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Multidimensional configurations with a Minkowski external space—time and a spherically symmetric global
monopole in extra dimensions are discussed in the context of the braneworld concept. The monopole is formed
with a hedgehog-like set of scalar fields ¢’ with a symmetry-breaking potential V' depending on the magnitude
¢% = ¢'¢'. All possible kinds of globally regular configurations are singled out without specifying the shape
of V(¢). These variants are governed by the maximum value ¢,, of the scalar field, characterizing the energy
scale of symmetry breaking. If ¢, < ¢or (Where ¢.r is a critical value of ¢ related to the multidimensional
Planck scale), the monopole reaches infinite radii, whereas in the «strong field regime», when ¢, > ¢.r, the
monopole may end with a finite-radius cylinder or have two regular centers. The warp factors of monopoles
with both infinite and finite radii may either exponentially grow or tend to finite constant values far from the
center. All such configurations are shown to be able to trap test scalar matter, in striking contrast to RS2
type five-dimensional models. The monopole structures obtained analytically are also found numerically for the
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Mexican hat potential with an additional parameter acting as a cosmological constant.

PACS: 04.50.+h, 11.27.+d
1. INTRODUCTION

According to a presently popular idea, our observ-
able Universe can be located on a 4-dimensional sur-
face, called the brane, embedded in a higher-dimen-
sional manifold, called the bulk. This «braneworld»
concept, suggested in the 1980s [1], is broadly dis-
cussed nowadays, mainly in connection with the recent
developments in supersymmetric string/M-theories [2].
The reason why we do not see any extra dimensions is
that the observed matter is confined to the brane, and
only gravity propagates in the bulk. There are numer-
ous applications of the braneworld concept to particle
physics, astrophysics, and cosmology, such as the hier-
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archy problem and the description of dark matter and
dark energy [3].

Most of the studies are restricted to infinitely
thin branes with delta-like localization of matter. A
well-known example is Randall and Sundrum’s second
model (RS2) [4], in which a single Minkowski brane is
embedded in a 5-dimensional anti-de Sitter (AdS) bulk.

Thin branes can, however, be only treated as a
rough approximation because any fundamental under-
lying theory, be it quantum gravity, string or M-theory,
must contain a fundamental length beyond which the
classical space—time description is impossible. It is
therefore necessary to justify the infinitely thin brane
approximation as a well-defined limit of a smooth struc-
ture, a thick brane, obtainable as a solution of coupled
gravitational and matter field equations. Such a config-
uration is then required to be globally regular, stable,
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and properly concentrated around a 3-dimensional sur-
face that is meant to describe the observed spatial di-
mensions. Topological defects emerging in phase tran-
sitions with spontaneous symmetry breaking (SSB) are
probably the best candidates for this role.

It should be mentioned that the evolution of the
Universe, according to modern views, contained a se-
quence of phase transitions with SSB. A decisive step
toward cosmological applications of the SSB concept
was made in 1972 by Kirzhnits [5]. He assumed that,
as in the case of solid substances, a symmetry of a
field system, existing at sufficiently high temperatures,
could be spontaneously broken as the temperature falls
down. A necessary consequence of such phase tran-
sitions is the appearance of topological defects. The
first quantitative analysis of the cosmological conse-
quences of SSB was given by Zel’dovich, Kobzarev,
and Okun’ [6]. Later, the SSB phenomenon and vari-
ous topological defects were widely used in inflationary
Universe models and in attempts to explain the ori-
gin of the large-scale structure of the Universe, see,
e.g., [7, 8]

The properties of global topological defects are gen-
erally described with the aid of a multiplet of scalar
fields playing the role of an order parameter. If a de-
fect is to be interpreted as a braneworld, its structure is
determined by the self-gravity of the scalar field system
and may be described by a set of Einstein and scalar
equations.

In this paper, we analyze the gravitational prop-
erties of candidate (thick) braneworlds with the 4-di-
mensional Minkowski metric as global topological de-
fects in extra dimensions. Our general formulation
covers particular cases such as a brane (domain wall)
in 5-dimensional space—time (one extra dimension),
a global cosmic string with winding number n = 1
(two extra dimensions), and global monopoles (three
or more extra dimensions). We restrict ourselves to
Minkowski branes because most of the existing prob-
lems are clearly seen even in these comparatively simple
systems; on the other hand, in the majority of physi-
cal situations, the inner curvature of the brane itself is
much smaller than the curvature related to brane for-
mation, and therefore the main qualitative features of
Minkowski branes should survive in curved branes.

Brane worlds as thick domain walls in a 5-dimen-
sional bulk have been discussed in many papers (see,
e.g., [9] and the references therein). Such systems
were analyzed in a general form in Refs. [10, 11], with-
out specifying the symmetry-breaking potential; it was
shown, in particular, that all regular configurations
should have an AdS asymptotic form. Therefore, all
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possible thick branes are merely regularized versions
of the RS2 model, with all concomitant difficulties in
matter field confinement. Thus, it has been demon-
strated [11] that a test scalar field has a divergent
stress—energy tensor infinitely far from the brane, at
the AdS horizon. A reason for that is the repulsive
gravity of the RS2 and similar models: gravity repels
matter from the brane and pushes it towards the AdS
horizon. To overcome this difficuty, it is natural to
try considering a greater number of extra dimensions.
This was one of the reasons for us to consider higher-
dimensional bulks.

We study the simplest possible realization of this
idea, assuming a static, spherically symmetric configu-
ration of the extra dimensions and a thick Minkowski
brane as a concentration of the scalar field stress—
energy tensor near the center. The possible trapping
properties of gravity for test matter are then deter-
mined by the behavior of the so-called warp factor (the
metric coefficient acting as a gravitational potential) far
from the center, and we indeed find classes of regular
solutions where gravity is attracting.

Some of our results repeat those obtained in
Refs. [12, 13|, which have discussed global and gauge
(‘t Hooft —Polyakov-type) monopoles in extra dimen-
sions; a more detailed comparison is given in Sec. 7.

The paper is organized as follows. In Sec. 2, we for-
mulate the problem, introduce space — times with global
topological defects in the extra dimensions, write the
equations and boundary conditions, and demonstrate a
connection between the possibility of SSB and the prop-
erties of the potential at a regular center. In Sec. 3,
we briefly discuss the trapping problem for RS2-type
domain-wall models and show that they always have
repulsive gravity and are unable to trap matter in the
form of a test scalar field. Section 4 is devoted to a
search for regular global monopole solutions in higher
dimensions by analyzing their asymptotic properties far
from the center. All regular configurations are classi-
fied by the behavior of the spherical radius r and by the
properties of the potential. This leads to separation of
the «weak gravityy and «strong gravity» regimes, re-
lated to maximum values of the scalar field magnitude.

In the weak gravity regime, the spherical radius r
tends to infinity along with the distance from the cen-
ter. Such moderately curved configurations exist with-
out any restrictions of fine-tuning type. If the scalar
field magnitude exceeds some critical value, the radius
r either tends to a finite value far from the center or
returns to zero at a finite distance from the center, thus
forming one more center, which should also be regular.
Some cases require fine tuning of the parameters of the
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potential, and hence one may believe that static con-
figurations can only exist if the scalar and gravitational
forces are somewhat mutually balanced.

In Sec. 5, we show that in contrast to domain walls,
global monopoles in different regimes do provide scalar
field trapping on the brane. Section 6 is a brief de-
scription of numerical experiments with the Mexican
hat potential admitting shifts up and down, equivalent
to introducing a bulk cosmological constant. Their re-
sults confirm and illustrate the conclusions in Sec. 4.
Section 7 summarizes the results.

2. PROBLEM SETTING

2.1. Geometry
We consider a (D = do+d; +1)-dimensional space —
time with the structure M x R, x S and the metric
ds?® = Wy, da"de” —
- (620‘(“)du2 + ew(“)dQZ) (1)
Here,
Nupdztdz? = dt? — (dx)?
is the Minkowski metric in the subspace M@,
nuw = diag(l, —1,..., =1);

dS? is a linear element on a d;-dimensional unit sphere
S%: a, 3, and « are functions of the radial coordinate
u with the definition domain R, C R, to be specified
later. The Riemann tensor has a diagonal form, and
its nonzero components are

i, = —e 22
Rade — (6—28 _ e—QQBIZ) 5ab6d7
R, = —dbe " (1), (2)

Yo = — 0 e (eﬁ_aﬂl)l'f
R, = —0loje ',
where
M py = 6885 — 50, (3)

and similarly for 6‘1bcd. Greek indices pu,v,... corres-
pond to the dyp-dimensional space—time and Latin in-
dices a,b,... to d; angular coordinates on S%. We
mostly bear in mind the usual dimension dy = 4, but
keep dy arbitrary for generality.

A necessary condition of regularity is the finiteness
of the Kretschmann scalar

K= RAgDRCQB'

(Capital indices A, B, ... correspond to all D coordi-
nates.) In our case, K is a sum of squares of all nonzero
RAgD. Hence, in regular configurations, all compo-
nents of Riemann tensor (2) are finite.

For the Ricci tensor, we have

R = —=0re > [y +4/(—a' + doy' + di1 )],

RZ _ _67201 [do(,}//l +'YI2 _ al’)/l)‘l'

+di (8" + 57 = a'B)] (4)
R =e 28 (dy — 1)o7, —

—ope 2 [B" + B'(—a’ + doy' + di )]

2.2. Topological defects

A global defect with a nonzero topological charge
can be constructed as a multiplet of dy + 1 real scalar
fields ¢*, in the same way as, e.g., in [14]. It comprises
a hedgehog configuration in R, x S%:

where n* is a unit vector in the (d; + 1)-dimensional

Euclidean target space of the scalar fields:

nFpk =1.
The total Lagrangian of the system is taken in the
form
R 1
L=~ +59"%0a0"0p¢" ~V(9), (5
2 2

where R is the D-dimensional scalar curvature, »”

is the D-dimensional gravitational constant, and
V is a symmetry-breaking potential depending on
92 (u) = g7,

In the case where d; = 0, there is only one extra di-
mension. The topological defect is a flat domain wall.
Combined with dy = 4, it is widely considered with
reference to our Universe. Regular thick Minkowski
branes supported by scalar fields with arbitrary poten-
tials were analyzed in [10, 11], see also Sec. 3 below.

The case where d; = 1 is a global cosmic string with
the winding number n = 1. If dy = 2, it is a cosmic
string in four dimensions, whose gravitational proper-
ties are reviewed in [15]. The case dy = 4 corresponds
to a string in extra dimensions.

The case where d; = 2 and dg = 1 is a global
monopole in our 4-dimensional space—time. We
have analyzed it in detail in [16]. The case where
dy > 2 and dy = 1 is its multidimensional generaliza-
tion to static spherically symmetric space—times with
dy-dimensional rather than two-dimensional coordinate
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spheres [14]. It was shown that such a heavy multidi-
mensional global monopole leads to a multidimensional
cosmology where the symmetry-breaking potential at
late times can mimic both dark matter and dark en-
ergy.

In the case where dy = 4 and d; > 2, we have
a multidimensional global monopole entirely in the ex-
tra space-like dimensions. Different models of this kind
were studied in Refs. [12, 13,17, 18]. In particular, such
a monopole in extra dimensions was used in an attempt
to explain the origin of inflation [17].

2.3. Field equations

We use the Einstein equations in the form
5B
A Tg7

RE = _%2f,4Ba D 2

T8 =18 -

where T¥ is the stress—energy tensor of the scalar field
multiplet. For our hedgehog configuration,

s 2VE,
v
Tu 2V —2a
Tu — _m —e 2 ¢I27
~ 2V 48
Tb - _ a —QB(Sb 2.
= R T

So far, we did not specify the radial coordinate u.
For our purposes, the most helpful is the Gaussian
gauge, with the real distance [ along the radial direction
taken as a coordinate,

u=l, a=0, (6)
and the metric

ds? = 2Oy, det de” — (dl2 + e23<l>d92) )

Then two independent components of the Einstein
equations take the form (the prime now denotes d/dl)

Vb =
0 ! D—2"
" [V 12 __ 1242\, =28 2%2
B +doB'y +d1 B = (di—1—s"¢")e —D—2V' 9)

The Einstein equation

Gf = —%2Tll

(where G% is the Einstein tensor) is free of second-order
derivatives:

(do’Yl + dl,BI)Q _ d07,2 _ dl,BlQ —
=3¢ —2V) +die P (d) — 1 - 324%). (10)

The scalar field equations

v

A p, 9V
VNV 40 +8¢k

=0

combine to yield an equation for ¢(1):

0"+ ([dor' + )6~ e = .
Due to the Bianchi identities, it is a consequence of
Einstein equations (8)—(10). On the other hand, (10)
is a first integral of Eqgs. (8), (9), and (11).

In our analytical study, we do not specify any par-
ticular form of V' (¢). However, we suppose that V has a
maximum at ¢ = 0 and a minimum at some ¢ = n > 0,
and hence V'(0) = V'(n) = 0. For convenience, we do
not single out a cosmological constant, which may be
identified with a constant component of the potential
V or, in many cases, with its minimum value.

The parameter 1 (as the scalar field itself) has
the dimension [I~(P~2)/2] and thus specifies a certain
length scale 7 2/(P=2) and energy scale */(P~2) (we
use the natural units such that ¢ = h = 1.) In the con-
ventional case D = 4, n has the dimension of energy
and characterizes the SSB energy scale.

(11)

2.4. Regularity conditions. A regular center

For the geometry to be regular, we must require fi-
nite values of all Riemann tensor components (2). In
Gaussian gauge (6), the regularity conditions simply
state that

! " ! n
B, T

For d; > 0, in addition to (12), a special regular-
ity condition is needed at the center, which is a sin-
gular point of the spherical coordinates in R, x S%.
The center is a point where the radius r = e turns
to zero. The regularity conditions there, also following
from the finiteness of Riemann tensor components (2),
are the same as in the usual static, spherically symmet-
ric space—time: in terms of an arbitrary u coordinate,

they are given by

are finite. (12)

Y =7 +0(?),

13
AP =14+00% as r—0, (13)
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where 7. is a constant that can be set to zero by a
proper choice of scales of the coordinates z*. The sec-
ond condition in (13) follows, for d; > 1, from the
finiteness of the Riemann tensor components R,
see (2). Its geometric meaning is the property of be-
ing locally Euclidean at r = 0, which implies that
dr? = dI?, i.e., the correct circumference-to-radius ratio
for small circles. In the special case where d; = 1, with
the quotient space R, x S% two-dimensional, we evi-
dently have R%.; = 0, but the second condition in (13)
should still be imposed to avoid a conical singularity.

It is natural to put [ = 0 at a regular center, then [
is the distance from the center.

Regularity of the Ricci tensor components
RA = RAYpc implies regularity of the stress—energy
tensor TF, whence it follows that
e ¢'| < oo (14)

V| < oo, e Fl¢| < o0,

at any regular point and with any radial coordinate.

2.5. Boundary conditions

Domain walls. For d; = 0, the metric in (1) or (7)
describes a plane-symmetric five-dimensional space—
time, the coordinate [ ranges over the entire real axis,
and the broken symmetry is Zs, the mirror symmetry
with respect to the plane [ = 0. The topological defect
is a domain wall separating two vacua corresponding to
two values of a single real scalar field ¢, e.g., ¢ = £n.
Accordingly, we assume that ¢(l) is an odd function,
whereas (1) and V' (¢) are even functions, and the con-
ditions at [ = 0 are

7(0) =+'(0) = ¢(0) = 0. (15)

We thus have three initial conditions for the third-or-
der set of equations (8), (10) (Eq. (11) is their conse-
quence), because the unknown function /3 is absent in
this case.

Global strings and monopoles. For d; > 0,
the regular center requirement leads to the following

boundary conditions for Eqs. (8)—(10) at [ = 0:

$(0) = ~v(0) = +'(0) = r(0) = 0,

We have five initial conditions for a fifth-order set
of equations. However, [ = 0, being a singular point
of the spherical coordinate system (not to be confused
with a space —time curvature singularity), is also a sin-
gular point of our set of equations. As a result, the
requirements of the theorem on the solution existence
and uniqueness for our set of ordinary differential equa-
tions are violated. It turns out that the derivative ¢'(0)

r'(0)=1. (16)

remains undetermined by (16). If we set ¢'(0) = 0, we
obtain a trivial (symmetric) solution with ¢ = 0 and a
configuration without a topological defect. In the case
where V(0) = 0, we arrive at the flat D-dimensional
metric: we then have y = 0 and » = [ in (7). If, how-
ever, V(0) # 0, the corresponding exact solutions to
the Einstein equations for dg > 1, d; > 1 are yet to be
found. A direct inspection shows that it cannot be the
de Sitter or AdS space: the constant curvature metrics
are not solutions of the vacuum Einstein equations with
a cosmological constant.

Nontrivial solutions exist if ¢'(0) # 0 and can corre-
spond to SSB. We note that the very possibility of SSB
appears as a result of violation of the solution unique-
ness at 7 = 0 provided that a maximum of the potential
V(¢) at ¢ = 0 corresponds to the center. The lacking
boundary condition that may lead to a unique solution
can now follow from the requirement of regularity at
the other extreme of the range of [, whose nature is in
turn determined by the shape of the potential.

In what follows, assuming a regular center, we try to
find all possible conditions at the other extreme of the
range R, of the Gaussian radial coordinate, providing
the existence of globally regular models with metric (7).
In other words, we seek solutions with asymptotic forms
such that the quantities in (2) are finite. All the other
regularity conditions, such as (14), then follow. In do-
ing so, we do not restrict the possible shape of the
potential V(¢) in advance. The cases under considera-
tion are classified by the final values of r = e (infinite,
finite or zero) and V' (positive, negative or zero). The
scalar field ¢ is assumed to be finite everywhere.

Without loss of generality, we assume that ¢'(0) > 0
near [ = 0, i.e., that ¢ increases, at least initially, as we
recede from the center.

3. DOMAIN WALLS AND THE PROBLEM OF
MATTER CONFINEMENT

Below, we mostly consider configurations with
dy > 2 that correspond to a global monopole in the
spherically symmetric space R, x S%. Before that,
we briefly discuss the problem of matter confinement
on the brane and the complications involved the 5-
dimensional case.

The metric coefficient €27 in (1), sometimes called
the warp factor, actually plays the role of a gravita-
tional potential that determines an attractive or repul-
sive nature of gravity with respect to the brane. If
it forms a potential well with a bottom on (or very
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near) the brane, there is a hope that matter, at least
its low-energy modes, is to be trapped.

It has been shown, in particular, that spin-1/2 fields
are localized due to an increasing warp factor in (144)-
and (145)-dimensional models [19, 20]. Tt was also re-
peatedly claimed that in (14+4) dimensions, a brane
with an exponentially decreasing warp factor (as, e.g.,
in the RS2 model) can trap spin 0 and 2 fields. Our
calculation for a scalar field shows that this is not the
case.

A gravitational trapping mechanism suggested in
Refs. [21] was characterized there as a universal one,
suitable for all fields. It is based on nonexponen-
tial warp factors, which increase with the distance
from the brane and approach finite values at infinity.
This mechanism was exemplified in [22] with a special
choice of two so-called «smooth source functions» in the
stress—energy tensor, describing a continuous distribu-
tion of some phenomenological matter and vanishing
outside the brane.

Our analysis uses more natural assumptions: a
scalar field system admitting SSB, without any spe-
cial choice of the symmetry breaking potential, under
the requirement of global regularity.

We briefly show, following Refs.[10, 11] (but in
other coordinates), that this approach in (4+1) dimen-
sions always leads to a decaying warp factor for any
choice of V(¢) and that such a system cannot trap a
test scalar field. We consider a domain wall in 5 dimen-
sions, and hence | € R, we set d; = 0 in our equations,
the unknown S3(1) is absent, and Egs. (8) and (11) for
~ and the single scalar field ¢ are given by

2572

" 12
= - 1
Y +d07 d0_1V7 (7)
av
" Y
—— =0. 1
¢ +don'¢’ = 52 =0 (18)

Their first integral in (10) reduces to

2
12 x

Y =—m(2‘/—¢/2)~ (19)

The initial conditions at I = 0 corresponding to the Z4
symmetry (broken for the scalar field but preserved for
the geometry) have form (15).

Eliminating V from (17) and (19) and integrating
subject to (15), we obtain

1
<%—nwm=—z/wwh (20)

and we conclude that +/'(l) is negative at all [ > 0
and describes gravitational repulsion from the brane;
moreover, e¢~? monotonically grows with growing [.
The only possible regular solution corresponds to
|7/ (0¢)| < 00. Because 7"'(c0) = 0 in this case, it fol-
lows from Eq. (17) that V(o0) < 0, corresponding to a
negative cosmological constant A = 52V (c0). Hence,
the only possible regular asymptotic form is AdS, with

h=+/—AJ6. (21)

The constant a depends on the particular shape of
V(g). At [ = oo, there is an AdS horizon (7 = 0),
which, like a black hole horizon, attracts matter and
prevents its trapping by the brane.

We show this for dy = 4 and a test scalar field y
with the Lagrangian

e’ ~ae ™, a, h = const,

1 * 1 * 1 *
Ly = 504" 0" = gmix'x = ZA°x v, (22)
where y* is the complex conjugate field and the last
term describes a possible interaction between y and
the wall scalar field ¢; A is the coupling constant. The
field x(z) satisfies the linear homogeneous (modified
Fock — Klein — Gordon) equation
1
—=04 (Va9 "0px) + (A" +mx =0 (23)
V9
Its coefficients depend on [ only, and y(z#) may be
sought in the form

x(z?) = X (1) exp(—ipuat),

where p, = (E, p) is a constant 4-momentum. The
function X (1) determines the y field distribution across
the brane and satisfies the equation

p=01,23 (24)

X"+49' X'+ [e7?7(E*—p®)—A¢*—m3)] X = 0. (25)

The vy field is able to describe particles localized on
the brane only if its stress—energy tensor T);[x] is finite
in the whole 5-space and decays sufficiently rapidly at
large [. As an evident necessary condition of localiza-
tion, the y field energy per unit 3-volume of the brane
must be finite, i.e.,

oo

Etot[X] = /Ttt\/gdl =

-0
o0

= /647 |:672FY(E2 + p2)X2 +
0

+ (md + XH) X% + X'?|dl < 0. (26)
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Inequality (26) implies a finite norm of the y field de-
fined as

oo

||X||2:/\/§x*xdl: /e‘“X?dz. (27)
— 00

— o0

At large I, because e 2?7 — oo, the terms with )
and mg in Eq. (25) can be neglected, and the equation
determining the behavior of y at large [ can be written
as

E2 _ p2
a%h?
It is solved in terms of Bessel functions, and the solu-

tion has the asymptotic form

X" —4h X'+ P2 X =0, P?= (28)

X = 03/ 2sin(Pe + ), 2 — o0, (29)

3

where C' and ¢q are integration constants. We see that
quantity (29) not only is nonvanishing as [ — oc but
even oscillates with an increasing amplitude. As a re-
sult, the stress—energy tensor components T:[X] are
infinite at | = oc. Moreover, integral (26) behaves
as [eMdl and diverges. However, normalization in-
tegral (27) converges because the integrand behaves as
e~". This result is sometimes treated as a sufficient
condition for localization, but, in our view, it is not
true because the very existence of the brane configura-
tion is put to doubt if the test field stress—energy tensor
is infinite somewhere.

Thus, a test scalar field with any mass tends to in-
finity as [ — oo and develops an infinite stress—energy
tensor; even its interaction with the ¢ field that sup-
ports the brane does not improve the situation. We
conclude that a single extra dimension is insufficient
for providing gravitational attraction of matter to a
regular isolated brane.

4. A SEARCH FOR REGULAR ASYMPTOTIC
REGIMES

We now consider field equations (8)—(11) for global
monopoles, assuming d; > 2. The string case d; = 1 is
left aside because it has some peculiarities that require
a special study.

4.1. Solutions with the r — oo asymptotic
regime
We denote
2,2V

V=p—3 V=

Il
=

(30)

r—00

Evidently, I — oo as r — oo because otherwise we
would have 8’ — oo, violating the regularity condi-
tions. The derivatives 3" and +' should tend to certain
constant values, to be denoted by . and v/, respec-
tively. Both " and " vanish as | — oco. Moreover,
the second term in the right-hand side of Eq. (9) also
vanishes. Therefore, in the leading order of magnitude,
Eqgs. (8) and (9) take the form

Yoo (dovhe + d18L) = =V,
B (dovhe + diB) = =V

We consider the cases where Vo # 0 and Vo =0
separately.
A1l: V # 0. Equations (31) immediately give

(31)

B =7 =\ -Va/(D=1), Ve <0. (32

An evident necessary condition of the existence of reg-
ular configurations is Vo < 0. We thus obtain

¥ ~el ~ eﬂlool.,
and the metric takes the asymptotic form
ds® ~ Cye*Ply,, datde” — dI* — Cre®P~='d0?, (33)

with some positive constants C; and Cs. Equation (10)
holds automatically if ¢'(oc) = 0, as should be the case
if we assume a finite asymptotic value of ¢. Finally, in
Eq. (11), all terms except dV/d¢ manifestly vanish as
I = oo, and hence dV/d¢ also vanishes, which should
be the case if the field ¢ reaches an extremum of the
potential V.

The finiteness condition for ¢ as [ — oo separates
a family of regular solutions among the continuum of
integral curves leaving the regular center with differ-
ent slopes ¢'(0). As is confirmed by numerical exper-
iments, if the potential has only one extremum (min-
imum) V. < 0, then there can be only one regular
solution with » — 0o, I — oc. However, there can be
numerous regular solutions if the potential has several
extremum points V. < 0.

In particular, if the initial maximum of the potential
is located below the zero level, V' (0) < 0, then there can
be a continuum of regular integral curves starting from
the regular center and returning to ¢ = 0 at [ — oo. As
can be verified numerically (see Sec. 4), there is a bunch
of such curves parameterized by ¢'(0) € (0, @), where
¢'(0) = ¢ corresponds to a limiting regular curve (sep-
aratrix), also starting at ¢(0) = 0 but ending at the
minimum V(7).

The metric in (33) solves the Einstein equations
with the stress-energy tensor 7% = 6§V, having the
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structure of a (negative) cosmological term. Moreover,
according to (2), the Riemann tensor has the struc-
ture of a constant-curvature space at large [. In other
words, such solutions have an anti-de Sitter (AdSp)
asymptotic form far from the center. But the metric
in (33) is not a solution of our equations in the whole
space even in the case where ¢ = const. As was already
mentioned, for dy > 1 and d; > 1, constant-curvature
metrics (dSp and AdSp) are not solutions of the vac-
uum Einstein equations with a cosmological constant.
A2: V, =0. Equations (31) are solved either by

or by
dg"y{x, + dlﬂéo =0.

But when we substitute the second condition in
Eq. (10), taking into account that ¢’ — 0 at large I,
we obtain
2 2
dove +difs =0
and return to
B =Yoo = 0.

Thus, both 3 and ' vanish at infinity, and we can try
to seek them as expansions in inverse powers of [:

B’:%+%+..., 7’:%+7—§+... (34)
Then O(I~?) is the leading order in the Einstein equa-
tions, and, to avoid a contradiction,

P2 =2
should be of the order O(I~2) or smaller. Moreover, be-
cause we assume that ¢ tends to a finite value ¢, > 0,
we have ¢' = o(1/l), and scalar field equation (11)
shows that v

— =007
or smaller, i.e., ¢, should be an extremum of V(¢).
If ¢(I) grows monotonically to ¢, > 0, then ¢, is a
minimum of V' because, according to (11)

d
—V<0 as

do

However, if V(0) = 0, one cannot exclude that ¢ re-
turns to zero as [ — oo, see item ¢) below.
In the case where ¢ — ¢ > 0, because

Voo = dV/dg(¢oc) = 0,

V(¢) is decomposed as

3

¢ = Poc.

V(6) = 3Vosldn)(@— )+, (35)

where )
d*V
Voo = FrEs
and therefore
V =o(l"?).

As a result, Egs. (8)—(10) lead to
’)/1(—].+d0’}/1 +d1ﬂ1) :0, (36)

2
Bi(=1+doy1 +di 1) = f,_g(dl —1-5¢2), (37)

(dov1 + d11)? — dovi — do B} =
l2
= dlﬁ(dl —1-2¢%). (38)

Now, it can be easily verified that we must neces-
sarily set 1 = 1. Indeed, for any 3 # 0, we have

r=e’ ~ 15,

Therefore, 51 < 1 is excluded because it leads to r < [,
contrary to the above requirement. But if we suppose
that 3; > 1, then 1?/r? — 0 as | — oo, and Eq. (38)
leads either (if v = 0) to

B =0
or (lf Y1 75 0 and then dO'Yl +di 1 = 1) to
dovi + diff = 1.

Both possibilities contradict the assumption that
B > 1.
Thus, #; = 1, and hence

rakl, k= const>0,

at large [.
Equation (36) now leaves two possibilities,

N =0
and
dy —1
dy '
and we consider them separately in items a) and b).
Ttem c) describes the case where expansions (34) do

not work.
a) If 1 = 0, then Eq. (37) yields

2o

dy — 17

1=

k*=1-
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and Eq. (10) in the same order is satisfied automati-
cally. The metric takes the asymptotic form

ds® = 2" n,, dz"dz” — dI* — k*1? dQ?, (40)

where 75 is a constant (we cannot turn it to zero by
rescaling the coordinates z# because such an operation
has already been done for making v = 0 at the center).

Thus, the whole metric has a flat asymptotic form,
up to a solid angle deficit in the spherical part due to
k? # 1. Such a deficit is a common feature of topo-
logical defects in the cases where they have (almost)
flat asymptotic forms. Its appearance due to cosmic
strings and global monopoles in space —times without
extra dimensions is discussed in detail in [8]. For a
global monopole in extra dimensions in the particular
case where dy = 4 and dy = 2, it was treated by Benson
and Cho [18]. We stress that the situation of a quasi-
flat asymptotic form with a solid angle deficit is not
general. It occurs only for potentials with zero value at
the minimum,

V(¢oo) =0,

and even in that case, not always, see item B below.
Namely, this geometry requires

Vdo—1

Va

‘¢00‘ < ¢cr = (41)

i.e., ¢n should be smaller than the critical value ¢,
related to the D-dimensional Planck length. As ¢
approaches ¢.,., k — 0, the deficit absorbs the whole
solid angle, and the above geometry disappears.

Scalar equation (11) shows how ¢ approaches ¢oo:
in the leading order, we have

d
a5 = Voo (9) (6 — dc). (42)

Assuming

Vi (dos) # 0,
we obtain

¢ — oo ~ 1/12.

b) If 1 = —(dy — 1)/do, then Eq. (37) leads to

%2¢go = d1 - ].,

ie.,
Poc = Per,

while a substitution in (10) gives
(d1 — 1)(d0 +di — 1) =0,

contrary to our assumption that d; —1 > 1. Therefore,
this possibility does not lead to a regular asymptotic
regime.

c) If V(0) = 0, then a regular integral curve, start-
ing at [ = 0 and ¢ = 0, can finish again with ¢ — 0 as
I = oo. For large | and r, scalar field equation (11) for
|¢| < 1 reduces to

" + (doy' + d1 ") — Vagp = 0, (43)

where
Vo = Ve (0).

Because ¢ = 0 is a maximum of V(¢) by assumption,
we assume that V5 < 0.
If we further assume that the function

5(1) = edor+diB
satisfies the condition
s")/s—=0 as |— x
(which is the case, e.g., for any power-behaved func-

tion), the solution of Eq. (43) is an oscillating function
at large [,

¢ ~ ¢Oe_(d0'7+d13)/2 coS I:\/W(l — lO)] ,

[ — o0,

(44)

where ¢¢ and [y are arbitrary constants. Substituting
this in Eq. (8) and averaging cos®> — 1/2, we obtain

l

2 2
edo dox ‘V2|¢0/ldl I = . (45)

T 2(D-2) ) rd’

It is easy to verify that for d; > 2, when the integral
in (45) converges, the asymptotic form of the solution
for r = e and v is r ~ [ and

7:700 _71/Zd1721 711 A}/oo =C0nst,

i.e., we have a flat asymptotic regime.

In the special case where d; = 2, the integral di-
verges logarithmically, and the solution may be approx-
imated as (again)

rel
and

€7’ ~ const - Inl.

This «logarithmic» asymptotic form resembles the be-
havior of cylindrically symmetric solutions in standard
general relativity.
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4.2. Solutions with the r — r, > 0 asymptotic
regime

Evidently, a regular solution cannot terminate at fi-
nite r and [ < oo. Therefore, we seek a regular asymp-
totic regime as [ — oo, where r and ¢ tend to finite
limits, 7, and ¢,, and hence the quantities §’, 5", ¢',
and ¢ vanish.

Moreover, in a regular solution, 4’ should tend to a
finite limit as I — oo, and hence 4" — 0. As a result,
Eqgs. (8) and (9) at large [ lead to

— 1
dpy? = -V, = T—Q(%%E —d; + 1), (46)

where V, = V(¢,). We see that V, < 0 and, in
addition, the scalar field should be critical or larger,
s > Ger. According to (46), at large [,

+v' '~ h:=1\/-V./dy >0, (47)

and Eq. (10), as in the previous cases, simply verifies
that the solution is correct in the leading order. The
scalar field equation gives a finite asymptotic value of

V, = dV/de:
Vo(ds) = —digur. (48)

This value is negative if ¢, > 0.

We obtain different asymptotic regimes for nega-
tive, positive, and zero values of +'.

B1: ¢” ~ e " h > 0. The metric has the asymp-
totic form

ds? = C%e™2hly,, datdx” — dI* — r2dQ>.  (49)

The extra-dimensional part of the metric again de-
scribes an infinitely long cylindrical tube, but now the
vanishing function g;; = €?” resembles a horizon. The
substitution e~ = p (converting | = oc to a finite
coordinate value, p = 0) brings metric (49) to the form

dp?

ds® = C°p’nyydat da” — e

—r2dQ02. (50)

Therefore, p = 0 is a second-order Killing horizon in
the 2-dimensional subspace parameterized by ¢ and p,
it is of the same nature as, e.g., the extreme Reissner —
Nordstrém black hole horizon, or the AdS horizon in
the second Randall -Sundrum braneworld model. A
peculiarity of the present horizon is that the spatial
part of the metric, which at large [ takes the form
p?(dx)?, is degenerate at p = 0. The volume of the
dp-dimensional space—time vanishes as [ — oo. And it
remains degenerate even if we pass to Kruskal-like co-
ordinates in the (¢, p) subspace. But the D-dimensional

curvature is finite there, indicating that the transition
to negative values of p (where the old coordinate | no
longer works) is meaningful®).

One more observation can be made. According
to (46), the potential V' is necessarily negative at large
I. On the other hand, Eq. (8) may be rewritten in
integral form:

l
edm+d167' — —/ed"”"'dlBle. (51)
0

The lower limit of the integral corresponds to a regular
center, where the left-hand side of (51) vanishes. As
Il = oo, it also vanishes due to 7y — —oc. Thus, the
integral in the right-hand side, taken from zero to in-
finity, is zero. This means that the potential V(¢) has
alternate sign and is positive in a certain part of the
range (0, ¢.).

Thus, purely scalar solutions of the monopole type
may contain second-order horizons. The degenerate
nature of the spatial metric at the horizon does not
lead to a curvature singularity, and the solutions may
be continued in a Kruskal-like manner. Nevertheless,
we do not consider these solutions as describing viable
monopole configurations because the zero volume of the
corresponding spatial section makes the density of any
additional (test) matter infinite. It is then impossible
to neglect its back reaction, which evidently destroys
such a configuration.

B2: ¢” ~ e, h > 0. The metric has the asymp-
totic form

ds? = C*e*My,, dat de” — dI* — r2dQ?,
C = const > 0.

(52)

Thus, in the spherically symmetric extra-dimensional
part of the metric, we have an infinitely long d;-

1) One may wonder why we here do not obtain simple (first-or-
der) horizons, like those in the Schwarzschild and de Sitter
metrics, while such horizons generically appeared in the spe-
cial case dgp = 1, which corresponds to spherically symmetric
global monopoles in general relativity, considered in detail in
Refs. [14,16].

The reason is that for dg = 1, 6", in (3) is zero, and the
corresponding component of the Riemann tensor is also zero re-
gardless of the values of 7'. In terms of the Gaussian coordi-
nate [, a simple horizon occurs at some finite I = I}, near which
gtt = €27 ~ (1 —13)2, such that 7' — oo. When dg = 1, this does
not lead to a singularity because only the combinations v/ 4 4’2
and (3’4" are then required to be (and actually are) finite. In the
case where dg > 1, instead of a horizon, we would have a curva-
ture singularity at finite [, a situation excluded from the present
study.

We thus have a general result for the metric in (1): for do > 1,
horizons can only be of order 2 and higher.
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dimensional cylindrical «tube» with an infinitely grow-
ing gravitational potential g;; = e%7.

With this cylindrical asymptotic form, according
to (47) and (48), the potential V' tends to a negative
value and has a negative slope. Moreover, the integral
in Eq. (51) is negative and diverges at large | due to
growing e”.

Regular solutions with 4'(c0) > 0 naturally arise if
the potential V(¢) is negative everywhere. We note,
however, that when V' (0) is above zero, by (51), the
function y(I) decreases near the center (I = 0) due to
V' > 0, and grows at large [. It therefore has a mini-
mum at some [ > 0.

B3: V, = 0. This case contains one more asymp-
totic regime where the extra space ends with a regular
tube.

Indeed, we can once again use expansions (34), but
now with ¢, instead of ¢, and f; = 0 in accordance
with r — r.. Equation (9) (order O(1)) shows that

L9 =d; — 1,

ie.,
‘ZS* = ¢cr~

Equation (11) (order O(1)) gives a finite value of the
derivative

dV/de(¢s) = _d1¢*/TE~
Further, Eq. (8) (order O(I72)) yields
M (doy = 1)/ ==V,

showing that
V=012

(or even smaller). Because
V = (dV/dg(d:)) (¢ — ¢x) + 0(d — du),
we have to conclude that
- . =077

or smaller.
Now, assuming

V(¢3) = Vg/l2 + ...,
we can find V5 directly as the leading term in

and, independently, from Eq. (9) (order O(I72)), ob-
taining the two expressions
P« 2

B

V2 - —d1

MIT®, Tom 128, Boim. 6 (12), 2005
and
Vo =—(D - 2)(23;?27

whence it follows that d; = D — 2, or dg = 1. Such a
«criticaly asymptotic regime (¢ — ¢er, g — 0, and
r — const) was indeed found for dy = 1 in our pa-
pers [14, 16] describing (d; + 2)-dimensional spherically
symmetric global monopoles, but, as we see, it does not
exist in the case under consideration, dy > 1.

The only remaining possibility is that

& — ¢y = 0(172)

and
Y — 7Y% = const,
i.e., a solution tending at large [ to the following simple

«flux-tube» solution, valid for any dy and dy:

r = const,
V=0,

7 = COHSt? ¢ = ¢CT’7

dV/d¢ = _d1¢cr/r2' (53)

Such a solution can exist if the potential V (¢) has the
properties

V(¢cr) =0

and

dV/d(¢er) <0,

and the last equality in (53) then relates the constant
radius r to dV/dé(der).

4.3. Solutions with the r — 0 asymptotic
regime

The limit » — 0 means a center, and for it to be
regular, conditions (12) must hold, and hence, for our
system, initial conditions (16) with { = 0 should be
replaced, e.g., with [ = [y > 0.

We now recall that conditions (16) determine the so-
lution of the field equations for a given potential V (¢)
up to the value of ¢'. In particular, if there is one more
center at | = lp, then, starting from it and choosing

¢'(lo) = —¢'(0),

we obtain the same solution in terms of [y — [ instead
of [. We thus obtain a solution with two regular cen-
ters that is symmetric with respect to the middle point
I =10/2, to be called the equator. To be smooth there,
it must satisfy the conditions

5’:7’=¢’=0 at l=lg/2, (54)
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which implicitly restrict the shape of the potential.
Given a potential V(¢), conditions (54) create, in gen-
eral, three relations among ly, ¢'(0), and the free pa-
rameters of V(¢) (if any). Eliminating lo and ¢(0), we
must obtain a single «fine tuning» condition for the
parameters of the potential.

A necessary condition for the existence of such a
solution is that V(¢) has a variable sign. This follows
from Eq. (51) by integration over the segment (0,7o/2):
the integral vanishes because v’ = 0 at both ends.

Moreover, as follows from Egs. (9) and (10)
with (54),

D -2

r2(dy — 1= 32¢2) = @

Ve=p+Ve, (55)

leading to
dlﬂg = (dO - ]‘)VE

(where the index «e» refers to values at the equator).
If » = e is assumed to grow monotonically from zero
to its maximum value at the equator, we have 5 < 0,
and hence V, < 0, and (55) implies that ¢, > @, i.e.,
the scalar field at the equator must exceed its critical
value.

The existence of asymmetric solutions with two reg-
ular centers, corresponding to

¢'(lo) # —¢'(0),

is also possible. In this case, there would be no equa-
tor in general, because 8 and ¢ would have maxima at
different [; moreover, in general, we would have

v(lo) # 7(0) =0,

and v(l) could even have no extremum. But because
7" =0 at both centers, the integral in (51) taken from
0 to lp should vanish, and hence, again, V' would have
alternating sign.

The whole configuration with two regular centers
has the topology M x S%+1, with closed extra di-
mensions in the spirit of Kaluza—Klein models. The
main difference from them is that all variables now es-
sentially depend on the extra coordinate [.

The main properties of all regular asymptotic
regimes found, which lead to a classification of possi-
ble global monopole configurations in extra dimensions,
are summarized in the Table. The word «attraction»
corresponds to an increasing warp factor far from the
brane.

5. SCALAR FIELD TRAPPING BY GLOBAL
MONOPOLES

We consider a test scalar field with Lagrangian (22)
in the background of global monopole configurations
described in Sec. 4. After variable separation (24), the
field equation for a p-mode of the scalar field y becomes

X" 4 (doy + di B)YX' + (e7p* — )X =0, (56)

where
p’ =pupt =E>-p’

is the dp-momentum squared and
M2 _ mg + )\¢2

is the effective mass squared. The trapping criterion
consists, as before, in the requirements that the y field
stress—energy tensor must vanish far from the brane
and the total y field energy per unit volume of the
brane must be finite, i.e.,

Eioi]x] = /\/gddﬁ—lx X
y [6_27(E2 +p) X2+ 12X2 + X2 dl < 0. (57)

The first requirement means that each term in the
square brackets in (57) must vanish at large .

We now check whether these requirements can be
met at different kinds of asymptotic regimes listed in
the Table.

A1: attracting AdS asymptotic regime 3 ~ vy ~ kl,
k> 0. At large [, Eq. (56) reduces to the equation with
constant coefficients

X"+ (D-1)X - p2X =0,
and its solution vanishing as [ — oo is
X ~ efal

a= % [(D—l)k+\/(D—1)2k2+4,u2 .

b

(58)

It is straightforward to verify that the trapping require-
ments are satisfied for all momenta p and all u? > 0.

A2(a): a quasi-flat asymptotic regime with a solid
angle deficit. At large I, Eq. (25) reduces to

X"+ d; X/l+ P?X =0,

where
P2 = ple= 0= — 2

and 7 is the limiting value of v at | = co. In terms of

Y =14/2X,
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Classification of global monopole solutions for arbitrary V(¢) by asymptotic types. Attraction or repulsion is understood
with respect to the center

Notation r Vig) v Asymptotic type
Al o0 V(n) <0 N < Ger 00 AdS, attraction
A2(a) 00 0 N < Per const flat, solid angle deficit

A2(c), dy > 2 o0 0 const flat

A2(c), dy =2 00 0 00 «logarithmicy, attraction
B1 Ty Ve <0 O > Per —0 double horizon, repulsion
B2 Tx V. <0 O > e 00 attracting tube
B3 Tx 0 Ox = Q¢r const trivial tube
C 0 V(0) const second center

this equation is (at large ) rewritten as
Y" + P%Y =0,

while trapping condition (57) implies that
/lleQ(l)dl < 0.

Therefore, only an exponentially falling Y (1) is suit-
able. In other words, the trapping condition is P? < 0,
or

p2 < mzr = M2627m7 (59)

where now
,u2 = mg + )\2772.

We note that
P2 = E? — p?

is nothing else but the observable mass of a free
y-particle if the observer watches its motion in the
Minkowski section I = 0 of our manifold, i.e., on the
brane. Hence, condition (59) means that the brane
traps all scalar particles of masses smaller than the crit-
ical value m., depending on the model parameters.

A2(c), dy > 2: this case differs from the previous
one only by the asymptotic value of ¢, which is now
zero, and hence p = myg.

A2(c), d; = 2: a «logarithmicy» asymptotic regime,
e? ~Inl. Because e 27 ~ 1/(Inl)? — 0, the term with
p? drops out from Eq. (56), which then leads to the
decreasing solution

X ~ [ "temH

and a y-particle is trapped provided u = mg > 0.

VA

Fig. 1. Mexican hat potential

B1: a horizon. As was remarked previously, we do
not regard this configuration viable and omit it from
our discussion.

B2: an attracting tube, r — r, and vy ~ hl, h > 0
as | — oo. Equation (56) takes the form

X"+ dohX'— i>’X =0

and has the decreasing solutions

1
~ —al = — 212 2
X~e™™ a 5 <d0h+\/doh +4p > (60)

As in item A1, it is easy to verify that the trapping
conditions hold provided % > 0.

B3: a trivial tube, both § and v tend to constants
as | — oo. In Eq. (56), the term with X' drops out at
large [, and an exponentially decreasing solution exists
under condition (59) where

p*=mg + \'¢g,.
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Fig.2. A regular solution with an AdS asymptotic regime (type A1) for the potential (61) with »n? = 5, ¢ = —0.75, do = 4,
di =3
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Fig. 3. Regular (except the dotted curves) solutions with the B2 asymptotic regime (attracting tube), such thatr — r. < oo
and v, >0

C: these configurations have no large [ asymptotic
regimes and are not interpreted in terms of branes.

A conclusion is that scalar particles of any mass and
momentum are trapped by global monopoles with Al
and B2 asymptotic regimes with exponentially growing
warp factors and A2(c) with a logarithmic asymptotic
regime; they are trapped under restrictions (59) on the
particle’s observable mass by monopoles with A2 and
B3 asymptotic regimes whose warp factors tend to con-
stant limits far from the brane.

6. NUMERICAL RESULTS: MEXICAN HAT
POTENTIAL

In this section, we present the results of our nu-
merical calculations, which confirm the classification of
regular solutions given above. We have used the «Mex-

ican hat» potential in the form (Fig. 1)

4 2\ 2
V:)‘i[s-l- <1—¢—> }
4 7>

It has two extremum points in the range ¢ > 0: a max-
imum at ¢ = 0 and a minimum at ¢ = 1. The SSB
energy scale is characterized by 7%/(P=2) while v/ de-
termines, as usual, a length scale. The nonconventional
parameter ¢ introduced in (61), moves the potential up
and down, which is equivalent to adding a cosmological
constant to the usual Mexican hat potential.

Given potential (61), the nature of the solutions
essentially depends on its two dimensionless parame-
ters: e, fixing the extremal values of the potential with
respect to zero, and *>n?, characterizing the gravita-
tional field strength: as we remember from Sec. 4, the
asymptotic regime r — oo only exists when ¢oo < @¢r,
which is the same as

(61)

%2772 < d1 — 1.
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Fig.5. Type-C solutions with two regular centers (r — 0, » — 0, 7' — 0asl — lo)

If ¢ > 0, potential (61) is always positive, and, in
accordance with item A1, regular solutions are absent.
In the conventional case where € = 0, in the range

0<%2172<d1—1,

there are asymptotically flat regular solutions with a
solid angle deficit (class A2).

The most complex case 0 > ¢ > —1 contains a vari-
ety of possibilities. Regular solutions with the asymp-
totic behavior r — oc as | — oo having 7., > 0 (case
A1) exist in some range 0 < n < ns, where the separat-
ing value 7, depends on dqg, dy, and €. As an example,
such a regular solution with »?n?> = 5, ¢ = —0.75,
dy = 4, and d; = 3 is presented in Fig. 2.

Depending on the parameters of the potential,
there are regular solutions with the asymptotic regime
r — r. < oo and 7., > 0 (case B2) in some range
Ns1 < 1 < Ns2, see Fig.3. Here, ¢ = —0.9, dy = 4,
d; = 3. The curves are given for »*n? = 10, 12, 15,
20, 30, 40, and 45 (from top down). The dotted curves
(%°n* = 10 and 325> = 45) correspond to singular
configurations. It follows that for ¢ = —0.9, dy = 4,

dy = 3, the lower bound of this parameter leading to
regular models is somewhere between 10 and 12, while
the upper bound is between 30 and 45.

An example of a regular solution with the asymp-
totic regime r — 7, < oo and v, < 0 (class B1), cor-
responding to a second-order Killing horizon, is shown
in Fig. 4.

The value sn? = 17.37 is fine-tuned to the param-
eters ¢ = —0.75, dy = 4, dy = 2 of this particular
solution.

Other examples of fine-tuned regular solutions,
namely, type C with two regular centers (r — 0, ¢ — 0,
v — 0 at | — ly), are presented in Fig. 5.

For all the three curves, dg = 4 and d; = 2. The
curves (1, 2, and 3) correspond to ¢ = —0.15, —0.5,
and —0.9626, respectively. The fine-tuned values of
»%n? are approximately 2.637, 6.17, and 100.

In the case € < —1, the maximum V' (0) < 0 is at or
below the zero level, and there is a possibility for the
integral curves to start and finish at the same value
#(0) = ¢(00) = 0. We then observe a whole family of
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such regular curves in the range 0 < ¢'(0) < ¢L., see
Fig. 6.

For the particular example presented (¢ = —1.5,
x> = 1, dy = 4, d = 3), the values of ¢'(0) for
the dotted curves ending with ¢ = 0 are 0.2, 0.3, and
0.4 (from bottom up). The limiting solid curve with
¢'(0) = ¢! = 0.4401425 (separatrix) is a regular solu-
tion ending at the minimum of the potential: ¢ — 1 as
[l — 0.

The Mexican hat potential (61), with its only
two extrema at ¢ = 0 and ¢ = 7, cannot demon-
strate the whole variety of solutions that appear with
more sophisticated potentials having additional max-
ima and/or minima. Thus, for instance, class-A solu-
tions may have a large-r asymptotic regime at any such
extremum.

7. CONCLUDING REMARKS

We have obtained as many as seven classes of
regular solutions of the field equations describing a
Minkowski thick brane with a global monopole in extra
dimensions, see the Table.

Some of these classes, namely, A1 with an AdS
asymptotic form and B2 ending with an attracting
tube, have the exponentially growing warp factor €27
at large [ and are shown to trap linear test scalar fields
modes of any mass and momentum.

Others —A2(a) and A2(c) for d; > 2, ending with
a flat metric at large [—have a warp factor tending
to a constant whose value is determined by the shape
of the potential V(¢). They are also shown to trap
a test scalar field but the observable mass of the field
is restricted from above by a value depending on the
particular model of the global monopole.

Regular solutions starting and terminating at ¢(0) =

The limiting solid curve with

¢(c0) = 0.
¢'(0) = ¢, = 0.4401425 (separatrix) terminates at ¢(oc) =7

Lastly, for d; = 2, i.e., a three-dimensional global
monopole in the extra dimensions, class A2(c) solutions
have a logarithmically growing warp factor. All test
scalar field modes are trapped by this configuration,
but the slow growth of v(I) probably means that the
test field is strongly smeared over the extra dimensions.

All such configurations, in sharp contrast to RS2-
like domain walls in 5 dimensions, are able to trap
scalar matter. It is certainly necessary to check whether
nonzero-spin fields are trapped as well and Newton’s
law of gravity holds on the brane in conformity with
the experiment. We hope to consider these subjects in
our future publications.

In addition to the trapping problem, a shortcoming
of RS2-type Minkowski branes is that they are neces-
sarily fine-tuned. Many of the global monopole solu-
tions, at least those existing in the weak gravity regime
(class A), are free of this shortcoming and are thus bet-
ter for thick brane model building.

Some results and conclusions in this paper were pre-
viously given in Refs. [12, 13]. The main difference
of our approach from theirs is their boundary condi-
tion, which is ¢ = n in our notation. This excludes
the cases where the solution ends at a maximum or
slope of the potential, such as, e.g., symmetric solu-
tions with two regular centers. Another difference is
that they consider solutions with an exponentially de-
creasing warp factor as those leading to matter confine-
ment on the brane. In our view, such solutions with
second-order horizons do not represent viable models
of a braneworld. We conclude that the present pa-
per gives the most complete classification of all regu-
lar solutions for global monopoles in extra dimensions,
which, even without gauge fields, seem to be promising
as braneworld models.
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