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GRAVITATING GLOBAL MONOPOLES IN EXTRA DIMENSIONSAND THE BRANEWORLD CONCEPTK. A. BronnikovCenter for Gravitation and Fundamental Metrology, Russian Resear
h Institute for Metrologi
al Servi
e117313, Mos
ow, RussiaInstitute of Gravitation and Cosmology, Peoples' Friendship University of Russian117198, Mos
ow, RussiaB. E. Meierovi
h *Kapitza Institute for Physi
al Problems117334, Mos
ow, RussiaSubmitted 15 June 2005Multidimensional 
on�gurations with a Minkowski external spa
e � time and a spheri
ally symmetri
 globalmonopole in extra dimensions are dis
ussed in the 
ontext of the braneworld 
on
ept. The monopole is formedwith a hedgehog-like set of s
alar �elds �i with a symmetry-breaking potential V depending on the magnitude�2 = �i�i. All possible kinds of globally regular 
on�gurations are singled out without spe
ifying the shapeof V (�). These variants are governed by the maximum value �m of the s
alar �eld, 
hara
terizing the energys
ale of symmetry breaking. If �m < �
r (where �
r is a 
riti
al value of � related to the multidimensionalPlan
k s
ale), the monopole rea
hes in�nite radii, whereas in the �strong �eld regime�, when �m � �
r, themonopole may end with a �nite-radius 
ylinder or have two regular 
enters. The warp fa
tors of monopoleswith both in�nite and �nite radii may either exponentially grow or tend to �nite 
onstant values far from the
enter. All su
h 
on�gurations are shown to be able to trap test s
alar matter, in striking 
ontrast to RS2type �ve-dimensional models. The monopole stru
tures obtained analyti
ally are also found numeri
ally for theMexi
an hat potential with an additional parameter a
ting as a 
osmologi
al 
onstant.PACS: 04.50.+h, 11.27.+d1. INTRODUCTIONA

ording to a presently popular idea, our observ-able Universe 
an be lo
ated on a 4-dimensional sur-fa
e, 
alled the brane, embedded in a higher-dimen-sional manifold, 
alled the bulk. This �braneworld�
on
ept, suggested in the 1980s [1℄, is broadly dis-
ussed nowadays, mainly in 
onne
tion with the re
entdevelopments in supersymmetri
 string/M-theories [2℄.The reason why we do not see any extra dimensions isthat the observed matter is 
on�ned to the brane, andonly gravity propagates in the bulk. There are numer-ous appli
ations of the braneworld 
on
ept to parti
lephysi
s, astrophysi
s, and 
osmology, su
h as the hier-*E-mail: meierovi
h�yahoo.
om; kb20�yandex.ru;http://geo
ities.
om/meierovi
h/

ar
hy problem and the des
ription of dark matter anddark energy [3℄.Most of the studies are restri
ted to in�nitelythin branes with delta-like lo
alization of matter. Awell-known example is Randall and Sundrum's se
ondmodel (RS2) [4℄, in whi
h a single Minkowski brane isembedded in a 5-dimensional anti-de Sitter (AdS) bulk.Thin branes 
an, however, be only treated as arough approximation be
ause any fundamental under-lying theory, be it quantum gravity, string or M-theory,must 
ontain a fundamental length beyond whi
h the
lassi
al spa
e � time des
ription is impossible. It istherefore ne
essary to justify the in�nitely thin braneapproximation as a well-de�ned limit of a smooth stru
-ture, a thi
k brane, obtainable as a solution of 
oupledgravitational and matter �eld equations. Su
h a 
on�g-uration is then required to be globally regular, stable,1184
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on
entrated around a 3-dimensional sur-fa
e that is meant to des
ribe the observed spatial di-mensions. Topologi
al defe
ts emerging in phase tran-sitions with spontaneous symmetry breaking (SSB) areprobably the best 
andidates for this role.It should be mentioned that the evolution of theUniverse, a

ording to modern views, 
ontained a se-quen
e of phase transitions with SSB. A de
isive steptoward 
osmologi
al appli
ations of the SSB 
on
eptwas made in 1972 by Kirzhnits [5℄. He assumed that,as in the 
ase of solid substan
es, a symmetry of a�eld system, existing at su�
iently high temperatures,
ould be spontaneously broken as the temperature fallsdown. A ne
essary 
onsequen
e of su
h phase tran-sitions is the appearan
e of topologi
al defe
ts. The�rst quantitative analysis of the 
osmologi
al 
onse-quen
es of SSB was given by Zel'dovi
h, Kobzarev,and Okun' [6℄. Later, the SSB phenomenon and vari-ous topologi
al defe
ts were widely used in in�ationaryUniverse models and in attempts to explain the ori-gin of the large-s
ale stru
ture of the Universe, see,e.g., [7, 8℄.The properties of global topologi
al defe
ts are gen-erally des
ribed with the aid of a multiplet of s
alar�elds playing the role of an order parameter. If a de-fe
t is to be interpreted as a braneworld, its stru
ture isdetermined by the self-gravity of the s
alar �eld systemand may be des
ribed by a set of Einstein and s
alarequations.In this paper, we analyze the gravitational prop-erties of 
andidate (thi
k) braneworlds with the 4-di-mensional Minkowski metri
 as global topologi
al de-fe
ts in extra dimensions. Our general formulation
overs parti
ular 
ases su
h as a brane (domain wall)in 5-dimensional spa
e � time (one extra dimension),a global 
osmi
 string with winding number n = 1(two extra dimensions), and global monopoles (threeor more extra dimensions). We restri
t ourselves toMinkowski branes be
ause most of the existing prob-lems are 
learly seen even in these 
omparatively simplesystems; on the other hand, in the majority of physi-
al situations, the inner 
urvature of the brane itself ismu
h smaller than the 
urvature related to brane for-mation, and therefore the main qualitative features ofMinkowski branes should survive in 
urved branes.Brane worlds as thi
k domain walls in a 5-dimen-sional bulk have been dis
ussed in many papers (see,e.g., [9℄ and the referen
es therein). Su
h systemswere analyzed in a general form in Refs. [10, 11℄, with-out spe
ifying the symmetry-breaking potential; it wasshown, in parti
ular, that all regular 
on�gurationsshould have an AdS asymptoti
 form. Therefore, all

possible thi
k branes are merely regularized versionsof the RS2 model, with all 
on
omitant di�
ulties inmatter �eld 
on�nement. Thus, it has been demon-strated [11℄ that a test s
alar �eld has a divergentstress�energy tensor in�nitely far from the brane, atthe AdS horizon. A reason for that is the repulsivegravity of the RS2 and similar models: gravity repelsmatter from the brane and pushes it towards the AdShorizon. To over
ome this di�
uty, it is natural totry 
onsidering a greater number of extra dimensions.This was one of the reasons for us to 
onsider higher-dimensional bulks.We study the simplest possible realization of thisidea, assuming a stati
, spheri
ally symmetri
 
on�gu-ration of the extra dimensions and a thi
k Minkowskibrane as a 
on
entration of the s
alar �eld stress�energy tensor near the 
enter. The possible trappingproperties of gravity for test matter are then deter-mined by the behavior of the so-
alled warp fa
tor (themetri
 
oe�
ient a
ting as a gravitational potential) farfrom the 
enter, and we indeed �nd 
lasses of regularsolutions where gravity is attra
ting.Some of our results repeat those obtained inRefs. [12, 13℄, whi
h have dis
ussed global and gauge(`t Hooft �Polyakov-type) monopoles in extra dimen-sions; a more detailed 
omparison is given in Se
. 7.The paper is organized as follows. In Se
. 2, we for-mulate the problem, introdu
e spa
e � times with globaltopologi
al defe
ts in the extra dimensions, write theequations and boundary 
onditions, and demonstrate a
onne
tion between the possibility of SSB and the prop-erties of the potential at a regular 
enter. In Se
. 3,we brie�y dis
uss the trapping problem for RS2-typedomain-wall models and show that they always haverepulsive gravity and are unable to trap matter in theform of a test s
alar �eld. Se
tion 4 is devoted to asear
h for regular global monopole solutions in higherdimensions by analyzing their asymptoti
 properties farfrom the 
enter. All regular 
on�gurations are 
lassi-�ed by the behavior of the spheri
al radius r and by theproperties of the potential. This leads to separation ofthe �weak gravity� and �strong gravity� regimes, re-lated to maximum values of the s
alar �eld magnitude.In the weak gravity regime, the spheri
al radius rtends to in�nity along with the distan
e from the 
en-ter. Su
h moderately 
urved 
on�gurations exist with-out any restri
tions of �ne-tuning type. If the s
alar�eld magnitude ex
eeds some 
riti
al value, the radiusr either tends to a �nite value far from the 
enter orreturns to zero at a �nite distan
e from the 
enter, thusforming one more 
enter, whi
h should also be regular.Some 
ases require �ne tuning of the parameters of the5 ÆÝÒÔ, âûï. 6 (12) 1185
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e one may believe that stati
 
on-�gurations 
an only exist if the s
alar and gravitationalfor
es are somewhat mutually balan
ed.In Se
. 5, we show that in 
ontrast to domain walls,global monopoles in di�erent regimes do provide s
alar�eld trapping on the brane. Se
tion 6 is a brief de-s
ription of numeri
al experiments with the Mexi
anhat potential admitting shifts up and down, equivalentto introdu
ing a bulk 
osmologi
al 
onstant. Their re-sults 
on�rm and illustrate the 
on
lusions in Se
. 4.Se
tion 7 summarizes the results.2. PROBLEM SETTING2.1. GeometryWe 
onsider a (D = d0+d1+1)-dimensional spa
e �time with the stru
ture M d0 �Ru �Sd1 and the metri
ds2 = e2
(u)���dx�dx� �� �e2�(u)du2 + e2�(u)d
2� : (1)Here, ���dx�dx� = dt2 � (dx)2is the Minkowski metri
 in the subspa
e M d0 ,��� = diag(1; �1; : : : ; �1);d
 is a linear element on a d1-dimensional unit sphereSd1; �, �, and 
 are fun
tions of the radial 
oordinateu with the de�nition domain Ru � R, to be spe
i�edlater. The Riemann tensor has a diagonal form, andits nonzero 
omponents areR���� = �e�2�
02Æ���� ;Rab
d = �e�2� � e�2��02� Æab
d;Ru�u� = �Æ�� e�
�� �e
��
0�0 ;Ruaub = �Æab e���� �e����0�0 ;Ra�b� = �Æ�� Æab e�2�
0�0; (2)where Æ���� = Æ�� Æ�� � Æ��Æ�� (3)and similarly for Æab
d. Greek indi
es �; �; : : : 
orres-pond to the d0-dimensional spa
e � time and Latin in-di
es a; b; : : : to d1 angular 
oordinates on Sd1. Wemostly bear in mind the usual dimension d0 = 4, butkeep d0 arbitrary for generality.A ne
essary 
ondition of regularity is the �nitenessof the Krets
hmann s
alarK = RABCDRCDAB :

(Capital indi
es A;B; : : : 
orrespond to all D 
oordi-nates.) In our 
ase, K is a sum of squares of all nonzeroRABCD. Hen
e, in regular 
on�gurations, all 
ompo-nents of Riemann tensor (2) are �nite.For the Ri

i tensor, we haveR�� = �Æ��e�2� [
00 + 
0(��0 + d0
0 + d1�)℄ ;Ruu = �e�2� �d0(
00 + 
02 � �0
0)++d1(�00 + �02 � �0�0)� ;Rnm = e�2�(d1 � 1)Ænm �� Ænme�2� [�00 + �0(��0 + d0
0 + d1�0)℄ : (4)
2.2. Topologi
al defe
tsA global defe
t with a nonzero topologi
al 
harge
an be 
onstru
ted as a multiplet of d1 + 1 real s
alar�elds �k , in the same way as, e.g., in [14℄. It 
omprisesa hedgehog 
on�guration in Ru � Sd1:�k = �(u)nk(xa);where nk is a unit ve
tor in the (d1 + 1)-dimensionalEu
lidean target spa
e of the s
alar �elds:nknk = 1:The total Lagrangian of the system is taken in theform L = R2{2 + 12gAB�A�k�B�k � V (�); (5)where R is the D-dimensional s
alar 
urvature, {2is the D-dimensional gravitational 
onstant, andV is a symmetry-breaking potential depending on�2(u) = �a�a.In the 
ase where d1 = 0, there is only one extra di-mension. The topologi
al defe
t is a �at domain wall.Combined with d0 = 4, it is widely 
onsidered withreferen
e to our Universe. Regular thi
k Minkowskibranes supported by s
alar �elds with arbitrary poten-tials were analyzed in [10, 11℄, see also Se
. 3 below.The 
ase where d1 = 1 is a global 
osmi
 string withthe winding number n = 1. If d0 = 2, it is a 
osmi
string in four dimensions, whose gravitational proper-ties are reviewed in [15℄. The 
ase d0 = 4 
orrespondsto a string in extra dimensions.The 
ase where d1 = 2 and d0 = 1 is a globalmonopole in our 4-dimensional spa
e � time. Wehave analyzed it in detail in [16℄. The 
ase whered1 > 2 and d0 = 1 is its multidimensional generaliza-tion to stati
 spheri
ally symmetri
 spa
e � times withd1-dimensional rather than two-dimensional 
oordinate1186
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h a heavy multidi-mensional global monopole leads to a multidimensional
osmology where the symmetry-breaking potential atlate times 
an mimi
 both dark matter and dark en-ergy.In the 
ase where d0 = 4 and d1 > 2, we havea multidimensional global monopole entirely in the ex-tra spa
e-like dimensions. Di�erent models of this kindwere studied in Refs. [12; 13; 17; 18℄. In parti
ular, su
ha monopole in extra dimensions was used in an attemptto explain the origin of in�ation [17℄.2.3. Field equationsWe use the Einstein equations in the formRBA = �{2 eTBA ; eTBA = TBA � ÆBAD � 2TCC ;where TBA is the stress�energy tensor of the s
alar �eldmultiplet. For our hedgehog 
on�guration,eT �� = � 2V Æ��D � 2 ;eT uu = � 2VD � 2 � e�2��02;eT ba = � 2V ÆbaD � 2 � e�2�Æba�2:So far, we did not spe
ify the radial 
oordinate u.For our purposes, the most helpful is the Gaussiangauge, with the real distan
e l along the radial dire
tiontaken as a 
oordinate,u � l; � � 0; (6)and the metri
ds2 = e2
(l)���dx�dx� � �dl2 + e2�(l)d
2� : (7)Then two independent 
omponents of the Einsteinequations take the form (the prime now denotes d=dl)
00 + d0
02 + d1�0
0 = � 2{2D � 2V; (8)�00+d0�0
0+d1�02 = (d1�1�{2�2)e�2�� 2{2D�2V: (9)The Einstein equationGll = �{2T ll

(whereGBA is the Einstein tensor) is free of se
ond-orderderivatives:(d0
0 + d1�0)2 � d0
02 � d1�02 == {2(�02 � 2V ) + d1e�2�(d1 � 1� {2�2): (10)The s
alar �eld equationsrArA�k + �V��k = 0
ombine to yield an equation for �(l):�00 + (d0
0 + d1�0)�0 � d1e�2�� = dVd� : (11)Due to the Bian
hi identities, it is a 
onsequen
e ofEinstein equations (8)�(10). On the other hand, (10)is a �rst integral of Eqs. (8), (9), and (11).In our analyti
al study, we do not spe
ify any par-ti
ular form of V (�). However, we suppose that V has amaximum at � = 0 and a minimum at some � = � > 0,and hen
e V 0(0) = V 0(�) = 0. For 
onvenien
e, we donot single out a 
osmologi
al 
onstant, whi
h may beidenti�ed with a 
onstant 
omponent of the potentialV or, in many 
ases, with its minimum value.The parameter � (as the s
alar �eld itself) hasthe dimension [l�(D�2)=2℄ and thus spe
i�es a 
ertainlength s
ale ��2=(D�2) and energy s
ale �2=(D�2) (weuse the natural units su
h that 
 = ~ = 1.) In the 
on-ventional 
ase D = 4, � has the dimension of energyand 
hara
terizes the SSB energy s
ale.2.4. Regularity 
onditions. A regular 
enterFor the geometry to be regular, we must require �-nite values of all Riemann tensor 
omponents (2). InGaussian gauge (6), the regularity 
onditions simplystate that �0; �00; 
0; 
00 are �nite: (12)For d1 > 0, in addition to (12), a spe
ial regular-ity 
ondition is needed at the 
enter, whi
h is a sin-gular point of the spheri
al 
oordinates in Ru � Sd1.The 
enter is a point where the radius r � e� turnsto zero. The regularity 
onditions there, also followingfrom the �niteness of Riemann tensor 
omponents (2),are the same as in the usual stati
, spheri
ally symmet-ri
 spa
e � time: in terms of an arbitrary u 
oordinate,they are given by
 = 

 +O(r2);e���j�0j = 1+O(r2) as r ! 0; (13)1187 5*
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 is a 
onstant that 
an be set to zero by aproper 
hoi
e of s
ales of the 
oordinates x�. The se
-ond 
ondition in (13) follows, for d1 > 1, from the�niteness of the Riemann tensor 
omponents Rab
d,see (2). Its geometri
 meaning is the property of be-ing lo
ally Eu
lidean at r = 0, whi
h implies thatdr2 = dl2, i.e., the 
orre
t 
ir
umferen
e-to-radius ratiofor small 
ir
les. In the spe
ial 
ase where d1 = 1, withthe quotient spa
e Ru � Sd1 two-dimensional, we evi-dently have Rab
d � 0, but the se
ond 
ondition in (13)should still be imposed to avoid a 
oni
al singularity.It is natural to put l = 0 at a regular 
enter, then lis the distan
e from the 
enter.Regularity of the Ri

i tensor 
omponentsRAB = RACBC implies regularity of the stress�energytensor TBA , when
e it follows thatjV j <1; e�� j�j <1; e��j�0j <1 (14)at any regular point and with any radial 
oordinate.2.5. Boundary 
onditionsDomain walls. For d1 = 0, the metri
 in (1) or (7)des
ribes a plane-symmetri
 �ve-dimensional spa
e �time, the 
oordinate l ranges over the entire real axis,and the broken symmetry is Z2, the mirror symmetrywith respe
t to the plane l = 0. The topologi
al defe
tis a domain wall separating two va
ua 
orresponding totwo values of a single real s
alar �eld �, e.g., � = ��.A

ordingly, we assume that �(l) is an odd fun
tion,whereas 
(l) and V (�) are even fun
tions, and the 
on-ditions at l = 0 are
(0) = 
0(0) = �(0) = 0: (15)We thus have three initial 
onditions for the third-or-der set of equations (8), (10) (Eq. (11) is their 
onse-quen
e), be
ause the unknown fun
tion � is absent inthis 
ase.Global strings and monopoles. For d1 > 0,the regular 
enter requirement leads to the followingboundary 
onditions for Eqs. (8)�(10) at l = 0:�(0) = 
(0) = 
0(0) = r(0) = 0; r0(0) = 1: (16)We have �ve initial 
onditions for a �fth-order setof equations. However, l = 0, being a singular pointof the spheri
al 
oordinate system (not to be 
onfusedwith a spa
e � time 
urvature singularity), is also a sin-gular point of our set of equations. As a result, therequirements of the theorem on the solution existen
eand uniqueness for our set of ordinary di�erential equa-tions are violated. It turns out that the derivative �0(0)

remains undetermined by (16). If we set �0(0) = 0, weobtain a trivial (symmetri
) solution with � � 0 and a
on�guration without a topologi
al defe
t. In the 
asewhere V (0) = 0, we arrive at the �at D-dimensionalmetri
: we then have 
 � 0 and r � l in (7). If, how-ever, V (0) 6= 0, the 
orresponding exa
t solutions tothe Einstein equations for d0 > 1, d1 > 1 are yet to befound. A dire
t inspe
tion shows that it 
annot be thede Sitter or AdS spa
e: the 
onstant 
urvature metri
sare not solutions of the va
uum Einstein equations witha 
osmologi
al 
onstant.Nontrivial solutions exist if �0(0) 6= 0 and 
an 
orre-spond to SSB. We note that the very possibility of SSBappears as a result of violation of the solution unique-ness at r = 0 provided that a maximum of the potentialV (�) at � = 0 
orresponds to the 
enter. The la
kingboundary 
ondition that may lead to a unique solution
an now follow from the requirement of regularity atthe other extreme of the range of l, whose nature is inturn determined by the shape of the potential.In what follows, assuming a regular 
enter, we try to�nd all possible 
onditions at the other extreme of therange Rl of the Gaussian radial 
oordinate, providingthe existen
e of globally regular models with metri
 (7).In other words, we seek solutions with asymptoti
 formssu
h that the quantities in (2) are �nite. All the otherregularity 
onditions, su
h as (14), then follow. In do-ing so, we do not restri
t the possible shape of thepotential V (�) in advan
e. The 
ases under 
onsidera-tion are 
lassi�ed by the �nal values of r = e� (in�nite,�nite or zero) and V (positive, negative or zero). Thes
alar �eld � is assumed to be �nite everywhere.Without loss of generality, we assume that �0(0) > 0near l = 0, i.e., that � in
reases, at least initially, as were
ede from the 
enter.3. DOMAIN WALLS AND THE PROBLEM OFMATTER CONFINEMENTBelow, we mostly 
onsider 
on�gurations withd1 � 2 that 
orrespond to a global monopole in thespheri
ally symmetri
 spa
e Ru � Sd1. Before that,we brie�y dis
uss the problem of matter 
on�nementon the brane and the 
ompli
ations involved the 5-dimensional 
ase.The metri
 
oe�
ient e2
 in (1), sometimes 
alledthe warp fa
tor, a
tually plays the role of a gravita-tional potential that determines an attra
tive or repul-sive nature of gravity with respe
t to the brane. Ifit forms a potential well with a bottom on (or very1188
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ular, that spin-1/2 �eldsare lo
alized due to an in
reasing warp fa
tor in (1+4)-and (1+5)-dimensional models [19, 20℄. It was also re-peatedly 
laimed that in (1+4) dimensions, a branewith an exponentially de
reasing warp fa
tor (as, e.g.,in the RS2 model) 
an trap spin 0 and 2 �elds. Our
al
ulation for a s
alar �eld shows that this is not the
ase.A gravitational trapping me
hanism suggested inRefs. [21℄ was 
hara
terized there as a universal one,suitable for all �elds. It is based on nonexponen-tial warp fa
tors, whi
h in
rease with the distan
efrom the brane and approa
h �nite values at in�nity.This me
hanism was exempli�ed in [22℄ with a spe
ial
hoi
e of two so-
alled �smooth sour
e fun
tions� in thestress�energy tensor, des
ribing a 
ontinuous distribu-tion of some phenomenologi
al matter and vanishingoutside the brane.Our analysis uses more natural assumptions: as
alar �eld system admitting SSB, without any spe-
ial 
hoi
e of the symmetry breaking potential, underthe requirement of global regularity.We brie�y show, following Refs. [10, 11℄ (but inother 
oordinates), that this approa
h in (4+1) dimen-sions always leads to a de
aying warp fa
tor for any
hoi
e of V (�) and that su
h a system 
annot trap atest s
alar �eld. We 
onsider a domain wall in 5 dimen-sions, and hen
e l 2 R, we set d1 = 0 in our equations,the unknown �(l) is absent, and Eqs. (8) and (11) for
 and the single s
alar �eld � are given by
00 + d0
02 = � 2{2d0 � 1V; (17)�00 + d0
0�0 � dVd� = 0: (18)Their �rst integral in (10) redu
es to
02 = � {2d0(d0 � 1)(2V � �02): (19)The initial 
onditions at l = 0 
orresponding to the Z2symmetry (broken for the s
alar �eld but preserved forthe geometry) have form (15).Eliminating V from (17) and (19) and integratingsubje
t to (15), we obtain(d0 � 1)
0(l) = �{ lZ0 �02dl; (20)

and we 
on
lude that 
0(l) is negative at all l > 0and des
ribes gravitational repulsion from the brane;moreover, e�
 monotoni
ally grows with growing l.The only possible regular solution 
orresponds toj
0(1)j < 1. Be
ause 
00(1) = 0 in this 
ase, it fol-lows from Eq. (17) that V (1) < 0, 
orresponding to anegative 
osmologi
al 
onstant � = {2V (1). Hen
e,the only possible regular asymptoti
 form is AdS, withe
 � ae�hl; a; h = 
onst; h = p��=6: (21)The 
onstant a depends on the parti
ular shape ofV (�). At l = 1, there is an AdS horizon (e
 = 0),whi
h, like a bla
k hole horizon, attra
ts matter andprevents its trapping by the brane.We show this for d0 = 4 and a test s
alar �eld �with the LagrangianL� = 12�A���A�� 12m20���� 12��2���; (22)where �� is the 
omplex 
onjugate �eld and the lastterm des
ribes a possible intera
tion between � andthe wall s
alar �eld �; � is the 
oupling 
onstant. The�eld �(xA) satis�es the linear homogeneous (modi�edFo
k �Klein �Gordon) equation1pg�A �pggAB�B��+ (��2 +m20)� = 0: (23)Its 
oe�
ients depend on l only, and �(xA) may besought in the form�(xA) = X(l) exp(�ip�x�); � = 0; 1; 2; 3; (24)where p� = (E; p) is a 
onstant 4-momentum. Thefun
tion X(l) determines the � �eld distribution a
rossthe brane and satis�es the equationX 00+4
0X 0+ �e�2
(E2�p2)���2�m20)�X = 0: (25)The � �eld is able to des
ribe parti
les lo
alized onthe brane only if its stress�energy tensor T �� [�℄ is �nitein the whole 5-spa
e and de
ays su�
iently rapidly atlarge l. As an evident ne
essary 
ondition of lo
aliza-tion, the � �eld energy per unit 3-volume of the branemust be �nite, i.e.,Etot[�℄ = 1Z�1 T ttpgdl == 1Z0 e4
he�2
(E2 + p2)X2 ++ (m20 + ��2)X2 +X 02idl <1: (26)1189
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h ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005Inequality (26) implies a �nite norm of the � �eld de-�ned as k�k2 = 1Z�1 pg ���dl = 1Z�1 e4
 X2 dl: (27)At large l, be
ause e�2
 ! 1, the terms with �and m0 in Eq. (25) 
an be negle
ted, and the equationdetermining the behavior of � at large l 
an be writtenasX 00 � 4hX 0 + P 2e2hlX = 0; P 2 = E2 � p2a2h2 : (28)It is solved in terms of Bessel fun
tions, and the solu-tion has the asymptoti
 formX = Ce3hl=2 sin(Pehl + '0); z !1; (29)where C and '0 are integration 
onstants. We see thatquantity (29) not only is nonvanishing as l ! 1 buteven os
illates with an in
reasing amplitude. As a re-sult, the stress�energy tensor 
omponents T �� [�℄ arein�nite at l = 1. Moreover, integral (26) behavesas R ehldl and diverges. However, normalization in-tegral (27) 
onverges be
ause the integrand behaves ase�hl. This result is sometimes treated as a su�
ient
ondition for lo
alization, but, in our view, it is nottrue be
ause the very existen
e of the brane 
on�gura-tion is put to doubt if the test �eld stress�energy tensoris in�nite somewhere.Thus, a test s
alar �eld with any mass tends to in-�nity as l ! 1 and develops an in�nite stress�energytensor; even its intera
tion with the � �eld that sup-ports the brane does not improve the situation. We
on
lude that a single extra dimension is insu�
ientfor providing gravitational attra
tion of matter to aregular isolated brane.4. A SEARCH FOR REGULAR ASYMPTOTICREGIMESWe now 
onsider �eld equations (8)�(11) for globalmonopoles, assuming d1 � 2. The string 
ase d1 = 1 isleft aside be
ause it has some pe
uliarities that requirea spe
ial study.4.1. Solutions with the r!1 asymptoti
regimeWe denoteV = 2{2VD � 2 ; V1 = V ���r!1: (30)

Evidently, l ! 1 as r ! 1 be
ause otherwise wewould have �0 ! 1, violating the regularity 
ondi-tions. The derivatives �0 and 
0 should tend to 
ertain
onstant values, to be denoted by �01 and 
01, respe
-tively. Both �00 and 
00 vanish as l ! 1. Moreover,the se
ond term in the right-hand side of Eq. (9) alsovanishes. Therefore, in the leading order of magnitude,Eqs. (8) and (9) take the form
01(d0
01 + d1�01) = �V1;�01(d0
01 + d1�01) = �V1: (31)We 
onsider the 
ases where V1 6= 0 and V1 = 0separately.A1: V1 6= 0. Equations (31) immediately give�01 = 
01 = q�V1=(D � 1); V1 < 0: (32)An evident ne
essary 
ondition of the existen
e of reg-ular 
on�gurations is V1 � 0. We thus obtaine� � e
 � e�01l;and the metri
 takes the asymptoti
 formds2 � C1e2�01l���dx�dx� � dl2 � C2e2�01ld
2; (33)with some positive 
onstants C1 and C2. Equation (10)holds automati
ally if �0(1) = 0, as should be the 
aseif we assume a �nite asymptoti
 value of �. Finally, inEq. (11), all terms ex
ept dV=d� manifestly vanish asl ! 1, and hen
e dV=d� also vanishes, whi
h shouldbe the 
ase if the �eld � rea
hes an extremum of thepotential V .The �niteness 
ondition for � as l ! 1 separatesa family of regular solutions among the 
ontinuum ofintegral 
urves leaving the regular 
enter with di�er-ent slopes �0(0). As is 
on�rmed by numeri
al exper-iments, if the potential has only one extremum (min-imum) V1 < 0, then there 
an be only one regularsolution with r ! 1, l ! 1. However, there 
an benumerous regular solutions if the potential has severalextremum points V1 < 0.In parti
ular, if the initial maximum of the potentialis lo
ated below the zero level, V (0) � 0, then there 
anbe a 
ontinuum of regular integral 
urves starting fromthe regular 
enter and returning to � = 0 at l !1. As
an be veri�ed numeri
ally (see Se
. 4), there is a bun
hof su
h 
urves parameterized by �0(0) 2 (0; �0s), where�0(0) = �0s 
orresponds to a limiting regular 
urve (sep-aratrix), also starting at �(0) = 0 but ending at theminimum V (�).The metri
 in (33) solves the Einstein equationswith the stress�energy tensor TBA = ÆBAV1 having the1190
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ture of a (negative) 
osmologi
al term. Moreover,a

ording to (2), the Riemann tensor has the stru
-ture of a 
onstant-
urvature spa
e at large l. In otherwords, su
h solutions have an anti-de Sitter (AdSD)asymptoti
 form far from the 
enter. But the metri
in (33) is not a solution of our equations in the wholespa
e even in the 
ase where � = 
onst. As was alreadymentioned, for d0 > 1 and d1 > 1, 
onstant-
urvaturemetri
s (dSD and AdSD) are not solutions of the va
-uum Einstein equations with a 
osmologi
al 
onstant.A2: V1 = 0. Equations (31) are solved either by�01 = 
01 = 0or by d0
01 + d1�01 = 0:But when we substitute the se
ond 
ondition inEq. (10), taking into a

ount that �0 ! 0 at large l,we obtain d0
012 + d1�012 = 0and return to �01 = 
01 = 0:Thus, both �0 and 
0 vanish at in�nity, and we 
an tryto seek them as expansions in inverse powers of l:�0 = �1l + �2l2 + : : : ; 
0 = 
1l + 
2l2 + : : : (34)Then O(l�2) is the leading order in the Einstein equa-tions, and, to avoid a 
ontradi
tion,r�2 = e�2�should be of the order O(l�2) or smaller. Moreover, be-
ause we assume that � tends to a �nite value �1 > 0,we have �0 = o(1=l), and s
alar �eld equation (11)shows that dVd� = O(l�2)or smaller, i.e., �1 should be an extremum of V (�).If �(l) grows monotoni
ally to �1 > 0, then �1 is aminimum of V be
ause, a

ording to (11),dVd� < 0 as �! �1:However, if V (0) = 0, one 
annot ex
lude that � re-turns to zero as l !1, see item 
) below.In the 
ase where �! �1 > 0, be
auseV1 = dV=d�(�1) = 0;V (�) is de
omposed asV (�) = 12V��(�1)(� � �1)2 + : : : ; (35)

where V�� = d2Vd�2 ;and therefore V = o(l�2):As a result, Eqs. (8)�(10) lead to
1(�1 + d0
1 + d1�1) = 0; (36)�1(�1 + d0
1 + d1�1) = l2r2 (d1 � 1� {2�21); (37)(d0
1 + d1�1)2 � d0
21 � d0�21 == d1 l2r2 (d1 � 1� {2�21): (38)Now, it 
an be easily veri�ed that we must ne
es-sarily set �1 = 1. Indeed, for any �1 6= 0, we haver = e� � l�1 :Therefore, �1 < 1 is ex
luded be
ause it leads to r � l,
ontrary to the above requirement. But if we supposethat �1 > 1, then l2=r2 ! 0 as l ! 1, and Eq. (38)leads either (if 
1 = 0) to�21 = 0or (if 
1 6= 0 and then d0
1 + d1�1 = 1) tod0
21 + d1�21 = 1:Both possibilities 
ontradi
t the assumption that�1 > 1.Thus, �1 = 1, and hen
er � kl; k = 
onst > 0;at large l.Equation (36) now leaves two possibilities,
1 = 0and 
1 = �d1 � 1d0 ;and we 
onsider them separately in items a) and b).Item 
) des
ribes the 
ase where expansions (34) donot work.a) If 
1 = 0, then Eq. (37) yieldsk2 = 1� {2�21d1 � 1 ; (39)1191
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ally. The metri
 takes the asymptoti
 formds2 = e2
1���dx�dx� � dl2 � k2l2 d
2; (40)where 
1 is a 
onstant (we 
annot turn it to zero byres
aling the 
oordinates x� be
ause su
h an operationhas already been done for making 
 = 0 at the 
enter).Thus, the whole metri
 has a �at asymptoti
 form,up to a solid angle de�
it in the spheri
al part due tok2 6= 1. Su
h a de�
it is a 
ommon feature of topo-logi
al defe
ts in the 
ases where they have (almost)�at asymptoti
 forms. Its appearan
e due to 
osmi
strings and global monopoles in spa
e � times withoutextra dimensions is dis
ussed in detail in [8℄. For aglobal monopole in extra dimensions in the parti
ular
ase where d0 = 4 and d1 = 2, it was treated by Bensonand Cho [18℄. We stress that the situation of a quasi-�at asymptoti
 form with a solid angle de�
it is notgeneral. It o

urs only for potentials with zero value atthe minimum, V (�1) = 0;and even in that 
ase, not always, see item B below.Namely, this geometry requiresj�1j < �
r := pd0 � 1{ ; (41)i.e., �1 should be smaller than the 
riti
al value �
rrelated to the D-dimensional Plan
k length. As �1approa
hes �
r, k ! 0, the de�
it absorbs the wholesolid angle, and the above geometry disappears.S
alar equation (11) shows how � approa
hes �1:in the leading order, we have� d1k2l2 = V��(�1)(� � �1): (42)Assuming V��(�1) 6= 0;we obtain �� �1 � 1=l2:b) If 
1 = �(d1 � 1)=d0, then Eq. (37) leads to{2�21 = d1 � 1;i.e., �1 = �
r;while a substitution in (10) gives(d1 � 1)(d0 + d1 � 1) = 0;
ontrary to our assumption that d1�1 > 1. Therefore,this possibility does not lead to a regular asymptoti
regime.


) If V (0) = 0, then a regular integral 
urve, start-ing at l = 0 and � = 0, 
an �nish again with �! 0 asl !1. For large l and r, s
alar �eld equation (11) forj�j � 1 redu
es to�00 + (d0
0 + d1�0)�0 � V2� = 0; (43)where V2 = V��(0):Be
ause � = 0 is a maximum of V (�) by assumption,we assume that V2 < 0.If we further assume that the fun
tions(l) = ed0
+d1�satis�es the 
onditions00=s! 0 as l!1(whi
h is the 
ase, e.g., for any power-behaved fun
-tion), the solution of Eq. (43) is an os
illating fun
tionat large l,� � �0e�(d0
+d1�)=2 
os hpjV2j(l � l0)i ;l!1; (44)where �0 and l0 are arbitrary 
onstants. Substitutingthis in Eq. (8) and averaging 
os2 ! 1=2, we obtained0
 � d0{2jV2j�202(D � 2) lZ l dlrd1 ; l !1: (45)It is easy to verify that for d1 > 2, when the integralin (45) 
onverges, the asymptoti
 form of the solutionfor r = e� and 
 is r � l and
 = 
1 � 
1=ld1�2; 
1; 
1 = 
onst;i.e., we have a �at asymptoti
 regime.In the spe
ial 
ase where d1 = 2, the integral di-verges logarithmi
ally, and the solution may be approx-imated as (again) r � land e
 � 
onst � ln l:This �logarithmi
� asymptoti
 form resembles the be-havior of 
ylindri
ally symmetri
 solutions in standardgeneral relativity.1192
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regimeEvidently, a regular solution 
annot terminate at �-nite r and l <1. Therefore, we seek a regular asymp-toti
 regime as l ! 1, where r and � tend to �nitelimits, r� and ��, and hen
e the quantities �0; �00; �0,and �00 vanish.Moreover, in a regular solution, 
0 should tend to a�nite limit as l ! 1, and hen
e 
00 ! 0. As a result,Eqs. (8) and (9) at large l lead tod0
02 = �V � = 1r2� ({2�2� � d1 + 1); (46)where V � = V (��). We see that V � � 0 and, inaddition, the s
alar �eld should be 
riti
al or larger,�� � �
r. A

ording to (46), at large l,�
0 � h := q�V �=d0 � 0; (47)and Eq. (10), as in the previous 
ases, simply veri�esthat the solution is 
orre
t in the leading order. Thes
alar �eld equation gives a �nite asymptoti
 value ofV� � dV=d�: V�(��) = �d1��r�2� : (48)This value is negative if �� > 0.We obtain di�erent asymptoti
 regimes for nega-tive, positive, and zero values of 
0.B1: e
 � e�hl, h > 0. The metri
 has the asymp-toti
 formds2 = C2e�2hl���dx�dx� � dl2 � r2� d
2: (49)The extra-dimensional part of the metri
 again de-s
ribes an in�nitely long 
ylindri
al tube, but now thevanishing fun
tion gtt = e2
 resembles a horizon. Thesubstitution e�hl = � (
onverting l = 1 to a �nite
oordinate value, � = 0) brings metri
 (49) to the formds2 = C2�2���dx�dx� � d�2h2�2 � r2� d
2: (50)Therefore, � = 0 is a se
ond-order Killing horizon inthe 2-dimensional subspa
e parameterized by t and �,it is of the same nature as, e.g., the extreme Reissner �Nordström bla
k hole horizon, or the AdS horizon inthe se
ond Randall � Sundrum braneworld model. Ape
uliarity of the present horizon is that the spatialpart of the metri
, whi
h at large l takes the form�2(dx)2, is degenerate at � = 0. The volume of thed0-dimensional spa
e�time vanishes as l ! 1. And itremains degenerate even if we pass to Kruskal-like 
o-ordinates in the (t; �) subspa
e. But the D-dimensional


urvature is �nite there, indi
ating that the transitionto negative values of � (where the old 
oordinate l nolonger works) is meaningful1).One more observation 
an be made. A

ordingto (46), the potential V is ne
essarily negative at largel. On the other hand, Eq. (8) may be rewritten inintegral form:ed0
+d1�
0 = � lZ0 ed0
+d1� V dl: (51)The lower limit of the integral 
orresponds to a regular
enter, where the left-hand side of (51) vanishes. Asl ! 1, it also vanishes due to 
 ! �1. Thus, theintegral in the right-hand side, taken from zero to in-�nity, is zero. This means that the potential V (�) hasalternate sign and is positive in a 
ertain part of therange (0; ��).Thus, purely s
alar solutions of the monopole typemay 
ontain se
ond-order horizons. The degeneratenature of the spatial metri
 at the horizon does notlead to a 
urvature singularity, and the solutions maybe 
ontinued in a Kruskal-like manner. Nevertheless,we do not 
onsider these solutions as des
ribing viablemonopole 
on�gurations be
ause the zero volume of the
orresponding spatial se
tion makes the density of anyadditional (test) matter in�nite. It is then impossibleto negle
t its ba
k rea
tion, whi
h evidently destroyssu
h a 
on�guration.B2: e
 � ehl, h > 0. The metri
 has the asymp-toti
 formds2 = C2e2hl���dx�dx� � dl2 � r2�d
2;C = 
onst > 0: (52)Thus, in the spheri
ally symmetri
 extra-dimensionalpart of the metri
, we have an in�nitely long d1-1) One may wonder why we here do not obtain simple (�rst-or-der) horizons, like those in the S
hwarzs
hild and de Sittermetri
s, while su
h horizons generi
ally appeared in the spe-
ial 
ase d0 = 1, whi
h 
orresponds to spheri
ally symmetri
global monopoles in general relativity, 
onsidered in detail inRefs. [14; 16℄.The reason is that for d0 = 1, Æ���� in (3) is zero, and the
orresponding 
omponent of the Riemann tensor is also zero re-gardless of the values of 
0. In terms of the Gaussian 
oordi-nate l, a simple horizon o

urs at some �nite l = lh near whi
hgtt = e2
 � (l� lh)2, su
h that 
0 !1. When d0 = 1, this doesnot lead to a singularity be
ause only the 
ombinations 
00+ 
02and �0
0 are then required to be (and a
tually are) �nite. In the
ase where d0 > 1, instead of a horizon, we would have a 
urva-ture singularity at �nite l, a situation ex
luded from the presentstudy.We thus have a general result for the metri
 in (1): for d0 > 1,horizons 
an only be of order 2 and higher.1193



K. A. Bronnikov, B. E. Meierovi
h ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005dimensional 
ylindri
al �tube� with an in�nitely grow-ing gravitational potential gtt = e2
 .With this 
ylindri
al asymptoti
 form, a

ordingto (47) and (48), the potential V tends to a negativevalue and has a negative slope. Moreover, the integralin Eq. (51) is negative and diverges at large l due togrowing e
 .Regular solutions with 
0(1) > 0 naturally arise ifthe potential V (�) is negative everywhere. We note,however, that when V (0) is above zero, by (51), thefun
tion 
(l) de
reases near the 
enter (l = 0) due toV > 0, and grows at large l. It therefore has a mini-mum at some l > 0.B3: V � = 0. This 
ase 
ontains one more asymp-toti
 regime where the extra spa
e ends with a regulartube.Indeed, we 
an on
e again use expansions (34), butnow with �� instead of �1 and �1 = 0 in a

ordan
ewith r ! r�. Equation (9) (order O(1)) shows that{2�2� = d1 � 1;i.e., �� = �
r:Equation (11) (order O(1)) gives a �nite value of thederivative dV=d�(��) = �d1��=r2�:Further, Eq. (8) (order O(l�2)) yields
1(d0
1 � 1)=l2 = �V ;showing that V = O(l�2)(or even smaller). Be
auseV = (dV=d�(��))(� � ��) + o(� � ��);we have to 
on
lude that�� �� = O(l�2)or smaller.Now, assumingV (�) = V2=l2 + : : : ;we 
an �nd V2 dire
tly as the leading term in(dV=d�(��))(� � ��)and, independently, from Eq. (9) (order O(l�2)), ob-taining the two expressionsV2 = �d1���2r2�

and V2 = �(D � 2)���2r2� ;when
e it follows that d1 = D � 2, or d0 = 1. Su
h a�
riti
al� asymptoti
 regime (� ! �
r, gtt ! 0, andr ! 
onst) was indeed found for d0 = 1 in our pa-pers [14; 16℄ des
ribing (d1+2)-dimensional spheri
allysymmetri
 global monopoles, but, as we see, it does notexist in the 
ase under 
onsideration, d0 > 1.The only remaining possibility is that�� �� = o(l�2)and 
 ! 
� = 
onst;i.e., a solution tending at large l to the following simple��ux-tube� solution, valid for any d0 and d1:r = 
onst; 
 = 
onst; � = �
r;V = 0; dV=d� = �d1�
r=r2: (53)Su
h a solution 
an exist if the potential V (�) has theproperties V (�
r) = 0and dV=d�(�
r) < 0;and the last equality in (53) then relates the 
onstantradius r to dV=d�(�
r).4.3. Solutions with the r! 0 asymptoti
regimeThe limit r ! 0 means a 
enter, and for it to beregular, 
onditions (12) must hold, and hen
e, for oursystem, initial 
onditions (16) with l = 0 should berepla
ed, e.g., with l = l0 > 0.We now re
all that 
onditions (16) determine the so-lution of the �eld equations for a given potential V (�)up to the value of �0. In parti
ular, if there is one more
enter at l = l0, then, starting from it and 
hoosing�0(l0) = ��0(0);we obtain the same solution in terms of l0 � l insteadof l. We thus obtain a solution with two regular 
en-ters that is symmetri
 with respe
t to the middle pointl = l0=2, to be 
alled the equator. To be smooth there,it must satisfy the 
onditions�0 = 
0 = �0 = 0 at l = l0=2; (54)1194
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h impli
itly restri
t the shape of the potential.Given a potential V (�), 
onditions (54) 
reate, in gen-eral, three relations among l0, �0(0), and the free pa-rameters of V (�) (if any). Eliminating l0 and �(0), wemust obtain a single ��ne tuning� 
ondition for theparameters of the potential.A ne
essary 
ondition for the existen
e of su
h asolution is that V (�) has a variable sign. This followsfrom Eq. (51) by integration over the segment (0; l0=2):the integral vanishes be
ause 
0 = 0 at both ends.Moreover, as follows from Eqs. (9) and (10)with (54),r�2e (d1 � 1� {2�2e) = D � 2d1 V e = �00e + V e; (55)leading to d1�00e = (d0 � 1)V e(where the index �e� refers to values at the equator).If r = e� is assumed to grow monotoni
ally from zeroto its maximum value at the equator, we have �00e < 0,and hen
e V e < 0, and (55) implies that �e > �
r, i.e.,the s
alar �eld at the equator must ex
eed its 
riti
alvalue.The existen
e of asymmetri
 solutions with two reg-ular 
enters, 
orresponding to�0(l0) 6= ��0(0);is also possible. In this 
ase, there would be no equa-tor in general, be
ause � and � would have maxima atdi�erent l; moreover, in general, we would have
(l0) 6= 
(0) = 0;and 
(l) 
ould even have no extremum. But be
ause
0 = 0 at both 
enters, the integral in (51) taken from0 to l0 should vanish, and hen
e, again, V would havealternating sign.The whole 
on�guration with two regular 
entershas the topology M d0 � Sd1+1, with 
losed extra di-mensions in the spirit of Kaluza �Klein models. Themain di�eren
e from them is that all variables now es-sentially depend on the extra 
oordinate l.The main properties of all regular asymptoti
regimes found, whi
h lead to a 
lassi�
ation of possi-ble global monopole 
on�gurations in extra dimensions,are summarized in the Table. The word �attra
tion�
orresponds to an in
reasing warp fa
tor far from thebrane.

5. SCALAR FIELD TRAPPING BY GLOBALMONOPOLESWe 
onsider a test s
alar �eld with Lagrangian (22)in the ba
kground of global monopole 
on�gurationsdes
ribed in Se
. 4. After variable separation (24), the�eld equation for a p-mode of the s
alar �eld � be
omesX 00 + (d0
0 + d1�0)X 0 + (e�2
p2 � �2)X = 0; (56)where p2 = p�p� = E2 � p2is the d0-momentum squared and�2 = m20 + ��2is the e�e
tive mass squared. The trapping 
riterion
onsists, as before, in the requirements that the � �eldstress�energy tensor must vanish far from the braneand the total � �eld energy per unit volume of thebrane must be �nite, i.e.,Etot[�℄ = Z pgdd1+1x�� he�2
(E2 + p2)X2 + �2X2 +X 02idl <1: (57)The �rst requirement means that ea
h term in thesquare bra
kets in (57) must vanish at large l.We now 
he
k whether these requirements 
an bemet at di�erent kinds of asymptoti
 regimes listed inthe Table.A1: attra
ting AdS asymptoti
 regime � � 
 � kl,k > 0. At large l, Eq. (56) redu
es to the equation with
onstant 
oe�
ientsX 00 + (D � 1)X � �2X = 0;and its solution vanishing as l !1 isX � e�al;a = 12 h(D � 1)k +p(D � 1)2k2 + 4�2 i : (58)It is straightforward to verify that the trapping require-ments are satis�ed for all momenta p and all �2 � 0.A2(a): a quasi-�at asymptoti
 regime with a solidangle de�
it. At large l, Eq. (25) redu
es toX 00 + d1X=l+ P 2X = 0;where P 2 = p2e�2
1 � �2and 
1 is the limiting value of 
 at l =1. In terms ofY = ld1=2X;1195
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ation of global monopole solutions for arbitrary V (�) by asymptoti
 types. Attra
tion or repulsion is understoodwith respe
t to the 
enterNotation r V (�) � 
 Asymptoti
 typeA1 1 V (�) < 0 � < �
r 1 AdS, attra
tionA2(a) 1 0 � < �
r 
onst �at, solid angle de�
itA2(
), d1 > 2 1 0 0 
onst �atA2(
), d1 = 2 1 0 0 1 �logarithmi
�, attra
tionB1 r� V� < 0 �� > �
r �1 double horizon, repulsionB2 r� V� < 0 �� > �
r 1 attra
ting tubeB3 r� 0 �� = �
r 
onst trivial tubeC 0 V (0) 0 
onst se
ond 
enterthis equation is (at large l) rewritten asY 00 + P 2Y = 0;while trapping 
ondition (57) implies thatZ ld1X2(l) dl <1:Therefore, only an exponentially falling Y (l) is suit-able. In other words, the trapping 
ondition is P 2 < 0,or p2 < m2
r := �2e2
1 ; (59)where now �2 = m20 + �2�2:We note that p2 = E2 � p2is nothing else but the observable mass of a free�-parti
le if the observer wat
hes its motion in theMinkowski se
tion l = 0 of our manifold, i.e., on thebrane. Hen
e, 
ondition (59) means that the branetraps all s
alar parti
les of masses smaller than the 
rit-i
al value m
r depending on the model parameters.A2(
), d1 > 2: this 
ase di�ers from the previousone only by the asymptoti
 value of �, whi
h is nowzero, and hen
e � = m0.A2(
), d1 = 2: a �logarithmi
� asymptoti
 regime,e
 � ln l. Be
ause e�2
 � 1=(ln l)2 ! 0, the term withp2 drops out from Eq. (56), whi
h then leads to thede
reasing solution X � l�1e��l;and a �-parti
le is trapped provided � = m0 > 0.

0
V

� �" > 0" = 00 > " > �1�1 > "Fig. 1. Mexi
an hat potentialB1: a horizon. As was remarked previously, we donot regard this 
on�guration viable and omit it fromour dis
ussion.B2: an attra
ting tube, r ! r� and 
 � hl, h > 0as l !1. Equation (56) takes the formX 00 + d0hX 0 � �2X = 0and has the de
reasing solutionsX � e�al; a = 12 �d0h+qd20h2 + 4�2� : (60)As in item A1, it is easy to verify that the trapping
onditions hold provided �2 > 0.B3: a trivial tube, both � and 
 tend to 
onstantsas l ! 1. In Eq. (56), the term with X 0 drops out atlarge l, and an exponentially de
reasing solution existsunder 
ondition (59) where�2 = m20 + �2�2
r:1196
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Fig. 2. A regular solution with an AdS asymptoti
 regime (type A1) for the potential (61) with {�2 = 5, " = �0:75, d0 = 4,d1 = 3
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Fig. 3. Regular (ex
ept the dotted 
urves) solutions with the B2 asymptoti
 regime (attra
ting tube), su
h that r! r� <1and 
01 > 0C: these 
on�gurations have no large l asymptoti
regimes and are not interpreted in terms of branes.A 
on
lusion is that s
alar parti
les of any mass andmomentum are trapped by global monopoles with A1and B2 asymptoti
 regimes with exponentially growingwarp fa
tors and A2(
) with a logarithmi
 asymptoti
regime; they are trapped under restri
tions (59) on theparti
le's observable mass by monopoles with A2 andB3 asymptoti
 regimes whose warp fa
tors tend to 
on-stant limits far from the brane.6. NUMERICAL RESULTS: MEXICAN HATPOTENTIALIn this se
tion, we present the results of our nu-meri
al 
al
ulations, whi
h 
on�rm the 
lassi�
ation ofregular solutions given above. We have used the �Mex-

i
an hat� potential in the form (Fig. 1)V = ��44 �"+�1� �2�2�2�: (61)It has two extremum points in the range � � 0: a max-imum at � = 0 and a minimum at � = �. The SSBenergy s
ale is 
hara
terized by �2=(D�2), whilep�� de-termines, as usual, a length s
ale. The non
onventionalparameter " introdu
ed in (61), moves the potential upand down, whi
h is equivalent to adding a 
osmologi
al
onstant to the usual Mexi
an hat potential.Given potential (61), the nature of the solutionsessentially depends on its two dimensionless parame-ters: ", �xing the extremal values of the potential withrespe
t to zero, and {2�2, 
hara
terizing the gravita-tional �eld strength: as we remember from Se
. 4, theasymptoti
 regime r !1 only exists when �1 < �
r,whi
h is the same as{2�2 < d1 � 1:1197
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Fig. 4. A regular solution with the asymptoti
 regime r! r� <1 and 
01 < 0 (
ase B1, horizon)
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Fig. 5. Type-C solutions with two regular 
enters (r! 0, �! 0, 
0 ! 0 as l! l0)If " > 0, potential (61) is always positive, and, ina

ordan
e with item A1, regular solutions are absent.In the 
onventional 
ase where " = 0, in the range0 < {2�2 < d1 � 1;there are asymptoti
ally �at regular solutions with asolid angle de�
it (
lass A2).The most 
omplex 
ase 0 > " > �1 
ontains a vari-ety of possibilities. Regular solutions with the asymp-toti
 behavior r ! 1 as l ! 1 having 
01 > 0 (
aseA1) exist in some range 0 < � < �s, where the separat-ing value �s depends on d0; d1, and ". As an example,su
h a regular solution with {2�2 = 5, " = �0:75,d0 = 4, and d1 = 3 is presented in Fig. 2.Depending on the parameters of the potential,there are regular solutions with the asymptoti
 regimer ! r� < 1 and 
01 > 0 (
ase B2) in some range�s1 < � < �s2, see Fig. 3. Here, " = �0:9, d0 = 4,d1 = 3. The 
urves are given for {2�2 = 10, 12, 15,20, 30, 40, and 45 (from top down). The dotted 
urves({2�2 = 10 and {2�2 = 45) 
orrespond to singular
on�gurations. It follows that for " = �0:9, d0 = 4,

d1 = 3, the lower bound of this parameter leading toregular models is somewhere between 10 and 12, whilethe upper bound is between 30 and 45.An example of a regular solution with the asymp-toti
 regime r ! r� < 1 and 
01 < 0 (
lass B1), 
or-responding to a se
ond-order Killing horizon, is shownin Fig. 4.The value {�2 = 17:37 is �ne-tuned to the param-eters " = �0:75, d0 = 4, d1 = 2 of this parti
ularsolution.Other examples of �ne-tuned regular solutions,namely, type C with two regular 
enters (r ! 0, �! 0,
0 ! 0 at l! l0), are presented in Fig. 5.For all the three 
urves, d0 = 4 and d1 = 2. The
urves (1, 2, and 3 ) 
orrespond to " = �0:15, �0:5,and �0:9626, respe
tively. The �ne-tuned values of{2�2 are approximately 2.637, 6.17, and 100.In the 
ase " � �1, the maximum V (0) � 0 is at orbelow the zero level, and there is a possibility for theintegral 
urves to start and �nish at the same value�(0) = �(1) = 0. We then observe a whole family of1198
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0 2 4 6 8 10l0 2 4 6 8 10l 0 10 20 30l�0:50

0:51:0 2040 0:51:0
Fig. 6. Regular solutions starting and terminating at �(0) = �(1) = 0. The limiting solid 
urve with�0(0) = �0
 = 0:4401425 (separatrix) terminates at �(1) = �su
h regular 
urves in the range 0 < �0(0) < �0
, seeFig. 6.For the parti
ular example presented (" = �1:5,{�2 = 1, d0 = 4, d1 = 3), the values of �0(0) forthe dotted 
urves ending with � = 0 are 0.2, 0.3, and0.4 (from bottom up). The limiting solid 
urve with�0(0) = �0
 = 0:4401425 (separatrix) is a regular solu-tion ending at the minimum of the potential: �! � asl !1.The Mexi
an hat potential (61), with its onlytwo extrema at � = 0 and � = �, 
annot demon-strate the whole variety of solutions that appear withmore sophisti
ated potentials having additional max-ima and/or minima. Thus, for instan
e, 
lass-A solu-tions may have a large-r asymptoti
 regime at any su
hextremum.7. CONCLUDING REMARKSWe have obtained as many as seven 
lasses ofregular solutions of the �eld equations des
ribing aMinkowski thi
k brane with a global monopole in extradimensions, see the Table.Some of these 
lasses, namely, A1 with an AdSasymptoti
 form and B2 ending with an attra
tingtube, have the exponentially growing warp fa
tor e2
at large l and are shown to trap linear test s
alar �eldsmodes of any mass and momentum.Others�A2(a) and A2(
) for d1 > 2, ending witha �at metri
 at large l�have a warp fa
tor tendingto a 
onstant whose value is determined by the shapeof the potential V (�). They are also shown to trapa test s
alar �eld but the observable mass of the �eldis restri
ted from above by a value depending on theparti
ular model of the global monopole.

Lastly, for d1 = 2, i.e., a three-dimensional globalmonopole in the extra dimensions, 
lass A2(
) solutionshave a logarithmi
ally growing warp fa
tor. All tests
alar �eld modes are trapped by this 
on�guration,but the slow growth of 
(l) probably means that thetest �eld is strongly smeared over the extra dimensions.All su
h 
on�gurations, in sharp 
ontrast to RS2-like domain walls in 5 dimensions, are able to traps
alar matter. It is 
ertainly ne
essary to 
he
k whethernonzero-spin �elds are trapped as well and Newton'slaw of gravity holds on the brane in 
onformity withthe experiment. We hope to 
onsider these subje
ts inour future publi
ations.In addition to the trapping problem, a short
omingof RS2-type Minkowski branes is that they are ne
es-sarily �ne-tuned. Many of the global monopole solu-tions, at least those existing in the weak gravity regime(
lass A), are free of this short
oming and are thus bet-ter for thi
k brane model building.Some results and 
on
lusions in this paper were pre-viously given in Refs. [12, 13℄. The main di�eren
eof our approa
h from theirs is their boundary 
ondi-tion, whi
h is � = � in our notation. This ex
ludesthe 
ases where the solution ends at a maximum orslope of the potential, su
h as, e.g., symmetri
 solu-tions with two regular 
enters. Another di�eren
e isthat they 
onsider solutions with an exponentially de-
reasing warp fa
tor as those leading to matter 
on�ne-ment on the brane. In our view, su
h solutions withse
ond-order horizons do not represent viable modelsof a braneworld. We 
on
lude that the present pa-per gives the most 
omplete 
lassi�
ation of all regu-lar solutions for global monopoles in extra dimensions,whi
h, even without gauge �elds, seem to be promisingas braneworld models.1199
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