# РАСПРОСТРАНЕНИЕ ФОНОНОВ В НАНОКРИСТАЛЛИЧЕСКИХ КЕРАМИКАХ $ZrO_2 : Y_2O_3$

Ю. Н. Барабаненков<sup>\*</sup><sup>a</sup>, В. В. Иванов<sup>b</sup>, С. Н. Иванов<sup>a</sup>, Е. И. Саламатов<sup>c</sup>,

А. В. Таранов<sup>а</sup>, Е. Н. Хазанов<sup>а</sup>, О. Л. Хасанов<sup>d</sup>

<sup>а</sup> Институт радиотехники и электроники Российской академии наук 125009, Москва, Россия

<sup>b</sup> Институт электрофизики Уральского отделения Российской академии наук 620219, Екатеринбург, Россия

<sup>с</sup> Физико-технический институт Уральского отделения Российской академии наук 426000, Ижевск, Россия

> <sup>d</sup> Томский политехнический университет 634050, Томск, Россия

Поступила в редакцию 23 июня 2005 г.

В области гелиевых температур (1.7-3.8 K) экспериментально изучены процессы фононного переноса в керамиках  $ZrO_2$ , стабилизированных оксидом иттрия  $Y_2O_3$ . Обсуждается модель структуры межзеренного слоя в керамике, которая позволяет объяснить зависимость коэффициента диффузии фононов от температуры и определить параметры межзеренного слоя: плотность, скорость звука, толщину, а также высказать предположение о его структуре. Обсуждаются вопросы рассеяния инжектированных фононов на резонансных колебаниях зерен нанокерамики.

PACS: 61.46.+w

### 1. ВВЕДЕНИЕ

Интерес к нанокристаллическим материалам с размерами кристаллитов порядка или менее 100 нм связан с ожиданием высоких механических и других функциональных характеристик этих материалов, новых свойств в результате размерного эффекта образующих их кристаллитов или зерен и структурных изменений границ между ними [1,2].

Для получения плотной наноструктурной керамики ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub>, исследуемой в настоящей работе, использовались методы, при которых главная роль отводится процессу компактирования по сравнению с процессом последующего спекания: это метод воздействия мощного ультразвука [3] и метод магнитоимпульсного прессования [4] на этапе компактирования нанопорошков. Стадия спекания — конечная технологическая операция получения нанокерамик — проводится в последнем случае при более низких, чем обычно, температурах, что позволяет получить зерна керамики размером около 100 нм.

Исследования керамик методом микроскопии высокого разрешения показывают, что в зернах керамик явных дефектов не наблюдается, и, таким образом, граница между зернами оказывается главным «дефектом» структуры, который определяет свойства материала, особенно при его возможном использовании в качестве оптического материала [5]. Знание свойств и структуры межзеренного слоя в таких керамиках представляется одним из путей в понимании и развитии технологических методов совершенствования их важных для практического использования свойств. Исследования керамик методом электронной микроскопии подтвердили наличие слоя нанометровой толщины между зернами [6], но объем материала, анализируемого этим методом, не дает информации об усредненных параметрах, что важно для практического применения. В предыдущих

<sup>\*</sup>E-mail: yu.barab@g23.relcom.ru

работах [7,8], применяя метод «тепловых» импульсов [9] для исследования керамик Al<sub>2</sub>O<sub>3</sub>, Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>, мы получили информацию о межзеренном слое и его толщине. В настоящей работе мы продолжаем такие исследования на наноструктурных образцах керамик ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub>.

### 2. МЕТОДИКА ЭКСПЕРИМЕНТА, ЕГО РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследовались образцы высокоплотных керамик  $ZrO_2:Y_2O_3$ , которые изготавливались из нанопорошков оксидов композитов, входящих в состав керамики, по двум технологическим маршрутам.

1) Сухое статическое прессование нанопорошков, полученных методом плазмохимического синтеза, при одновременном воздействии мощного ультразвука без связующих органических пластификаторов, что исключает введение в шихту дополнительных примесей, уменьшает остаточную пористость керамики. Последующее термическое спекание прессовое, проводится в резистивной печи в вакууме при температуре  $T = 1650 \,^{\circ}\text{C}$ . Мощность УЗВ-воздействия при прессовании менялась в пределах 0-3 кВт при диаметре прессовки ~ 1 см. Влияние УЗВ-воздействия на основные параметры керамических образцов — плотность, размер области когерентного рассеяния при рентгеновских исследованиях, микротвердость и другие — проанализированы в [3] и представлены в таблице (образцы №№ 1–4);

2) Прессование нанопорошков, полученных взрывом проволок, до высокой плотности (0.7–0.8) методом магнитоимпульсного прессования с последующим отжигом в резистивной печи на воздухе [4]. Благодаря высокой плотности прессовок керамику спекали при пониженных температурах (1100–1450 °C) с короткими временами выдержки, около 20 мин. Влияние фазового состава шихты и температуры спекания на плотность керамики, ее микротвердость, размер области когерентного рассеяния при рентгеновских исследованиях подробно изучены в [10] и представлены в таблице (образцы №№ 5–11).

Рентгеноструктурный анализ исследуемых образцов позволял определить кристаллическую модификацию образцов  $ZrO_2:Y_2O_3$  и средний размер кристаллитов  $d_{cs}$  — областей когерентного рассеяния этих модификаций. Проводились также исследования поверхности (скола) образцов с помощью сканирующего электронного микроскопа Joel JSM-840.

Для образцов №№ 5-11 [4], приготовленных из



Рис.1. Микроструктура поверхности скола образца № 2, полученного при УЗВ-воздействии

слабо агломерированных порошков, размеры кристаллитов согласно рентгеновским измерениям соответствуют размерам зерен на снимках электронного микроскопа и границы между зернами четко выражены.

Если же контакты между кристаллитами, или субзернами, по терминологии авторов [3], очень плотные и плохо фиксируемые электронным микроскопом, то они связываются в конечные образования с  $R \gg d_{cs}$ , которые можно назвать агломератами. Такие агломераты на снимках электронного микроскопа выглядят как хорошо ограненные зерна (см. рис. 1). Эта ситуация реализуется для образцов №№ 1–4 таблицы.

В настоящей работе исследованы толщины межзеренных слоев и их зависимости от УЗВ-воздействия (образцы №№1-4) и температуры отжига и состава шихты для образцов №№ 5-11. Эти данные получались методом кинетики тепловых фононов при гелиевых температурах. Суть метода «тепловых» импульсов заключается в следующем: на пластину исследуемого материала с одной стороны напыляется золотая пленка, которая нагревается коротким (около 10-7 с) импульсом тока и служит инжектором неравновесных фононов в образец. На противоположную сторону пластины наносится сверхпроводящий болометр из олова в форме меандра площадью  $0.3 \times 0.25$  мм<sup>2</sup>. Рабочая точка болометра смещается магнитным полем (до 160 · 10<sup>2</sup> A/м), что позволяет получить зависимости рассеяния неравновесных фононов от температуры в интервале 1.7-3.8 К. Мощность, рассеиваемая в нагревателе, выбирается достаточно малой, так что-

| №<br>обр. | Состав фаз,<br>мол. %                                | Режим<br>прес-<br>сования<br>порошка |             | Темпе-<br>ратура<br>спе-<br>кания,<br>°С | Плот-<br>ность,<br>г/см <sup>3</sup> | Микро-<br>твер-<br>дость,<br>ГПа | Размер<br>области<br>коге-<br>рент-<br>ности d <sub>cs</sub> ,<br>нм | Размер<br>зерна<br><i>R</i> , нм | Длина<br>свобод-<br>ного<br>пробега<br>$l_{tr}$ , нм | $\frac{l_{tr}}{R}$ |
|-----------|------------------------------------------------------|--------------------------------------|-------------|------------------------------------------|--------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------------|--------------------|
|           |                                                      | Давле-<br>ние,<br>МПа                | УЗВ,<br>кВт |                                          |                                      |                                  |                                                                      |                                  |                                                      |                    |
| 1         | $\rm ZrO_2{:}2.8~\%Y_2O_3$                           | 350                                  | 0           | 1650                                     | 5.45                                 | 11.6                             | 77                                                                   | 430                              | 930                                                  | 2.16               |
| 2         | $\rm ZrO_2{:}2.8~\%Y_2O_3$                           | 350                                  | 1           | 1650                                     | 5.58                                 | 12.85                            | 54                                                                   | 350                              | 2140                                                 | 6.11               |
| 3         | $\rm ZrO_2{:}2.8\% Y_2O_3$                           | 350                                  | 2           | 1650                                     | 5.58                                 | 12.82                            | 64                                                                   | 345                              | 950                                                  | 2.75               |
| 4         | $\rm ZrO_2{:}2.8~\%Y_2O_3$                           | 350                                  | 3           | 1650                                     | 5.24                                 | 8.9                              | 79                                                                   | 420                              | 2040                                                 | 6.3                |
| 5         | $\rm ZrO_2{:}2.8~\%Y_2O_3$                           | 135                                  |             | 1100                                     | 6.1                                  | 17                               | 63                                                                   | 63                               | 126                                                  | 2.0                |
| 6         | $\rm ZrO_2{:}4.1~\%Y_2O_3$                           | 135                                  | _           | 1150                                     | 6.1                                  | 16.5                             | 78                                                                   | 78                               | 206                                                  | 2.6                |
| 7         | $\rm ZrO_2{:}4.1~\%Y_2O_3$                           | 135                                  | _           | 1200                                     | 6.1                                  | 16.5                             | 84                                                                   | 84                               | 256                                                  | 3.0                |
| 8         | $ZrO_2{:}4.1~\%Y_2O_3$                               | 135                                  | _           | 1450                                     | 5.595                                | 16                               | 120                                                                  | 120                              | 504                                                  | 4.2                |
| 9         | $\rm ZrO_2{:}4.1~\%Y_2O_3$                           | 135                                  | _           | 1250                                     | 6.1                                  | 17                               | 95                                                                   | 95                               | 286                                                  | 3.2                |
| 10        | $\rm ZrO_2:9.8~\%Y_2O_3$                             | 135                                  | _           | 1155                                     | 5.95                                 | 16                               | 115                                                                  | 115                              | 328                                                  | 2.43               |
| 11        | $\operatorname{ZrO}_2:9.8\%\mathrm{Y}_2\mathrm{O}_3$ | 135                                  | _           | 1450                                     | 5.89                                 | 16                               | 100                                                                  | 100                              | 319                                                  | 1.77               |

Параметры исследованных в работе образцов керамики ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub>

бы инжектированным фононам можно было приписать температуру термостата с распределением по частотам, близким к планковскому. Таким образом, в случае слабого нагрева,  $\Delta T \ll T_0$ , и основная группа фононов имеет частоту, близкую к максимуму спектральной плотности планковского распределения  $\omega = 2.8kT/\hbar$ . Подробное описание метода «тепловых» импульсов можно найти в [11].

Примеры распространения теплового импульса (зависимости сигнала болометра от времени) для ряда температур представлены на рис. 2 (образец № 2 получен при УЗВ-воздействии). На вставке рис. 2 показаны аналогичные кривые для образца № 6, полученного методом магнитоимпульсного прессования. В обоих случаях кривые имеют характерную для диффузионного распространения фононов колоколообразную форму с хорошо обозначенным максимумом амплитуды. Отметим сразу, что для УЗВ-керамик время максимума сигнала  $t_{max}$  возрастает с ростом температуры, а для магнитоимпульсных керамик  $t_{max}$  может возрастать, а может и убывать с температурой. Именно такая убывающая зависимость представлена на вставке рис. 2.

В [12, 13] показано, что для керамических образцов толщиной  $L \gg R$  (что хорошо выполняется в нашем случае  $L/R \approx 10^3$ ) движение потока инжектированных фононов подчиняется обычному уравнению диффузии и выражение для времени прихода максимума  $t_{max}$  для случая плоского источника излучения, реализуемого в наших экспериментах, имеет вид

$$t_{max} = \frac{L^2}{2D_{eff}} \,. \tag{1}$$

Коэффициент диффузии  $D_{eff}$  связан с транспортной длиной свободного пробега обычным соотношением:

$$D_{eff} = \frac{1}{3} v_s l_{tr}, \qquad (2)$$

где  $v_s=4.33\cdot 10^5~{\rm cm/c}-$  среднее значение скорости звука в ZrO2. Величины  $l_{tr}$ для  $T=3.8~{\rm K}$  представ-



Рис.2. Зависимость амплитуды сигнала неравновесного фононного излучения от времени в образце  $N^{\circ}$  2: T = 3.81 K (1); 3.65 K (2); 3.39 K (3); 3.11 K (4); 2.80 K (5); 2.55 K (6); 2.28 K (7). На вставке — аналогичные кривые для образца  $N^{\circ}$  6: T = 3.81 K (1); 3.43 K (2); 2.78 K (3)

лены в таблице. Для всех исследованных образцов  $l_{tr}/R > 1$  (см. таблицу) и это позволяет полагать, что зерна керамик достаточно совершенны и низкотемпературная кинетика фононов определяется их рассеянием на границах между зернами с вероятностью прохождения фонона из зерна в зерно, близкой к единице.

Перейдем к количественному анализу полученных экспериментальных результатов. Ранее условие  $l_{tr}/R > 1$  наблюдалось в экспериментах с высокоплотной керамикой  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [13] и авторы объясняли результаты в предположении, что упругое рассеяние фононов происходит на границах зерен с разной кристаллографической ориентацией, а межзеренный слой между кристаллитами отсутствует. Полагалось, что

$$l_{tr} = \frac{l_0}{l - \langle \cos \varphi \rangle},\tag{3}$$

где  $l_0 \sim R$  — средняя длина свободного пробега фонона в зерне до акта рассеяния на его границе, а  $\langle \cos \varphi \rangle$  — косинус угла однократного упругого рассеяния волны на границе зерен с различными кристаллографическими ориентациями.

Авторы [14] решали близкую к [13] задачу о прохождении теплового импульса в слоистой структуре (с периодом d) и рассеянии фононов на границе между слоями. Они ввели величину  $f_{\omega}$  — вероятность прохождения фонона частоты  $\omega$  из одного слоя в другой — и получили для средней транспортной длины свободного пробега фонона  $l_{tr}$  выражение

$$l_{tr} = \frac{d f_{\omega}}{1 - f_{\omega}} \,. \tag{4}$$

В плотных керамиках  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [7,13] и наших образцах  $l_{tr}/R > 1$ , т. е. фононы относительно слабо рассеиваются на межзеренной границе и величина  $f_{\omega}$  близка к единице. В этих условиях сравнение (3) и (4) позволяет полагать, что вероятность  $f_{\omega}$  прохождения фонона из зерна в зерно пропорциональна величине  $\langle \cos \varphi \rangle$  в (3) и может быть использована для количественного анализа наших экспериментальных данных.

В [13] для  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> величина  $\langle \cos \varphi \rangle$  определятся только различием кристаллографической ориентации соседних зерен. Вычисления дают значение  $\langle \cos \varphi \rangle \approx 0.96$ , т.е. фонон пролетит около 20 зерен до «окончательного» рассеяния. В эксперименте наблюдаются меньшие значения  $l_{tr}$ , и авторы работы [13] объясняют это возможным влиянием рассеяния на межзеренной границе. В наших экспериментах  $l_{tr}/R$  также меньше 20, и, таким образом, роли анизотропии материала и разориентации границ зерен керамики не являются определяющими в процессах рассеяния потока фононов. Именно поэтому при численном анализе данных для образцов №№ 1–4 использовалось значение  $l_{tr}/R$ , где R — размер зерна или агломерата, а не  $l_{tr}/d_{cs}$ . Отметим также, что модель [13] не объясняет наблюдающуюся в керамических материалах зависимость  $t_{max}$  от температуры.

Мы полагаем, что основной вклад в рассеяние дает межзеренная граница толщиной l<sub>gb</sub> со свойствами, отличными от свойств базового материала (зерна). Задача вычисления величины  $f_{\omega}$  решалась для упрощенной модели изотропного материала (см. рис. 3), в котором с помощью метода акустического согласования сред [15] рассчитывалось рассеяние фонона при прохождении плоской границы между слоями для всех возможных углов падения и прохождения фонона (более подробно см. [16]). При расчетах полагалось, что для всех образцов, представленных в таблице,  $\rho_1 = \rho_3$  — плотности базового материала, а  $v_1 = v_3 = 4.33 \cdot 10^5$  см/с. На рис. 4 и 5 представлены зависимости величины  $1/(1-f_{\omega})$ , которой пропорционален как коэффициент диффузии, так и  $l_{tr}$ , от параметра межзеренного слоя  $q_2 l_{gb}$  для ряда значений  $\rho_2 v_2 / \rho_1 v_1$ , при которых наблюдается наилучшее согласие расчета с экспериментом.

Отметим прежде всего, что расчетные кривые рис. 4 и 5 показывают сильную зависимость величи-



Рис. 3. Акустическая модель прохождения фонона из зерна в зерно через плоский граничный слой



Рис.4. Расчетные зависимости величины  $1/(1 - f_{\omega})$  — вероятности прохождения потока фононов из зерна в зерно через плоскую границу между зернами толщиной  $l_{gb}$  в зависимости от  $q_2 l_{gb}$ , где  $q_2 = \omega_2/v_2$  — волновой вектор фонона в межзеренном слое,  $\rho_2 v_2/\rho_1 v_1 = 0.75$  (1); 0.8 (2). Точки — эксперимент для образцов, полученных при УЗВ-воздействии:  $\Box$  — образец  $N^{\circ}$ 1,  $\Diamond$  — образец  $N^{\circ}$ 2,  $\circ$  — образец  $N^{\circ}$ 3,  $\nabla$  — образец  $N^{\circ}$ 4. На вставке к рисунку представлена зависимость величины  $l_{gb}$  от мощности УЗВ-воздействия



Рис. 5. Аналогичные рис. 4 зависимости  $1/(1-f_k)$  от  $q_2 l_{gb}$  для значений  $\rho_2 v_2 / \rho_1 v_1 = 0.6$  (1); 0.7 (2), 0.75 (3). Точки — эксперимент для образцов, полученных магнитоимпульсным прессованием: • — образец  $\mathbb{N}^{\circ}$  6,  $\triangle - \mathbb{N}^{\circ}$  11,  $\Box - \mathbb{N}^{\circ}$  8,  $\Diamond - \mathbb{N}^{\circ}$  7,  $\nabla - \mathbb{N}^{\circ}$  10,  $\triangleleft - \mathbb{N}^{\circ}$  5,  $\triangleright - \mathbb{N}^{\circ}$  9. На вставке к рисунку — зависимость величины  $l_{gb}$  от температуры отжига прессовки

ны  $1/(1-f_{\omega})$  от  $q_2 l_{gb}$ . Это — результат резонансного механизма [17], возникающего из-за различия  $\rho_2 v_2$  и  $\rho_1 v_1$  и сравнимости толщины межзеренной границы  $q_2 l_{gb}$  с проекцией волнового вектора инжектированных фононов. Напомним, что для случая планковского распределения инжектированных фононов  $q_2 = 2.8kT/\hbar v_2$ . Таким образом, межзеренный слой, действуя как резонансная структура, обусловливает зависимость прохождения теплового импульса от температуры, причем производная этой зависимости может быть как положительной, так и отрицательной (см. рис. 4 и 5).

Сравнение расчетных кривых рис. 4 и 5 с экспериментальными значениями  $l_{tr}$  проводилось следующим образом. Полагая  $l_0 \approx 0.6R$  [13], вычисляем величину  $1/(1 - f_k)_{exp}$  (4) при температуре, например, T = 3.8 К и проводим для полученного значения  $1/(1 - f_k)$  сечение набора кривых рис. 4 и 5, т.е. проводим привязку экспериментального значения величины  $1/(1 - f_k)$  к расчетному. Точки сечения определяют величины  $q_2l_{gb}$  для ряда значений  $\rho_2 v_2/\rho_1 v_1$ . Полагая величину  $l_{gb}$  определенной, далее строим зависимость  $1/(1 - f_k)_{exp}$  от  $q_2l_{gb}$ , т.е. от температуры. Кривая с наилучшим согласием расчета с экспериментом позволяет определить толщину межзеренного слоя  $l_{gb}$  и его акустические характеристики, т.е. отношение  $\rho_2 v_2/\rho_1 v_1$ . Результаты именно

такой обработки представлены на рис. 4 и 5.

На вставках рис. 4 и 5 представлены зависимости определенной нами величины l<sub>gb</sub> от технологического режима изготовления керамики. Для образцов №№1-4, полученных при УЗВ-воздействии, наблюдается четкое уменьшение  $l_{ab}$  при «включении» ультразвука. Толщина границы между агломератами (зернами) уменьшается, а межзеренная прослойка, по-видимому, выдавливается в область пор на стыке зерен, плотность керамики несколько увеличивается (см. таблицу). Для образцов №№ 5-11 с ростом температуры спекания от 1100 до 1450 °C в течение 20 мин также наблюдается уменьшение l<sub>ab</sub> примерно в 3 раза. Влияние состава керамики, т.е. по существу роли кристаллографии границ зерен (мы проходим от тетрагональной к кубической фазе), не наблюдается.

Для всех исследованных образцов совпадение расчета с экспериментальными данными наблюдается при  $\rho_2 v_2 / \rho_1 v_1 = 0.6-0.75$ . При синтезе керамики какие-либо посторонние добавки в шихту не вводились, поэтому можно полагать  $\rho_1 \approx \rho_2$  и тогда  $v_2 / v_1 \approx 0.6-0.8$ . Одной из причин уменьшения скорости звука в межзеренном слое может быть его некристаллическая структура. Хотя толщина межзеренного слоя  $l_{gb}$  для всех исследованных образцов больше, чем параметр кристаллической решетки ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub> (так, для кубической формы a = 0.514 нм), этот слой может быть аморфизован, как, например, в [18], что и приводит к акустическому рассогласованию в структуре зерно — межзеренный слой — зерно и наблюдаемым в работе эффектам.

Интересно провести сравнение полученных в настоящей работе значений коэффициентов диффузии фононов с общей систематизацией значений  $D_{eff}$ от размера зерна R для других керамических материалов. Зависимости D<sub>eff</sub> от R для плотных керамик Al<sub>2</sub>O<sub>3</sub>, Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> изучены в [8, 13, 16]. При  $R \geq 100-200$  нм наблюдается  $D_{eff} \sim R$  в пределах до трех порядков значений размера зерна *R* (см. рис. 6, кривая 1'). Такая зависимость в рамках нашей модели (1)-(4) является отражением факта постоянства толщины межзеренного слоя для керамик с R > 200 нм. По нашим оценкам и литературным данным, подробный обзор которых приведен в [19], толщина межзеренной границы составляет  $l_{ab} \sim 1-2$  нм. Для всех этих керамик  $\partial D_{eff} / \partial T < 0$ . При уменьшении температуры и времени спекания образцов удается получить нанокерамики с R < 100 нм, но межзеренная граница утолщается, становится более рыхлой и экспериментальные точки «ползут» вниз от базовой кривой 1' рис. 6, а зависимость  $D_{eff}$  от



Рис. 6. Зависимость величины эффективного коэффициента диффузии фононов от среднего размера зерен образца керамики  $Al_2O_3$ : T = 3.8 K (1'), 3.0 K (2'). Кривые 1, 2 — то же самое для образцов ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub>

температуры может менять знак. На этот факт мы уже обращали внимание в [16].

На рис. 6 (кривая 1) представлены результаты настоящей работы. При R > 100 нм результаты хорошо коррелируют с базовой кривой 1', а при R < 100 нм величина  $D_{eff}$  уменьшается относительно «базового» значения и меняет знак зависимости от температуры. Если теперь построить на рис. 6 кривые 2 и 2' для  $D_{eff}$  при более низкой температуре, то при  $R \sim 100$  нм они пересекаются, что является отражением факта смены знака зависимости  $D_{eff}$  от температуры.

Выше была рассмотрена модель резонанса, связанного с локализацией акустической волны в тонком межзеренном слое, в которой смена знака зависимости  $D_{eff}$  от температуры определяется не размером зерна, а толщиной и физическими характеристиками межзеренного слоя, который контролируется технологическим маршрутом изготовления керамики.

Вместе с тем в нанокерамиках при R < 100 нм в наших экспериментах наблюдается утолщение межзеренной границы до нескольких нанометров (см. вставку на рис. 5) и уменьшение упругих харак-



Рис.7. Зависимость нормированного значения коэффициента диффузии фононов D от параметра qR;  $R/l_{gb} = 50$ ,  $1 - c_2/c_1 \ll 1$  (выполняются условия образования щели);  $2 - c_2/c_1 = 0.032$ ,  $3 - c_2/c_1 = 0.09$ ,  $4 - c_2/c_1 = 0.2$ 

теристик этого слоя, так что  $c_2/c_1 \leq 0.3$ -0.5, где  $c_{1,2} = v_{1,2}^2 / \rho_{1,2}$  — коэффициенты упругости соответственно межзеренного слоя и зерна. Это количественные данные, полученные выше при обработке экспериментальных кривых в рамках модели (1)-(4). В [20] показано, что в керамиках с рыхлой межзеренной границей,  $c_2/c_1 \ll 1$ , возможно резонансное рассеяние фононов на зернах керамики на частоте  $qR = \sqrt{c_2 R / c_1 l_{gb}}$ , которое приведет к образованию щели (запрещенной зоны) в спектре фононных состояний керамики. Частота верхней границы щели составляет около 2qR. Зависимость  $D_{eff}$  (нормированное значение) от параметра qR для случая, когда  $c_2/c_1 \ll 1$  и выполняются условия возникновения щели, представлена кривой 1 на рис. 7. В наших экспериментах  $qR|_{3.8~\mathrm{K}} \approx 20$  и щель в исследуемых керамиках не образуется. При наших реальных параметрах керамики R = 100 нм,  $l_{qb} \approx 2$  нм на базе расчетов [20] можно построить серию зависимостей

 $D_{eff}$  от qR, где в качестве параметра выступает величина  $c_2/c_1$  (кривые 2-4 на рис. 7). Эти кривые имеют минимумы коэффициента диффузии за счет резонансного рассеяния на зернах керамики, и в экспериментах мы, по-видимому, чувствуем его, находясь на его крыле. Это подтверждается экспериментальным фактом сдвига начала «завала» величины D(R) по оси зерна R примерно в 2 раза для представленных оксидных керамик Al<sub>2</sub>O<sub>3</sub> и ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub> в соответствии с различием в средних скоростях звука в этих материалах. Отметим также, что при анализе температурной зависимости величины D (движение в наших экспериментах справа налево по оси qR) мы будем «наползать» на пик резонансного рассеяния на сферах, что также может привести к неординарной зависимости D от температуры, т.е.  $\partial D / \partial T > 0$ .

#### 3. ЗАКЛЮЧЕНИЕ

Использованный в работе метод исследования распространения неравновесных фононов в керамических материалах позволил определить толщину межзеренных границ в образцах ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub> и ее зависимость от технологического маршрута изготовления образцов; сделаны предположения об аморфизованной структуре этого слоя. Использованная модель структуры межзеренного слоя и переноса через него неравновесных фононов является приближенной, так, например, не учтены рассеяние фононов из-за кристаллографической разориентации границ зерен и неплоскостность границ между зернами. Эти вопросы являются предметом отдельного рассмотрения.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 03-02-16233, 05-02-08096) и в рамках программы «Ведущие научные школы» (грант № ВНШ-1391.2003.2).

## ЛИТЕРАТУРА

- 1. R. W. Siegel, Nanostruct. Mater. 4, 1, 121 (1994).
- **2**. А. П. Гусев УФН **168**, 55 (1998).
- О. А. Хасанов, Ю. Ф. Иванов, Н. А. Попова, Л. Н. Игнатенко, Э. В. Козлов, Н. В. Дедов, Ю. П. Похолков, З. Г. Бакбаева, В. В. Полисадова, Перспективные материалы 5, 52 (1999).
- В. В. Иванов, В. Р. Хрустов, Неорганические материалы 34, 495 (1998).

- Ю. К. Воронько, М. А. Вишнякова, Е. Е. Ломонова, А. В. Попов, А. А. Соболь, С. Н. Ушаков, В. Е. Шукшин, Неорганические материалы 40, 585 (2004).
- 6. D. R. Clarks, J. Amer. Ceram. Soc. 70, 15 (1987).
- 7. Yu. N. Barabanenkov, V. V. Ivanov, S. N. Ivanov, A. V. Taranov, and E. N. Khazanov, Physica B 316-317, 269 (2002).
- Ю. Н. Барабаненков, С. Н. Иванов, А. В. Таранов, Е. Н. Хазанов, Х. Яги, Т. Янагитани, К. Таканчи, Дж. Лю, Дж.-Ф. Биссон, А. Ширакава, К. Уеда, А. А. Каминский, Письма в ЖЭТФ 79, 421 (2004).
- R. J. Gutfeld, in *Physical Acoustics*, ed. by W. Mason, Vol. 5, p. 267, Academic Press, New York, London (1968).
- V. V. Ivanov, S. N. Paranin, and V. R. Khrustov, Physics Met. Metallogr. 94, Suppl. 1, 598 (2002).

- 11. С. Н. Иванов, Е. Н. Хазанов, ЖЭТФ 88, 299 (1985).
- 12. А. Г. Козорезов, ЖЭТФ 100, 1577 (1991).
- 13. А. А. Каплянский, М. Б. Мельников, С. П. Феофилов, ФТТ 38, 1434 (1996).
- 14. В. Д. Каган, А. В. Суслов, ФТТ 36, 2672 (1994).
- 15. W. A. Little, Can. J. Phys. 37, 334 (1959).
- 16. Ю. Н. Барабаненков, В. В. Иванов, С. Н. Иванов, А. В. Таранов, Е. Н. Хазанов, ЖЭТФ 119, 546 (2001).
- M. P. Albada, B. A. Tiggelen, A. D. Langendijk, and A. Tip, Phys. Rev. Lett. 66, 3132 (1991).
- 18. F. F. Lange, G. L. Dunlap, and B. I. Devis, J. Amer. Ceram. Soc. 69(3), 237 (1986).
- **19**. В. В. Белоусов, Неорганические материалы **39**, 1, 94 (2003).
- 20. E. I. Salamatov, Phys. Stat. Sol. (c) 1, 11, 2971 (2004).