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A kinetic approach to Bose - Einstein condensates (BECs) is proposed, based on the Wigner—Moyal equation
(WME). In the semiclassical limit, the WME reduces to the particle-number conservation equation. Two ex-
amples of applications are i) a self-phase modulation of a BE condensate beam, where we show that a part of
the beam is decelerated and eventually stops as a result of the gradient of the effective self-potential; ii) the
derivation of a kinetic dispersion relation for sound waves in BECs, including collisionless Landau damping.
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1. INTRODUCTION

Presently, the Bose—Einstein condensates (BECs)
provide one of the most active and creative areas of
research in physics [1, 2]. The dynamics of BECs are
usually described by a nonlinear Schrodinger equation
(known in this field as the Gross—Pitaevskii equation
(GPE) [3, 4]), which determines the evolution of a
collective wave function of ultra-cold atoms in BECs,
evolving in the mean field self-potential.

In this paper, we propose the use of an alternative
but nearly equivalent approach to the physics of BECs,
based on a kinetic equation for the condensate. We also
show that this kinetic theory can lead to a more com-
plete understanding of the physical processes occurring
in BECs, not only by providing an alternative method
for describing the system but also by improving our
global view of the physical phenomena. It is our hope
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that this will also lead to the discovery of new aspects
of BECs.

The key point of our approach is the use of the
Wigner — Moyal equation (WME) for BECs, describ-
ing the spatio-temporal evolution of the appropriate
Wigner function [5]. Wigner functions for BECs were
discussed in the past [6, 7] and the WME has been
sporadically used [8]. But no systematic application
of the WME to BECs has previously been considered.
In the semiclassical limit, this equation reduces to the
particle-number conservation equation, which is a ki-
netic equation formally analogous to the Liouville equa-
tion, but with a nonlinear potential. A description of
BECs in terms of the kinetic equation is adequate in a
series of problems, as is exemplified here, and can be
seen as intermediate (in accuracy) between the GPE
and the hydrodynamic equations usually found in the
literature.

This paper is organized as follows. In Sec. 2, we
establish the WME and discuss its approximate ver-
sion as a kinetic equation for the Wigner function. We
then apply the kinetic equation to two distinct physical
problems. The first one, considered in Sec. 3, is the self-
phase modulation of a BEC beam. A similar problem
has been studied numerically in the past [9]. Here, we
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derive explicit analytical results and show that a part of
the BEC beam is decelerated and eventually comes to a
complete halt as a result of the collective forces acting
on the condensate. The second example is considered in
Sec. 4, where we establish a kinetic dispersion relation
for sound waves in BECs, giving a kinetic correction
to the usual Bogoliubov sound speed [10, 11] and pre-
dicting the occurrence of Landau damping [12, 13]. Our
description of Landau damping is significantly different
from that previously considered for transverse oscilla-
tions of BECs [14]. Finally, in Sec. 5, the virtues and
limitations of the present kinetic approach are briefly
discussed.

2. WIGNER -~-MOYAL EQUATION FOR THE
BOSE CONDENSATE

It is known that for an ultra-cold atomic ensemble,
and in particular for BECs, the ground-state atomic
quantum field can be replaced by a macroscopic atomic
wave function 1. In a large variety of situations, the
evolution of 1 is determined by the GPE

2
ine - I

o = g VU (Vo Vb, ()

where Vp = V(r) is the confining potential and Ve is
the effective potential that takes the inter-atomic in-
teractions inside the condensate into account; in the
simplest form,

Veff(l‘, t) = 9\1/)(1‘7 t)‘Qa

where ¢ is a constant [3, 4].

We consider the situation where this wave equation
can be replaced by a kinetic equation. To construct
such an equation, we introduce the Wigner function
associated with ¢ via [5]

W(r k,t) = /1/) (r+§,t) o (r— gt) X
x exp(—ik-s)ds. (2)

It is then possible to derive (see the Appendix) the
evolution equation for the Wigner function:

P v i\ w= v W @)
2m ot N '

where

A=<—<%~%>—> (4)

is a bi-directional differential operator that acts to the
left on V and to the right on W [5]. In this equation,
the potential is

dk

where

v =g (v - [Wekogs)  ©
(2m)?
can be considered a noise term associated with the
square mean deviations of the quasiprobability, deter-
mined by the Wigner function W with respect to the lo-
cal quantum probability, determined by the wave func-
tion .

Equation (3) can be seen as the WME describing
the space and time evolution of BECs, and it is ex-
actly equivalent to GPE (1). However, it is of little use
in the above exact form, and it is convenient to intro-
duce some simplifying assumptions. This is justified in
the important case of slowly varying potentials. In this
case, we can neglect the higher-order spatial derivatives
and introduce the approximation sin A ~ A. This cor-
responds to the semiclassical approximation, where the
quantum potential fluctuations can also be neglected,
viz. 0V — 0. Introducing these two simplifying as-
sumptions, valid in the semiclassical limit, we reduce
the WME to the much simpler form

9 0
(§+V~V+F~a—k>W—0, (7)

where v . = hk/m is the velocity of the condensate
atoms corresponding to the wave vector state k, and
F = —VV is a force associated with the inhomogeneity
of the condensate self-potential. The nonlinear term
in GPE (1) is hidden inside this force F. As we see
in what follows, this nonlinear term looks very much
like a ponderomotive force term, similar to radiation
pressure.

We note that this new equation is a closed kinetic
equation for the Wigner function W. In this semiclas-
sical limit, W is just the particle occupation number
for translational states with the momentum p = 7k.
Equation (7) is equivalent to a conservation equation,
stating the conservation of the quasiprobability W in
the six-dimensional classical phase space (r, k), and can
also be written as

d
ZW (x k1) = 0. 8)

This kinetic equation can then be used to describe
physical processes occurring in a BEC, as long as the
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semiclassical approximation of slowly varying poten-
tials is justified. The interest in such kinetic descrip-
tions is illustrated with the aid of two simple and differ-
ent examples, to be presented in the next two sections.
Many other applications can be envisaged, and will be
explored in the future.

3. SELF-PHASE MODULATION OF A BEAM
CONDENSATE

We first consider the kinetic description of self-
phase modulation of a BEC gas moving with respect
to the confining potential Vp(r). Here, we can ex-
plore the similarity of this problem to that of self-phase
modulation of short laser pulses moving in a nonlin-
ear optical medium, which is well known in the liter-
ature [15]. To simplify our description, we consider
the one-dimensional problem of a beam moving along
the z axis and neglect the axial variation of the back-
ground potential, 9V, /9z = 0. The radial structure of
the beam can easily be introduced later, and does not
essentially modify the results obtained here. Kinetic
equation (7) can then be written as

0 0 0
(5 +vge -

G gt P | Wk =0 (©)

with v, and F. given by

hk 0 _dk 0

— I F. — =— 1 1
v: = g l(zt), Fr= = —ga-(z,8), (10)
where we have used the intensity of the beam conden-
sate defined by

I(z,t) = /W(z,k,t)%. (11)

We assume that an ultra-cold atomic beam has the
mean velocity vy = hikg/m. This suggests the use of
the new space coordinate n = z — vot. In terms of this
new coordinate, the semiclassical equations of motion
of a cold atom in the beam can be written as

dn 0h 1

%—%—E(k—ko)-,

dk oh g 0

& an - hon (n, 1),
n n

(12)

where we have introduced the Hamiltonian function
h(n, k,t) = w(n,k,t) — kvy =

(g _ k0> + 210, (13)

k
m

Here, w(n,k,t) is the Hamiltonian in the rest frame
expressed in the new coordinate. A straightforward in-
tegration of the equations of motion leads to

t
= —%/83 'y dt'. (14)
0

At this point, it is useful to introduce the concept
of the beam energy chirp, (¢(n,t)), in analogy with the
frequency chirp of short laser pulses [15]. By definition,
it is the beam mean energy at a given position and a
given time,

(el = [ Wik w055 (13

where the weight function W (n, k,t) is the solution of
one-dimensional kinetic equation (9). A formal solution
of this equation can be written as

W(n'/kat) = W(’?O(ﬁ-,kvt)-,ko(ﬁ-,k’t)-,to)-, (16)
where 79 and kg are the initial conditions correspond-
ing to the observed values at time ¢, as determined by
dynamical equations (12). With (16) used in Eq. (15),
we obtain

kE* g dk
() =1 [ Womkavto) | 1o+ L100.0)] 5. ()
From Eq. (14), we see that dk = dko. Neglec-

ting higher-order nonlinearities, we can then rewrite
the above expression as [15]
t 6
— " dt', 18
0 [ 5 (15)
0

where (€(0)) = (e(no,t0)) is the initial beam energy
chirp.

We first consider the case where the beam profile
I(n) is independent of time. This is, of course, only
valid for very short time intervals where the beam ve-
locity dispersion is negligible. In this simple case, we
have

(e(n,t) =

Slo

(€. 1)) = {e(0)) - rwogg_;t. (19)

The maximum energy shift is attained at some po-

sition inside the beam profile, ) = Nz, determined by
the stationarity condition

Sle(n ) = 5 = 0. (20)
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To deduce more specific answers, we assume a Gaus-
sian beam profile

I(n) = Ipexp (—=n*/0®) (21)
where o determines the beam width. For this profile,

we have Nyee = icr/\/i which leads to the maximum
energy shift

Ae(t)

(€(t))maa — (€(0)) =

hv2 1
= iigvgfo exp <—5> t. (22)
o

This is similar to the well-known result in nonlinear
optics stating that the maximum energy chirp due to
a self-phase modulation is proportional to ¢, or to the
distance traveled by the beam, d = vgt. This result
clearly indicates that the initial beam eventually splits
into two parts, one being accelerated to higher transla-
tional speeds and the other being decelerated. This
corresponds to the red-shift and blue-shift observed
in nonlinear optics. The decelerated beam eventually
stops after a time ¢ ~ 7, such that Ae(r) = (e(0)).
This determines the condition for translational beam
freezing.

We note that the same result could also be obtained
directly from GPE (1). But the present derivation is
interesting because it demonstrates the irrelevance of
the phase of the wave function 1, which was ignored in
our kinetic calculation. Therefore, instead of the self-
phase modulation, it would be more appropriate to call
it the beam self-deceleration.

Another interesting aspect of our kinetic approach
is that it can be easily refined, as is briefly shown here.
We can improve the above calculation by considering
the beam dispersion. It inevitably becomes relevant
because of the linear velocity dispersion of the atomic
beam. Such a dispersion decreases the chirping effect,
because of the decrease of 91 /dn in time. To model it,
we can assume a time-varying Gaussian beam shape,
as described by

I(.t) = I <%>1/2 exp <—a’27—(2t)> . (23)

If we now assume that
o(t) = oo (1 + ot?),

where
o 2m AEO
B h2 ago

)

is proportional to the initial energy spread Aeg, we ob-
tain a new expression for the maximum energy shift, of
the form

Aeg(t) = lnTtAe(t), (24)

where Ae(t) is determined by Eq. (22). Tt is clear that
the linear beam velocity dispersion decreases the max-
imum attainable chirp, by changing the linearity with
time into a logarithmic law. However, this only occurs
for very long times, t ~ 1/+/3, which are not relevant
for ultra-cold atomic beams with a very low transla-
tional energy dispersion Aeg.

The other cause of the beam dispersion is the non-
linear process itself, which eventually breaks the initial
pulse into two distinct pulses. In this case, the self-
phase modulation process is not attenuated because the
beam width is conserved, but the two secondary pulses
suffer self-phase modulation themselves, and eventually
break up later, resulting in the formation of several sec-
ondary pulses with different mean energies. However,
the nonlinear dispersion is also negligible whenever

4
o2 > h—T|Ae(t)|t2.

A more complete description of all these dispersion
regimes can be obtained by solving kinetic equation (9)
numerically.

4. KINETIC DESCRIPTION OF BOGOLIUBOV
OSCILLATIONS

The second example of an application of the kinetic
equation for BECs deals with the dispersion relation of
sound waves. For simplicity, we again consider the one-
dimensional model and neglect the radial structure of
the oscillations. This allows us to treat the lowest-order
oscillating modes of the condensate. We assume some
given equilibrium distribution Wy(z, k, t), for instance,
corresponding to the Thomas — Fermi equilibrium solu-
tion in a given confining potential Vy(ry,z) [16], and
after linearization of the one-dimensional kinetic equa-
tion (9) with respect to the perturbation W, we obtain

9 0 = ;)
(a + vz$> Wiz, k,t)+ F%Wo(z, k,t) =0, (25)

where the perturbed force is determined by

g 0 ~ dk
Wz, k,t) 5 (26)

hoz

1081



J. T. Mendonca, R. Bingham, P. K. Shukla

MKIT®, Tom 128, Bomn. 5 (11), 2005

We now assume perturbations of the form W, I ~
~ exp(ikz — iwt). From the above equations, we then
obtain a relation between the perturbation amplitude
of the Wigner function W and the perturbed beam in-
tensity I,

- gk 6

where we now specify the particle wavenumber state
with &' in order to avoid confusion with the wavenum-
ber k of the oscillation that we intend to study.
The velocity corresponding to this particle state is
v’ = hk'/m. Integration over the momentum spectrum
of the particle condensate then leads to the equation

! !
- k/awo )/ Ok dk

. 2
w— hkk'/m 2w =0 (28)

This is the kinetic dispersion relation for axial pertur-
bations in BECs. We illustrate this result by consi-
dering the simple case of a condensate beam with no
translational dispersion, or with a translational tem-
perature exactly equal to zero. The equilibrium of the
beam can then be described by

Wo(k}’) = 271'710(5(]{}’ — k(l)) (29)

Ng = i/I/Vo(kl)dk’
2

is the particle number density in the condensate. Re-
placing this in dispersion relation (28), we have

where

gk’ o
1l-=——==0 30
m (w — kvj)? ’ (30)
where v}, = hk{/m = pj/m is the beam velocity. This
can also be written as

(w— kvp)? = k22, (31)
where

= \/gno/m (32)

is nothing but the Bogoliubov sound speed. Obviously,
Eq. (31) is the Doppler-shifted dispersion relation of
sound waves in the BEC gas. In its reference frame, it
reduces to w = kc,.

We now consider the situation where, instead of dis-
tribution (29), we have a beam with a small transla-
tional velocity spread, such that the number of parti-
cles with a velocity v’ ~ ¢ is small but nonzero. In
this case, the resonant contribution in the integral of
Eq. (28) has to be retained, although it is still possible

to neglect the kinetic corrections in the principal part
of the integral. The dispersion relation can then be
written, in the condensate frame of reference, as

2 2
1 k*c; i gm <8WO> o, (33)
ak k'=k'

where ki = mcg/h is the resonant momentum. The
imaginary term in this equation can lead to damping
of sound waves. Writing w = keg + i, with |v| < kcs,
we obtain the expression for the damping coefficient

_wgm oWy
TTA R <8k’ )k,_k, ' (34

This expression corresponds to the noncollisional Lan-
dau damping of Bogoliubov oscillations in BECs. The
present approach can also be generalized in a straight-
forward way to higher-order oscillations of the conden-
sate, where the radial structure has to be taken into
account [11, 17].

5. CONCLUSIONS

We have proposed a kinetic view of the Bose—
Einstein condensate physics, based on the Wigner -
Moyal equation. In the semiclassical limit, the latter
can be reduced to a closed kinetic equation for the cor-
responding Wigner function. The kinetic approach to
BECSs can be seen as an intermediate step between the
GPE and the hydrodynamical equations for the con-
densate gas, often found in the literature.

We have discussed two different physical problems,
in order to illustrate the versatility of the kinetic the-
ory. One is a self-phase modulation of a BEC beam.
The other is the dispersion relation of the Bogoliubov
oscillations in the condensate gas. The first example
shows that due to the influence of its own inhomoge-
neous self-potential, nearly half of the beam is acceler-
ated, while the other half is decelerated. Under certain
conditions, the decelerated part of the beam tends to
a state of complete halt. The second example shows
that a kinetic dispersion relation for sound waves in
BECs can be established, where Landau damping is au-
tomatically included. The present results only involve
the lowest-order modes, but the same approach can be
used to describe higher-order oscillations of BECs, in-
cluding their radial structures, as well as the coupling
to a background thermal gas. This investigation is be-
yond the scope of the present work, however.

Several other different problems relevant to BECs
can also be considered in the framework of the kinetic
theory, such as modulational instabilities [18] and the

1082



MIT®, Tom 128, Boin. 5 (11), 2005

A kinetic approach to Bose— Einstein condensates . ..

wakefield generation. This indicates that the kinetic
theory is a very promising approach to the physics
of BECs, which will eventually allow introducing new
ideas in this stimulating area of research and suggesting
new configurations to the experimentalists. However,
the present work also clearly states that the present
theory is only valid in the semiclassical limit, and
therefore some relevant problems where the phase of
the BEC wave function plays an important role can
only be treated by means of the GPE. Surprisingly, the
self-phase modulation is not one of them, as demon-
strated here.

One of the authors (J. T. M.) appreciates the hos-
pitality of the Rutherford Appleton Laboratory. This
work was done within the frame of the Centre for Fun-
damental Physics.

APPENDIX

Derivation of the Wigner —Moyal equation

In this derivation, we follow a procedure already
used in other cases, for instance, in the case of electro-
magnetic waves moving in a space- and time-dependent
dielectric medium [19]. For a different but nearly equiv-
alent derivation of the WME;, see the appendix in Ref.
[8]. We consider two distinct sets of values for space
and time coordinates, (ry,¢;) and (ra,?2), and use the
notation ¢; = (r;,t;) and V; = V(r;,t;), for j = 1,2.
This allows us to write two versions of GPE (1) as

< Vi b >w]=—'w. (35)

Multiplying the j = 1 equation by 3 and the con-
jugate of the 7 = 2 equation by 1, and subtracting the
resulting equations, we obtain

B K} a

:—(1

where we set C'12 = ¥1¢5. The above equation suggests
the use of two pairs of space and time variables,

—V5)C1a2, (36)

ry=r—s/2,

ro =r+s/2,

tlzt—T/Q,

to =t+71/2. (37)

We can then rewrite the above equation as

2
=0 Q—Zhg 0122—(V1—

mor o5 i )G (39

It can also easily be shown, by expanding the po-
tentials V; around V (r,t), that

o 710
(V1 Vz) = 2sinh <2 8 + 5 &) V(I'.,t). (39)
We now introduce the double Fourier transform of
the function Cy15 = C(r,s,t,7) in the variables s and
7, defined by

W(r,t,w, k) =/ds/drC(r,s,t,7‘) X
x exp(—ik - s +iwT). (40)

It can be rewritten in terms of the wave function 1 as

r,t,w,k) /ds/drz/) )><

X ( 5 2)exp(—zk s +iwt). (41)

Using this in Eq. (38), we obtain the equation

n? 0 0
—k-— —h = =2V (sin A’ 42
<m e 8t> w V(sin A" W (42)
for the Fourier transform, where we use the differential
operator

g 9
or 0k Ot _> - (43)

ot dw

acting to the left on the potential V(r,
right on W.

This is a formidable equation for W, which can be
simplified by noting that the GPE implies the existence
of a well-defined relation between energy and momen-
tum. This means that w must be equal to some function
of k, or w = w(k). Hence, we can state that

t) and to the

W(r,t,w, k) =W(r,k, t)d(w — w(k)). (44)

This leads to a much simpler evolution equation for
W (r,k,t). Before writing it, we also note that the non-
linear term in V' depends on |¢)|%, and not on the func-
tion W. Thus, we can finally write

2
(h—k V—ih— 0 )

. o ) W = =2Vt gluf?)(sin A)

W, (45)
where A is the simpler differential operator

A:e(%-%)—). (46)

The function W(r,k,t) can be seen as the Wigner
function associated with the GPE, and Eq. (45) as the
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WME equation that describes its spatio-temporal be-
havior. This equation is equivalent to the initial wave
equation (1), but it is not a closed equation for the
quasiprobability function W. Therefore, some simpli-
fying assumptions have to be introduced in order to
make it more tractable, as explained in Sec. 2.

4.
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6.
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