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GRAVITATING GLOBAL MONOPOLES IN EXTRA DIMENSIONSAND THE BRANEWORLD CONCEPTK. A. BronnikovCenter for Gravitation and Fundamental Metrology, Russian Researh Institute for Metrologial Servie117313, Mosow, RussiaInstitute of Gravitation and Cosmology, Peoples' Friendship University of Russian117198, Mosow, RussiaB. E. Meierovih *Kapitza Institute for Physial Problems117334, Mosow, RussiaSubmitted 15 June 2005Multidimensional on�gurations with a Minkowski external spae � time and a spherially symmetri globalmonopole in extra dimensions are disussed in the ontext of the braneworld onept. The monopole is formedwith a hedgehog-like set of salar �elds �i with a symmetry-breaking potential V depending on the magnitude�2 = �i�i. All possible kinds of globally regular on�gurations are singled out without speifying the shapeof V (�). These variants are governed by the maximum value �m of the salar �eld, haraterizing the energysale of symmetry breaking. If �m < �r (where �r is a ritial value of � related to the multidimensionalPlank sale), the monopole reahes in�nite radii, whereas in the �strong �eld regime�, when �m � �r, themonopole may end with a �nite-radius ylinder or have two regular enters. The warp fators of monopoleswith both in�nite and �nite radii may either exponentially grow or tend to �nite onstant values far from theenter. All suh on�gurations are shown to be able to trap test salar matter, in striking ontrast to RS2type �ve-dimensional models. The monopole strutures obtained analytially are also found numerially for theMexian hat potential with an additional parameter ating as a osmologial onstant.PACS: 04.50.+h, 11.27.+d1. INTRODUCTIONAording to a presently popular idea, our observ-able Universe an be loated on a 4-dimensional sur-fae, alled the brane, embedded in a higher-dimen-sional manifold, alled the bulk. This �braneworld�onept, suggested in the 1980s [1℄, is broadly dis-ussed nowadays, mainly in onnetion with the reentdevelopments in supersymmetri string/M-theories [2℄.The reason why we do not see any extra dimensions isthat the observed matter is on�ned to the brane, andonly gravity propagates in the bulk. There are numer-ous appliations of the braneworld onept to partilephysis, astrophysis, and osmology, suh as the hier-*E-mail: meierovih�yahoo.om; kb20�yandex.ru;http://geoities.om/meierovih/

arhy problem and the desription of dark matter anddark energy [3℄.Most of the studies are restrited to in�nitelythin branes with delta-like loalization of matter. Awell-known example is Randall and Sundrum's seondmodel (RS2) [4℄, in whih a single Minkowski brane isembedded in a 5-dimensional anti-de Sitter (AdS) bulk.Thin branes an, however, be only treated as arough approximation beause any fundamental under-lying theory, be it quantum gravity, string or M-theory,must ontain a fundamental length beyond whih thelassial spae � time desription is impossible. It istherefore neessary to justify the in�nitely thin braneapproximation as a well-de�ned limit of a smooth stru-ture, a thik brane, obtainable as a solution of oupledgravitational and matter �eld equations. Suh a on�g-uration is then required to be globally regular, stable,1184



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Gravitating global monopoles in extra dimensions : : :and properly onentrated around a 3-dimensional sur-fae that is meant to desribe the observed spatial di-mensions. Topologial defets emerging in phase tran-sitions with spontaneous symmetry breaking (SSB) areprobably the best andidates for this role.It should be mentioned that the evolution of theUniverse, aording to modern views, ontained a se-quene of phase transitions with SSB. A deisive steptoward osmologial appliations of the SSB oneptwas made in 1972 by Kirzhnits [5℄. He assumed that,as in the ase of solid substanes, a symmetry of a�eld system, existing at su�iently high temperatures,ould be spontaneously broken as the temperature fallsdown. A neessary onsequene of suh phase tran-sitions is the appearane of topologial defets. The�rst quantitative analysis of the osmologial onse-quenes of SSB was given by Zel'dovih, Kobzarev,and Okun' [6℄. Later, the SSB phenomenon and vari-ous topologial defets were widely used in in�ationaryUniverse models and in attempts to explain the ori-gin of the large-sale struture of the Universe, see,e.g., [7, 8℄.The properties of global topologial defets are gen-erally desribed with the aid of a multiplet of salar�elds playing the role of an order parameter. If a de-fet is to be interpreted as a braneworld, its struture isdetermined by the self-gravity of the salar �eld systemand may be desribed by a set of Einstein and salarequations.In this paper, we analyze the gravitational prop-erties of andidate (thik) braneworlds with the 4-di-mensional Minkowski metri as global topologial de-fets in extra dimensions. Our general formulationovers partiular ases suh as a brane (domain wall)in 5-dimensional spae � time (one extra dimension),a global osmi string with winding number n = 1(two extra dimensions), and global monopoles (threeor more extra dimensions). We restrit ourselves toMinkowski branes beause most of the existing prob-lems are learly seen even in these omparatively simplesystems; on the other hand, in the majority of physi-al situations, the inner urvature of the brane itself ismuh smaller than the urvature related to brane for-mation, and therefore the main qualitative features ofMinkowski branes should survive in urved branes.Brane worlds as thik domain walls in a 5-dimen-sional bulk have been disussed in many papers (see,e.g., [9℄ and the referenes therein). Suh systemswere analyzed in a general form in Refs. [10, 11℄, with-out speifying the symmetry-breaking potential; it wasshown, in partiular, that all regular on�gurationsshould have an AdS asymptoti form. Therefore, all

possible thik branes are merely regularized versionsof the RS2 model, with all onomitant di�ulties inmatter �eld on�nement. Thus, it has been demon-strated [11℄ that a test salar �eld has a divergentstress�energy tensor in�nitely far from the brane, atthe AdS horizon. A reason for that is the repulsivegravity of the RS2 and similar models: gravity repelsmatter from the brane and pushes it towards the AdShorizon. To overome this di�uty, it is natural totry onsidering a greater number of extra dimensions.This was one of the reasons for us to onsider higher-dimensional bulks.We study the simplest possible realization of thisidea, assuming a stati, spherially symmetri on�gu-ration of the extra dimensions and a thik Minkowskibrane as a onentration of the salar �eld stress�energy tensor near the enter. The possible trappingproperties of gravity for test matter are then deter-mined by the behavior of the so-alled warp fator (themetri oe�ient ating as a gravitational potential) farfrom the enter, and we indeed �nd lasses of regularsolutions where gravity is attrating.Some of our results repeat those obtained inRefs. [12, 13℄, whih have disussed global and gauge(`t Hooft �Polyakov-type) monopoles in extra dimen-sions; a more detailed omparison is given in Se. 7.The paper is organized as follows. In Se. 2, we for-mulate the problem, introdue spae � times with globaltopologial defets in the extra dimensions, write theequations and boundary onditions, and demonstrate aonnetion between the possibility of SSB and the prop-erties of the potential at a regular enter. In Se. 3,we brie�y disuss the trapping problem for RS2-typedomain-wall models and show that they always haverepulsive gravity and are unable to trap matter in theform of a test salar �eld. Setion 4 is devoted to asearh for regular global monopole solutions in higherdimensions by analyzing their asymptoti properties farfrom the enter. All regular on�gurations are lassi-�ed by the behavior of the spherial radius r and by theproperties of the potential. This leads to separation ofthe �weak gravity� and �strong gravity� regimes, re-lated to maximum values of the salar �eld magnitude.In the weak gravity regime, the spherial radius rtends to in�nity along with the distane from the en-ter. Suh moderately urved on�gurations exist with-out any restritions of �ne-tuning type. If the salar�eld magnitude exeeds some ritial value, the radiusr either tends to a �nite value far from the enter orreturns to zero at a �nite distane from the enter, thusforming one more enter, whih should also be regular.Some ases require �ne tuning of the parameters of the5 ÆÝÒÔ, âûï. 6 (12) 1185



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005potential, and hene one may believe that stati on-�gurations an only exist if the salar and gravitationalfores are somewhat mutually balaned.In Se. 5, we show that in ontrast to domain walls,global monopoles in di�erent regimes do provide salar�eld trapping on the brane. Setion 6 is a brief de-sription of numerial experiments with the Mexianhat potential admitting shifts up and down, equivalentto introduing a bulk osmologial onstant. Their re-sults on�rm and illustrate the onlusions in Se. 4.Setion 7 summarizes the results.2. PROBLEM SETTING2.1. GeometryWe onsider a (D = d0+d1+1)-dimensional spae �time with the struture M d0 �Ru �Sd1 and the metrids2 = e2(u)���dx�dx� �� �e2�(u)du2 + e2�(u)d
2� : (1)Here, ���dx�dx� = dt2 � (dx)2is the Minkowski metri in the subspae M d0 ,��� = diag(1; �1; : : : ; �1);d
 is a linear element on a d1-dimensional unit sphereSd1; �, �, and  are funtions of the radial oordinateu with the de�nition domain Ru � R, to be spei�edlater. The Riemann tensor has a diagonal form, andits nonzero omponents areR���� = �e�2�02Æ���� ;Rabd = �e�2� � e�2��02� Æabd;Ru�u� = �Æ�� e��� �e��0�0 ;Ruaub = �Æab e���� �e����0�0 ;Ra�b� = �Æ�� Æab e�2�0�0; (2)where Æ���� = Æ�� Æ�� � Æ��Æ�� (3)and similarly for Æabd. Greek indies �; �; : : : orres-pond to the d0-dimensional spae � time and Latin in-dies a; b; : : : to d1 angular oordinates on Sd1. Wemostly bear in mind the usual dimension d0 = 4, butkeep d0 arbitrary for generality.A neessary ondition of regularity is the �nitenessof the Kretshmann salarK = RABCDRCDAB :

(Capital indies A;B; : : : orrespond to all D oordi-nates.) In our ase, K is a sum of squares of all nonzeroRABCD. Hene, in regular on�gurations, all ompo-nents of Riemann tensor (2) are �nite.For the Rii tensor, we haveR�� = �Æ��e�2� [00 + 0(��0 + d00 + d1�)℄ ;Ruu = �e�2� �d0(00 + 02 � �00)++d1(�00 + �02 � �0�0)� ;Rnm = e�2�(d1 � 1)Ænm �� Ænme�2� [�00 + �0(��0 + d00 + d1�0)℄ : (4)
2.2. Topologial defetsA global defet with a nonzero topologial hargean be onstruted as a multiplet of d1 + 1 real salar�elds �k , in the same way as, e.g., in [14℄. It omprisesa hedgehog on�guration in Ru � Sd1:�k = �(u)nk(xa);where nk is a unit vetor in the (d1 + 1)-dimensionalEulidean target spae of the salar �elds:nknk = 1:The total Lagrangian of the system is taken in theform L = R2{2 + 12gAB�A�k�B�k � V (�); (5)where R is the D-dimensional salar urvature, {2is the D-dimensional gravitational onstant, andV is a symmetry-breaking potential depending on�2(u) = �a�a.In the ase where d1 = 0, there is only one extra di-mension. The topologial defet is a �at domain wall.Combined with d0 = 4, it is widely onsidered withreferene to our Universe. Regular thik Minkowskibranes supported by salar �elds with arbitrary poten-tials were analyzed in [10, 11℄, see also Se. 3 below.The ase where d1 = 1 is a global osmi string withthe winding number n = 1. If d0 = 2, it is a osmistring in four dimensions, whose gravitational proper-ties are reviewed in [15℄. The ase d0 = 4 orrespondsto a string in extra dimensions.The ase where d1 = 2 and d0 = 1 is a globalmonopole in our 4-dimensional spae � time. Wehave analyzed it in detail in [16℄. The ase whered1 > 2 and d0 = 1 is its multidimensional generaliza-tion to stati spherially symmetri spae � times withd1-dimensional rather than two-dimensional oordinate1186



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Gravitating global monopoles in extra dimensions : : :spheres [14℄. It was shown that suh a heavy multidi-mensional global monopole leads to a multidimensionalosmology where the symmetry-breaking potential atlate times an mimi both dark matter and dark en-ergy.In the ase where d0 = 4 and d1 > 2, we havea multidimensional global monopole entirely in the ex-tra spae-like dimensions. Di�erent models of this kindwere studied in Refs. [12; 13; 17; 18℄. In partiular, suha monopole in extra dimensions was used in an attemptto explain the origin of in�ation [17℄.2.3. Field equationsWe use the Einstein equations in the formRBA = �{2 eTBA ; eTBA = TBA � ÆBAD � 2TCC ;where TBA is the stress�energy tensor of the salar �eldmultiplet. For our hedgehog on�guration,eT �� = � 2V Æ��D � 2 ;eT uu = � 2VD � 2 � e�2��02;eT ba = � 2V ÆbaD � 2 � e�2�Æba�2:So far, we did not speify the radial oordinate u.For our purposes, the most helpful is the Gaussiangauge, with the real distane l along the radial diretiontaken as a oordinate,u � l; � � 0; (6)and the metrids2 = e2(l)���dx�dx� � �dl2 + e2�(l)d
2� : (7)Then two independent omponents of the Einsteinequations take the form (the prime now denotes d=dl)00 + d002 + d1�00 = � 2{2D � 2V; (8)�00+d0�00+d1�02 = (d1�1�{2�2)e�2�� 2{2D�2V: (9)The Einstein equationGll = �{2T ll

(whereGBA is the Einstein tensor) is free of seond-orderderivatives:(d00 + d1�0)2 � d002 � d1�02 == {2(�02 � 2V ) + d1e�2�(d1 � 1� {2�2): (10)The salar �eld equationsrArA�k + �V��k = 0ombine to yield an equation for �(l):�00 + (d00 + d1�0)�0 � d1e�2�� = dVd� : (11)Due to the Bianhi identities, it is a onsequene ofEinstein equations (8)�(10). On the other hand, (10)is a �rst integral of Eqs. (8), (9), and (11).In our analytial study, we do not speify any par-tiular form of V (�). However, we suppose that V has amaximum at � = 0 and a minimum at some � = � > 0,and hene V 0(0) = V 0(�) = 0. For onveniene, we donot single out a osmologial onstant, whih may beidenti�ed with a onstant omponent of the potentialV or, in many ases, with its minimum value.The parameter � (as the salar �eld itself) hasthe dimension [l�(D�2)=2℄ and thus spei�es a ertainlength sale ��2=(D�2) and energy sale �2=(D�2) (weuse the natural units suh that  = ~ = 1.) In the on-ventional ase D = 4, � has the dimension of energyand haraterizes the SSB energy sale.2.4. Regularity onditions. A regular enterFor the geometry to be regular, we must require �-nite values of all Riemann tensor omponents (2). InGaussian gauge (6), the regularity onditions simplystate that �0; �00; 0; 00 are �nite: (12)For d1 > 0, in addition to (12), a speial regular-ity ondition is needed at the enter, whih is a sin-gular point of the spherial oordinates in Ru � Sd1.The enter is a point where the radius r � e� turnsto zero. The regularity onditions there, also followingfrom the �niteness of Riemann tensor omponents (2),are the same as in the usual stati, spherially symmet-ri spae � time: in terms of an arbitrary u oordinate,they are given by =  +O(r2);e���j�0j = 1+O(r2) as r ! 0; (13)1187 5*



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005where  is a onstant that an be set to zero by aproper hoie of sales of the oordinates x�. The se-ond ondition in (13) follows, for d1 > 1, from the�niteness of the Riemann tensor omponents Rabd,see (2). Its geometri meaning is the property of be-ing loally Eulidean at r = 0, whih implies thatdr2 = dl2, i.e., the orret irumferene-to-radius ratiofor small irles. In the speial ase where d1 = 1, withthe quotient spae Ru � Sd1 two-dimensional, we evi-dently have Rabd � 0, but the seond ondition in (13)should still be imposed to avoid a onial singularity.It is natural to put l = 0 at a regular enter, then lis the distane from the enter.Regularity of the Rii tensor omponentsRAB = RACBC implies regularity of the stress�energytensor TBA , whene it follows thatjV j <1; e�� j�j <1; e��j�0j <1 (14)at any regular point and with any radial oordinate.2.5. Boundary onditionsDomain walls. For d1 = 0, the metri in (1) or (7)desribes a plane-symmetri �ve-dimensional spae �time, the oordinate l ranges over the entire real axis,and the broken symmetry is Z2, the mirror symmetrywith respet to the plane l = 0. The topologial defetis a domain wall separating two vaua orresponding totwo values of a single real salar �eld �, e.g., � = ��.Aordingly, we assume that �(l) is an odd funtion,whereas (l) and V (�) are even funtions, and the on-ditions at l = 0 are(0) = 0(0) = �(0) = 0: (15)We thus have three initial onditions for the third-or-der set of equations (8), (10) (Eq. (11) is their onse-quene), beause the unknown funtion � is absent inthis ase.Global strings and monopoles. For d1 > 0,the regular enter requirement leads to the followingboundary onditions for Eqs. (8)�(10) at l = 0:�(0) = (0) = 0(0) = r(0) = 0; r0(0) = 1: (16)We have �ve initial onditions for a �fth-order setof equations. However, l = 0, being a singular pointof the spherial oordinate system (not to be onfusedwith a spae � time urvature singularity), is also a sin-gular point of our set of equations. As a result, therequirements of the theorem on the solution existeneand uniqueness for our set of ordinary di�erential equa-tions are violated. It turns out that the derivative �0(0)

remains undetermined by (16). If we set �0(0) = 0, weobtain a trivial (symmetri) solution with � � 0 and aon�guration without a topologial defet. In the asewhere V (0) = 0, we arrive at the �at D-dimensionalmetri: we then have  � 0 and r � l in (7). If, how-ever, V (0) 6= 0, the orresponding exat solutions tothe Einstein equations for d0 > 1, d1 > 1 are yet to befound. A diret inspetion shows that it annot be thede Sitter or AdS spae: the onstant urvature metrisare not solutions of the vauum Einstein equations witha osmologial onstant.Nontrivial solutions exist if �0(0) 6= 0 and an orre-spond to SSB. We note that the very possibility of SSBappears as a result of violation of the solution unique-ness at r = 0 provided that a maximum of the potentialV (�) at � = 0 orresponds to the enter. The lakingboundary ondition that may lead to a unique solutionan now follow from the requirement of regularity atthe other extreme of the range of l, whose nature is inturn determined by the shape of the potential.In what follows, assuming a regular enter, we try to�nd all possible onditions at the other extreme of therange Rl of the Gaussian radial oordinate, providingthe existene of globally regular models with metri (7).In other words, we seek solutions with asymptoti formssuh that the quantities in (2) are �nite. All the otherregularity onditions, suh as (14), then follow. In do-ing so, we do not restrit the possible shape of thepotential V (�) in advane. The ases under onsidera-tion are lassi�ed by the �nal values of r = e� (in�nite,�nite or zero) and V (positive, negative or zero). Thesalar �eld � is assumed to be �nite everywhere.Without loss of generality, we assume that �0(0) > 0near l = 0, i.e., that � inreases, at least initially, as wereede from the enter.3. DOMAIN WALLS AND THE PROBLEM OFMATTER CONFINEMENTBelow, we mostly onsider on�gurations withd1 � 2 that orrespond to a global monopole in thespherially symmetri spae Ru � Sd1. Before that,we brie�y disuss the problem of matter on�nementon the brane and the ompliations involved the 5-dimensional ase.The metri oe�ient e2 in (1), sometimes alledthe warp fator, atually plays the role of a gravita-tional potential that determines an attrative or repul-sive nature of gravity with respet to the brane. Ifit forms a potential well with a bottom on (or very1188



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Gravitating global monopoles in extra dimensions : : :near) the brane, there is a hope that matter, at leastits low-energy modes, is to be trapped.It has been shown, in partiular, that spin-1/2 �eldsare loalized due to an inreasing warp fator in (1+4)-and (1+5)-dimensional models [19, 20℄. It was also re-peatedly laimed that in (1+4) dimensions, a branewith an exponentially dereasing warp fator (as, e.g.,in the RS2 model) an trap spin 0 and 2 �elds. Ouralulation for a salar �eld shows that this is not thease.A gravitational trapping mehanism suggested inRefs. [21℄ was haraterized there as a universal one,suitable for all �elds. It is based on nonexponen-tial warp fators, whih inrease with the distanefrom the brane and approah �nite values at in�nity.This mehanism was exempli�ed in [22℄ with a speialhoie of two so-alled �smooth soure funtions� in thestress�energy tensor, desribing a ontinuous distribu-tion of some phenomenologial matter and vanishingoutside the brane.Our analysis uses more natural assumptions: asalar �eld system admitting SSB, without any spe-ial hoie of the symmetry breaking potential, underthe requirement of global regularity.We brie�y show, following Refs. [10, 11℄ (but inother oordinates), that this approah in (4+1) dimen-sions always leads to a deaying warp fator for anyhoie of V (�) and that suh a system annot trap atest salar �eld. We onsider a domain wall in 5 dimen-sions, and hene l 2 R, we set d1 = 0 in our equations,the unknown �(l) is absent, and Eqs. (8) and (11) for and the single salar �eld � are given by00 + d002 = � 2{2d0 � 1V; (17)�00 + d00�0 � dVd� = 0: (18)Their �rst integral in (10) redues to02 = � {2d0(d0 � 1)(2V � �02): (19)The initial onditions at l = 0 orresponding to the Z2symmetry (broken for the salar �eld but preserved forthe geometry) have form (15).Eliminating V from (17) and (19) and integratingsubjet to (15), we obtain(d0 � 1)0(l) = �{ lZ0 �02dl; (20)

and we onlude that 0(l) is negative at all l > 0and desribes gravitational repulsion from the brane;moreover, e� monotonially grows with growing l.The only possible regular solution orresponds toj0(1)j < 1. Beause 00(1) = 0 in this ase, it fol-lows from Eq. (17) that V (1) < 0, orresponding to anegative osmologial onstant � = {2V (1). Hene,the only possible regular asymptoti form is AdS, withe � ae�hl; a; h = onst; h = p��=6: (21)The onstant a depends on the partiular shape ofV (�). At l = 1, there is an AdS horizon (e = 0),whih, like a blak hole horizon, attrats matter andprevents its trapping by the brane.We show this for d0 = 4 and a test salar �eld �with the LagrangianL� = 12�A���A�� 12m20���� 12��2���; (22)where �� is the omplex onjugate �eld and the lastterm desribes a possible interation between � andthe wall salar �eld �; � is the oupling onstant. The�eld �(xA) satis�es the linear homogeneous (modi�edFok �Klein �Gordon) equation1pg�A �pggAB�B��+ (��2 +m20)� = 0: (23)Its oe�ients depend on l only, and �(xA) may besought in the form�(xA) = X(l) exp(�ip�x�); � = 0; 1; 2; 3; (24)where p� = (E; p) is a onstant 4-momentum. Thefuntion X(l) determines the � �eld distribution arossthe brane and satis�es the equationX 00+40X 0+ �e�2(E2�p2)���2�m20)�X = 0: (25)The � �eld is able to desribe partiles loalized onthe brane only if its stress�energy tensor T �� [�℄ is �nitein the whole 5-spae and deays su�iently rapidly atlarge l. As an evident neessary ondition of loaliza-tion, the � �eld energy per unit 3-volume of the branemust be �nite, i.e.,Etot[�℄ = 1Z�1 T ttpgdl == 1Z0 e4he�2(E2 + p2)X2 ++ (m20 + ��2)X2 +X 02idl <1: (26)1189



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005Inequality (26) implies a �nite norm of the � �eld de-�ned as k�k2 = 1Z�1 pg ���dl = 1Z�1 e4 X2 dl: (27)At large l, beause e�2 ! 1, the terms with �and m0 in Eq. (25) an be negleted, and the equationdetermining the behavior of � at large l an be writtenasX 00 � 4hX 0 + P 2e2hlX = 0; P 2 = E2 � p2a2h2 : (28)It is solved in terms of Bessel funtions, and the solu-tion has the asymptoti formX = Ce3hl=2 sin(Pehl + '0); z !1; (29)where C and '0 are integration onstants. We see thatquantity (29) not only is nonvanishing as l ! 1 buteven osillates with an inreasing amplitude. As a re-sult, the stress�energy tensor omponents T �� [�℄ arein�nite at l = 1. Moreover, integral (26) behavesas R ehldl and diverges. However, normalization in-tegral (27) onverges beause the integrand behaves ase�hl. This result is sometimes treated as a su�ientondition for loalization, but, in our view, it is nottrue beause the very existene of the brane on�gura-tion is put to doubt if the test �eld stress�energy tensoris in�nite somewhere.Thus, a test salar �eld with any mass tends to in-�nity as l ! 1 and develops an in�nite stress�energytensor; even its interation with the � �eld that sup-ports the brane does not improve the situation. Weonlude that a single extra dimension is insu�ientfor providing gravitational attration of matter to aregular isolated brane.4. A SEARCH FOR REGULAR ASYMPTOTICREGIMESWe now onsider �eld equations (8)�(11) for globalmonopoles, assuming d1 � 2. The string ase d1 = 1 isleft aside beause it has some peuliarities that requirea speial study.4.1. Solutions with the r!1 asymptotiregimeWe denoteV = 2{2VD � 2 ; V1 = V ���r!1: (30)

Evidently, l ! 1 as r ! 1 beause otherwise wewould have �0 ! 1, violating the regularity ondi-tions. The derivatives �0 and 0 should tend to ertainonstant values, to be denoted by �01 and 01, respe-tively. Both �00 and 00 vanish as l ! 1. Moreover,the seond term in the right-hand side of Eq. (9) alsovanishes. Therefore, in the leading order of magnitude,Eqs. (8) and (9) take the form01(d001 + d1�01) = �V1;�01(d001 + d1�01) = �V1: (31)We onsider the ases where V1 6= 0 and V1 = 0separately.A1: V1 6= 0. Equations (31) immediately give�01 = 01 = q�V1=(D � 1); V1 < 0: (32)An evident neessary ondition of the existene of reg-ular on�gurations is V1 � 0. We thus obtaine� � e � e�01l;and the metri takes the asymptoti formds2 � C1e2�01l���dx�dx� � dl2 � C2e2�01ld
2; (33)with some positive onstants C1 and C2. Equation (10)holds automatially if �0(1) = 0, as should be the aseif we assume a �nite asymptoti value of �. Finally, inEq. (11), all terms exept dV=d� manifestly vanish asl ! 1, and hene dV=d� also vanishes, whih shouldbe the ase if the �eld � reahes an extremum of thepotential V .The �niteness ondition for � as l ! 1 separatesa family of regular solutions among the ontinuum ofintegral urves leaving the regular enter with di�er-ent slopes �0(0). As is on�rmed by numerial exper-iments, if the potential has only one extremum (min-imum) V1 < 0, then there an be only one regularsolution with r ! 1, l ! 1. However, there an benumerous regular solutions if the potential has severalextremum points V1 < 0.In partiular, if the initial maximum of the potentialis loated below the zero level, V (0) � 0, then there anbe a ontinuum of regular integral urves starting fromthe regular enter and returning to � = 0 at l !1. Asan be veri�ed numerially (see Se. 4), there is a bunhof suh urves parameterized by �0(0) 2 (0; �0s), where�0(0) = �0s orresponds to a limiting regular urve (sep-aratrix), also starting at �(0) = 0 but ending at theminimum V (�).The metri in (33) solves the Einstein equationswith the stress�energy tensor TBA = ÆBAV1 having the1190



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Gravitating global monopoles in extra dimensions : : :struture of a (negative) osmologial term. Moreover,aording to (2), the Riemann tensor has the stru-ture of a onstant-urvature spae at large l. In otherwords, suh solutions have an anti-de Sitter (AdSD)asymptoti form far from the enter. But the metriin (33) is not a solution of our equations in the wholespae even in the ase where � = onst. As was alreadymentioned, for d0 > 1 and d1 > 1, onstant-urvaturemetris (dSD and AdSD) are not solutions of the va-uum Einstein equations with a osmologial onstant.A2: V1 = 0. Equations (31) are solved either by�01 = 01 = 0or by d001 + d1�01 = 0:But when we substitute the seond ondition inEq. (10), taking into aount that �0 ! 0 at large l,we obtain d0012 + d1�012 = 0and return to �01 = 01 = 0:Thus, both �0 and 0 vanish at in�nity, and we an tryto seek them as expansions in inverse powers of l:�0 = �1l + �2l2 + : : : ; 0 = 1l + 2l2 + : : : (34)Then O(l�2) is the leading order in the Einstein equa-tions, and, to avoid a ontradition,r�2 = e�2�should be of the order O(l�2) or smaller. Moreover, be-ause we assume that � tends to a �nite value �1 > 0,we have �0 = o(1=l), and salar �eld equation (11)shows that dVd� = O(l�2)or smaller, i.e., �1 should be an extremum of V (�).If �(l) grows monotonially to �1 > 0, then �1 is aminimum of V beause, aording to (11),dVd� < 0 as �! �1:However, if V (0) = 0, one annot exlude that � re-turns to zero as l !1, see item ) below.In the ase where �! �1 > 0, beauseV1 = dV=d�(�1) = 0;V (�) is deomposed asV (�) = 12V��(�1)(� � �1)2 + : : : ; (35)

where V�� = d2Vd�2 ;and therefore V = o(l�2):As a result, Eqs. (8)�(10) lead to1(�1 + d01 + d1�1) = 0; (36)�1(�1 + d01 + d1�1) = l2r2 (d1 � 1� {2�21); (37)(d01 + d1�1)2 � d021 � d0�21 == d1 l2r2 (d1 � 1� {2�21): (38)Now, it an be easily veri�ed that we must nees-sarily set �1 = 1. Indeed, for any �1 6= 0, we haver = e� � l�1 :Therefore, �1 < 1 is exluded beause it leads to r � l,ontrary to the above requirement. But if we supposethat �1 > 1, then l2=r2 ! 0 as l ! 1, and Eq. (38)leads either (if 1 = 0) to�21 = 0or (if 1 6= 0 and then d01 + d1�1 = 1) tod021 + d1�21 = 1:Both possibilities ontradit the assumption that�1 > 1.Thus, �1 = 1, and hener � kl; k = onst > 0;at large l.Equation (36) now leaves two possibilities,1 = 0and 1 = �d1 � 1d0 ;and we onsider them separately in items a) and b).Item ) desribes the ase where expansions (34) donot work.a) If 1 = 0, then Eq. (37) yieldsk2 = 1� {2�21d1 � 1 ; (39)1191



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005and Eq. (10) in the same order is satis�ed automati-ally. The metri takes the asymptoti formds2 = e21���dx�dx� � dl2 � k2l2 d
2; (40)where 1 is a onstant (we annot turn it to zero byresaling the oordinates x� beause suh an operationhas already been done for making  = 0 at the enter).Thus, the whole metri has a �at asymptoti form,up to a solid angle de�it in the spherial part due tok2 6= 1. Suh a de�it is a ommon feature of topo-logial defets in the ases where they have (almost)�at asymptoti forms. Its appearane due to osmistrings and global monopoles in spae � times withoutextra dimensions is disussed in detail in [8℄. For aglobal monopole in extra dimensions in the partiularase where d0 = 4 and d1 = 2, it was treated by Bensonand Cho [18℄. We stress that the situation of a quasi-�at asymptoti form with a solid angle de�it is notgeneral. It ours only for potentials with zero value atthe minimum, V (�1) = 0;and even in that ase, not always, see item B below.Namely, this geometry requiresj�1j < �r := pd0 � 1{ ; (41)i.e., �1 should be smaller than the ritial value �rrelated to the D-dimensional Plank length. As �1approahes �r, k ! 0, the de�it absorbs the wholesolid angle, and the above geometry disappears.Salar equation (11) shows how � approahes �1:in the leading order, we have� d1k2l2 = V��(�1)(� � �1): (42)Assuming V��(�1) 6= 0;we obtain �� �1 � 1=l2:b) If 1 = �(d1 � 1)=d0, then Eq. (37) leads to{2�21 = d1 � 1;i.e., �1 = �r;while a substitution in (10) gives(d1 � 1)(d0 + d1 � 1) = 0;ontrary to our assumption that d1�1 > 1. Therefore,this possibility does not lead to a regular asymptotiregime.

) If V (0) = 0, then a regular integral urve, start-ing at l = 0 and � = 0, an �nish again with �! 0 asl !1. For large l and r, salar �eld equation (11) forj�j � 1 redues to�00 + (d00 + d1�0)�0 � V2� = 0; (43)where V2 = V��(0):Beause � = 0 is a maximum of V (�) by assumption,we assume that V2 < 0.If we further assume that the funtions(l) = ed0+d1�satis�es the onditions00=s! 0 as l!1(whih is the ase, e.g., for any power-behaved fun-tion), the solution of Eq. (43) is an osillating funtionat large l,� � �0e�(d0+d1�)=2 os hpjV2j(l � l0)i ;l!1; (44)where �0 and l0 are arbitrary onstants. Substitutingthis in Eq. (8) and averaging os2 ! 1=2, we obtained0 � d0{2jV2j�202(D � 2) lZ l dlrd1 ; l !1: (45)It is easy to verify that for d1 > 2, when the integralin (45) onverges, the asymptoti form of the solutionfor r = e� and  is r � l and = 1 � 1=ld1�2; 1; 1 = onst;i.e., we have a �at asymptoti regime.In the speial ase where d1 = 2, the integral di-verges logarithmially, and the solution may be approx-imated as (again) r � land e � onst � ln l:This �logarithmi� asymptoti form resembles the be-havior of ylindrially symmetri solutions in standardgeneral relativity.1192



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Gravitating global monopoles in extra dimensions : : :4.2. Solutions with the r! r� > 0 asymptotiregimeEvidently, a regular solution annot terminate at �-nite r and l <1. Therefore, we seek a regular asymp-toti regime as l ! 1, where r and � tend to �nitelimits, r� and ��, and hene the quantities �0; �00; �0,and �00 vanish.Moreover, in a regular solution, 0 should tend to a�nite limit as l ! 1, and hene 00 ! 0. As a result,Eqs. (8) and (9) at large l lead tod002 = �V � = 1r2� ({2�2� � d1 + 1); (46)where V � = V (��). We see that V � � 0 and, inaddition, the salar �eld should be ritial or larger,�� � �r. Aording to (46), at large l,�0 � h := q�V �=d0 � 0; (47)and Eq. (10), as in the previous ases, simply veri�esthat the solution is orret in the leading order. Thesalar �eld equation gives a �nite asymptoti value ofV� � dV=d�: V�(��) = �d1��r�2� : (48)This value is negative if �� > 0.We obtain di�erent asymptoti regimes for nega-tive, positive, and zero values of 0.B1: e � e�hl, h > 0. The metri has the asymp-toti formds2 = C2e�2hl���dx�dx� � dl2 � r2� d
2: (49)The extra-dimensional part of the metri again de-sribes an in�nitely long ylindrial tube, but now thevanishing funtion gtt = e2 resembles a horizon. Thesubstitution e�hl = � (onverting l = 1 to a �niteoordinate value, � = 0) brings metri (49) to the formds2 = C2�2���dx�dx� � d�2h2�2 � r2� d
2: (50)Therefore, � = 0 is a seond-order Killing horizon inthe 2-dimensional subspae parameterized by t and �,it is of the same nature as, e.g., the extreme Reissner �Nordström blak hole horizon, or the AdS horizon inthe seond Randall � Sundrum braneworld model. Apeuliarity of the present horizon is that the spatialpart of the metri, whih at large l takes the form�2(dx)2, is degenerate at � = 0. The volume of thed0-dimensional spae�time vanishes as l ! 1. And itremains degenerate even if we pass to Kruskal-like o-ordinates in the (t; �) subspae. But the D-dimensional

urvature is �nite there, indiating that the transitionto negative values of � (where the old oordinate l nolonger works) is meaningful1).One more observation an be made. Aordingto (46), the potential V is neessarily negative at largel. On the other hand, Eq. (8) may be rewritten inintegral form:ed0+d1�0 = � lZ0 ed0+d1� V dl: (51)The lower limit of the integral orresponds to a regularenter, where the left-hand side of (51) vanishes. Asl ! 1, it also vanishes due to  ! �1. Thus, theintegral in the right-hand side, taken from zero to in-�nity, is zero. This means that the potential V (�) hasalternate sign and is positive in a ertain part of therange (0; ��).Thus, purely salar solutions of the monopole typemay ontain seond-order horizons. The degeneratenature of the spatial metri at the horizon does notlead to a urvature singularity, and the solutions maybe ontinued in a Kruskal-like manner. Nevertheless,we do not onsider these solutions as desribing viablemonopole on�gurations beause the zero volume of theorresponding spatial setion makes the density of anyadditional (test) matter in�nite. It is then impossibleto neglet its bak reation, whih evidently destroyssuh a on�guration.B2: e � ehl, h > 0. The metri has the asymp-toti formds2 = C2e2hl���dx�dx� � dl2 � r2�d
2;C = onst > 0: (52)Thus, in the spherially symmetri extra-dimensionalpart of the metri, we have an in�nitely long d1-1) One may wonder why we here do not obtain simple (�rst-or-der) horizons, like those in the Shwarzshild and de Sittermetris, while suh horizons generially appeared in the spe-ial ase d0 = 1, whih orresponds to spherially symmetriglobal monopoles in general relativity, onsidered in detail inRefs. [14; 16℄.The reason is that for d0 = 1, Æ���� in (3) is zero, and theorresponding omponent of the Riemann tensor is also zero re-gardless of the values of 0. In terms of the Gaussian oordi-nate l, a simple horizon ours at some �nite l = lh near whihgtt = e2 � (l� lh)2, suh that 0 !1. When d0 = 1, this doesnot lead to a singularity beause only the ombinations 00+ 02and �00 are then required to be (and atually are) �nite. In thease where d0 > 1, instead of a horizon, we would have a urva-ture singularity at �nite l, a situation exluded from the presentstudy.We thus have a general result for the metri in (1): for d0 > 1,horizons an only be of order 2 and higher.1193



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005dimensional ylindrial �tube� with an in�nitely grow-ing gravitational potential gtt = e2 .With this ylindrial asymptoti form, aordingto (47) and (48), the potential V tends to a negativevalue and has a negative slope. Moreover, the integralin Eq. (51) is negative and diverges at large l due togrowing e .Regular solutions with 0(1) > 0 naturally arise ifthe potential V (�) is negative everywhere. We note,however, that when V (0) is above zero, by (51), thefuntion (l) dereases near the enter (l = 0) due toV > 0, and grows at large l. It therefore has a mini-mum at some l > 0.B3: V � = 0. This ase ontains one more asymp-toti regime where the extra spae ends with a regulartube.Indeed, we an one again use expansions (34), butnow with �� instead of �1 and �1 = 0 in aordanewith r ! r�. Equation (9) (order O(1)) shows that{2�2� = d1 � 1;i.e., �� = �r:Equation (11) (order O(1)) gives a �nite value of thederivative dV=d�(��) = �d1��=r2�:Further, Eq. (8) (order O(l�2)) yields1(d01 � 1)=l2 = �V ;showing that V = O(l�2)(or even smaller). BeauseV = (dV=d�(��))(� � ��) + o(� � ��);we have to onlude that�� �� = O(l�2)or smaller.Now, assumingV (�) = V2=l2 + : : : ;we an �nd V2 diretly as the leading term in(dV=d�(��))(� � ��)and, independently, from Eq. (9) (order O(l�2)), ob-taining the two expressionsV2 = �d1���2r2�

and V2 = �(D � 2)���2r2� ;whene it follows that d1 = D � 2, or d0 = 1. Suh a�ritial� asymptoti regime (� ! �r, gtt ! 0, andr ! onst) was indeed found for d0 = 1 in our pa-pers [14; 16℄ desribing (d1+2)-dimensional spheriallysymmetri global monopoles, but, as we see, it does notexist in the ase under onsideration, d0 > 1.The only remaining possibility is that�� �� = o(l�2)and  ! � = onst;i.e., a solution tending at large l to the following simple��ux-tube� solution, valid for any d0 and d1:r = onst;  = onst; � = �r;V = 0; dV=d� = �d1�r=r2: (53)Suh a solution an exist if the potential V (�) has theproperties V (�r) = 0and dV=d�(�r) < 0;and the last equality in (53) then relates the onstantradius r to dV=d�(�r).4.3. Solutions with the r! 0 asymptotiregimeThe limit r ! 0 means a enter, and for it to beregular, onditions (12) must hold, and hene, for oursystem, initial onditions (16) with l = 0 should bereplaed, e.g., with l = l0 > 0.We now reall that onditions (16) determine the so-lution of the �eld equations for a given potential V (�)up to the value of �0. In partiular, if there is one moreenter at l = l0, then, starting from it and hoosing�0(l0) = ��0(0);we obtain the same solution in terms of l0 � l insteadof l. We thus obtain a solution with two regular en-ters that is symmetri with respet to the middle pointl = l0=2, to be alled the equator. To be smooth there,it must satisfy the onditions�0 = 0 = �0 = 0 at l = l0=2; (54)1194



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Gravitating global monopoles in extra dimensions : : :whih impliitly restrit the shape of the potential.Given a potential V (�), onditions (54) reate, in gen-eral, three relations among l0, �0(0), and the free pa-rameters of V (�) (if any). Eliminating l0 and �(0), wemust obtain a single ��ne tuning� ondition for theparameters of the potential.A neessary ondition for the existene of suh asolution is that V (�) has a variable sign. This followsfrom Eq. (51) by integration over the segment (0; l0=2):the integral vanishes beause 0 = 0 at both ends.Moreover, as follows from Eqs. (9) and (10)with (54),r�2e (d1 � 1� {2�2e) = D � 2d1 V e = �00e + V e; (55)leading to d1�00e = (d0 � 1)V e(where the index �e� refers to values at the equator).If r = e� is assumed to grow monotonially from zeroto its maximum value at the equator, we have �00e < 0,and hene V e < 0, and (55) implies that �e > �r, i.e.,the salar �eld at the equator must exeed its ritialvalue.The existene of asymmetri solutions with two reg-ular enters, orresponding to�0(l0) 6= ��0(0);is also possible. In this ase, there would be no equa-tor in general, beause � and � would have maxima atdi�erent l; moreover, in general, we would have(l0) 6= (0) = 0;and (l) ould even have no extremum. But beause0 = 0 at both enters, the integral in (51) taken from0 to l0 should vanish, and hene, again, V would havealternating sign.The whole on�guration with two regular entershas the topology M d0 � Sd1+1, with losed extra di-mensions in the spirit of Kaluza �Klein models. Themain di�erene from them is that all variables now es-sentially depend on the extra oordinate l.The main properties of all regular asymptotiregimes found, whih lead to a lassi�ation of possi-ble global monopole on�gurations in extra dimensions,are summarized in the Table. The word �attration�orresponds to an inreasing warp fator far from thebrane.

5. SCALAR FIELD TRAPPING BY GLOBALMONOPOLESWe onsider a test salar �eld with Lagrangian (22)in the bakground of global monopole on�gurationsdesribed in Se. 4. After variable separation (24), the�eld equation for a p-mode of the salar �eld � beomesX 00 + (d00 + d1�0)X 0 + (e�2p2 � �2)X = 0; (56)where p2 = p�p� = E2 � p2is the d0-momentum squared and�2 = m20 + ��2is the e�etive mass squared. The trapping riteriononsists, as before, in the requirements that the � �eldstress�energy tensor must vanish far from the braneand the total � �eld energy per unit volume of thebrane must be �nite, i.e.,Etot[�℄ = Z pgdd1+1x�� he�2(E2 + p2)X2 + �2X2 +X 02idl <1: (57)The �rst requirement means that eah term in thesquare brakets in (57) must vanish at large l.We now hek whether these requirements an bemet at di�erent kinds of asymptoti regimes listed inthe Table.A1: attrating AdS asymptoti regime � �  � kl,k > 0. At large l, Eq. (56) redues to the equation withonstant oe�ientsX 00 + (D � 1)X � �2X = 0;and its solution vanishing as l !1 isX � e�al;a = 12 h(D � 1)k +p(D � 1)2k2 + 4�2 i : (58)It is straightforward to verify that the trapping require-ments are satis�ed for all momenta p and all �2 � 0.A2(a): a quasi-�at asymptoti regime with a solidangle de�it. At large l, Eq. (25) redues toX 00 + d1X=l+ P 2X = 0;where P 2 = p2e�21 � �2and 1 is the limiting value of  at l =1. In terms ofY = ld1=2X;1195



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005Classi�ation of global monopole solutions for arbitrary V (�) by asymptoti types. Attration or repulsion is understoodwith respet to the enterNotation r V (�) �  Asymptoti typeA1 1 V (�) < 0 � < �r 1 AdS, attrationA2(a) 1 0 � < �r onst �at, solid angle de�itA2(), d1 > 2 1 0 0 onst �atA2(), d1 = 2 1 0 0 1 �logarithmi�, attrationB1 r� V� < 0 �� > �r �1 double horizon, repulsionB2 r� V� < 0 �� > �r 1 attrating tubeB3 r� 0 �� = �r onst trivial tubeC 0 V (0) 0 onst seond enterthis equation is (at large l) rewritten asY 00 + P 2Y = 0;while trapping ondition (57) implies thatZ ld1X2(l) dl <1:Therefore, only an exponentially falling Y (l) is suit-able. In other words, the trapping ondition is P 2 < 0,or p2 < m2r := �2e21 ; (59)where now �2 = m20 + �2�2:We note that p2 = E2 � p2is nothing else but the observable mass of a free�-partile if the observer wathes its motion in theMinkowski setion l = 0 of our manifold, i.e., on thebrane. Hene, ondition (59) means that the branetraps all salar partiles of masses smaller than the rit-ial value mr depending on the model parameters.A2(), d1 > 2: this ase di�ers from the previousone only by the asymptoti value of �, whih is nowzero, and hene � = m0.A2(), d1 = 2: a �logarithmi� asymptoti regime,e � ln l. Beause e�2 � 1=(ln l)2 ! 0, the term withp2 drops out from Eq. (56), whih then leads to thedereasing solution X � l�1e��l;and a �-partile is trapped provided � = m0 > 0.
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V

� �" > 0" = 00 > " > �1�1 > "Fig. 1. Mexian hat potentialB1: a horizon. As was remarked previously, we donot regard this on�guration viable and omit it fromour disussion.B2: an attrating tube, r ! r� and  � hl, h > 0as l !1. Equation (56) takes the formX 00 + d0hX 0 � �2X = 0and has the dereasing solutionsX � e�al; a = 12 �d0h+qd20h2 + 4�2� : (60)As in item A1, it is easy to verify that the trappingonditions hold provided �2 > 0.B3: a trivial tube, both � and  tend to onstantsas l ! 1. In Eq. (56), the term with X 0 drops out atlarge l, and an exponentially dereasing solution existsunder ondition (59) where�2 = m20 + �2�2r:1196
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Fig. 2. A regular solution with an AdS asymptoti regime (type A1) for the potential (61) with {�2 = 5, " = �0:75, d0 = 4,d1 = 3
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Fig. 3. Regular (exept the dotted urves) solutions with the B2 asymptoti regime (attrating tube), suh that r! r� <1and 01 > 0C: these on�gurations have no large l asymptotiregimes and are not interpreted in terms of branes.A onlusion is that salar partiles of any mass andmomentum are trapped by global monopoles with A1and B2 asymptoti regimes with exponentially growingwarp fators and A2() with a logarithmi asymptotiregime; they are trapped under restritions (59) on thepartile's observable mass by monopoles with A2 andB3 asymptoti regimes whose warp fators tend to on-stant limits far from the brane.6. NUMERICAL RESULTS: MEXICAN HATPOTENTIALIn this setion, we present the results of our nu-merial alulations, whih on�rm the lassi�ation ofregular solutions given above. We have used the �Mex-

ian hat� potential in the form (Fig. 1)V = ��44 �"+�1� �2�2�2�: (61)It has two extremum points in the range � � 0: a max-imum at � = 0 and a minimum at � = �. The SSBenergy sale is haraterized by �2=(D�2), whilep�� de-termines, as usual, a length sale. The nononventionalparameter " introdued in (61), moves the potential upand down, whih is equivalent to adding a osmologialonstant to the usual Mexian hat potential.Given potential (61), the nature of the solutionsessentially depends on its two dimensionless parame-ters: ", �xing the extremal values of the potential withrespet to zero, and {2�2, haraterizing the gravita-tional �eld strength: as we remember from Se. 4, theasymptoti regime r !1 only exists when �1 < �r,whih is the same as{2�2 < d1 � 1:1197
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Fig. 4. A regular solution with the asymptoti regime r! r� <1 and 01 < 0 (ase B1, horizon)
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Fig. 5. Type-C solutions with two regular enters (r! 0, �! 0, 0 ! 0 as l! l0)If " > 0, potential (61) is always positive, and, inaordane with item A1, regular solutions are absent.In the onventional ase where " = 0, in the range0 < {2�2 < d1 � 1;there are asymptotially �at regular solutions with asolid angle de�it (lass A2).The most omplex ase 0 > " > �1 ontains a vari-ety of possibilities. Regular solutions with the asymp-toti behavior r ! 1 as l ! 1 having 01 > 0 (aseA1) exist in some range 0 < � < �s, where the separat-ing value �s depends on d0; d1, and ". As an example,suh a regular solution with {2�2 = 5, " = �0:75,d0 = 4, and d1 = 3 is presented in Fig. 2.Depending on the parameters of the potential,there are regular solutions with the asymptoti regimer ! r� < 1 and 01 > 0 (ase B2) in some range�s1 < � < �s2, see Fig. 3. Here, " = �0:9, d0 = 4,d1 = 3. The urves are given for {2�2 = 10, 12, 15,20, 30, 40, and 45 (from top down). The dotted urves({2�2 = 10 and {2�2 = 45) orrespond to singularon�gurations. It follows that for " = �0:9, d0 = 4,

d1 = 3, the lower bound of this parameter leading toregular models is somewhere between 10 and 12, whilethe upper bound is between 30 and 45.An example of a regular solution with the asymp-toti regime r ! r� < 1 and 01 < 0 (lass B1), or-responding to a seond-order Killing horizon, is shownin Fig. 4.The value {�2 = 17:37 is �ne-tuned to the param-eters " = �0:75, d0 = 4, d1 = 2 of this partiularsolution.Other examples of �ne-tuned regular solutions,namely, type C with two regular enters (r ! 0, �! 0,0 ! 0 at l! l0), are presented in Fig. 5.For all the three urves, d0 = 4 and d1 = 2. Theurves (1, 2, and 3 ) orrespond to " = �0:15, �0:5,and �0:9626, respetively. The �ne-tuned values of{2�2 are approximately 2.637, 6.17, and 100.In the ase " � �1, the maximum V (0) � 0 is at orbelow the zero level, and there is a possibility for theintegral urves to start and �nish at the same value�(0) = �(1) = 0. We then observe a whole family of1198
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Fig. 6. Regular solutions starting and terminating at �(0) = �(1) = 0. The limiting solid urve with�0(0) = �0 = 0:4401425 (separatrix) terminates at �(1) = �suh regular urves in the range 0 < �0(0) < �0, seeFig. 6.For the partiular example presented (" = �1:5,{�2 = 1, d0 = 4, d1 = 3), the values of �0(0) forthe dotted urves ending with � = 0 are 0.2, 0.3, and0.4 (from bottom up). The limiting solid urve with�0(0) = �0 = 0:4401425 (separatrix) is a regular solu-tion ending at the minimum of the potential: �! � asl !1.The Mexian hat potential (61), with its onlytwo extrema at � = 0 and � = �, annot demon-strate the whole variety of solutions that appear withmore sophistiated potentials having additional max-ima and/or minima. Thus, for instane, lass-A solu-tions may have a large-r asymptoti regime at any suhextremum.7. CONCLUDING REMARKSWe have obtained as many as seven lasses ofregular solutions of the �eld equations desribing aMinkowski thik brane with a global monopole in extradimensions, see the Table.Some of these lasses, namely, A1 with an AdSasymptoti form and B2 ending with an attratingtube, have the exponentially growing warp fator e2at large l and are shown to trap linear test salar �eldsmodes of any mass and momentum.Others�A2(a) and A2() for d1 > 2, ending witha �at metri at large l�have a warp fator tendingto a onstant whose value is determined by the shapeof the potential V (�). They are also shown to trapa test salar �eld but the observable mass of the �eldis restrited from above by a value depending on thepartiular model of the global monopole.

Lastly, for d1 = 2, i.e., a three-dimensional globalmonopole in the extra dimensions, lass A2() solutionshave a logarithmially growing warp fator. All testsalar �eld modes are trapped by this on�guration,but the slow growth of (l) probably means that thetest �eld is strongly smeared over the extra dimensions.All suh on�gurations, in sharp ontrast to RS2-like domain walls in 5 dimensions, are able to trapsalar matter. It is ertainly neessary to hek whethernonzero-spin �elds are trapped as well and Newton'slaw of gravity holds on the brane in onformity withthe experiment. We hope to onsider these subjets inour future publiations.In addition to the trapping problem, a shortomingof RS2-type Minkowski branes is that they are nees-sarily �ne-tuned. Many of the global monopole solu-tions, at least those existing in the weak gravity regime(lass A), are free of this shortoming and are thus bet-ter for thik brane model building.Some results and onlusions in this paper were pre-viously given in Refs. [12, 13℄. The main di�ereneof our approah from theirs is their boundary ondi-tion, whih is � = � in our notation. This exludesthe ases where the solution ends at a maximum orslope of the potential, suh as, e.g., symmetri solu-tions with two regular enters. Another di�erene isthat they onsider solutions with an exponentially de-reasing warp fator as those leading to matter on�ne-ment on the brane. In our view, suh solutions withseond-order horizons do not represent viable modelsof a braneworld. We onlude that the present pa-per gives the most omplete lassi�ation of all regu-lar solutions for global monopoles in extra dimensions,whih, even without gauge �elds, seem to be promisingas braneworld models.1199
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