela-tion funtion) for the motion over the surfae with theonstant energy value E [9℄. The same expression (1)in the ase of a weak perturbation an be obtainedin the lassial limit from the quantum model. Theevolution of the quantum system an be treated as asequene of one-photon transitions between stationarystates jni ! jki of the unperturbed system, aompa-nied by the absorption or emission of the quanta ~!0.For small ~, the energy spetrum of Ĥ0 is quasiontin-uous, and hene the transition rates are given by theFermi golden rule (FGR)_WF = �2~F 2jxnkj2�(Ek); (2)where xnk is the matrix element of the ative oordi-nate and �(Ek) is the density of states near the �nalstate of the transition. Although the matrix elementsxnk in quantum haoti systems �utuate wildly withthe variation of k [10; 11℄, the averaged squared quan-tity jxnkj2 in the limit as ~! 0 is smooth; it is propor-tional to the power spetrum Sx(E;!0) of the oordi-nate [14; 15℄, jxnkj2 � Sx(E;!0)~�(E) : (3)From Eqs. (2) and (3), we have the transition rate_WF = �2~2 F 2Sx(E;!): (4)Then for the energy dispersion for small t, we haveh�E2i = 2(~!0)2 _WF t;whih brings us bak to Eq. (1) for the energy di�usionoe�ient. It an be shown that the same expressionfor D also holds for large t [9℄.The energy absorption in haoti systems ours asan epiphenomenon of the energy di�usion [4℄. With thedependene of the power spetrum Sx(E;!) and thedensity of states �(E) on energy taken into aount,the di�usion beomes biased, and the energy absorp-tion rate Q is given by the formula [2; 4℄Q = 1� ddE (�D): (5)Although D does not depend on the Plank onstant ~for weak �elds, the appliability ondition for Eq. (2)does. The FGR is, after all, only a formula of the

�rst-order perturbation theory. It is based on the as-sumption that the transition proess has a resonantharater, i.e., that the width � of the energy distri-bution of states populated from the original one, givenby the Weisskopf �Wigner formula [16℄� = ~ _W;is small in omparison with the energy quanta ~!0.From Eq. (4), it is evident that in the lassial limit~! 0, this appliability ondition is violated.By analogy with other models, beyond the limitsof the appliability of the perturbation theory, one anexpet a slow-down of the growth of the energy dif-fusion oe�ient D and of the energy absorption rateQ. For example, for a two-level system with relaxation,the perturbative quadrati dependene of the absorp-tion rate Q / F 2 turns into a �eld-independent valueQ0 in the domain 
2 � �1�2, where 
 is the Rabi fre-queny and �1 and �2 are longitudinal and transverserelaxation rates respetively [17℄. The rate of transi-tions from the disrete to ontinuous energy spetrum(whih are basially ovariant with the energy absorp-tion rate Q), studied in the ontext of the theory ofphotoionization, �rst slows its growth with the transferfrom the multiphoton to the tunneling regime and thenan even derease with the further inrease of F � thee�et that is known as atom stabilization by a strong�eld [18℄.In what follows, we use the border value of the �eldFb, de�ned by the ondition_WF (Fb) = !0:For the weak �eld, F � Fb, the FGR is appliable,whereas the domain of the strong �eld, F � Fb, mustbe treated di�erently. The slow-down of the energy dif-fusion in quantum haoti systems in strong harmoni�elds was �rst demonstrated by Cohen and Kottos [5℄.However, their analyti estimates and data of numeri-al experiments are in quantitative disagreement withthe results in the present paper.It must be noted that the strong �eld regime is eas-ily attainable in experiments. For example, for the ex-itation of multiatomi moleules with infrared laserradiation, the border �eld orresponds to the intensityvalue I � 109 W � m�2, whih has been reahed inexperiments long time ago [19℄.2. THEORYFor the system with the HamiltonianĤ = Ĥ0 + V̂ os(!0t);208



ÆÝÒÔ, òîì 129, âûï. 1, 2006 Energy di�usion in strongly driven quantum haoti systemswe take the wave funtion in the form of the expansionin the basis of stationary states f'mg of Ĥ0,	(t) =Xm am'm(r)e�i!mt: (6)For the amplitudes fam(t)g, we then obtain the systemof equationsidakdt =Xk 
km os(!0t)ei!kmtam; (7)where the quantities
kn = ~�1Fxknare the Rabi frequenies of transitions. We use the ini-tial onditions am(0) = Æmn: at the initial time instant,only one of the stationary states, 'n, is populated. Fol-lowing Refs. [14; 15℄, we assume that xnk are indepen-dent random Gaussian variables with zero mean andthe dispersion given by Eq. (3). System of equations (7)is treated as a member of the orresponding statistialensemble.We onentrate on the proess of energy di�usion.Then in the zeroth approximation, we an restrit our-selves by onsideration of the probability density evo-lution in a narrow energy range around the initial stateand use the power spetrum and the density of statesvalues at this energy,Sx(!) � Sx(En; !)and � � �(En):For the alulation of the absorption oe�ient, theglobal dependene on energy must be restored.The power spetrum Sx(!) has the symmetry prop-erty Sx(�!) = Sx(!):The dependene Sx(!) in the domain ! > 0 in typi-al strongly haoti systems, suh as nonlinear osilla-tors [20℄ and billiards [21; 22℄, has the form of an asym-metri peak. We de�ne the peak value of the Rabifrequeny simply as 
, the frequeny of the maximumas ~!, and the harateristi width of the peak as �.Typially, the ratio ~!=� is about few units.Immediately after swithing the perturbation on,all amplitudes (exept that of the initially populatedstate) grow in absolute value linearly in time. At thisballisti stage, the energy dispersion grows quadrati-ally in time, h�E2i � K1~3~!2
2��t2; (8)

where K1 is a numerial onstant. This stage is limitedby the depletion of the initial population and lasts untilthe depletion timetd � 
�1(~��)�1=2:At this time instant, onsiderably populated levels arespread over the energy range �E � ~~! that ontainsmany levels (beause � / ~�d with d � 2). We expetthat at the next stage, the ensemble-averaged probabi-lity density is a smooth funtion with a harateristisale �E � ~~!.It is onvenient to write the indies in Eq. (7) asarguments of funtions. We use the frequeny distanefrom the initial level as a basi independent variable !,and thus ak is denoted as a("), where" = Ek �En~ :Dummy variables � and �0 have the same meaning. Byformal integration of Eq. (7) and subsequent reursivesubstitution, we obtain the equation for the rate ofhange of the loal probability density w(") = ja(")j2:dw(")dt =X�;�0 
("; �) exp (i("��)t) os(!0t)a(�; t)�� tZ dt0
("; �0) exp (�i("� �0)t0)�� os(!0t0)a�(�0; t0) + .. (9)Summation in this formula goes over disrete values of� and �0, and this equation is still exat.We now assume that the amplitudes a(�; t) arerandom proesses that are not orrelated for di�erentstates: ha(�; t)a�(�0; t0)i / Æ��0 :Then for the averaged probability density, we an re-tain only diagonal terms in Eq. (9):dhw(")idt =X� h
2("; �)i os(!0t)�� tZ dt0 exp (i("� �)(t� t0))�� os(!0t0)ha(�; t)a�(�; t0)i+ .. (10)Under the assumption that the averaged hw("; t)i is asmooth funtion of " and a slowly varying funtion oft, we an rewrite the produt of amplitudes asha(�; t)a�(�; t0)i+ .. = 2hw(�; t)iB(t � t0); (11)14 ÆÝÒÔ, âûï. 1 209



P. V. Elyutin ÆÝÒÔ, òîì 129, âûï. 1, 2006where B(�) is the normalized (B(0) = 1) autoorrela-tion funtion of the probability amplitudes.By replaing the averaged square of the Rabi fre-queny by its value from Eq. (3) (whih depends onlyon the di�erene " � �), substituting the summationover the states by the integration weighted with thedensity of states, and averaging over the time intervalsthat are muh larger than the �eld period, we obtainthe equationdw(")dt = Z d�
2("� �)�(�)�� 1Z0 d� os("� �)� os(!0�)B(�)w(�): (12)Heneforth, we drop the angular brakets and deal onlywith ensemble-averaged quantities. If the rate of vari-ations of w(�; t) is small in omparison with the deayof orrelations of the amplitudes given by B(�), we antreat Eq. (12) as a summation over the probability �owthat omes from the di�erent parts of the frequenyrange with a onstant rate,_W (� ! ") = 
2("� �)�� 1Z0 d� os("� �)� os(!0�)B(�): (13)This approximate expression to some extent replaesthe Fermi golden rule for strong perturbations.To onstrut the kineti equation, we must takeboth inoming and outgoing probability �ows into a-ount. By taking the total probability �ow into aountand expanding w(") in the Taylor series, we obtain adi�usion equation with the probability di�usion oe�-ient in the energy saleD � 1Z�1 d� ~3�2
2(�)�J(�; !0); (14)whereJ(�; !0) = 1Z0 d� os(��) os(!0�)B(�): (15)The problem now redues to the alulation of the in-tegral J(�; !0). For su�iently long times, the averageprobability density, whih is governed by the di�usionequation, varies slowly, and we an treat the systemin Eq. (7) as a set of equations in whih all am(t) arenonorrelated random proesses with the same statis-tial properties. Then by averaging the equation for

the squared time derivative of amplitudes, we obtainthe expression for the mean squared frequeny of theseproesses, whih also gives an estimate for the squareof the orrelation deay rate ,h!2i = 12 Z 
2(�)~� d� � 2: (16)From Eq. (16) for the deay orrelation rate, we havethe estimate  � K2
p�~�; (17)where K2 is a numerial onstant. In the strong-�elddomain, the autoorrelation funtion is the fastest om-ponent in the integrand in Eq. (15). We then haveJ � �1 � �K2
p�~���1 :Substituting this expression in Eq. (14), we obtain theestimate of the energy di�usion oe�ientD � K3~2~!2
p�~�; (18)where K3 is a numerial onstant. We must reall thatEq. (18) is valid only for nearly resonant perturbationfrequenies j!0 � ~!j � �. Here, we do not analyze thedependene of D on the perturbation frequeny !0 ina wider domain, postponing it until further studies.3. NUMERICAL EXPERIMENTTo hek the analyti results in the preeding se-tion, we integrated the system of equations in (7)numerially. The number of equations varied fromN = 300 to N = 1200 with the purpose to suppressthe e�et of the boundary. The envelope of the Rabifrequenies was taken in the double-Lorentzian form
m;n = 
 � �2(!m � !n + ~!)2 + �2++ �2(!m � !n � ~!)2 + �2 � : (19)All alulations were performed for the �resonant�perturbation frequeny !0 = ~! and the peak width� = 0:3~!.Figure 1 shows the distribution of the probabilityas a funtion of the dimensionless frequeny "0 = "=~!for di�erent time instants. It is learly seen that evenfor relatively short timet = 5~!�1 = 2:2td;210



ÆÝÒÔ, òîì 129, âûï. 1, 2006 Energy di�usion in strongly driven quantum haoti systems

−10 −5 0 5 10

ε
′

−20

−15

−10

−5

0

ln w

àb
Fig. 1. The dependene of the logarithm of theprobability density w on the dimensionless frequeny"0 = "=~! for the time values t = 5~!�1 (a), 10~!�1(b), and 15~!�1 (). The grassy lines are the values oflnw("0) averaged over 10 di�erent sets of matrix el-ements, solid lines are �tted parabolas. To avoid theoverlap of graphs, the plots in ases (b) and () areshifted upwards by 3 and 6 units respetively
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Fig. 2. Dependene of the autoorrelation funtion Bof the probability amplitudes on the dimensionless timeshift � 0 = � ~! for three di�erent sets of parameters with~!~� = 30 (blak squares), ~!~� = 60 (open irles),and ~!~� = 120 (blak triangles) and the same value of
p�~� = 0:618~!. The statistial errors are about thesize of the data symbolsthe distribution has a very aurate Gaussian form,with deviations notieable only for j"0j � 7:5. There-fore, we quantitatively support our onlusion aboutthe di�usive harater of the energy evolution.Figure 2 depits the form of the normalized auto-orrelation funtion of the probability amplitudes. The
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Fig. 3. The dependene of the ratio R = D=2 _WF ofthe energy di�usion onstant D to the doubled Fermitransition rate _WF = (�=2)
2~� on the logarithm ofthe ratio of the Rabi frequeny to its boundary valueL = 
=
b, 
b = (2~!=�~�)1=2. The dashed line rep-resents the urve R = A exp(�L) that orresponds tothe theoretial dependene in Eq. (18); it is �tted tothe last three pointsvalues of B(�) have been alulated numerially forthree sets of parameters with di�erent values of � butwith the same value of the produt 
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p~��;this supports the estimate in Eq. (17).Figure 3 represents the dependene of the ratioR = D=2 _WF of the energy di�usion onstant D tothe doubled Fermi transition rate _WF = (�=2)
2~� onthe logarithm of the ratio of the Rabi frequeny to itsboundary value L = 
=
b, 
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