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SPONTANEOUS AND PERSISTENT CURRENTS IN MESOSCOPICAHARONOV�BOHM LOOPS: STATIC PROPERTIESAND COHERENT DYNAMIC BEHAVIOR IN CROSSED ELECTRICAND MAGNETIC FIELDSI. O. Kulik a;b*aDepartment of Physi
s and Astronomy, Stony Brook University,Stony Brook, NY 11794-3380, USAbDepartment of Physi
s, Bilkent University06533, Ankara, TurkeySubmitted 8 June 2004Mesos
opi
 or ma
romole
ular 
ondu
ting rings with a �xed number of ele
trons are shown to support persis-tent 
urrents due to the Aharonov �Bohm �ux, and the �spontaneous� persistent 
urrents without the �uxwhen stru
tural transformation in the ring is blo
ked by strong 
oupling to the externally azimuthal-symmetri
environment. In the free-standing ma
romole
ular ring, symmetry breaking removes the azimuthal periodi
ity,whi
h is further restored at the in
reasing �eld, however. The dynami
s of the Aharonov � Bohm loop in 
rossedele
tri
 and magneti
 �elds is investigated within the tight-binding approximation; we show that transitionsbetween dis
rete quantum states o

ur when stati
 voltage pulses of pres
ribed duration are applied to theloop. In parti
ular, the three-site ring with one or three ele
trons is an interesting quantum system that 
anserve as a qubit (quantum bit of information) and a qugate (quantum logi
al gate) be
ause in the presen
e ofan externally applied stati
 ele
tri
 �eld perpendi
ular to a magneti
 �eld, the ma
romole
ular ring swit
hesbetween degenerate ground states mimi
king the NOT and Hadamard gates of quantum 
omputers.PACS: 73.23.Ra, 73.63.-b, 03.65.Vf, 03.67.Lx1. PERSISTENT CURRENTS IN MESOSCOPICSYSTEMSPersistent 
urrents have been predi
ted for meso-s
opi
 
ondu
ting ballisti
 or quasiballisti
 loops ([1℄1)and referen
es therein, [2℄) that do not show the ef-fe
t of super
ondu
tivity, and extended to di�usiverings [3℄. The 
urrent appears in the presen
e of a mag-neti
 �eld as a result of the Aharonov �Bohm e�e
t [4℄,demonstrating the spe
ial role of ve
tor potential inquantum me
hani
s. As dis
ussed in review [5℄, per-sistent 
urrents are similar to orbital 
urrents in nor-mal metals �rst 
onsidered by Teller [6℄ in his inter-pretation of Landau diamagnetism in metals [7℄, butare spe
i�
 to the doubly 
onne
ted geometry of 
on-*E-mail: iokulik�yahoo.
om1) This paper proved exa
t periodi
ity of ring energy as a fun
-tion of the magneti
 �ux with the period h
=e, although with theinde�nite amplitude.

du
tors (loops, hollow 
ylinders, et
.). Persistent 
ur-rents have been observed in the indire
t [8; 9℄ as wellas dire
t [10; 11℄ experiments, showing the single-�ux-quantum �0 = h
=e periodi
ity in the resistan
e of thinNb wires [8℄ and networks of isolated Cu rings [9℄, andin single-loop experiments on metals [10℄ and semi
on-du
tors [11℄. In [12℄, the periodi
 variation of resistivityin mole
ular 
ondu
ting 
ylinders (
arbon nanotubes)was attributed to the Altshuler �Aronov � Spivak ef-fe
t [13℄, a 
ompanion to the 
lassi
al Aharonov �Bohmme
hanism with the twi
e smaller periodi
ity in mag-neti
 �ux �1 = h
=2e. A further trend in ma
romole
u-lar persistent 
urrents [14�16℄ is in the quantum 
ompu-tational [17℄ perspe
tives of using the Aharonov �Bohmloops as quantum bits (qubits) with an advantage ofeasier (radiation-free) manipulation of qubit states, andin the in
reased de
oheren
e times 
ompared to ma
ro-s
opi
 �S
hrödinger 
at� stru
tures (Josephson jun
-tions).1145
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Fig. 1. A �-shaped energy 
on�guration in theAharonov �Bohm ring. Arrows indi
ate a transition be-tween degenerate states j0i and j1i through a virtualtransition to the 
ontrol state j
iThe present paper fo
uses on ballisti
 Aharonov �Bohm rings, like those naturally found in mole
ular
rystals with metal�organi
 
omplexes as the buildingblo
ks [18; 19℄. We approximate su
h ma
romole
u-lar stru
tures as rings with resonant hopping of ele
-trons between the near-site atoms or 
omplexes serv-ing as ele
tron lo
alization sites. As shown in [14℄, thesmallest (three-site) persistent 
urrent ring displays a�-shaped energy 
on�guration (Fig. 1) with two de-generate ground states, at the external �ux throughthe ring equal to half the normal-metal �ux quantum,� = h
=2e. At a 
ertain number of ele
trons in thering, persistent 
urrent appears at zero �eld (the �spon-taneous� 
urrent). The spontaneous persistent 
urrentloop, to be dis
ussed below, a
hieves the degeneratestate at zero �eld or, if the degenera
y is lifted by theele
tron�phonon 
oupling, at reasonably small �elds.Persistent 
urrent is a voltage-free nonde
aying 
ur-rent that exists as a manifestation of the fa
t thatthe ground state of a doubly 
onne
ted 
ondu
tor ina magneti
 �eld is a 
urrent-
arrying one. This state-ment was proved for ballisti
 loops [2℄ and for di�u-sive rings [3℄. There is no prin
ipal di�eren
e betweenthese extremes. Counterintuitively, a ballisti
 stru
-ture does not show in�nite 
ondu
tivity, as was some-times naively supposed; a d.
. resistan
e of the loopis in�nite rather than zero when a d.
. ele
tri
 �eldis applied to the system. In the 
ase where a 
urrentis fed through the stru
ture, no voltage appears pro-vided the magnitude of the 
urrent is smaller than a
ertain 
riti
al value. This applies to both elasti
 andinelasti
 s
atterings. The magnitude of the 
riti
al 
ur-rent of a ballisti
 ring smoothly mat
hes the 
urrent ofthe di�usive ring when the mean free path of the ele
-

tron be
omes large. In a dirty limit, l � L, where l isthe ele
tron mean free path and L is the ring 
ir
um-feren
e, the 
riti
al value of the persistent 
urrent de-
reases proportionally to l=L a

ording to Ref. [20℄, orto (l=L)1=2 a

ording to numeri
al simulation [5℄. Thenonde
aying 
urrent does not even require severe re-stri
tions on the so-
alled �phase breaking� mean freepath l'. In fa
t, the normal-metal super
urrent is ananalogue of the �in
oherent� Josephson e�e
t [21; 22℄,the one in whi
h the phase of super
ondu
tor is 
on-sidered a 
lassi
al variable. Stronger 
riteria (the de-phasing length larger than the system size, and theanalogous requirement in the time domain, that the�de
oheren
e time� is larger than the 
hara
teristi
time of observation) apply to persistent 
urrent rings asquantum 
omputational tools, whi
h are the analoguesof ma
ros
opi
 quantum tunneling [23�26℄. Persistent
urrent is a thermodynami
 property, 
learly distin
tfrom the dissipative 
urrents in 
ondu
tors, and 
anin prin
iple exist in a system that has the vanishingOhmi
 
ondu
tan
e.2. SPONTANEOUS PERSISTENT CURRENTSPersistent 
urrent in a ballisti
 ring appears dueto the Aharonov �Bohm �ux. The 
urrent, however,
an also o

ur when the external magneti
 �eld is zero,in whi
h 
ase it is 
alled the �spontaneous� 
urrent.Su
h a situation was noti
ed a

identally by variousauthors, in parti
ular, [27; 28℄, but did not seem 
on-vin
ing, did not attra
t attention due to �xed 
hemi
alpotential 
on�guration studied, and was attributed tothe e�e
t of Peierls instability in the ring [29�32℄ (withthe later paper 
riti
ized [33; 34℄ in regard to the ina
-
ura
y of the mean-�eld approximation). In fa
t, the�xed-number-of-parti
le ring with an odd number ofele
trons displays a number of stru
tural instabilities,of whi
h the Peierls transformation [35℄ and the Jahn �Teller e�e
t [36℄ are the best known examples, or gen-erally, a more 
omplex atom rearrangement when theground state proves degenerate in a symmetri
 
on�g-uration.The origin of the �spontaneous� 
urrent 
an be un-derstood as follows. We 
onsider a one-dimensionalring in the �eld of a ve
tor potential 
reated by a thinin�nitely long solenoid perpendi
ular to the plane ofthe ring and pier
ing the ring (Fig. 2a). The ele
tronenergy in the ring is"n = h22mL2 �n� LA�0 �2 ; (1)1146
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Fig. 2. Models of mesos
opi
 and nanos
opi
 Aharo-nov �Bohm loops: a one-dimensional 
ontinuous loop(a); a dis
rete loop with regularly spa
ed 
enters ofele
tron lo
alization (sites) (b); a 3-dimensional loopin the form of the 
ylinder with the longitudinal dimen-sion L = 2�R and transverse dimensions L1, L2 (
)
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Fig. 3. Ground state energies and 
urrents in the 
on-tinuous ring with 3 ele
trons at various strengthes ofthe barrier: g = 0 (1 ), 1 (2 ), 2 (3 )where A = �=L is the angular 
omponent of the ve
torpotential (� is the total magneti
 �ux of the solenoid)and n = 0;�1;�2; : : : Su
h a state 
orresponds to the
urrent J = �
�"n�� = ehmL2 �n� ��0� ;whi
h is zero at � = 0 and n = 0, but is nonzeroat n 6= 0 even at zero �ux. At T = 0, ele
trons, inthe total number N , o

upy the lowest possible ener-gies 
ompatible with the Pauli prin
iple, i.e., su
h thatea
h state is o

upied with two ele
trons with oppositespins at most. Therefore, the ground state of one ortwo ele
trons is that of n = 0, and hen
e has zero 
ur-rent at � = 0. But the state with the next ele
tron
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Fig. 4. Persistent 
urrent versus the number of ele
-trons in a ring with the ratio 
ross-se
tional dimensionsL : L1 : L2 = 10 : 1 : 1 (
on�guration with spin).The upper 
urve is the maximum 
urrent in units ofJ0 = evF =L, at given N , the dotted 
urve is the am-plitude of the �rst harmoni
 of Jpers(�), and the 
urveat negative J is the spontaneous persistent 
urrent, alsoin units of J0. The bottom 
urve is the square root ofthe number of perpendi
ular 
hannels N?number, N = 3, already resumes at n = 1 or n = �1,or is in a superposition of these states, �j1i+ �j � 1i,depending on the way of preparation of the state at theinitial 
ondition, and therefore 
arries a 
urrent unless� 6= �. If there is no de
oheren
e of the state due tothe intera
tion of the loop with the environment, the
urrent persists in time without any voltage appliedalong the loop. This applies to a ballisti
 perfe
tlysymmetri
 ring. The inhomogeneity in the ring as wellas s
attering of ele
trons by impurities may result in anondegenerate 
urrent-free state. This is illustrated inFig. 3 for the ring with a Æ-fun
tional barrier V0Æ(x),whi
h results in the Kronig �Penney equation for theenergy,
os(2�k) + V0L2"0 sin(2�k)2�k = 
os�2� ��0� : (2)The ele
tron energy is " = "0k2, where k = kn is oneof solutions of Eq. (2) and "0 = h2=2mL2. The same
on
lusion is obtained for a dis
rete Aharonov �Bohmring (Fig. 2b), to be 
onsidered in detail below.Figure 4 shows the maximum value of persistent
urrent, as well as that of the spontaneous 
urrent in-trodu
ed above, versus the number of ele
trons in athree-dimensional ballisti
 ring (the one with the ele
-tron mean free path l =1) modeled as a �nite-length1147
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Fig. 5. Examples of the o

uren
e of a bistable 
on-�guration in a ring. Energy versus �ux in a ring of10 (1 ) and 11 (2 ) ele
trons. Curve 2 is shifted downfor 
onvenien
e but is not res
aledhollow 
ylinder (Fig. 2
) with the re
tangular 
ross se
-tion L1�L2 
ontaining a �nite number of perpendi
ularele
tron 
hannels N? = L1L2k2F2�2 :We note that the magnitude of the 
urrent in a ballisti
ring is not evF =L, as is sometimes suggested (vF is theFermi velo
ity), butJmax � evFL N1=2?(see also [2℄). The dependen
e Jmax(N) at T = 0 isirregular due to the 
ontribution to the total 
urrent ofboth the negative and positive terms originating fromdi�erent ele
tron eigenstates.Figure 5 explains the origin of persistent 
urrent asa bistability e�e
t in a ring. While the ele
tron en-ergy has a minimum at � = 0 for an even number ofele
trons, it a
quires a maximum when the number ofele
trons is odd. The indu
tive energy, to be in
ludedbelow, only very slightly shifts the position of minimain that 
urve. The spontaneous 
urrent has the sameorder of magnitude as the maximum persistent 
urrent,and is an inseparable part of the Aharonov �Bohm ef-fe
t in a ballisti
 ring.In a one-dimensional loop, dis
rete quantum statesare  n = 1pLein�; (3)

where � is the azimuthal angle, with the energies givenby (1) plus the indu
tive energy of the 
urrent. For theloop with 3 ele
trons, this gives the total energyE(f) = "0 �f2 + 12(�1� f)2�+ LJ202
2 j2(f); (4)
orresponding at � = 0 to two spin-1/2 states withn = 0 and one state with n = 1 or n = �1. The lastterm in Eq. (4) is the magneti
 indu
tive energy andL is the indu
tan
e (of the order of the ring 
ir
umfer-en
e, in the units adopted). The 
urrentJ = � eh �E�fis equal toJ(f) = J0(�1� 3jf j); J0 = e"0h (5)and is nonzero at f = 0 in either of the states �. Theratio of the magneti
 energy to the kineti
 energy is ofthe order of� = LJ202
2"0 � e24�m
2R � 10�6a0R ; (6)where a0 is the Bohr radius. This is a very small quan-tity, and therefore the magneti
 energy is unimportantin the energy balan
e of the loop. The total �ux in theloop is f = fext + 2�j(f), where fext is the external�ux and j(f) = J(f)=J0. The 
orre
tion to the exter-nally applied �ux is essential only at very small �eldsfext � �, otherwise we 
an ignore this 
ontribution.When a persistent-
urrent loop is pla
ed in an ele
-tri
 �eld perpendi
ular to a magneti
 �eld, the system
oherently swit
hes between the dis
reet states of theloop providing for quantum transitions (quantum logi-
al gates) in the loop performing as a qubit in a quan-tum 
omputer. This aspe
t of persistent 
urrents inballisti
 loops is analyzed in Se
. 3.The property of a nonzero spontaneous persistent
urrent thus demonstrated for nonintera
ting ele
tronssurvives strong ele
tron�ele
tron 
oupling but 
ollapseswhen the 
oupling to the latti
e is in
luded. This is
onsidered in detail in Se
. 4. In what follows, thestru
tural transformation in the ballisti
 ring is investi-gated in an exa
t way by 
onsidering the ring dynami
sin the tight-binding approximation [37; 38℄. The �lat-ti
e� (the atomi
 
on�guration of the loop) 
an respondto the bistable state by a readjustment of atoms similarto the Peierls transition (doubling of the latti
e periodin a one-dimensional atomi
 
hain, see, e.g., [39; 40℄),or by a more general latti
e transformation that doesnot redu
e to simple doubling. When the loop is in the1148
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kground in the periodi
 latti
e on a substrateof a mu
h stronger bound solid, the degenera
y maynot be lifted, or may remain in a very narrow intervalof the externally applied �eld.3. DYNAMICS OF PERSISTENT CURRENTSIN CROSSED ELECTRIC AND MAGNETICFIELDSThe Hamiltonian of the ring 
onsisting of N siteslo
alizing ele
trons at equidistant angular positions�n = 2�n=N isH0 = �� NXn=1(a+n an+1ei� + a+n+1ane�i�) (7)where a+n is a fermioni
 operator 
reating (and an,annihilating) the ele
tron at the site Rn in the ringwith the periodi
 boundary 
ondition aN+1 = a1, and� = 2��=N�0 is the phase related to the Aharonov �Bohm �ux threading the ring. Pla
ing the ring in thehomogeneous ele
tri
 �eld perpendi
ular to the mag-neti
 �eld (Fig. 6) results in adding the extra termH1 = V0 NXn=1 
os 2�nN a+n an (8)to the Hamiltonian. The Hamiltonian H0 is dia-gonalized by the angular momentum (i.e., m == 0; 1; : : : ; N � 1) eigenstates A+mj0i su
h thatA+m = 1pN N�1Xn=0 a+n exp 2�imnN : (9)These states have the energies"m = �2� 
os 2�N �m� ��0� (10)

+ �
FluxE-�eldFig. 6. S
heme of a 3-site qubit in the ele
tri
 �eldperpendi
ular to the magneti
 �eld
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Fig. 7. Curves 1 and 3 are energy versus magneti
 �uxdependen
es in the degenerate states 
arrying oppo-site 
urrents. The 
urrent is found as the derivativej = �
�"=��. Curve 2 
orresponds to the zero-
urrentvirtual state at the operating point of a qubit at thehalf-�ux quantum � = �0=2plotted versus the �ux in Fig. 7. The ele
troni
 
on�g-uration at � = �0=2 has a �-shaped energy stru
turewith two degenerate ground states shown in Fig. 1,whi
h were suggested as j0i and j1i 
omponents of aqubit in Refs. [14; 15℄. The time evolution of angu-lar-momentum eigenstates A+mj0i is periodi
 at 
ertainvalues of V0 and at the value of the �ux equal to halfthe �ux quantum �0=2 = h
=2e.In the eigenbasis of the operators Am, the Hamil-tonian H0 +H1 at N = 3 in the absen
e of an ele
tri
�eld is transformed into the diagonal form (we s
ale allenergies in units of �)H0 =Xm "mA+mAm = 0B� �1 0 00 2 00 0 �1 1CA (11)and the Hamiltonian H1 be
omesH1 = 0B� 0 v vv 0 vv v 0 1CA ; (12)where v = V0=2� . We let the m = 1 and m = 3 statesbe denoted by j0i and j1i, in the qubit terminology,and the ex
ited state m = 2 by j
i (the �
ontrol� state
oupling qubit states to the �qugate�, or the quantumlogi
 gate).1149
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Fig. 8. Energy versus ele
trostati
 potential. Curves1 and 3 (solid and dotted lines) are the energies thatbe
ome degenerate at V0 = 0, and 
urve 2 (the dashedline) is the energy of the auxiliary 
ontrol state j
i.The arrows indi
ate the values of the potential V0 
or-responding to the operational points of the bit-�ip andHadamard gatesThe eigenstates of H0 +H1 versus v at � = �0=2are presented in Fig. 8. We assume that at t � 0, thepotential is V0 = 0, su
h that the system at t = 0 is asuperposition of the angular momentum states A+mj0iwith 
ertain amplitudes Cm(0). At later time and at a
onstant value of V0, Cn(t) evolves asCn(t) =Xm exp(�i(H0 +H1)t)mnCm(0): (13)For a step fun
tion V (t) = V0�(t), this gives the depen-den
e [14℄Cn(t) =Xm;k S�1kn (V0) exp(�iEkt)Smk(V0)Cm(0); (14)where "k(V0) are eigenenergies of the HamiltonianH0 + H1(V0) and Snm(V0) are the unitary matri
estransforming from the nonintera
ting eigenbasis (theone 
orresponding to H0) to the eigenbasis of the fullHamiltonian H0+H1. It is implied in Eq. (14) that ata �xed value of V0, the time evolution is performed asthe interplay between the three di�erent eigenenergies.This is su�
ient eviden
e that if the eigenenergies areappropriately adjusted, the population of the auxiliarystate (in the angular-momentum basis) 
an vanish for
ertain initial 
onditions. At these time instants, thethree-state system instantaneously 
ollapses into the

qubit subspa
e without loss of any information if theauxiliary state j
i was uno

upied initially. A ne
es-sary 
ondition for the instantaneous 
ollapse into thequbit subspa
e (i.e., the degenerate-level subspa
e) isa 
ommensuration 
ondition between the eigenenergies"k(V0), k = 1; 2; 3, su
h that the exponential fa
tors inEq. (14) destru
tively interfere at �xed time instantsto destroy the nondiagonal 
orrelations. The required
ommensuration 
an be expressed by the 
ondition"3 � "1 = �("2 � "3) (15)for integer �. Equation (15) guarantees periodi
 
ol-lapses of the wavefun
tion onto the desired basis, andthe next step is to �nd whether the desired qugate op-erations 
an be realized simultaneously in this basis.For the 
orresponding values of the potential respe
t-ing Eq. (15), we �ndV0(�) = � 23� h�2+�+1+(��1)p�2+4�+1 i : (16)In parti
ular, we note that for � = 1, we haveV (1)0 = �2 and at � = 3, we haveV (3)0 = �29 �13 + 2p22� = �4:9735;and we su

eeded in �nding two qugates in our �rstfew attempts. As shown below, these two 
asesyield the bit-�ip and Hadamard transformations of thequbit [17℄.The � = 1 
ase 
an be expli
itly proved by verifyingthe identityexp8><>:�it0B� �1 �1 �1�1 2 �1�1 �1 �1 1CA9>=>; == 12 0B� 1 + 
+ s s �1 + 
+ ss 2(
� s) s�1 + 
+ s s 1 + 
+ s 1CA ; (17)where 
 = 
os�tp6� ; s = ir23 sin�tp6� :At s = 0 (i.e., 
 = �1), the transformation matrix ofqubit states blo
k-diagonalizes in the subspa
e of states1, 3 (i.e., the qubit states j0i, j1i) and the upper state2 (i.e., the auxiliary �
ontrol� state j
i). In parti
ular,for 
 = �1, the bit-�ip is performed between the qubitstates.In Fig. 9, the populations pn(t) = jCn(t)j2 of thestates are plotted for the mentioned 
ases � = 1 and1150
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tFig. 9. Evolution diagrams of the quantum gate G1 (a)and G3 (b). Solid and dashed lines are the time depen-den
es of the population of the states j0i and j1i. Thedotted line shows the time dependen
e of the auxiliary-state population. The arrow indi
ates the �opera-tional point� of the qugate, i.e., the evolution time
orresponding to the return to the invariant qubit sub-spa
e� = 3. The instantaneous 
ollapse to the qubit sub-spa
e is obtained at t = t1 for � = 1 and at t = t3 for� = 3 if the auxiliary level is uno

upied at t = 0. Wefound these 
riti
al times as (in units of ~=�)t1 = �p6 = 1:2825;t3 = �2[E2(V0)�E3(V0)℄�=3 = 0:7043; (18)where the eigenenergies are

E1;3(V0) = 1 + V0=22 � 32r1� V02 + V 204 ;E2(V0) = �1� V02 (19)for V0 � 0. We note that the 
on�guration (t1; � = 1)performs the bit-�ip j0i $ j1i, whereas (t3; � = 3)
reates the equally populated Hadamard-like superpo-sitions of j0i and j1i. These operations are representedin the qubit subspa
e by the matri
es (overall phasesare not shown)G1 =  0 11 0 ! and G3 = 1p2  1 �i�i 1 ! : (20)The dotted lines show the time dependen
e of the aux-iliary population. The arrows indi
ate the �operationalpoint� of the qugate, the time of evolution 
orrespond-ing to the return to the invariant qubit. The G1 trans-formation manifests the bit-�ip (NOT gate) and G3 issimilar to the Hadamard gate [17℄ ex
ept for the phaseshift �=2.4. QUANTUM BISTABILITY ANDSPONTANEOUS CURRENTS IN ACOUPLED ELECTRON�PHONON SYSTEMIn the tight-binding approximation, the Hamilto-nian of the loop in the se
ondary-quantized form isgiven byH = NXj=1(�ja+j�aj+1;�ei�j +H.
.) + U NXj=1 nj"nj# ++ V NXj=1;�;�0 nj�nj+1;�0 ++ 12W NXj=1(�j � �0j )2 + 12K NXj=1(�j � �j+1)2; (21)where �j is the hopping amplitude between two adja-
ent 
on�gurational sites, j and j + 1,�j = �0 + g(�j � �j+1); ni� = a+i�ai� ; (22)and �j = 2�fN + (�j � �j+1)f (23)is the Aharonov �Bohm phase (a Peierls substitutionfor the phase of hopping amplitude). Next, a+j� is the
reation (and aj� is the annihilation) operator of theele
tron at site j with spin �, �j , j = 1; 2; : : : ; N , are1151
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ations from their equi-librium positions �0j = 2�j=N , satisfying the require-ment NXj=1 �j = 0;and g is the ele
tron�phonon 
oupling 
onstant. Theintera
tion in (22) re�e
ts the property that the hop-ping amplitude depends on the distan
e between the lo-
alization positions and assumes that the displa
ement�j��j+1 is small in 
omparison to 2�=N . U and V areHubbard parameters of the on-site and intra-site inter-a
tions. W is the binding energy of the loop to exter-nal environment (a substrate) su
h that the loop passesinto the azimuthally symmetri
 
on�guration �i = �0ias W !1.The parameters are assumed su
h that the systemis not super
ondu
tive (e.g., U > 0; anyway, the super-
ondu
tivity is not allowed for a 1D-system and it isforbidden for a small system). The last term in Hamil-tonian (21) is the elasti
 energy and K is the sti�nessparameter of the latti
e.In the smallest loop, the one with three sites(N = 3), only two free parameters of the latti
e dis-pla
ement, X1 and X2, remain,�1 = X1+X2; �2 = �X1+X2; �3 = �2X2; (24)whi
h are de
omposed with respe
t to se
ondary-quan-tized Bose operators b1 and b2 asX1 = �3K! �1=4 (b1 + b+1 );X2 = 3�K3!�1=4 (b2 + b+2 ): (25)System (21) is solved numeri
ally with the ABC 
om-piler [41℄, whi
h in
ludes the 
reation�annihilation op-erators as its parameter types. These are generated as
ompiler ma
ros with sparse matri
esAn = C(N1)n 
 1(N2); fermioni
 se
tor,Bn = 1(N1) 
 C(N2)n ; bosoni
 se
tor, (26)where 1(N) is the unit matrix of size 2N and C(N)n ,n = 1; : : : ; N , are Fermi/Bose operators in a spa
e ofthe same dimension,C(N)n = (u
)N�na(
v)n�1; (27)

a; u, and v are the 2 � 2 matri
es (with 
 being thesymbol of the Krone
ker matrix produ
t):a =  0 01 0 ! ;u =  1 00 1 ! ; v =  1 00 � ! ; (28)and � = ( �1; fermioni
 se
tor,1; bosoni
 se
tor. (29)The bosons are 
onsidered �hard-
ore bosons� su
hthat there are only two dis
rete states for ea
h mode ofdispla
ement. We 
al
ulate the ground state of Hamil-tonian (21) as a fun
tion of the magneti
 �ux f (a 
las-si
al variable). In appli
ation to real atomi
 (ma
ro-mole
ular) systems, we 
an 
onsider X1 and X2 
las-si
al variables be
ause quantum un
ertainties in the
oordinates (�X1;2 � (~=M!)1=2) are typi
ally mu
hsmaller than the interatomi
 distan
es (M is the massof an atom and ! � 1013 s�1 is the 
hara
teristi
 vibra-tion frequen
y). The energy of the loop is 
al
ulatedas a fun
tion of X1 and X2 and further minimized withrespe
t to X1 and X2 for ea
h value of f . The nonzerovalues of X1 and X2 signify a �latti
e� (the ioni
 
oreof the ma
romole
ule) instability against the stru
turaltransformation, analogous to the Peierls transition.In the nonintera
ting system (U; V;W; g = 0), theenergy versus the �ux f shows a kink with a maximumat f = 0 (Fig. 10) in the half-�lling 
ase, i.e., at thenumber of ele
trons n equal to the number of sites N ,as well as in a broader range of values of n at largerN . A
tually, as is 
lear from Fig. 4, su
h a dependen
eis typi
al of any N � 3 system for a number of (�xed)values of n.The 3-site loop's E(f) dependen
e is shown inFig. 10 together with the dependen
e of the 
urrenton f . The latter shows a dis
ontinuity at f = 0 ofthe same order of magnitude as the standard value ofthe persistent 
urrent. The 
urrent at f = 0 is para-magneti
 be
ause the energy vs �ux has a maximumrather than a minimum at f = 0. The on-site inter-a
tion redu
es the persistent 
urrent amplitude nearzero �ux (Fig. 11) but does not remove its dis
ontinu-ity at f = 0. Therefore, the strongest opponent of theAharonov �Bohm e�e
t, the ele
tron�ele
tron intera
-tion, leaves the 
urrent qualitatively un
hanged.On the other hand, the ele
tron�phonon inter-a
tion (
onsidered here 
lassi
ally, in regard to lat-ti
e vibration) �attens the E(f) dependen
e near the1152
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Fig. 10. Lower 
urve: 
urrent versus magneti
 �ux ina 3-site loop with 3 nonintera
ting ele
trons. Upper
urve: energy versus �ux in the loop. The hoppingparameter is �0 = �1. The energy is res
aled andarbitrarily shifted up for 
larity

�1:0 �0:5 0 0:5 1:0�=�0�2:0�1:5�1:0�0:500:51:0
1:52:0J=J0 1245763

Fig. 11. Spontaneous persistent 
urrent versus �ux for�0 = �1 and various values of the Hubbard parameterU : U = 0 (1 ), �2 (2 ), 2 (3 ), �5 (4 ), 5 (5 ), �10 (6 ),10 (7 )peak value, see Fig. 12a. At large sti�nesses K, this�attening remains important only for small magneti
�uxes, mu
h smaller than the �ux quantization period�� = �0. We note that the persistent 
urrent peakredu
es in its amplitude only slightly near � = 0. Asis seen from Fig. 12b, the ele
tron�phonon intera
tion

�0:5 �0:3 �0:1 0:1 0:3 0:5�=�0

�0:5 �0:3 �0:1 0:1 0:3 0:5�=�0�3:5�3:4�3:3�3:2�3:1�3:0E 12345 a

b
�4�3�2�1
0123
4J 54321

Fig. 12. Energy (a) and 
urrent (b) versus �ux in aloop of nonintera
ting ele
trons 
oupled to the latti
ewith the 
oupling parameter value g = 1 and variousvalues of the sti�ness parameter K: K = 2 (1 ), 3 (2 ),5 (3 ), 10 (4 ), 20 (5 )splits the singularity at � = 0 to two singularities at� = ��sing . Outside the interval��sing < � < �sing ,the stru
tural transformation is blo
ked by the Aharo-nov �Bohm �ux. The range of magneti
 �uxes between��sing and �sing determines the domain of the devel-oping latti
e transformation, whi
h signi�es itself withnonzero values of latti
e deformationsX1 andX2. Thisproperty allows us to suggest that the spontaneous per-sistent 
urrent state (a peak of dissipationless 
hargetransport at or near the zero �ux) remains at a nonzero� when the ele
tron�phonon 
oupling is not too strongor when the latti
e sti�ness is larger than a 
ertain
riti
al value.3 ÆÝÒÔ, âûï. 6 (12) 1153
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on
lusion, we 
onsidered the Aharonov �Bohme�e
t in an angular-periodi
 ma
romole
ular stru
turelike, e.g., an aromati
 
y
li
 mole
ule, and establishedthe existen
e of a persistent 
urrent and also a spon-taneous 
urrent when the Aharonov �Bohm �ux is notapplied to the ring. Strong 
oupling of ele
tron hoppingto the ion 
ore of the mole
ule removes the spontaneous
urrent, whi
h is nevertheless restored at a (small) mag-neti
 �eld, or when the loop has large sti�ness or isstrongly bound to an external azimuthal-periodi
 envi-ronment (a substrate). Degenerate states of the loopat � = �0=2 and at � = 0 may serve as 
omponents ofa qubit that are operated by stati
 voltages applied inthe plane of the loop perpendi
ular to the dire
tion ofthe Aharonov �Bohm �ux.We draw attention to the papers of Gattes
hi etal. [18; 19℄, in whi
h an azimuthal-periodi
 mole
ularstru
ture (a �ferri
 wheel� [Fe(OMe)2(O2CCH2Cl)℄10)exhibited periodi
 variation of its magnetization asa fun
tion of the magneti
 �ux, and assume that theperiodi
ity with a large period 
an be attributed to per-sistent 
urrents. The above ma
romole
ular stru
tureis more 
omplex than the one we 
onsidered be
auseit 
ontains magneti
 ions with strong ex
hange inter-a
tions su
h that the a
tual magneti
 �eld in the ringmay be larger than the externally applied �eld. Ifthis suggestion proves 
orre
t, it will open a possibil-ity of engineering ma
romole
ular stru
tures (qubitsand qugates) based on the Aharonov �Bohm e�e
t, forpurposes of quantum 
omputation. Apart from this,the very existen
e of a nonzero nonde
aying 
urrent ina nonsuper
ondu
tive system deserves, to our opinion,a basi
 physi
al interest.I express my deep gratitude to Prof. D. Averin forhelpful dis
ussions and advi
e, and to Prof. K. Likha-rev for 
omments on quantum 
omputational aspe
tsof nanos
ale physi
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