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A KINETIC APPROACH TO BOSE �EINSTEIN CONDENSATES:SELF-PHASE MODULATION AND BOGOLIUBOV OSCILLATIONSJ. T. Mendonça *, R. Bingham **Rutherford Appleton Laboratory, Chilton, Didot,Oxon OX11 OQX, U.K.P. K. Shukla ***Institut für Theoretishe Physik IV,Fakultät für Physik und Astronomie,Ruhr-Universität Bohum, D-44780 Bohum, GermanySubmitted 22 April 2005A kineti approah to Bose � Einstein ondensates (BECs) is proposed, based on the Wigner �Moyal equation(WME). In the semilassial limit, the WME redues to the partile-number onservation equation. Two ex-amples of appliations are i) a self-phase modulation of a BE ondensate beam, where we show that a part ofthe beam is deelerated and eventually stops as a result of the gradient of the e�etive self-potential; ii) thederivation of a kineti dispersion relation for sound waves in BECs, inluding ollisionless Landau damping.PACS: 02.70.Uu, 32.80.Pj, 67.40.Db1. INTRODUCTIONPresently, the Bose �Einstein ondensates (BECs)provide one of the most ative and reative areas ofresearh in physis [1, 2℄. The dynamis of BECs areusually desribed by a nonlinear Shrödinger equation(known in this �eld as the Gross �Pitaevskii equation(GPE) [3, 4℄), whih determines the evolution of aolletive wave funtion of ultra-old atoms in BECs,evolving in the mean �eld self-potential.In this paper, we propose the use of an alternativebut nearly equivalent approah to the physis of BECs,based on a kineti equation for the ondensate. We alsoshow that this kineti theory an lead to a more om-plete understanding of the physial proesses ourringin BECs, not only by providing an alternative methodfor desribing the system but also by improving ourglobal view of the physial phenomena. It is our hope*E-mail: T.Mendona�rl.a.uk. On leave from the InstitutoSuperior Ténio, 1049-001 Lisboa, Portugal.**E-mail: r.bingham�rl.a.uk. Also at the Department ofPhysis, University of Strathlyde, Glasgow G4 0NG, Sotland.***E-mail: ps�tp4.rub.de. Also at the Department of Physis,Umeå University, SE-90187 Umeå, Sweden.

that this will also lead to the disovery of new aspetsof BECs.The key point of our approah is the use of theWigner �Moyal equation (WME) for BECs, desrib-ing the spatio-temporal evolution of the appropriateWigner funtion [5℄. Wigner funtions for BECs weredisussed in the past [6, 7℄ and the WME has beensporadially used [8℄. But no systemati appliationof the WME to BECs has previously been onsidered.In the semilassial limit, this equation redues to thepartile-number onservation equation, whih is a ki-neti equation formally analogous to the Liouville equa-tion, but with a nonlinear potential. A desription ofBECs in terms of the kineti equation is adequate in aseries of problems, as is exempli�ed here, and an beseen as intermediate (in auray) between the GPEand the hydrodynami equations usually found in theliterature.This paper is organized as follows. In Se. 2, weestablish the WME and disuss its approximate ver-sion as a kineti equation for the Wigner funtion. Wethen apply the kineti equation to two distint physialproblems. The �rst one, onsidered in Se. 3, is the self-phase modulation of a BEC beam. A similar problemhas been studied numerially in the past [9℄. Here, we1078



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 A kineti approah to Bose � Einstein ondensates : : :derive expliit analytial results and show that a part ofthe BEC beam is deelerated and eventually omes to aomplete halt as a result of the olletive fores atingon the ondensate. The seond example is onsidered inSe. 4, where we establish a kineti dispersion relationfor sound waves in BECs, giving a kineti orretionto the usual Bogoliubov sound speed [10; 11℄ and pre-diting the ourrene of Landau damping [12; 13℄. Ourdesription of Landau damping is signi�antly di�erentfrom that previously onsidered for transverse osilla-tions of BECs [14℄. Finally, in Se. 5, the virtues andlimitations of the present kineti approah are brie�ydisussed.2. WIGNER�MOYAL EQUATION FOR THEBOSE CONDENSATEIt is known that for an ultra-old atomi ensemble,and in partiular for BECs, the ground-state atomiquantum �eld an be replaed by a marosopi atomiwave funtion  . In a large variety of situations, theevolution of  is determined by the GPEi~� �t = � ~22mr2 + (V0 + Veff ) ; (1)where V0 � V0(r) is the on�ning potential and Veff isthe e�etive potential that takes the inter-atomi in-terations inside the ondensate into aount; in thesimplest form, Veff (r; t) = gj (r; t)j2;where g is a onstant [3, 4℄.We onsider the situation where this wave equationan be replaed by a kineti equation. To onstrutsuh an equation, we introdue the Wigner funtionassoiated with  via [5℄W (r;k; t) = Z  �r+ s2 ; t� � �r� s2 ; t��� exp(�ik � s) ds: (2)It is then possible to derive (see the Appendix) theevolution equation for the Wigner funtion:� ~22mk � r � i~ ��t�W = �2V (sin�)W; (3)where � = � ��r � ��p�! (4)

is a bi-diretional di�erential operator that ats to theleft on V and to the right on W [5℄. In this equation,the potential isV = V0 + g Z W (r;k; t) dk(2�)3 + ÆV; (5)where ÆV = g�j (r; t)j2 � Z W (r;k; t) dk(2�)3� (6)an be onsidered a noise term assoiated with thesquare mean deviations of the quasiprobability, deter-mined by the Wigner funtionW with respet to the lo-al quantum probability, determined by the wave fun-tion  .Equation (3) an be seen as the WME desribingthe spae and time evolution of BECs, and it is ex-atly equivalent to GPE (1). However, it is of little usein the above exat form, and it is onvenient to intro-due some simplifying assumptions. This is justi�ed inthe important ase of slowly varying potentials. In thisase, we an neglet the higher-order spatial derivativesand introdue the approximation sin� � �. This or-responds to the semilassial approximation, where thequantum potential �utuations an also be negleted,viz. ÆV ! 0. Introduing these two simplifying as-sumptions, valid in the semilassial limit, we reduethe WME to the muh simpler form� ��t + v � r+F � ��k�W = 0; (7)where v = ~k=m is the veloity of the ondensateatoms orresponding to the wave vetor state k, andF = �rV is a fore assoiated with the inhomogeneityof the ondensate self-potential. The nonlinear termin GPE (1) is hidden inside this fore F. As we seein what follows, this nonlinear term looks very muhlike a ponderomotive fore term, similar to radiationpressure.We note that this new equation is a losed kinetiequation for the Wigner funtion W . In this semilas-sial limit, W is just the partile oupation numberfor translational states with the momentum p = ~k.Equation (7) is equivalent to a onservation equation,stating the onservation of the quasiprobability W inthe six-dimensional lassial phase spae (r;k), and analso be written as ddtW (r;k; t) = 0: (8)This kineti equation an then be used to desribephysial proesses ourring in a BEC, as long as the1079



J. T. Mendonça, R. Bingham, P. K. Shukla ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005semilassial approximation of slowly varying poten-tials is justi�ed. The interest in suh kineti desrip-tions is illustrated with the aid of two simple and di�er-ent examples, to be presented in the next two setions.Many other appliations an be envisaged, and will beexplored in the future.3. SELF-PHASE MODULATION OF A BEAMCONDENSATEWe �rst onsider the kineti desription of self-phase modulation of a BEC gas moving with respetto the on�ning potential V0(r). Here, we an ex-plore the similarity of this problem to that of self-phasemodulation of short laser pulses moving in a nonlin-ear optial medium, whih is well known in the liter-ature [15℄. To simplify our desription, we onsiderthe one-dimensional problem of a beam moving alongthe z axis and neglet the axial variation of the bak-ground potential, �V0=�z � 0. The radial struture ofthe beam an easily be introdued later, and does notessentially modify the results obtained here. Kinetiequation (7) an then be written as� ��t + vz ��z + Fz ��k�W (z; k; t) = 0; (9)with vz and Fz given byvz = ~km+g ��tI(z; t); Fz = dkdt = �g ��z I(z; t); (10)where we have used the intensity of the beam onden-sate de�ned byI(z; t) = Z W (z; k; t)dk2� : (11)We assume that an ultra-old atomi beam has themean veloity v0 = ~k0=m. This suggests the use ofthe new spae oordinate � = z � v0t. In terms of thisnew oordinate, the semilassial equations of motionof a old atom in the beam an be written asd�dt = �h�k = 1m (k � k0);dkdt = ��h�� = �g~ ��� I(�; t); (12)where we have introdued the Hamiltonian funtionh(�; k; t) = !(�; k; t)� kv0 == km �k2 � k0�+ g~I(�; t): (13)

Here, !(�; k; t) is the Hamiltonian in the rest frameexpressed in the new oordinate. A straightforward in-tegration of the equations of motion leads tok(t) = k0 � g~ tZ0 ��� I(�; t0) dt0: (14)At this point, it is useful to introdue the oneptof the beam energy hirp, h�(�; t)i, in analogy with thefrequeny hirp of short laser pulses [15℄. By de�nition,it is the beam mean energy at a given position and agiven time,h�(�; t)i = ~ Z W (�; k; t)!(�; k; t)dk2� ; (15)where the weight funtion W (�; k; t) is the solution ofone-dimensional kineti equation (9). A formal solutionof this equation an be written asW (�; k; t) =W (�0(�; k; t); k0(�; k; t); t0); (16)where �0 and k0 are the initial onditions orrespond-ing to the observed values at time t, as determined bydynamial equations (12). With (16) used in Eq. (15),we obtainh�(�; t)i = ~ Z W (�0; k0; t0) � k22m+g~I(�; t)� dk2� : (17)From Eq. (14), we see that dk = dk0. Negle-ting higher-order nonlinearities, we an then rewritethe above expression as [15℄h�(�; t)i = h�(0)i � k0mg tZ0 ��� I(�; t0) dt0; (18)where h�(0)i � h�(�0; t0)i is the initial beam energyhirp.We �rst onsider the ase where the beam pro�leI(�) is independent of time. This is, of ourse, onlyvalid for very short time intervals where the beam ve-loity dispersion is negligible. In this simple ase, wehave h�(�; t)i = h�(0)i � ~v0g �I�� t: (19)The maximum energy shift is attained at some po-sition inside the beam pro�le, � = �max, determined bythe stationarity ondition��� h�(�; t)i = �2I��2 = 0: (20)1080



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 A kineti approah to Bose � Einstein ondensates : : :To dedue more spei� answers, we assume a Gaus-sian beam pro�leI(�) = I0 exp ���2=�2� ; (21)where � determines the beam width. For this pro�le,we have �max = ��=p2, whih leads to the maximumenergy shift��(t) � h�(t)imax � h�(0)i == �~p2� gv0I0 exp��12� t: (22)This is similar to the well-known result in nonlinearoptis stating that the maximum energy hirp due toa self-phase modulation is proportional to t, or to thedistane traveled by the beam, d = v0t. This resultlearly indiates that the initial beam eventually splitsinto two parts, one being aelerated to higher transla-tional speeds and the other being deelerated. Thisorresponds to the red-shift and blue-shift observedin nonlinear optis. The deelerated beam eventuallystops after a time t � � , suh that ��(�) = h�(0)i.This determines the ondition for translational beamfreezing.We note that the same result ould also be obtaineddiretly from GPE (1). But the present derivation isinteresting beause it demonstrates the irrelevane ofthe phase of the wave funtion  , whih was ignored inour kineti alulation. Therefore, instead of the self-phase modulation, it would be more appropriate to allit the beam self-deeleration.Another interesting aspet of our kineti approahis that it an be easily re�ned, as is brie�y shown here.We an improve the above alulation by onsideringthe beam dispersion. It inevitably beomes relevantbeause of the linear veloity dispersion of the atomibeam. Suh a dispersion dereases the hirping e�et,beause of the derease of �I=�� in time. To model it,we an assume a time-varying Gaussian beam shape,as desribed byI(�; t) = I0� �0�(t)�1=2 exp�� �2�2(t)� : (23)If we now assume that�(t) = �0(1 + Æt2);where Æ = 2m~2 ��0�0

is proportional to the initial energy spread ��0, we ob-tain a new expression for the maximum energy shift, ofthe form ��d(t) = ln tt ��(t); (24)where ��(t) is determined by Eq. (22). It is lear thatthe linear beam veloity dispersion dereases the max-imum attainable hirp, by hanging the linearity withtime into a logarithmi law. However, this only oursfor very long times, t � 1=pÆ, whih are not relevantfor ultra-old atomi beams with a very low transla-tional energy dispersion ��0.The other ause of the beam dispersion is the non-linear proess itself, whih eventually breaks the initialpulse into two distint pulses. In this ase, the self-phase modulation proess is not attenuated beause thebeam width is onserved, but the two seondary pulsessu�er self-phase modulation themselves, and eventuallybreak up later, resulting in the formation of several se-ondary pulses with di�erent mean energies. However,the nonlinear dispersion is also negligible whenever�20 > 4m~2 j��(t)jt2:A more omplete desription of all these dispersionregimes an be obtained by solving kineti equation (9)numerially.4. KINETIC DESCRIPTION OF BOGOLIUBOVOSCILLATIONSThe seond example of an appliation of the kinetiequation for BECs deals with the dispersion relation ofsound waves. For simpliity, we again onsider the one-dimensional model and neglet the radial struture ofthe osillations. This allows us to treat the lowest-orderosillating modes of the ondensate. We assume somegiven equilibrium distribution W0(z; k; t), for instane,orresponding to the Thomas �Fermi equilibrium solu-tion in a given on�ning potential V0(r?; z) [16℄, andafter linearization of the one-dimensional kineti equa-tion (9) with respet to the perturbation ~W , we obtain� ��t + vz ��z� ~W (z; k; t) + ~F ��kW0(z; k; t) = 0; (25)where the perturbed fore is determined by~F = �g~ ��z ~I(z; t) = �g~ ��z Z ~W (z; k; t)dk2� : (26)1081



J. T. Mendonça, R. Bingham, P. K. Shukla ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005We now assume perturbations of the form ~W; ~I �� exp(ikz � i!t). From the above equations, we thenobtain a relation between the perturbation amplitudeof the Wigner funtion ~W and the perturbed beam in-tensity ~I , ~W = � gk~(! � kv0) ~I ��k0W0(k0); (27)where we now speify the partile wavenumber statewith k0 in order to avoid onfusion with the wavenum-ber k of the osillation that we intend to study.The veloity orresponding to this partile state isv0 = ~k0=m. Integration over the momentum spetrumof the partile ondensate then leads to the equation1 + g~k Z �W0(k0)=�k0! � ~kk0=m dk02� = 0: (28)This is the kineti dispersion relation for axial pertur-bations in BECs. We illustrate this result by onsi-dering the simple ase of a ondensate beam with notranslational dispersion, or with a translational tem-perature exatly equal to zero. The equilibrium of thebeam an then be desribed byW0(k0) = 2�n0Æ(k0 � k00); (29)where n0 = 12� Z W0(k0)dk0is the partile number density in the ondensate. Re-plaing this in dispersion relation (28), we have1� gk2m n0(! � kv00)2 = 0; (30)where v00 = ~k00=m = p00=m is the beam veloity. Thisan also be written as(! � kv00)2 = k22s; (31)where s =pgn0=m (32)is nothing but the Bogoliubov sound speed. Obviously,Eq. (31) is the Doppler-shifted dispersion relation ofsound waves in the BEC gas. In its referene frame, itredues to ! = ks.We now onsider the situation where, instead of dis-tribution (29), we have a beam with a small transla-tional veloity spread, suh that the number of parti-les with a veloity v0 � s is small but nonzero. Inthis ase, the resonant ontribution in the integral ofEq. (28) has to be retained, although it is still possible

to neglet the kineti orretions in the prinipal partof the integral. The dispersion relation an then bewritten, in the ondensate frame of referene, as1� k22s!2 � i2 gm~2 ��W0�k0 �k0=k0s = 0; (33)where k0s = ms=~ is the resonant momentum. Theimaginary term in this equation an lead to dampingof sound waves. Writing ! = ks + i, with jj � ks,we obtain the expression for the damping oe�ient = !4 gm~2 ��W0�k0 �k0=k0s : (34)This expression orresponds to the nonollisional Lan-dau damping of Bogoliubov osillations in BECs. Thepresent approah an also be generalized in a straight-forward way to higher-order osillations of the onden-sate, where the radial struture has to be taken intoaount [11, 17℄. 5. CONCLUSIONSWe have proposed a kineti view of the Bose �Einstein ondensate physis, based on the Wigner �Moyal equation. In the semilassial limit, the latteran be redued to a losed kineti equation for the or-responding Wigner funtion. The kineti approah toBECs an be seen as an intermediate step between theGPE and the hydrodynamial equations for the on-densate gas, often found in the literature.We have disussed two di�erent physial problems,in order to illustrate the versatility of the kineti the-ory. One is a self-phase modulation of a BEC beam.The other is the dispersion relation of the Bogoliubovosillations in the ondensate gas. The �rst exampleshows that due to the in�uene of its own inhomoge-neous self-potential, nearly half of the beam is aeler-ated, while the other half is deelerated. Under ertainonditions, the deelerated part of the beam tends toa state of omplete halt. The seond example showsthat a kineti dispersion relation for sound waves inBECs an be established, where Landau damping is au-tomatially inluded. The present results only involvethe lowest-order modes, but the same approah an beused to desribe higher-order osillations of BECs, in-luding their radial strutures, as well as the ouplingto a bakground thermal gas. This investigation is be-yond the sope of the present work, however.Several other di�erent problems relevant to BECsan also be onsidered in the framework of the kinetitheory, suh as modulational instabilities [18℄ and the1082



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 A kineti approah to Bose � Einstein ondensates : : :wake�eld generation. This indiates that the kinetitheory is a very promising approah to the physisof BECs, whih will eventually allow introduing newideas in this stimulating area of researh and suggestingnew on�gurations to the experimentalists. However,the present work also learly states that the presenttheory is only valid in the semilassial limit, andtherefore some relevant problems where the phase ofthe BEC wave funtion plays an important role anonly be treated by means of the GPE. Surprisingly, theself-phase modulation is not one of them, as demon-strated here.One of the authors (J. T. M.) appreiates the hos-pitality of the Rutherford Appleton Laboratory. Thiswork was done within the frame of the Centre for Fun-damental Physis. APPENDIXDerivation of the Wigner �Moyal equationIn this derivation, we follow a proedure alreadyused in other ases, for instane, in the ase of eletro-magneti waves moving in a spae- and time-dependentdieletri medium [19℄. For a di�erent but nearly equiv-alent derivation of the WME, see the appendix in Ref.[8℄. We onsider two distint sets of values for spaeand time oordinates, (r1; t1) and (r2; t2), and use thenotation  j =  (rj ; tj) and Vj = V (rj ; tj), for j = 1; 2.This allows us to write two versions of GPE (1) as� ~22mr2j � i~ ��tj� j = �Vj j : (35)Multiplying the j = 1 equation by  �2 and the on-jugate of the j = 2 equation by  1, and subtrating theresulting equations, we obtain� ~22m(r21 �r22)� i~� ��t1 + ��t2��C12 == �(V1 � V2)C12; (36)where we set C12 =  1 �2 . The above equation suggeststhe use of two pairs of spae and time variables,r1 = r� s=2; t1 = t� �=2;r2 = r+ s=2; t2 = t+ �=2: (37)We an then rewrite the above equation as�~2m ��r � ��s � i~ ��t�C12 = �(V1 � V2)C12: (38)

It an also easily be shown, by expanding the po-tentials Vj around V (r; t), that(V1 � V2) = 2 sinh� s2 � ��r + �2 ��t�V (r; t): (39)We now introdue the double Fourier transform ofthe funtion C12 � C(r; s; t; �) in the variables s and� , de�ned byW (r; t; !;k) = Z ds Z d� C(r; s; t; �)�� exp(�ik � s+ i!�): (40)It an be rewritten in terms of the wave funtion  asW (r; t; !;k) = Z ds Z d�  �r+ s2 ; t+ �2���  � �r� s2 ; t� �2� exp(�ik � s+ i!�): (41)Using this in Eq. (38), we obtain the equation�~2mk � ��r � ~ ��t�W = �2V (sin�0)W (42)for the Fourier transform, where we use the di�erentialoperator �0 = 12  � ��r � ��k � ��t ��!�! (43)ating to the left on the potential V (r; t) and to theright on W .This is a formidable equation for W , whih an besimpli�ed by noting that the GPE implies the existeneof a well-de�ned relation between energy and momen-tum. This means that ! must be equal to some funtionof k, or ! = !(k). Hene, we an state thatW (r; t; !;k) =W (r;k; t)Æ(! � !(k)): (44)This leads to a muh simpler evolution equation forW (r;k; t). Before writing it, we also note that the non-linear term in V depends on j j2, and not on the fun-tion W . Thus, we an �nally write� ~22mk � r�i~ ��t�W = �2(V0+gj j2)(sin �)W; (45)where � is the simpler di�erential operator� = � ��r � ��p�! : (46)The funtion W (r;k; t) an be seen as the Wignerfuntion assoiated with the GPE, and Eq. (45) as the1083
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