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Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to support persis-
tent currents due to the Aharonov—Bohm flux, and the «spontaneous» persistent currents without the flux
when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric
environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity,
which is further restored at the increasing field, however. The dynamics of the Aharonov—Bohm loop in crossed
electric and magnetic fields is investigated within the tight-binding approximation; we show that transitions
between discrete quantum states occur when static voltage pulses of prescribed duration are applied to the
loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that can
serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence of
an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches
between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers.

PACS: 73.23.Ra, 73.63.-b, 03.65.Vf, 03.67.Lx

1. PERSISTENT CURRENTS IN MESOSCOPIC
SYSTEMS

Persistent currents have been predicted for meso-
scopic conducting ballistic or quasiballistic loops ([1]"
and references therein, [2]) that do not show the ef-
fect of superconductivity, and extended to diffusive
rings [3]. The current appears in the presence of a mag-
netic field as a result of the Aharonov—Bohm effect [4],
demonstrating the special role of vector potential in
quantum mechanics. As discussed in review [5], per-
sistent currents are similar to orbital currents in nor-
mal metals first considered by Teller [6] in his inter-
pretation of Landau diamagnetism in metals [7], but
are specific to the doubly connected geometry of con-
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1) This paper proved exact periodicity of ring energy as a func-
tion of the magnetic flux with the period he/e, although with the
indefinite amplitude.

ductors (loops, hollow cylinders, etc.). Persistent cur-
rents have been observed in the indirect [8,9] as well
as direct [10,11] experiments, showing the single-flux-
quantum ® = hc/e periodicity in the resistance of thin
Nb wires [8] and networks of isolated Cu rings [9], and
in single-loop experiments on metals [10] and semicon-
ductors [11]. In [12], the periodic variation of resistivity
in molecular conducting cylinders (carbon nanotubes)
was attributed to the Altshuler— Aronov - Spivak ef-
fect [13], a companion to the classical Aharonov—Bohm
mechanism with the twice smaller periodicity in mag-
netic flux ®; = hc/2e. A further trend in macromolecu-
lar persistent currents [14-16] is in the quantum compu-
tational [17] perspectives of using the Aharonov —Bohm
loops as quantum bits (qubits) with an advantage of
easier (radiation-free) manipulation of qubit states, and
in the increased decoherence times compared to macro-
scopic «Schrodinger cat» structures (Josephson junc-
tions).
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Fig.1. A A-shaped energy configuration in the

Aharonov - Bohm ring. Arrows indicate a transition be-

tween degenerate states |0) and |1) through a virtual
transition to the control state |c)

The present paper focuses on ballistic Aharonov—
Bohm rings, like those naturally found in molecular
crystals with metal-organic complexes as the building
blocks [18,19]. We approximate such macromolecu-
lar structures as rings with resonant hopping of elec-
trons between the near-site atoms or complexes serv-
ing as electron localization sites. As shown in [14], the
smallest (three-site) persistent current ring displays a
A-shaped energy configuration (Fig. 1) with two de-
generate ground states, at the external flux through
the ring equal to half the normal-metal flux quantum,
® = hc/2e. At a certain number of electrons in the
ring, persistent current appears at zero field (the «spon-
taneous» current). The spontaneous persistent current
loop, to be discussed below, achieves the degenerate
state at zero field or, if the degeneracy is lifted by the
electron—phonon coupling, at reasonably small fields.

Persistent current is a voltage-free nondecaying cur-
rent that exists as a manifestation of the fact that
the ground state of a doubly connected conductor in
a magnetic field is a current-carrying one. This state-
ment was proved for ballistic loops [2] and for diffu-
sive rings [3]. There is no principal difference between
these extremes. Counterintuitively, a ballistic struc-
ture does not show infinite conductivity, as was some-
times naively supposed; a d.c. resistance of the loop
is infinite rather than zero when a d.c. electric field
is applied to the system. In the case where a current
is fed through the structure, no voltage appears pro-
vided the magnitude of the current is smaller than a
certain critical value. This applies to both elastic and
inelastic scatterings. The magnitude of the critical cur-
rent of a ballistic ring smoothly matches the current of
the diffusive ring when the mean free path of the elec-

tron becomes large. In a dirty limit, [ < L, where [ is
the electron mean free path and L is the ring circum-
ference, the critical value of the persistent current de-
creases proportionally to [/ L according to Ref. [20], or
to (I/L)'/? according to numerical simulation [5]. The
nondecaying current does not even require severe re-
strictions on the so-called «phase breakingy mean free
path [,. In fact, the normal-metal supercurrent is an
analogue of the «incoherent» Josephson effect [21,22],
the one in which the phase of superconductor is con-
sidered a classical variable. Stronger criteria (the de-
phasing length larger than the system size, and the
analogous requirement in the time domain, that the
«decoherence time» is larger than the characteristic
time of observation) apply to persistent current rings as
quantum computational tools, which are the analogues
of macroscopic quantum tunneling [23-26]. Persistent
current is a thermodynamic property, clearly distinct
from the dissipative currents in conductors, and can
in principle exist in a system that has the vanishing
Ohmic conductance.

2. SPONTANEOUS PERSISTENT CURRENTS

Persistent current in a ballistic ring appears due
to the Aharonov—Bohm flux. The current, however,
can also occur when the external magnetic field is zero,
in which case it is called the «spontaneous» current.
Such a situation was noticed accidentally by various
authors, in particular, [27,28], but did not seem con-
vincing, did not attract attention due to fixed chemical
potential configuration studied, and was attributed to
the effect of Peierls instability in the ring [29-32] (with
the later paper criticized [33, 34] in regard to the inac-
curacy of the mean-field approximation). In fact, the
fixed-number-of-particle ring with an odd number of
electrons displays a number of structural instabilities,
of which the Peierls transformation [35] and the Jahn—
Teller effect [36] are the best known examples, or gen-
erally, a more complex atom rearrangement when the
ground state proves degenerate in a symmetric config-
uration.

The origin of the «spontaneous» current can be un-
derstood as follows. We consider a one-dimensional
ring in the field of a vector potential created by a thin
infinitely long solenoid perpendicular to the plane of
the ring and piercing the ring (Fig. 2a). The electron
energy in the ring is

h? LA\?
En = L2 <n - E) ) (1)
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Fig.2. Models of mesoscopic and nanoscopic Aharo-
nov—Bohm loops: a one-dimensional continuous loop
(a); a discrete loop with regularly spaced centers of
electron localization (sites) (b); a 3-dimensional loop
in the form of the cylinder with the longitudinal dimen-
sion L = 27 R and transverse dimensions L1, L2 (c)
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Fig.3. Ground state energies and currents in the con-
tinuous ring with 3 electrons at various strengthes of
the barrier: ¢ =0 (1), 1(2), 2 (3)

where A = ®/L is the angular component of the vector
potential (® is the total magnetic flux of the solenoid)
and n = 0,£1,£2,... Such a state corresponds to the

current
cOenp, eh P
J=- = n——|,
0P mL? b
which is zero at ® = 0 and n = 0, but is nonzero

at n # 0 even at zero flux. At T = 0, electrons, in
the total number N, occupy the lowest possible ener-
gies compatible with the Pauli principle, i.e., such that
each state is occupied with two electrons with opposite
spins at most. Therefore, the ground state of one or
two electrons is that of n = 0, and hence has zero cur-
rent at ® = 0. But the state with the next electron
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Fig.4. Persistent current versus the number of elec-

trons in a ring with the ratio cross-sectional dimensions
L:Ly: Ly =10:1:1 (configuration with spin).
The upper curve is the maximum current in units of
Jo = evr /L, at given N, the dotted curve is the am-
plitude of the first harmonic of Jyers(®), and the curve
at negative J is the spontaneous persistent current, also
in units of .Jy. The bottom curve is the square root of
the number of perpendicular channels N

number, N = 3, already resumes at n =1 or n = —1,
or is in a superposition of these states, a|l) + 8| — 1),
depending on the way of preparation of the state at the
initial condition, and therefore carries a current unless
a # (3. If there is no decoherence of the state due to
the interaction of the loop with the environment, the
current persists in time without any voltage applied
along the loop. This applies to a ballistic perfectly
symmetric ring. The inhomogeneity in the ring as well
as scattering of electrons by impurities may result in a
nondegenerate current-free state. This is illustrated in
Fig. 3 for the ring with a dé-functional barrier Vyé(x),
which results in the Kronig—Penney equation for the
energy,

cos(27k) + Yol sin(2rk) = cos <

o
220 2rk 2”3)‘ @)

0

The electron energy is ¢ = ok?, where k = k,, is one
of solutions of Eq. (2) and g = h?/2mL?. The same
conclusion is obtained for a discrete Aharonov—Bohm
ring (Fig. 2b), to be considered in detail below.

Figure 4 shows the maximum value of persistent
current, as well as that of the spontaneous current in-
troduced above, versus the number of electrons in a
three-dimensional ballistic ring (the one with the elec-
tron mean free path | = co) modeled as a finite-length
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0.05 by (1) plus the inductive energy of the current. For the
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Fig.5. Examples of the occurence of a bistable con-

figuration in a ring. Energy versus flux in a ring of

10 (1) and 11 (2) electrons. Curve 2 is shifted down
for convenience but is not rescaled

hollow cylinder (Fig. 2¢) with the rectangular cross sec-
tion Ly X Ly containing a finite number of perpendicular
electron channels
Ly Lyk3
N, = —+.
+ 272

We note that the magnitude of the current in a ballistic
ring is not evp /L, as is sometimes suggested (vp is the
Fermi velocity), but

€Vp -1)2
Jmaz ~ TNL/

(see also [2]). The dependence Jy,q.(N) at T = 0 is
irregular due to the contribution to the total current of
both the negative and positive terms originating from
different electron eigenstates.

Figure 5 explains the origin of persistent current as
a bistability effect in a ring. While the electron en-
ergy has a minimum at ® = 0 for an even number of
electrons, it acquires a maximum when the number of
electrons is odd. The inductive energy, to be included
below, only very slightly shifts the position of minima
in that curve. The spontaneous current has the same
order of magnitude as the maximum persistent current,
and is an inseparable part of the Aharonov—Bohm ef-
fect in a ballistic ring.

In a one-dimensional loop, discrete quantum states
are

Uy = _eme’ (3)

loop with 3 electrons, this gives the total energy

2 1 2 LI§ »
B(f)=eo |f24 5(+1= PP| + S272() (@)
corresponding at ® = 0 to two spin-1/2 states with
n = 0 and one state with n = 1 or n = —1. The last
term in Eq. (4) is the magnetic inductive energy and
L is the inductance (of the order of the ring circumfer-
ence, in the units adopted). The current

e OF
T==5 %7
is equal to
€<p
J(f) = Jo(£1=3|f]). JOZT (5)

and is nonzero at f = 0 in either of the states £. The
ratio of the magnetic energy to the kinetic energy is of
the order of

Ejg e> 6 0
= I~ ~ 107" —= 6
g 2c¢2¢q  4mmc2R R’ (6)

where aq is the Bohr radius. This is a very small quan-
tity, and therefore the magnetic energy is unimportant
in the energy balance of the loop. The total flux in the
loop is f = fext + 2nj(f), where fe,: is the external
flux and j(f) = J(f)/Jo. The correction to the exter-
nally applied flux is essential only at very small fields
fext ~ m, otherwise we can ignore this contribution.

When a persistent-current loop is placed in an elec-
tric field perpendicular to a magnetic field, the system
coherently switches between the discreet states of the
loop providing for quantum transitions (quantum logi-
cal gates) in the loop performing as a qubit in a quan-
tum computer. This aspect of persistent currents in
ballistic loops is analyzed in Sec. 3.

The property of a nonzero spontaneous persistent
current thus demonstrated for noninteracting electrons
survives strong electron—electron coupling but collapses
when the coupling to the lattice is included. This is
considered in detail in Sec. 4. In what follows, the
structural transformation in the ballistic ring is investi-
gated in an exact way by considering the ring dynamics
in the tight-binding approximation [37,38]. The «lat-
tice» (the atomic configuration of the loop) can respond
to the bistable state by a readjustment of atoms similar
to the Peierls transition (doubling of the lattice period
in a one-dimensional atomic chain, see, e.g., [39,40]),
or by a more general lattice transformation that does
not reduce to simple doubling. When the loop is in the
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rigid background in the periodic lattice on a substrate
of a much stronger bound solid, the degeneracy may
not be lifted, or may remain in a very narrow interval
of the externally applied field.

3. DYNAMICS OF PERSISTENT CURRENTS
IN CROSSED ELECTRIC AND MAGNETIC
FIELDS

The Hamiltonian of the ring consisting of N sites
localizing electrons at equidistant angular positions
6, = 2mn/N is

N
Hy=-71 Z(aianﬂem +af, jane™™) (7)
n=1
where a;f is a fermionic operator creating (and ay,
annihilating) the electron at the site R, in the ring
with the periodic boundary condition ay4+; = a1, and
a = 27P/N®, is the phase related to the Aharonov -
Bohm flux threading the ring. Placing the ring in the
homogeneous electric field perpendicular to the mag-
netic field (Fig. 6) results in adding the extra term

N
2
Hy =V Z cos %aZan (8)
n=1

to the Hamiltonian. The Hamiltonian Hy is dia-
gonalized by the angular momentum (i.e., m =
=0,1,...,N — 1) eigenstates A} |0) such that

N-1

1 2mimn
AL = — al ex . 9
i nZ:‘B P 9)
These states have the energies
2 d
Em = —2T COS WW <m - 30) (10)
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Fig.6. Scheme of a 3-site qubit in the electric field
perpendicular to the magnetic field
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Fig.7. Curves 1 and 3 are energy versus magnetic flux

dependences in the degenerate states carrying oppo-

site currents. The current is found as the derivative

j = —c0z/0®. Curve 2 corresponds to the zero-current

virtual state at the operating point of a qubit at the
half-flux quantum ® = ®¢/2

plotted versus the flux in Fig. 7. The electronic config-
uration at & = ®y/2 has a A-shaped energy structure
with two degenerate ground states shown in Fig. 1,
which were suggested as |0) and |1) components of a
qubit in Refs. [14,15]. The time evolution of angu-
lar-momentum eigenstates A |0) is periodic at certain
values of V and at the value of the flux equal to half
the flux quantum ®/2 = hc/2e.

In the eigenbasis of the operators A,,, the Hamil-
tonian Hg + H; at N = 3 in the absence of an electric
field is transformed into the diagonal form (we scale all
energies in units of 7)

-1.0 0
Hy=> emAfAn=| 0 2 0 (11)
m 0 0 -1

and the Hamiltonian H; becomes

v |, (12)
0

Hy =

S e O
S O <

where v = V5 /27. We let the m = 1 and m = 3 states
be denoted by |0) and |1), in the qubit terminology,
and the excited state m = 2 by |¢) (the «control» state
coupling qubit states to the «qugate», or the quantum
logic gate).
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Fig. 8.

1 and 3 (solid and dotted lines) are the energies that

become degenerate at Vo = 0, and curve 2 (the dashed

line) is the energy of the auxiliary control state |c).

The arrows indicate the values of the potential V4 cor-

responding to the operational points of the bit-flip and
Hadamard gates

Energy versus electrostatic potential. Curves

The eigenstates of Hq + Hy versus v at & = & /2
are presented in Fig. 8. We assume that at ¢ < 0, the
potential is Vo = 0, such that the system at t =0 is a
superposition of the angular momentum states A |0)
with certain amplitudes C,, (0). At later time and at a
constant value of Vg, C,(t) evolves as

Cn(t) =Y exp(=i(Ho + H)t),,,Cm(0).  (13)

For a step function V' (¢) = V0(t), this gives the depen-
dence [14]

Cn(t) = > S (Vo) exp(—i Ext) Smai (Vo) i (0), - (14)

m,k

where e;(Vp) are eigenenergies of the Hamiltonian
Hy + Hy(Vy) and S, (Vo) are the unitary matrices
transforming from the noninteracting eigenbasis (the
one corresponding to Hp) to the eigenbasis of the full
Hamiltonian Hy + H;. It is implied in Eq. (14) that at
a fixed value of V4, the time evolution is performed as
the interplay between the three different eigenenergies.
This is sufficient evidence that if the eigenenergies are
appropriately adjusted, the population of the auxiliary
state (in the angular-momentum basis) can vanish for
certain initial conditions. At these time instants, the
three-state system instantaneously collapses into the

auxiliary state |¢) was unoccupied initially. A neces-
sary condition for the instantaneous collapse into the
qubit subspace (i.e., the degenerate-level subspace) is
a commensuration condition between the eigenenergies
ex(Vo), k =1,2,3, such that the exponential factors in
Eq. (14) destructively interfere at fixed time instants
to destroy the nondiagonal correlations. The required
commensuration can be expressed by the condition

3 —¢&1 = I/(EQ — 53) (15)

for integer v. Equation (15) guarantees periodic col-
lapses of the wavefunction onto the desired basis, and
the next step is to find whether the desired qugate op-
erations can be realized simultaneously in this basis.
For the corresponding values of the potential respect-
ing Eq. (15), we find

Vo(v) = —3% [l/2+l/-|-1+(l/—1)\/ 1/2-|-41/+1] . (16)

In particular, we note that for v =
Vo(l) = —2 and at v = 3, we have

1, we have

2
e — -2 (13 n 2\@) = —4.9735,

and we succeeded in finding two qugates in our first
few attempts. As shown below, these two cases
yield the bit-flip and Hadamard transformations of the
qubit [17].

The v = 1 case can be explicitly proved by verifying
the identity

-1 -1 -1
expe —it| -1 2 -1 =
-1 -1 -1
. l+c+s s —1+4+c+s
=5 s 2(c—s) s , (A7)
—14+c+s s 14+c+s
where

c = cos (t\/é) , §= i\/gsin (t\/g) .

At s = 0 (i.e., ¢ = £1), the transformation matrix of
qubit states block-diagonalizes in the subspace of states
1, 3 (i.e., the qubit states |0), |1)) and the upper state
2 (i.e., the auxiliary «control» state |c)). In particular,
for ¢ = —1, the bit-flip is performed between the qubit
states.

In Fig. 9, the populations p,(t) = |C,()]* of the
states are plotted for the mentioned cases v = 1 and
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Fig.9. Evolution diagrams of the quantum gate G1 (a)
and G3 (b). Solid and dashed lines are the time depen-
dences of the population of the states |0) and |1). The
dotted line shows the time dependence of the auxiliary-
state population. The arrow indicates the «opera-
tional point» of the qugate, i.e., the evolution time
corresponding to the return to the invariant qubit sub-
space

v = 3. The instantaneous collapse to the qubit sub-
space is obtained at ¢t = t1 for v = 1 and at ¢t = t3 for
v = 3 if the auxiliary level is unoccupied at t = 0. We
found these critical times as (in units of /i/7)

™
t, = —— = 1.2825,
1 \/6
T

"= 3B (V) - B3 (Vo)los

= 0.7043,

where the eigenenergies are

1+4V/2 3 Vo V2
E1,3(VO)ZTO/:F§ 1—70-%707 (19)
%
EQ(VO):—1—7°

for V5 < 0. We note that the configuration (¢;,v = 1)
performs the bit-flip |0) < |1), whereas (t3,v = 3)
creates the equally populated Hadamard-like superpo-
sitions of |0) and |1). These operations are represented
in the qubit subspace by the matrices (overall phases
are not shown)

0 1 1 1 —i
G1:<1 0>andG’3:%<_i 1). (20)

The dotted lines show the time dependence of the aux-
iliary population. The arrows indicate the «operational
point» of the qugate, the time of evolution correspond-
ing to the return to the invariant qubit. The G trans-
formation manifests the bit-flip (NOT gate) and Gj is
similar to the Hadamard gate [17] except for the phase
shift /2.

4. QUANTUM BISTABILITY AND
SPONTANEOUS CURRENTS IN A
COUPLED ELECTRON-PHONON SYSTEM

In the tight-binding approximation, the Hamilto-
nian of the loop in the secondary-quantized form is
given by

N N
H = Z(Tjajaaﬁl,gemf +He) + UZ”J‘T”N +

i=1 i=1

N
VY njenjiie +
j=1.0,0"
N [ &

W0 - )7+ K6 -6 (@)

j=1 j=1

+

[N

where 7; is the hopping amplitude between two adja-
cent configurational sites, j and j + 1,

T =170+ g(ej — 9]‘+1), Nig = a?,;aia-, (22)
and
27
05 =L 10,0008 (23)

is the Aharonov—Bohm phase (a Peierls substitution
. . + .

for the phase of hopping amplitude). Next, aj, is the

creation (and aj, is the annihilation) operator of the

electron at site j with spin o, 0;, j = 1,2,... ,N, are
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the angles of distortion of site locations from their equi-
librium positions #) = 27j/N, satisfying the require-
ment

and g is the electron—phonon coupling constant. The
interaction in (22) reflects the property that the hop-
ping amplitude depends on the distance between the lo-
calization positions and assumes that the displacement
6; — 641 is small in comparison to 2r/N. U and V are
Hubbard parameters of the on-site and intra-site inter-
actions. W is the binding energy of the loop to exter-
nal environment (a substrate) such that the loop passes
into the azimuthally symmetric configuration 6; = 69
as W — oo.

The parameters are assumed such that the system
is not superconductive (e.g., U > 0; anyway, the super-
conductivity is not allowed for a 1D-system and it is
forbidden for a small system). The last term in Hamil-
tonian (21) is the elastic energy and K is the stiffness
parameter of the lattice.

In the smallest loop, the one with three sites
(N = 3), only two free parameters of the lattice dis-
placement, X; and X5, remain,

91 = X1+X2, 92 = —X1+X2, 93 = —2X2, (24)
which are decomposed with respect to secondary-quan-
tized Bose operators b; and by as

3K\ M4
X, = <7> (b + b)),

K\ 4 (25)
Xy =3 (3—w> (ba +b3).

System (21) is solved numerically with the ABC com-
piler [41], which includes the creation—annihilation op-
erators as its parameter types. These are generated as
compiler macros with sparse matrices

A, = V) @10V,
B, = 1M @ ¢®™)  bosonic sector,

fermionic sector,

(26)

where 1Y) is the unit matrix of size 2V and C,(lN).,
n =1,...,N, are Fermi/Bose operators in a space of
the same dimension,

CWN) = (u@)N"a(@v)" 1, (27)

a,u, and v are the 2 X 2 matrices (with @ being the
symbol of the Kronecker matrix product):

(28)

10 10

u = , v= ,
0 1 0 n

and

—1,  fermionic sector,

n= : (29)
1, bosonic sector.

The bosons are considered «hard-core bosons» such
that there are only two discrete states for each mode of
displacement. We calculate the ground state of Hamil-
tonian (21) as a function of the magnetic flux f (a clas-
sical variable). In application to real atomic (macro-
molecular) systems, we can consider X; and X, clas-
sical variables because quantum uncertainties in the
coordinates (AX; 5 ~ (li/Mw)'/?) are typically much
smaller than the interatomic distances (M is the mass
of an atom and w ~ 10'3 57! is the characteristic vibra-
tion frequency). The energy of the loop is calculated
as a function of X; and X5 and further minimized with
respect to X; and X for each value of f. The nonzero
values of X and X signify a «lattice» (the ionic core
of the macromolecule) instability against the structural
transformation, analogous to the Peierls transition.

In the noninteracting system (U, V,W,g = 0), the
energy versus the flux f shows a kink with a maximum
at f = 0 (Fig. 10) in the half-filling case, i.e., at the
number of electrons n equal to the number of sites IV,
as well as in a broader range of values of n at larger
N. Actually, as is clear from Fig. 4, such a dependence
is typical of any N > 3 system for a number of (fixed)
values of n.

The 3-site loop’s E(f) dependence is shown in
Fig. 10 together with the dependence of the current
on f. The latter shows a discontinuity at f = 0 of
the same order of magnitude as the standard value of
the persistent current. The current at f = 0 is para-
magnetic because the energy vs flux has a maximum
rather than a minimum at f = 0. The on-site inter-
action reduces the persistent current amplitude near
zero flux (Fig. 11) but does not remove its discontinu-
ity at f = 0. Therefore, the strongest opponent of the
Aharonov—Bohm effect, the electron—electron interac-
tion, leaves the current qualitatively unchanged.

On the other hand, the electron—phonon inter-
action (considered here classically, in regard to lat-
tice vibration) flattens the E(f) dependence near the
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Fig.10. Lower curve: current versus magnetic flux in

a 3-site loop with 3 noninteracting electrons. Upper

curve: energy versus flux in the loop. The hopping

parameter is 79 = —1. The energy is rescaled and
arbitrarily shifted up for clarity
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Fig.11. Spontaneous persistent current versus flux for

7o = —1 and various values of the Hubbard parameter
U:U=0(1),-2(2),2(3),—5(4).5(5),—10(6),
10 (7)

peak value, see Fig. 12a. At large stiffnesses K, this
flattening remains important only for small magnetic
fluxes, much smaller than the flux quantization period
A® = ®;. We note that the persistent current peak
reduces in its amplitude only slightly near ® = 0. As
is seen from Fig. 12b, the electron—phonon interaction

3 ZKOT®, Bem. 6 (12)

-1 4
) 4
-3 4
—4 1 1 1 1

—0.5 —0.3 —0.1 0.1 0.3 0.5
®/do

Fig.12. Energy (a) and current (b) versus flux in a

loop of noninteracting electrons coupled to the lattice

with the coupling parameter value ¢ = 1 and various

values of the stiffness parameter K: K =2 (1), 3 (2),
5(3), 10 (4), 20 (5)

splits the singularity at ® = 0 to two singularities at
® = +d;,,. Outside the interval =Py < @ < Py,
the structural transformation is blocked by the Aharo-
nov —Bohm flux. The range of magnetic fluxes between
—®4ing and Py, determines the domain of the devel-
oping lattice transformation, which signifies itself with
nonzero values of lattice deformations X; and X5. This
property allows us to suggest that the spontaneous per-
sistent current state (a peak of dissipationless charge
transport at or near the zero flux) remains at a nonzero
® when the electron—phonon coupling is not too strong
or when the lattice stiffness is larger than a certain
critical value.
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5. DISCUSSION

In conclusion, we considered the Aharonov—Bohm
effect in an angular-periodic macromolecular structure
like, e.g., an aromatic cyclic molecule, and established
the existence of a persistent current and also a spon-
taneous current when the Aharonov—Bohm flux is not
applied to the ring. Strong coupling of electron hopping
to the ion core of the molecule removes the spontaneous
current, which is nevertheless restored at a (small) mag-
netic field, or when the loop has large stiffness or is
strongly bound to an external azimuthal-periodic envi-
ronment (a substrate). Degenerate states of the loop
at ® = ®y/2 and at & = 0 may serve as components of
a qubit that are operated by static voltages applied in
the plane of the loop perpendicular to the direction of
the Aharonov—Bohm flux.

We draw attention to the papers of Gatteschi et
al. [18,19], in which an azimuthal-periodic molecular
structure (a «ferric wheel» [Fe(OMe),(O2CCH3Cl)]10)
exhibited periodic variation of its magnetization as
a function of the magnetic flux, and assume that the
periodicity with a large period can be attributed to per-
sistent currents. The above macromolecular structure
is more complex than the one we considered because
it contains magnetic ions with strong exchange inter-
actions such that the actual magnetic field in the ring
may be larger than the externally applied field. If
this suggestion proves correct, it will open a possibil-
ity of engineering macromolecular structures (qubits
and qugates) based on the Aharonov - Bohm effect, for
purposes of quantum computation. Apart from this,
the very existence of a nonzero nondecaying current in
a nonsuperconductive system deserves, to our opinion,
a basic physical interest.

I express my deep gratitude to Prof. D. Averin for
helpful discussions and advice, and to Prof. K. Likha-
rev for comments on quantum computational aspects
of nanoscale physics.
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