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A KINETIC APPROACH TO BOSE �EINSTEIN CONDENSATES:SELF-PHASE MODULATION AND BOGOLIUBOV OSCILLATIONSJ. T. Mendonça *, R. Bingham **Rutherford Appleton Laboratory, Chilton, Did
ot,Oxon OX11 OQX, U.K.P. K. Shukla ***Institut für Theoretis
he Physik IV,Fakultät für Physik und Astronomie,Ruhr-Universität Bo
hum, D-44780 Bo
hum, GermanySubmitted 22 April 2005A kineti
 approa
h to Bose � Einstein 
ondensates (BECs) is proposed, based on the Wigner �Moyal equation(WME). In the semi
lassi
al limit, the WME redu
es to the parti
le-number 
onservation equation. Two ex-amples of appli
ations are i) a self-phase modulation of a BE 
ondensate beam, where we show that a part ofthe beam is de
elerated and eventually stops as a result of the gradient of the e�e
tive self-potential; ii) thederivation of a kineti
 dispersion relation for sound waves in BECs, in
luding 
ollisionless Landau damping.PACS: 02.70.Uu, 32.80.Pj, 67.40.Db1. INTRODUCTIONPresently, the Bose �Einstein 
ondensates (BECs)provide one of the most a
tive and 
reative areas ofresear
h in physi
s [1, 2℄. The dynami
s of BECs areusually des
ribed by a nonlinear S
hrödinger equation(known in this �eld as the Gross �Pitaevskii equation(GPE) [3, 4℄), whi
h determines the evolution of a
olle
tive wave fun
tion of ultra-
old atoms in BECs,evolving in the mean �eld self-potential.In this paper, we propose the use of an alternativebut nearly equivalent approa
h to the physi
s of BECs,based on a kineti
 equation for the 
ondensate. We alsoshow that this kineti
 theory 
an lead to a more 
om-plete understanding of the physi
al pro
esses o

urringin BECs, not only by providing an alternative methodfor des
ribing the system but also by improving ourglobal view of the physi
al phenomena. It is our hope*E-mail: T.Mendon
a�rl.a
.uk. On leave from the InstitutoSuperior Té
ni
o, 1049-001 Lisboa, Portugal.**E-mail: r.bingham�rl.a
.uk. Also at the Department ofPhysi
s, University of Strath
lyde, Glasgow G4 0NG, S
otland.***E-mail: ps�tp4.rub.de. Also at the Department of Physi
s,Umeå University, SE-90187 Umeå, Sweden.

that this will also lead to the dis
overy of new aspe
tsof BECs.The key point of our approa
h is the use of theWigner �Moyal equation (WME) for BECs, des
rib-ing the spatio-temporal evolution of the appropriateWigner fun
tion [5℄. Wigner fun
tions for BECs weredis
ussed in the past [6, 7℄ and the WME has beensporadi
ally used [8℄. But no systemati
 appli
ationof the WME to BECs has previously been 
onsidered.In the semi
lassi
al limit, this equation redu
es to theparti
le-number 
onservation equation, whi
h is a ki-neti
 equation formally analogous to the Liouville equa-tion, but with a nonlinear potential. A des
ription ofBECs in terms of the kineti
 equation is adequate in aseries of problems, as is exempli�ed here, and 
an beseen as intermediate (in a

ura
y) between the GPEand the hydrodynami
 equations usually found in theliterature.This paper is organized as follows. In Se
. 2, weestablish the WME and dis
uss its approximate ver-sion as a kineti
 equation for the Wigner fun
tion. Wethen apply the kineti
 equation to two distin
t physi
alproblems. The �rst one, 
onsidered in Se
. 3, is the self-phase modulation of a BEC beam. A similar problemhas been studied numeri
ally in the past [9℄. Here, we1078



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 A kineti
 approa
h to Bose � Einstein 
ondensates : : :derive expli
it analyti
al results and show that a part ofthe BEC beam is de
elerated and eventually 
omes to a
omplete halt as a result of the 
olle
tive for
es a
tingon the 
ondensate. The se
ond example is 
onsidered inSe
. 4, where we establish a kineti
 dispersion relationfor sound waves in BECs, giving a kineti
 
orre
tionto the usual Bogoliubov sound speed [10; 11℄ and pre-di
ting the o

urren
e of Landau damping [12; 13℄. Ourdes
ription of Landau damping is signi�
antly di�erentfrom that previously 
onsidered for transverse os
illa-tions of BECs [14℄. Finally, in Se
. 5, the virtues andlimitations of the present kineti
 approa
h are brie�ydis
ussed.2. WIGNER�MOYAL EQUATION FOR THEBOSE CONDENSATEIt is known that for an ultra-
old atomi
 ensemble,and in parti
ular for BECs, the ground-state atomi
quantum �eld 
an be repla
ed by a ma
ros
opi
 atomi
wave fun
tion  . In a large variety of situations, theevolution of  is determined by the GPEi~� �t = � ~22mr2 + (V0 + Veff ) ; (1)where V0 � V0(r) is the 
on�ning potential and Veff isthe e�e
tive potential that takes the inter-atomi
 in-tera
tions inside the 
ondensate into a

ount; in thesimplest form, Veff (r; t) = gj (r; t)j2;where g is a 
onstant [3, 4℄.We 
onsider the situation where this wave equation
an be repla
ed by a kineti
 equation. To 
onstru
tsu
h an equation, we introdu
e the Wigner fun
tionasso
iated with  via [5℄W (r;k; t) = Z  �r+ s2 ; t� � �r� s2 ; t��� exp(�ik � s) ds: (2)It is then possible to derive (see the Appendix) theevolution equation for the Wigner fun
tion:� ~22mk � r � i~ ��t�W = �2V (sin�)W; (3)where � = � ��r � ��p�! (4)

is a bi-dire
tional di�erential operator that a
ts to theleft on V and to the right on W [5℄. In this equation,the potential isV = V0 + g Z W (r;k; t) dk(2�)3 + ÆV; (5)where ÆV = g�j (r; t)j2 � Z W (r;k; t) dk(2�)3� (6)
an be 
onsidered a noise term asso
iated with thesquare mean deviations of the quasiprobability, deter-mined by the Wigner fun
tionW with respe
t to the lo-
al quantum probability, determined by the wave fun
-tion  .Equation (3) 
an be seen as the WME des
ribingthe spa
e and time evolution of BECs, and it is ex-a
tly equivalent to GPE (1). However, it is of little usein the above exa
t form, and it is 
onvenient to intro-du
e some simplifying assumptions. This is justi�ed inthe important 
ase of slowly varying potentials. In this
ase, we 
an negle
t the higher-order spatial derivativesand introdu
e the approximation sin� � �. This 
or-responds to the semi
lassi
al approximation, where thequantum potential �u
tuations 
an also be negle
ted,viz. ÆV ! 0. Introdu
ing these two simplifying as-sumptions, valid in the semi
lassi
al limit, we redu
ethe WME to the mu
h simpler form� ��t + v � r+F � ��k�W = 0; (7)where v = ~k=m is the velo
ity of the 
ondensateatoms 
orresponding to the wave ve
tor state k, andF = �rV is a for
e asso
iated with the inhomogeneityof the 
ondensate self-potential. The nonlinear termin GPE (1) is hidden inside this for
e F. As we seein what follows, this nonlinear term looks very mu
hlike a ponderomotive for
e term, similar to radiationpressure.We note that this new equation is a 
losed kineti
equation for the Wigner fun
tion W . In this semi
las-si
al limit, W is just the parti
le o

upation numberfor translational states with the momentum p = ~k.Equation (7) is equivalent to a 
onservation equation,stating the 
onservation of the quasiprobability W inthe six-dimensional 
lassi
al phase spa
e (r;k), and 
analso be written as ddtW (r;k; t) = 0: (8)This kineti
 equation 
an then be used to des
ribephysi
al pro
esses o

urring in a BEC, as long as the1079
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lassi
al approximation of slowly varying poten-tials is justi�ed. The interest in su
h kineti
 des
rip-tions is illustrated with the aid of two simple and di�er-ent examples, to be presented in the next two se
tions.Many other appli
ations 
an be envisaged, and will beexplored in the future.3. SELF-PHASE MODULATION OF A BEAMCONDENSATEWe �rst 
onsider the kineti
 des
ription of self-phase modulation of a BEC gas moving with respe
tto the 
on�ning potential V0(r). Here, we 
an ex-plore the similarity of this problem to that of self-phasemodulation of short laser pulses moving in a nonlin-ear opti
al medium, whi
h is well known in the liter-ature [15℄. To simplify our des
ription, we 
onsiderthe one-dimensional problem of a beam moving alongthe z axis and negle
t the axial variation of the ba
k-ground potential, �V0=�z � 0. The radial stru
ture ofthe beam 
an easily be introdu
ed later, and does notessentially modify the results obtained here. Kineti
equation (7) 
an then be written as� ��t + vz ��z + Fz ��k�W (z; k; t) = 0; (9)with vz and Fz given byvz = ~km+g ��tI(z; t); Fz = dkdt = �g ��z I(z; t); (10)where we have used the intensity of the beam 
onden-sate de�ned byI(z; t) = Z W (z; k; t)dk2� : (11)We assume that an ultra-
old atomi
 beam has themean velo
ity v0 = ~k0=m. This suggests the use ofthe new spa
e 
oordinate � = z � v0t. In terms of thisnew 
oordinate, the semi
lassi
al equations of motionof a 
old atom in the beam 
an be written asd�dt = �h�k = 1m (k � k0);dkdt = ��h�� = �g~ ��� I(�; t); (12)where we have introdu
ed the Hamiltonian fun
tionh(�; k; t) = !(�; k; t)� kv0 == km �k2 � k0�+ g~I(�; t): (13)

Here, !(�; k; t) is the Hamiltonian in the rest frameexpressed in the new 
oordinate. A straightforward in-tegration of the equations of motion leads tok(t) = k0 � g~ tZ0 ��� I(�; t0) dt0: (14)At this point, it is useful to introdu
e the 
on
eptof the beam energy 
hirp, h�(�; t)i, in analogy with thefrequen
y 
hirp of short laser pulses [15℄. By de�nition,it is the beam mean energy at a given position and agiven time,h�(�; t)i = ~ Z W (�; k; t)!(�; k; t)dk2� ; (15)where the weight fun
tion W (�; k; t) is the solution ofone-dimensional kineti
 equation (9). A formal solutionof this equation 
an be written asW (�; k; t) =W (�0(�; k; t); k0(�; k; t); t0); (16)where �0 and k0 are the initial 
onditions 
orrespond-ing to the observed values at time t, as determined bydynami
al equations (12). With (16) used in Eq. (15),we obtainh�(�; t)i = ~ Z W (�0; k0; t0) � k22m+g~I(�; t)� dk2� : (17)From Eq. (14), we see that dk = dk0. Negle
-ting higher-order nonlinearities, we 
an then rewritethe above expression as [15℄h�(�; t)i = h�(0)i � k0mg tZ0 ��� I(�; t0) dt0; (18)where h�(0)i � h�(�0; t0)i is the initial beam energy
hirp.We �rst 
onsider the 
ase where the beam pro�leI(�) is independent of time. This is, of 
ourse, onlyvalid for very short time intervals where the beam ve-lo
ity dispersion is negligible. In this simple 
ase, wehave h�(�; t)i = h�(0)i � ~v0g �I�� t: (19)The maximum energy shift is attained at some po-sition inside the beam pro�le, � = �max, determined bythe stationarity 
ondition��� h�(�; t)i = �2I��2 = 0: (20)1080



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 A kineti
 approa
h to Bose � Einstein 
ondensates : : :To dedu
e more spe
i�
 answers, we assume a Gaus-sian beam pro�leI(�) = I0 exp ���2=�2� ; (21)where � determines the beam width. For this pro�le,we have �max = ��=p2, whi
h leads to the maximumenergy shift��(t) � h�(t)imax � h�(0)i == �~p2� gv0I0 exp��12� t: (22)This is similar to the well-known result in nonlinearopti
s stating that the maximum energy 
hirp due toa self-phase modulation is proportional to t, or to thedistan
e traveled by the beam, d = v0t. This result
learly indi
ates that the initial beam eventually splitsinto two parts, one being a

elerated to higher transla-tional speeds and the other being de
elerated. This
orresponds to the red-shift and blue-shift observedin nonlinear opti
s. The de
elerated beam eventuallystops after a time t � � , su
h that ��(�) = h�(0)i.This determines the 
ondition for translational beamfreezing.We note that the same result 
ould also be obtaineddire
tly from GPE (1). But the present derivation isinteresting be
ause it demonstrates the irrelevan
e ofthe phase of the wave fun
tion  , whi
h was ignored inour kineti
 
al
ulation. Therefore, instead of the self-phase modulation, it would be more appropriate to 
allit the beam self-de
eleration.Another interesting aspe
t of our kineti
 approa
his that it 
an be easily re�ned, as is brie�y shown here.We 
an improve the above 
al
ulation by 
onsideringthe beam dispersion. It inevitably be
omes relevantbe
ause of the linear velo
ity dispersion of the atomi
beam. Su
h a dispersion de
reases the 
hirping e�e
t,be
ause of the de
rease of �I=�� in time. To model it,we 
an assume a time-varying Gaussian beam shape,as des
ribed byI(�; t) = I0� �0�(t)�1=2 exp�� �2�2(t)� : (23)If we now assume that�(t) = �0(1 + Æt2);where Æ = 2m~2 ��0�0

is proportional to the initial energy spread ��0, we ob-tain a new expression for the maximum energy shift, ofthe form ��d(t) = ln tt ��(t); (24)where ��(t) is determined by Eq. (22). It is 
lear thatthe linear beam velo
ity dispersion de
reases the max-imum attainable 
hirp, by 
hanging the linearity withtime into a logarithmi
 law. However, this only o

ursfor very long times, t � 1=pÆ, whi
h are not relevantfor ultra-
old atomi
 beams with a very low transla-tional energy dispersion ��0.The other 
ause of the beam dispersion is the non-linear pro
ess itself, whi
h eventually breaks the initialpulse into two distin
t pulses. In this 
ase, the self-phase modulation pro
ess is not attenuated be
ause thebeam width is 
onserved, but the two se
ondary pulsessu�er self-phase modulation themselves, and eventuallybreak up later, resulting in the formation of several se
-ondary pulses with di�erent mean energies. However,the nonlinear dispersion is also negligible whenever�20 > 4m~2 j��(t)jt2:A more 
omplete des
ription of all these dispersionregimes 
an be obtained by solving kineti
 equation (9)numeri
ally.4. KINETIC DESCRIPTION OF BOGOLIUBOVOSCILLATIONSThe se
ond example of an appli
ation of the kineti
equation for BECs deals with the dispersion relation ofsound waves. For simpli
ity, we again 
onsider the one-dimensional model and negle
t the radial stru
ture ofthe os
illations. This allows us to treat the lowest-orderos
illating modes of the 
ondensate. We assume somegiven equilibrium distribution W0(z; k; t), for instan
e,
orresponding to the Thomas �Fermi equilibrium solu-tion in a given 
on�ning potential V0(r?; z) [16℄, andafter linearization of the one-dimensional kineti
 equa-tion (9) with respe
t to the perturbation ~W , we obtain� ��t + vz ��z� ~W (z; k; t) + ~F ��kW0(z; k; t) = 0; (25)where the perturbed for
e is determined by~F = �g~ ��z ~I(z; t) = �g~ ��z Z ~W (z; k; t)dk2� : (26)1081



J. T. Mendonça, R. Bingham, P. K. Shukla ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005We now assume perturbations of the form ~W; ~I �� exp(ikz � i!t). From the above equations, we thenobtain a relation between the perturbation amplitudeof the Wigner fun
tion ~W and the perturbed beam in-tensity ~I , ~W = � gk~(! � kv0) ~I ��k0W0(k0); (27)where we now spe
ify the parti
le wavenumber statewith k0 in order to avoid 
onfusion with the wavenum-ber k of the os
illation that we intend to study.The velo
ity 
orresponding to this parti
le state isv0 = ~k0=m. Integration over the momentum spe
trumof the parti
le 
ondensate then leads to the equation1 + g~k Z �W0(k0)=�k0! � ~kk0=m dk02� = 0: (28)This is the kineti
 dispersion relation for axial pertur-bations in BECs. We illustrate this result by 
onsi-dering the simple 
ase of a 
ondensate beam with notranslational dispersion, or with a translational tem-perature exa
tly equal to zero. The equilibrium of thebeam 
an then be des
ribed byW0(k0) = 2�n0Æ(k0 � k00); (29)where n0 = 12� Z W0(k0)dk0is the parti
le number density in the 
ondensate. Re-pla
ing this in dispersion relation (28), we have1� gk2m n0(! � kv00)2 = 0; (30)where v00 = ~k00=m = p00=m is the beam velo
ity. This
an also be written as(! � kv00)2 = k2
2s; (31)where 
s =pgn0=m (32)is nothing but the Bogoliubov sound speed. Obviously,Eq. (31) is the Doppler-shifted dispersion relation ofsound waves in the BEC gas. In its referen
e frame, itredu
es to ! = k
s.We now 
onsider the situation where, instead of dis-tribution (29), we have a beam with a small transla-tional velo
ity spread, su
h that the number of parti-
les with a velo
ity v0 � 
s is small but nonzero. Inthis 
ase, the resonant 
ontribution in the integral ofEq. (28) has to be retained, although it is still possible

to negle
t the kineti
 
orre
tions in the prin
ipal partof the integral. The dispersion relation 
an then bewritten, in the 
ondensate frame of referen
e, as1� k2
2s!2 � i2 gm~2 ��W0�k0 �k0=k0s = 0; (33)where k0s = m
s=~ is the resonant momentum. Theimaginary term in this equation 
an lead to dampingof sound waves. Writing ! = k
s + i
, with j
j � k
s,we obtain the expression for the damping 
oe�
ient
 = !4 gm~2 ��W0�k0 �k0=k0s : (34)This expression 
orresponds to the non
ollisional Lan-dau damping of Bogoliubov os
illations in BECs. Thepresent approa
h 
an also be generalized in a straight-forward way to higher-order os
illations of the 
onden-sate, where the radial stru
ture has to be taken intoa

ount [11, 17℄. 5. CONCLUSIONSWe have proposed a kineti
 view of the Bose �Einstein 
ondensate physi
s, based on the Wigner �Moyal equation. In the semi
lassi
al limit, the latter
an be redu
ed to a 
losed kineti
 equation for the 
or-responding Wigner fun
tion. The kineti
 approa
h toBECs 
an be seen as an intermediate step between theGPE and the hydrodynami
al equations for the 
on-densate gas, often found in the literature.We have dis
ussed two di�erent physi
al problems,in order to illustrate the versatility of the kineti
 the-ory. One is a self-phase modulation of a BEC beam.The other is the dispersion relation of the Bogoliubovos
illations in the 
ondensate gas. The �rst exampleshows that due to the in�uen
e of its own inhomoge-neous self-potential, nearly half of the beam is a

eler-ated, while the other half is de
elerated. Under 
ertain
onditions, the de
elerated part of the beam tends toa state of 
omplete halt. The se
ond example showsthat a kineti
 dispersion relation for sound waves inBECs 
an be established, where Landau damping is au-tomati
ally in
luded. The present results only involvethe lowest-order modes, but the same approa
h 
an beused to des
ribe higher-order os
illations of BECs, in-
luding their radial stru
tures, as well as the 
ouplingto a ba
kground thermal gas. This investigation is be-yond the s
ope of the present work, however.Several other di�erent problems relevant to BECs
an also be 
onsidered in the framework of the kineti
theory, su
h as modulational instabilities [18℄ and the1082



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 A kineti
 approa
h to Bose � Einstein 
ondensates : : :wake�eld generation. This indi
ates that the kineti
theory is a very promising approa
h to the physi
sof BECs, whi
h will eventually allow introdu
ing newideas in this stimulating area of resear
h and suggestingnew 
on�gurations to the experimentalists. However,the present work also 
learly states that the presenttheory is only valid in the semi
lassi
al limit, andtherefore some relevant problems where the phase ofthe BEC wave fun
tion plays an important role 
anonly be treated by means of the GPE. Surprisingly, theself-phase modulation is not one of them, as demon-strated here.One of the authors (J. T. M.) appre
iates the hos-pitality of the Rutherford Appleton Laboratory. Thiswork was done within the frame of the Centre for Fun-damental Physi
s. APPENDIXDerivation of the Wigner �Moyal equationIn this derivation, we follow a pro
edure alreadyused in other 
ases, for instan
e, in the 
ase of ele
tro-magneti
 waves moving in a spa
e- and time-dependentdiele
tri
 medium [19℄. For a di�erent but nearly equiv-alent derivation of the WME, see the appendix in Ref.[8℄. We 
onsider two distin
t sets of values for spa
eand time 
oordinates, (r1; t1) and (r2; t2), and use thenotation  j =  (rj ; tj) and Vj = V (rj ; tj), for j = 1; 2.This allows us to write two versions of GPE (1) as� ~22mr2j � i~ ��tj� j = �Vj j : (35)Multiplying the j = 1 equation by  �2 and the 
on-jugate of the j = 2 equation by  1, and subtra
ting theresulting equations, we obtain� ~22m(r21 �r22)� i~� ��t1 + ��t2��C12 == �(V1 � V2)C12; (36)where we set C12 =  1 �2 . The above equation suggeststhe use of two pairs of spa
e and time variables,r1 = r� s=2; t1 = t� �=2;r2 = r+ s=2; t2 = t+ �=2: (37)We 
an then rewrite the above equation as�~2m ��r � ��s � i~ ��t�C12 = �(V1 � V2)C12: (38)

It 
an also easily be shown, by expanding the po-tentials Vj around V (r; t), that(V1 � V2) = 2 sinh� s2 � ��r + �2 ��t�V (r; t): (39)We now introdu
e the double Fourier transform ofthe fun
tion C12 � C(r; s; t; �) in the variables s and� , de�ned byW (r; t; !;k) = Z ds Z d� C(r; s; t; �)�� exp(�ik � s+ i!�): (40)It 
an be rewritten in terms of the wave fun
tion  asW (r; t; !;k) = Z ds Z d�  �r+ s2 ; t+ �2���  � �r� s2 ; t� �2� exp(�ik � s+ i!�): (41)Using this in Eq. (38), we obtain the equation�~2mk � ��r � ~ ��t�W = �2V (sin�0)W (42)for the Fourier transform, where we use the di�erentialoperator �0 = 12  � ��r � ��k � ��t ��!�! (43)a
ting to the left on the potential V (r; t) and to theright on W .This is a formidable equation for W , whi
h 
an besimpli�ed by noting that the GPE implies the existen
eof a well-de�ned relation between energy and momen-tum. This means that ! must be equal to some fun
tionof k, or ! = !(k). Hen
e, we 
an state thatW (r; t; !;k) =W (r;k; t)Æ(! � !(k)): (44)This leads to a mu
h simpler evolution equation forW (r;k; t). Before writing it, we also note that the non-linear term in V depends on j j2, and not on the fun
-tion W . Thus, we 
an �nally write� ~22mk � r�i~ ��t�W = �2(V0+gj j2)(sin �)W; (45)where � is the simpler di�erential operator� = � ��r � ��p�! : (46)The fun
tion W (r;k; t) 
an be seen as the Wignerfun
tion asso
iated with the GPE, and Eq. (45) as the1083
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ribes its spatio-temporal be-havior. This equation is equivalent to the initial waveequation (1), but it is not a 
losed equation for thequasiprobability fun
tion W . Therefore, some simpli-fying assumptions have to be introdu
ed in order tomake it more tra
table, as explained in Se
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