РЕЗОНАНСНОЕ ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ В ПЛАЗМЕ С МАГНИТНЫМИ НЕОДНОРОДНОСТЯМИ

Ф. А. Уртьев^{*}, К. Ю. Платонов

Санкт-Петербургский политехнический университет 195251, Санкт-Петербург, Россия

Г. Д. Флейшман

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

> National Radio Astromomy Observatory VA22903, Charlottesville, USA

Поступила в редакцию 19 мая 2005 г.

Вычислен спектр резонансного переходного излучения, генерируемого быстрой заряженной частицей, движущейся в плазме с мелкомасштабными случайными неоднородностями магнитного поля. Определены условия, при которых данный вид переходного излучения доминирует над переходным излучением на неоднородностях плотности плазмы. Обсуждаются возможные приложения резонансного переходного излучения в космических и геофизических условиях.

PACS: 94.20.-y, 95.30.Qd

1. ВВЕДЕНИЕ

Нетепловое излучение космических объектов (начиная с ближайших источников, находящихся в солнечной системе, включая геопространство, вплоть до весьма удаленных объектов, например, источников космологических гамма-всплесков) возникает при движении быстрых, в том числе ультрарелятивистских, частиц в неоднородной турбулентной магнитоактивной плазме. Хорошо известно [1], что свойства нетеплового излучения, генерируемого в турбулентной плазме, существенно отличаются от случая однородной среды. В частности, наличие мелкомасштабных неоднородностей диэлектрической проницаемости среды, которые могут обеспечиваться случайными неоднородностями плотности плазмы и/или магнитного поля, приводит к генерации переходного излучения [2].

Спектр переходного излучения, генерируемого

быстрыми частицами в плазме с неоднородностями плотности, содержит мощный пик, называемый резонансным переходным излучением [3], вблизи электронной плазменной частоты $\omega_{pe} = \sqrt{4\pi N_0 e^2/m},$ где N_0 — концентрация тепловых электронов, e и т — заряд и масса электрона. Происхождение этого пика связано с тем, что отклик любой системы (в нашем случае — плазмы) на внешнее возмущение (быстрая частица) оказывается наибольшим в области собственных резонансных частот системы (плазменная частота). Естественно ожидать поэтому, что и в спектре переходного излучения на неоднородностях магнитного поля [4] будет наблюдаться аналогичный резонансный пик вблизи плазменной частоты, который мы для краткости назовем магнитным резонансным переходным излучением. В данной статье вычисляется спектр этого излучения и обсуждается его роль в ряду других конкурирующих механизмов излучения, включая обычное резонансное переходное излучение на неоднородностях плотности плазмы.

^{*}E-mail: urtiew@mail.ru

2. ВЫЧИСЛЕНИЕ ИНТЕНСИВНОСТИ РЕЗОНАНСНОГО ПЕРЕХОДНОГО ИЗЛУЧЕНИЯ ПРИ НАЛИЧИИ МАГНИТНЫХ НЕОДНОРОДНОСТЕЙ

Спектр переходного излучения может быть вычислен как интенсивность излучения тока $\mathbf{j}_{\omega,\mathbf{k}}^{m}$, возникающего под действием поля внешней быстрой частицы [2, 5]:

$$I_{\omega,\mathbf{n}}^{R} = (2\pi)^{6} \frac{\omega^{2} \varepsilon^{1/2}}{c^{3} T} \left\langle |\mathbf{n} \times \mathbf{j}_{\omega,\mathbf{k}}^{m}|^{2} \right\rangle. \tag{1}$$

Здесь $I^R_{\omega,\mathbf{n}}$ — энергия, излучаемая в единицу времени в расчете на единичный интервал частот ω в единичный телесный угол, $\varepsilon = 1 - \omega_{pe}^2/\omega^2$ — диэлектрическая проницаемость плазмы, $T \to \infty$ — время движения быстрой частицы, c — скорость света, \mathbf{n} — единичный вектор в направлении излучения.

Выражение (1) справедливо в изотропной плазме. При наличии магнитного поля (в частности, мелкомасштабных неоднородностей магнитного поля), плазма становится гиротропной, т. е. анизотропной, средой. Поэтому применимость выражения (1) к вычислению излучения в плазме с магнитными неоднородностями ограничена условием слабой гиротропии $\omega_{st} \ll \omega_{pe}$, где $\omega_{st}^2 = e^2 \langle B_{st}^2 \rangle / (m^2 c^2)$, $\langle B_{st}^2 \rangle$ средний квадрат величины магнитного поля (включающего, вообще говоря, как случайную, так и регулярную составляющие), которое в дальнейшем будем считать выполненным.

Величину фурье-компоненты тока $\mathbf{j}_{\omega,\mathbf{k}}^m$ электронов среды, наводимого полем $\mathbf{E}_{q_0,\mathbf{q}}^Q$ быстрой частицы в плазме с неоднородностями плотности и магнитного поля, легко найти из решения кинетического уравнения по теории возмущений [1, 2, 5]:

$$\mathbf{j}_{\omega,\mathbf{k}}^{m} = \frac{ie^{2}}{m\omega} \int d^{3}k' d\omega' \mathbf{E}_{\omega-\omega',\mathbf{k}-\mathbf{k}'}^{Q} \delta N_{\omega',\mathbf{k}'} - \frac{e^{3}N_{0}}{m^{2}c\omega^{2}} \int d^{3}k' d\omega' \mathbf{E}_{\omega-\omega',\mathbf{k}-\mathbf{k}'}^{Q} \times \delta \mathbf{B}_{\omega',\mathbf{k}'}, \quad (2)$$

где $\delta N_{\omega',\mathbf{k}'}$ и $\delta \mathbf{B}_{\omega',\mathbf{k}'}$ — фурье-компоненты соответственно неоднородностей плотности и магнитного поля плазмы.

Резонансное переходное излучение, генерируемое током, зависящим от неоднородностей плотности (первый член в (2)), рассматривалось в работах [3, 5], тогда как переходное излучение на магнитных неоднородностях на частотах много выше плазменной частоты исследовано в работе [4]. Здесь мы проанализируем резонансный вклад в излучение на частотах вблизи плазменной частоты, связанный

7 ЖЭТФ, вып.1

со вторым членом в выражении (2). Обратим внимание на то, что векторная структура двух членов в (2) не одинакова (поскольку δN – скалярная, а $\delta \mathbf{B}$ — векторная величина), поэтому результаты, полученные для резонансного переходного излучения на неоднородностях плотности, не могут быть механически перенесены на случай неоднородностей магнитного поля.

Квазистационарное электрическое поле $\mathbf{E}^Q_{\omega-\omega',\mathbf{k}-\mathbf{k}'},$ создаваемое током частицы

$$\mathbf{j}_{q_0,\mathbf{q}}^Q = \frac{Q\mathbf{v}}{(2\pi)^3}\delta(q_0 - \mathbf{q}\mathbf{v}),\tag{3}$$

движущейся равномерно и прямолинейно, где Q и \mathbf{v} — заряд и скорость частицы, выражается через этот ток посредством продольной и поперечной функций Грина. Однако, поскольку вблизи ω_{pe} фазовая скорость v_{ph} поперечных волн значительно больше скорости света c, то $v/v_{ph} \ll 1$, и для любых v < c при вычислении интенсивности резонансного переходного излучения с точностью до $(v/v_{ph})^2$ достаточно ограничится вкладом продольного по отношению к вектору $\mathbf{k} - \mathbf{k}'$ поля быстрой частицы, т. е. учитывать только продольную функцию Грина. При этом [3] диэлектрическая проницаемость, входящая в выражение для продольного поля, должна быть записана с учетом пространственной дисперсии плазмы

$$\varepsilon(q_0, \mathbf{q}) = \varepsilon(q_0) - 3\mathbf{q}^2 d^2 + i\varepsilon'',$$

где $d = v_T/\omega_{pe}$ — дебаевский радиус экранирования, v_T — тепловая скорость электронов фоновой плазмы, а ε'' — мнимая часть диэлектрической проницаемости. Таким образом, выражение для поля $\mathbf{E}^{Q,i}_{\omega-\omega',\mathbf{k}-\mathbf{k}'}$ принимает вид

$$E^{Q,i}_{\omega-\omega',\mathbf{k}-\mathbf{k}'} = -\frac{4\pi i(\mathbf{k}-\mathbf{k}')_i(\mathbf{k}-\mathbf{k}')_j}{\omega(\mathbf{k}-\mathbf{k}')^2([\varepsilon(\omega-\omega')-3(\mathbf{k}-\mathbf{k}')^2d^2]^2+i\varepsilon'')} \times \frac{Qv_j}{(2\pi)^3}\delta\left[(\omega-\omega')-(\mathbf{k}-\mathbf{k}')\cdot\mathbf{v}\right].$$
(4)

Подставив соотношение (2) в (1), получим выражение для интенсивности излучения в виде

$$I_{\omega,\mathbf{n}}^{R} = (2\pi)^{6} \frac{\omega^{2} \varepsilon^{1/2}}{c^{3}T} e_{\alpha k_{1}l_{1}} e_{\alpha k_{2}l_{2}} \left(\frac{e^{3}N_{0}}{m^{2}c\omega^{2}}\right)^{2} \times \int d^{3}k' d^{3}k'' d\omega' d\omega'' n_{k_{1}} n_{k_{2}}^{*} e_{l_{1}\beta_{1}\gamma_{1}} e_{l_{2}\beta_{2}\gamma_{2}} \times E_{\omega-\omega',\mathbf{k}-\mathbf{k}'}^{Q,\beta_{1}} E_{\omega-\omega'',\mathbf{k}-\mathbf{k}''}^{*Q,\beta_{2}} \left\langle \delta B_{\omega',\mathbf{k}'}^{\gamma_{1}} \delta B_{\omega'',\mathbf{k}''}^{*\gamma_{2}} \right\rangle.$$
(5)

Здесь «*» означает комплексное сопряжение, $d^3k' = k'^2 dk' d\varphi d \cos \vartheta$, ϑ — угол между вектором **k**' и вектором скорости **v** частицы.

Результат преобразований выражения (5) зависит от статистических свойств случайного магнитного поля. Рассмотрим модель, в которой случайное поле является квазистатическим, статистически однородным и состоит из случайных волн с изотропным распределением волновых векторов:

$$\left\langle \delta \mathbf{B}_{\mathbf{k}',\omega'}^{\alpha}, \delta \mathbf{B}_{\mathbf{k}'',\omega''}^{\beta*} \right\rangle = \\ = |\delta B|_{\mathbf{k}'}^{2} \delta(\mathbf{k}' - \mathbf{k}'') \delta(\omega' - \omega'') \delta(\omega') \left(\delta_{\alpha\beta} - \frac{k_{\alpha}' k_{\beta}'}{k'^{2}} \right).$$
(6)

Тогда суммирование тензорных множителей в (5) по дважды повторяющимся индексам (см. Приложение 1), приводит к результату

$$\begin{split} I^{R}_{\omega,\mathbf{n}} &= \frac{8\pi Q^{2}\varepsilon^{1/2}}{c^{5}} \left(\frac{e^{3}N_{0}}{m^{2}\omega^{2}}\right)^{2} \times \\ &\times \int k^{\prime 2} dk^{\prime} \frac{|\delta B|^{2}_{\mathbf{k}^{\prime}}\omega^{2}\delta[\omega - (\mathbf{k} - \mathbf{k}^{\prime}) \cdot \mathbf{v}]}{(\mathbf{k} - \mathbf{k}^{\prime})^{4}\{[\varepsilon(\omega) - 3(\mathbf{k} - \mathbf{k}^{\prime})^{2}d^{2}]^{2} + \varepsilon^{\prime\prime 2}\}} \times \\ &\times \left\{ [\mathbf{n} \times \mathbf{k}^{\prime}]^{2} + 2(\mathbf{n} \cdot \mathbf{k}^{\prime})^{2} \right\} d\varphi d\cos\vartheta, \quad (7) \end{split}$$

сходному по структуре с выражением для интенсивности резонансного переходного излучения [5]. Однако в полученном выражении, в отличие от формулы (180) работы [5], появился дополнительный положительный член (удвоенный квадрат скалярного произведения в фигурных скобках) по сравнению с аналогичным выражением для случая резонансного переходного излучения на неоднородностях плотности, что является следствием различия микроскопических токов плазмы, порождаемых неоднородностями ее плотности и магнитного поля.

При вычислениях излучения с принятой точностью (до $(v/v_{ph})^2$) следует пренебречь **k** по сравнению с **k**' везде, кроме резонансного знаменателя, так как $\varepsilon(\omega) \ll 1$ и $k \ll k'$ (длина волны много больше характерных размеров неоднородностей) на рассматриваемых частотах. Проинтегрируем полученное выражение по азимутальному углу вектора **k**' и по углам вектора **n** с учетом δ -функции (фактически вместо интегрирования по углам вектора **n** удобно выполнить интегрирование по углам вектора ра скорости частицы, поскольку эти два интегрирования в изотропном случае эквивалентны друг другу), т.е. найдем энергию, излучаемую в полный телесный угол:

$$I_{\omega}^{R} = \frac{32\pi^{3}Q^{2}\varepsilon^{1/2}}{vc^{5}} \left(\frac{e^{3}N_{0}}{m^{2}\omega}\right)^{2} \int_{\omega/v}^{\infty} \frac{dk'}{k'} |\delta B|_{\mathbf{k}'}^{2} \times \\ \times \int_{-1}^{1} \frac{(1+\cos^{2}\vartheta)d\cos\vartheta}{[\varepsilon(\omega)+6kk'd^{2}\cos\vartheta-3k'^{2}d^{2}]^{2}+\varepsilon''^{2}}.$$
 (8)

После разбиения подынтегрального выражения на простейшие дроби и интегрирования по углу ϑ получим

$$I_{\omega}^{R} = \frac{32\pi^{3}e^{6}N_{0}^{2}Q^{2}\varepsilon^{1/2}}{v\omega^{2}m^{4}c^{5}}\int_{\omega/v}^{\infty}\frac{dk'}{k'}|\delta B|_{\mathbf{k}'}^{2}\frac{\mathcal{L}_{\vartheta}}{36k^{2}k'^{2}d^{4}},\quad(9)$$

где

$$\mathcal{L}_{\vartheta} = 2 - a \ln \frac{(1+a)^2 + b^2}{(a-1)^2 + b^2} + \frac{1+a^2 - b^2}{b} \times \\ \times \left[\pi \theta (1-a^2 - b^2) + \operatorname{arctg} \frac{2b}{a^2 + b^2 - 1} \right], \quad (10)$$
$$a = \frac{3k'^2 d^2 - \varepsilon(\omega)}{6kk' d^2}, \quad b = \frac{\varepsilon''}{6kk' d^2},$$

 $\theta(x)$ — ступенчатая функция Хевисайда. Выражение для \mathcal{L}_{ϑ} отличается от аналогичного (J_{ϑ} в формуле (181) работы [5]) для резонансного переходного излучения на неоднородностях плотности знаком у членов, образовавшихся в результате интегрирования $\cos^2 \vartheta$ в числителе дроби в выражении (8), поскольку, в отличие от формулы (181) [5], в числителе выражения (8) стоит не $1 - \cos^2 \vartheta$, а $1 + \cos^2 \vartheta$.

Упростим полученное выражение (10) для \mathcal{L}_{ϑ} способом, предложенным в работе [3], т.е. будем рассматривать только ту область параметров, в которой не выполнено условие излучения Вавилова–Черенкова для продольных плазменных волн, $a^2 + b^2 \geq 1$. В этом случае член $\pi\theta(1 - a^2 - b^2)$ исчезает, так что

$$\mathcal{L}_{\vartheta} = 2 - a \ln \frac{(1+a)^2 + b^2}{(a-1)^2 + b^2} + \frac{1+a^2 - b^2}{b} \operatorname{arctg} \frac{2b}{a^2 + b^2 - 1}.$$
 (11)

Разложим полученное выражение для \mathcal{L}_{ϑ} в ряд по степеням 1/a, который сходится в круге 1/|a| < 1 (см. Приложение 2):

$$\mathcal{L}_{\vartheta} \approx \left(\frac{8}{3a^2} + \frac{16}{5a^4}\right) \theta(a^2 - 1). \tag{12}$$

При $a \sim 1$ оба члена этого разложения одного порядка величины. Однако, поскольку при |a| > 1 вклад в интегралы члена $1/a^4$ оказывается существенно меньше вклада члена $1/a^2$, в дальнейшем ограничимся учетом лишь первого члена разложения (12); наибольшая ошибка этого приближения составляет 60 %.

Подстановка первого члена разложения (12) в выражение (9) позволяет выразить интенсивность магнитного резонансного переходного излучения через однократный интеграл от спектра магнитных неоднородностей:

$$I_{\omega}^{R} = \frac{256\pi^{3}e^{6}N_{0}^{2}Q^{2}\varepsilon^{1/2}}{3v\omega^{2}m^{4}c^{5}} \times \\ \times \int_{\omega/v}^{\infty} \frac{dk'}{k'} \frac{|\delta B|_{\mathbf{k}'}^{2}\theta(a^{2}-1)}{[3k'^{2}d^{2}-\varepsilon(\omega)]^{2}}.$$
 (13)

Последующие вычисления не могут быть выполнены в общем виде, а требуют конкретизации спектра случайного магнитного поля. Рассмотрим степенную зависимость

$$|\delta B|_{\mathbf{k}'}^2 = \frac{\nu - 1}{4\pi} \, \frac{k_0^{\nu - 1} \left\langle \Delta B^2 \right\rangle}{k'^{\nu + 2}},\tag{14}$$

аналогичную спектру неоднородностей плотности, использованному в работе [5]. Тогда

$$I_{\omega}^{R} = \frac{64\pi^{2}(\nu-1)}{27} \frac{e^{6}N_{0}^{2}Q^{2}\varepsilon^{1/2}}{v\omega^{2}m^{4}c^{5}} \times \\ \times k_{0}^{\nu-1} \left\langle \Delta B^{2} \right\rangle \left(\frac{v}{\omega}\right)^{\nu+2} \left(\frac{v}{\omega d}\right)^{4} \int_{1}^{\infty} \frac{d\mu\theta(a^{2}-1)}{\mu^{\nu+3}(\mu^{2}-\alpha)^{2}},$$
(15)

где

$$\alpha = \frac{\varepsilon}{3} \left(\frac{v}{\omega d}\right)^2 \approx \frac{\varepsilon}{3} \left(\frac{v}{v_T}\right)^2$$

и введена безразмерная переменная $\mu = k' v / \omega$.

Аналогичное по структуре выражение, но с другим множителем перед интегралом, анализировалось в работах [3, 5], поэтому мы можем сразу представить интенсивность магнитного резонансного переходного излучения в форме, сходной с интенсивностью резонансного переходного излучения [5]:

$$I_{\omega}^{R} = \frac{64\pi^{2}(\nu-1)}{3(\nu+2)} \frac{e^{6}N_{0}^{2}Q^{2}}{v\omega^{2}m^{4}c^{5}} \times \\ \times k_{0}^{\nu-1} \left\langle \Delta B^{2} \right\rangle \left(\frac{v}{\omega}\right)^{\nu+2} F(\alpha), \quad (16)$$

где

$$F(\alpha) \equiv \frac{(\nu+2)\varepsilon^{1/2}}{9} \left(\frac{\nu}{\omega d}\right)^4 \int_{1}^{\infty} \frac{d\mu\,\theta(a^2-1)}{\mu^{\nu+3}(\mu^2-\alpha)^2}.$$
 (17)

Приближенное выражение для функции $F(\alpha)$, вычисленное аналитически для случая $\nu = 2$, приведено в работе [5], уравнение (189), здесь же выпишем более точное выражение:

$$F(\alpha) = 2\varepsilon^{-3/2} \times \left\{ \frac{1}{\alpha} \left[\frac{1}{1-\alpha} + 2 + \frac{\alpha}{2} + \frac{3}{\alpha} \ln(1-\alpha) \right] \theta(\omega_1 - \omega) + \frac{1}{\alpha^2} \frac{c}{2\sqrt{3}v_T} \left(1 - \frac{6\sqrt{3}v_T}{c} \ln \frac{c}{2\sqrt{3}v_T} + \frac{5\sqrt{3}v_T}{c} \right) \times \theta(\omega - \omega_1)\theta(\omega_2 - \omega) + \left\{ \frac{1}{\alpha^2} \frac{c}{\sqrt{3}v_T} + \frac{1}{\alpha} \left(\frac{1}{1-\alpha} + 2 + \frac{\alpha}{2} + \frac{3}{\alpha} \ln(\alpha - 1) \right) \right] \times \theta(\omega - \omega_2) \right\}, \quad (18)$$

где

$$\omega_{1,2} = \omega_{pe} \left[1 + \frac{3}{2} \left(\frac{v_T}{v} \right)^2 \left(1 \mp \frac{2\sqrt{3}v_T}{c} \right) \right].$$
(19)

Выражение (18) отличается от формулы (189) работы [5] наличием слагаемого $5\sqrt{3}v_T/c$ при $\omega_1 < \omega < \omega_2$, вклад которого имеет тот же порядок малости, что и вклад логарифмического члена. На рисунке приведены графики функции $F(\alpha)$, определяющей спектр магнитного резонансного переходного излучения, построенные по аналитической формуле (18) при $\nu = 2$ и в результате численного интегрирования выражения (17) при разных значениях ν .

Обратим внимание на то, что пик аналитической кривой лежит систематически выше пиков соответствующих численных кривых. Таким образом, ошибка, обусловленная использованием аналитической формулы (18), частично компенсирует погрешность, связанную с учетом только первого члена разложения (12), так что использование формулы (18) при произвольном значении ν дает даже более точный результат, чем численное интегрирование выражения (17). Различие численной и аналитической кривых при $\nu = 2$ на рисунке связано с предположением $v_T/c \ll 1$, использованном при выводе формулы (18). Поскольку величина v_T/c входит в формулы с численными множителями (2-6) $\sqrt{3}$, в случае $v_T/c \approx 0.03$ (как на рисунке) соответствующая погрешность может достигать 20-30 %. При уменьшении отношения v_T/c различия между двумя указанными кривыми уменьшаются.

Если в плазме наряду с неоднородностями магнитного поля присутствуют и неоднородности плотности, то результирующее переходное излучение

Функция $F(\alpha)$, определяющая частотную зависимость спектра излучения, построенная по аналитической формуле (18) при $\nu = 2$ (штриховая линия) и в результате численного интегрирования выражения (17) при разных значениях $\nu = 1.2$ –2.0 (серая область). Нижняя граница этой области соответствует значению $\nu = 1.2$, а верхняя — значению $\nu = 2.0$. Численные кривые лежат систематически ниже аналитической кривой. При вычислениях использовались значения $v_T/c = 0.0315$ и v/c = 0.995

представляется суммой соответствующих выражений (16) в данной работе и (186) в [5] (интерференцию этих вкладов не учитываем). В случае одинаковых спектральных индексов ν в спектрах неоднородностей плотности и магнитного поля выражение для интенсивности полного резонансного переходного излучения принимает особенно простой и наглядный вид:

$$I_{\omega}^{R} = \frac{32\pi^{2}e^{4}Q^{2}}{3(\nu+2)vm^{2}c^{3}}k_{0}^{\nu-1}\left(\frac{v}{\omega}\right)^{\nu+2} \times \\ \times N_{0}^{2}\left[\frac{\langle\Delta N^{2}\rangle}{N_{0}^{2}} + \frac{2e^{2}\langle\Delta B^{2}\rangle}{\omega^{2}m^{2}c^{2}}\right]F(\alpha). \quad (20)$$

Отметим, что при наличии регулярного магнитного поля в плазме форма спектра резонансного переходного излучения, описываемого в изотропной плазме функцией $F(\alpha)$, существенно меняется [5] и становится различной для обыкновенных и необыкновенных волн. Формально это изменение описывается заменой функции $F(\alpha)$ на функцию $n_{\sigma}\Phi(\alpha, \beta)$, см. уравнение (210) [5], где $\beta = (\omega_{Be}^2/3\omega_{pe}^2) (v/v_T)^2$, n_{σ} — показатель преломления для обыкновенной $(\sigma = o)$ и необыкновенной $(\sigma = x)$ волн, что, разумеется, справедливо как для резонансного переходного излучения, так и для магнитного резонансного переходного излучения. Поэтому при учете регулярного магнитного поля вместо выражения (20) для интенсивности излучения каждой из двух собственных мод получим

$$I_{\omega}^{R,\sigma} = \frac{16\pi^2 e^4 Q^2 n_{\sigma}}{3(\nu+2)vm^2 c^3} k_0^{\nu-1} \left(\frac{v}{\omega}\right)^{\nu+2} \times N_0^2 \left[\frac{\langle \Delta N^2 \rangle}{N_0^2} + 2\frac{\langle \Delta B^2 \rangle}{B_0^2} \frac{\omega_{Be}^2}{\omega^2}\right] \Phi(\alpha,\beta), \quad (21)$$

где B_0 — величина регулярного магнитного поля, а $\omega_{Be} = eB_0/mc$ — соответствующая циклотронная частота.

Из соотношения (21) легко понять, когда интенсивность магнитного резонансного переходного излучения будет преобладать над резонансным переходным излучением на неоднородностях плотности среды. Учитывая, что $\omega \approx \omega_{pe}$, найдем в области пика резонансного переходного излучения

$$\frac{\left\langle \Delta B^2 \right\rangle}{B_0^2} \ge \frac{\omega_{pe}^2}{2\omega_{Be}^2} \frac{\left\langle \Delta N^2 \right\rangle}{N_0^2}.$$
 (22)

Как уже указывалось в начале разд. 2, проведенное рассмотрение справедливо в случае слабой гиротропии плазмы, $\omega_{pe} \gg \omega_{Be}$, поэтому величина $\omega_{pe}^2/2\omega_{Be}^2$, входящая в условие доминирования магнитного резонансного переходного излучения, должна быть большой. Это значит, что при $\langle \Delta B^2 \rangle / B_0^2 \sim \langle \Delta N^2 \rangle / N_0^2$, что характерно, например, для магнитозвуковых волн, основной вклад в излучение будет связан с неоднородностями плотности среды, а не с неоднородностями магнитного поля. Однако в плазме может существовать турбулентность, для которой условие (22) выполняется. Это, в частности, относится к турбулентности, состоящей из альфвеновских волн.

Если нетепловые неоднородности плотности в плазме отсутствуют, то интенсивность резонансного переходного излучения определяется уровнем тепловых флуктуаций (соответствующий радиационной процесс обычно называют резонансным поляризационным тормозным излучением [5, 6]). Сравнение интенсивностей магнитного резонансного переходного излучения и поляризационного резонансного переходного излучения [5] показывает, что магнитное излучение будет доминировать при

$$\frac{e^2 \left\langle \Delta B^2 \right\rangle}{m^2 c^2 \omega_{pe}^2} \ge \frac{3}{32\pi^2 N_0} \left(\frac{\omega_{pe}}{v}\right)^3. \tag{23}$$

Например, для параметров

$$N_0 = 5 \cdot 10^{10} \text{ cm}^{-3}, \quad v \approx 2 \cdot 10^{10} \text{ cm/c}, B_0 \approx 100 \text{ \Gammac},$$
(24)

реализующихся в солнечных вспышках, получим

$$\frac{\left\langle \Delta B^2 \right\rangle}{B_0^2} \ge 3 \cdot 10^{-9},\tag{25}$$

что соответствует среднеквадратичной величине флуктуации магнитного поля $\sqrt{\langle \Delta B^2 \rangle} \sim 10^{-2}$ Гс.

Таким образом, магнитное резонансное тормозное излучение, связанное с магнитными неоднородностями, является важным механизмом электромагнитного излучения, доминирующим на частотах вблизи плазменной частоты при благоприятной комбинации соответствующих параметров.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные формулы для интенсивности резонансного переходного излучения быстрых частиц в плазме с неоднородностями плотности и неоднородностями магнитного поля актуальны в связи с многочисленными астрофизическими приложениями этого механизма излучения. Например, недавно было надежно установлено, что это излучение ответственно за генерацию низкочастотной (дециметровой) компоненты примерно 10% континуальных микроволновых всплесков солнечного радиоизлучения [7]. По-видимому, переходное излучение ответственно и за другие типы естественного радиоизлучения, в частности, генерируемые в геопространстве [8]. Какой из каналов резонансного переходного излучения — на неоднородностях плотности или магнитного поля — доминирует в каждом конкретном случае, определяется, как видно из выражения (21), относительной интенсивностью соответствующих неоднородностей.

Кроме того, в последние несколько лет было продемонстрировано (в частности, посредством детального численного моделирования) [9–11], что взаимодействие релятивистских ударных волн (друг с другом и с внешней средой) в источниках гамма-всплесков (и ряде других объектов с сильным энерговыделением) приводит к генерации весьма мощных и крайне мелкомасштабных магнитных полей. Взаимодействие быстрых частиц с указанными неоднородностями приводит к генерации электромагнитного излучения, в частности, переходного излучения, включая магнитное. Как ясно из формы спектра магнитного резонансного переходного излучения, соответствующий мощный пик формируется, если фоновая тепловая плазма является нерелятивистской ($v_T \ll c$). Подчеркнем, что в случае источников космологических гамма-всплесков фоновая плазма обычно оказывается релятивистской, так что наряду с резонансным, важную роль может играть и обычное (нерезонансное) переходное излучение, свойства которого в экстремальных условиях космологических гамма-всплесков требуют специального исследования.

Надежная идентификация этого излучения быстрых частиц на неоднородностях магнитного поля в астрофизических объектах (так же как и идентификация резонансного переходного излучения в солнечных всплесках [7]) приведет к получению принципиально новой информации о физических процессах и условиях, в которых они протекают, и позволит существенно уточнить и конкретизировать модели указанных источников.

Работа выполнена при частичной поддержке РФФИ (гранты №№ 03-02-17218, 04-02-39029). Национальная радиоастрономическая обсерватория (Charlottesville, USA) является организацией Национального научного фонда, деятельность которого осуществляется в рамках кооперативного соглашения Объединенных университетов.

ПРИЛОЖЕНИЕ 1

Представим интенсивность излучения (5) с учетом выражений (4) и (6) в виде

$$I_{\omega,\mathbf{n}}^{R} = \frac{8\pi Q^{2}\varepsilon^{1/2}}{c^{5}} \left(\frac{e^{3}N_{0}}{m^{2}\omega^{2}}\right)^{2} \times \int \frac{\omega^{2}|\delta B|_{\mathbf{k}'}^{2}\delta[\omega-(\mathbf{k}-\mathbf{k}')\cdot\mathbf{v})]}{(\mathbf{k}-\mathbf{k}')^{4}([\varepsilon(\omega)-3(\mathbf{k}-\mathbf{k}')^{2}d^{2}]^{2}+\varepsilon''^{2})} A \ d^{3}k', \quad (26)$$

где проведено тривиальное интегрирование по $d\omega' d\omega'' d^3 k''$ и использовано равенство $(\mathbf{k} - \mathbf{k}') \cdot \mathbf{v} = \omega$, справедливое в силу структуры аргумента δ -функции и

$$A = \left(e_{\alpha k_{1} l_{1}} e_{\alpha k_{2} l_{2}} e_{l_{1} \beta_{1} \gamma_{1}} e_{l_{2} \beta_{2} \gamma_{1}} - e_{\alpha k_{1} l_{1}} e_{\alpha k_{2} l_{2}} e_{l_{1} \beta_{1} \gamma_{1}} e_{l_{2} \beta_{2} \gamma_{2}} \frac{k_{\gamma_{1}}' k_{\gamma_{2}}'}{k'^{2}} \right) \times \\ \times n_{k_{1}} n_{k_{2}} (\mathbf{k} - \mathbf{k}')_{\beta_{1}} (\mathbf{k} - \mathbf{k}')_{\beta_{2}}.$$
(27)

Выразим комбинации символов Леви-Чивиты третьего ранга $e_{\alpha\beta\gamma}$ через символы Кронеккера $\delta_{\alpha\beta}$, используя тождество $e_{\alpha k_1 l_1} e_{l_1\beta_1\gamma_1} = \delta_{\alpha\beta_1} \delta_{k_1\gamma_1} - \delta_{\alpha\gamma_1} \delta_{k_1\beta_1}$:

$$A = \left[(\delta_{\alpha\beta_1} \delta_{k_1\gamma_1} - \delta_{\alpha\gamma_1} \delta_{k_1\beta_1}) (\delta_{\alpha\beta_2} \delta_{k_2\gamma_1} - \delta_{\alpha\gamma_1} \delta_{k_2\beta_2}) - (\delta_{\alpha\beta_1} \delta_{k_1\gamma_1} - \delta_{\alpha\gamma_1} \delta_{k_1\beta_1}) (\delta_{\alpha\beta_2} \delta_{k_2\gamma_2} - \delta_{\alpha\gamma_2} \delta_{k_2\beta_2}) \times \frac{k'_{\gamma_1} k'_{\gamma_2}}{k'^2} \right] n_{k_1} n_{k_2} (\mathbf{k} - \mathbf{k}')_{\beta_1} (\mathbf{k} - \mathbf{k}')_{\beta_2}.$$
 (28)

Проведем суммирование тензорных множителей по дважды повторяющимся индексам:

$$A = \left[\delta_{\beta_1\beta_2} \delta_{k_1k_2} + \delta_{k_1\beta_1} \delta_{k_2\beta_2} - \left(\delta_{\beta_1\beta_2} \delta_{k_1\gamma_1} \delta_{k_2\gamma_2} - \delta_{\beta_1\gamma_2} \delta_{k_1\gamma_1} \delta_{k_2\beta_2} - \delta_{\gamma_1\beta_2} \delta_{k_1\beta_1} \delta_{k_2\gamma_2} + \delta_{\gamma_1\gamma_2} \delta_{k_1\beta_1} \delta_{k_2\beta_2} \right) \frac{k'_{\gamma_1}k'_{\gamma_2}}{k'^2} \right] \times \\ \times n_{k_1} n_{k_2} (\mathbf{k} - \mathbf{k}')_{\beta_1} (\mathbf{k} - \mathbf{k}')_{\beta_2}.$$
(29)

Представим теперь все слагаемые в виде скалярных произведений векторов,

$$A = n^{2}(\mathbf{k}-\mathbf{k}')^{2} + (\mathbf{n} \cdot (\mathbf{k}-\mathbf{k}'))^{2} - \frac{(\mathbf{n} \cdot \mathbf{k}')^{2}(\mathbf{k}-\mathbf{k}')^{2}}{k'^{2}} + \frac{(\mathbf{n} \cdot \mathbf{k}')(\mathbf{k}' \cdot (\mathbf{k}-\mathbf{k}'))(\mathbf{n} \cdot (\mathbf{k}-\mathbf{k}'))}{k'^{2}} + \frac{(\mathbf{n} \cdot \mathbf{k}')(\mathbf{k}' \cdot (\mathbf{k}-\mathbf{k}'))(\mathbf{n} \cdot (\mathbf{k}-\mathbf{k}'))}{k'^{2}} - (\mathbf{n} \cdot (\mathbf{k}-\mathbf{k}'))^{2}, \quad (30)$$

и приведем подобные члены:

$$4 = n^{2} (\mathbf{k} - \mathbf{k}')^{2} + \frac{2(\mathbf{n} \cdot \mathbf{k}')(\mathbf{k}' \cdot (\mathbf{k} - \mathbf{k}'))(\mathbf{n} \cdot (\mathbf{k} - \mathbf{k}')) - (\mathbf{n} \cdot \mathbf{k}')^{2}(\mathbf{k} - \mathbf{k}')^{2}}{k'^{2}}.$$
(31)

(32)

Поскольку $\varepsilon(\omega) \ll 1$ на рассматриваемых частотах и $k \ll k'$, пренебрежем **k** по сравнению с **k'**:

 $A = n^2 k'^2 + (\mathbf{n} \cdot \mathbf{k}')^2 = [\mathbf{n} \times \mathbf{k}']^2 + 2(\mathbf{n} \cdot \mathbf{k}')^2.$

Далее разложим
$$\operatorname{arctg}[2b/(a^2 + b^2 - 1)]$$
 в ряд по малому параметру $2b/(a^2 + b^2 - 1)$ при $b \to 0$ и $a^2 > 1$:

$$\frac{1+a^2-b^2}{b}\operatorname{arctg}\frac{2b}{a^2+b^2-1} \approx \\ \approx \frac{1+a^2-b^2}{b} \left(\frac{2b}{a^2+b^2-1} - \frac{(2b)^3}{3(a^2+b^2-1)^3}\right) = \\ = 2\frac{\frac{1-b^2}{a^2}+1}{1-\frac{1-b^2}{a^2}} - \frac{8b^2\left(\frac{1-b^2}{a^2}+1\right)}{3a^4\left(1-\frac{1-b^2}{a^2}\right)^3} \rightarrow \\ \to 2 + \frac{4}{a^2} + \frac{4}{a^4}. \quad (35)$$

Подставив полученные разложения (34) и (35) в выражение (33) для \mathcal{L}_{ϑ} , получим окончательно

$$\mathcal{L}_{\vartheta} \approx \left(\frac{8}{3a^2} + \frac{16}{5a^4}\right) \theta(a^2 - 1). \tag{36}$$

ЛИТЕРАТУРА

- I. N. Toptygin and G. D. Fleishman, Astrophys. Space Sci. 132, 213 (1987).
- 2. В. Л. Гинзбург, В. Н. Цытович, *Переходное излуче*ние и переходное рассеяние, Наука, Москва (1984).
- К. Ю. Платонов, Г. Д. Флейшман, ЖЭТФ 106, 1053 (1994).

ПРИЛОЖЕНИЕ 2

Упростим выражение (10) для \mathcal{L}_{ϑ} при условии $a^2 + b^2 \geq 1$:

$$\mathcal{L}_{\vartheta} = 2 - a \ln \frac{(1+a)^2 + b^2}{(a-1)^2 + b^2} + \frac{1+a^2 - b^2}{b} \times \operatorname{arctg} \frac{2b}{a^2 + b^2 - 1}, \quad (33)$$

разложив его в ряд по степеням 1/a, который сходится в круге 1/|a| < 1. Пренебрегая малой величиной b^2 в аргументе логарифма, для первых двух слагаемых в выражении для \mathcal{L}_{ϑ} находим

$$2 - 2a \ln \frac{1 + 1/a}{1 - 1/a} \approx -2 - \frac{4}{3a^2} - \frac{4}{5a^4}.$$
 (34)

- 4. С. А. Бельков, Ю. А. Николаев, В. Н. Цытович, Изв. ВУЗов, радиофизика **23**, 261 (1980).
- 5. К. Ю. Платонов, Г. Д. Флейшман, УФН 172, 241 (2002).
- 6. М. Я. Амусья и др., Поляризационное тормозное излучение частиц и атомов, под ред. В. Н. Цытовича и И. М. Ойрингеля, Наука, Москва (1987).
- 7. G. D. Fleishman, G. M. Nita, and D. E. Gary, Astrophys. J. **620**, 506 (2005).

- J. LaBelle and R. A. Treumann, Space Sci Rev. 101, 295 (2002).
- 9. K. I. Nishikawa, P. Hardee, G. Richardson, R. Preece, H. Sol, and G. J. Fishman, Astrophys. J. 595, 555 (2003).
- 10. C. H. Jaroshek, H. Lesch, and R. A. Treumann, Astrophys. J. 616, 1065 (2004).
- D. V. Romanov, V. Yu. Bychenkov, W. Rozmus, C. E. Capjack, and R. Fedosejevs, Phys. Rev. Lett. 93, 215004 (2004).