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Based on the previously suggested model of nanoscale dislocation-induced Josephson junctions and their arrays,
we study the magnetic-field-induced electric polarization effects in intrinsically granular superconductors. In
addition to a new phenomenon of chemomagnetoelectricity, the model also predicts a few other interesting
effects, including charge analogues of Meissner paramagnetism (at low fields) and a «fishtail» anomaly (at high
fields). The conditions under which these effects can be experimentally measured in nonstoichiometric high-T,

superconductors are discussed.
PACS: 74.25.Ha, 74.50.+1, 74.81.-g

1. INTRODUCTION

Both granular superconductors and artificially pre-
pared arrays of Josephson junctions (JJAs) proved use-
ful in studying the numerous quantum (charging) ef-
fects, including blockade of Cooper pair tunneling [1],
Bloch oscillations [2], propagation of quantum ballistic
vortices [3], spin-tunneling related effects with specially
designed SFS-type junctions [4, 5], novel Coulomb ef-
fects in SINIS-type nanoscale junctions [6], and recently
observed geometric quantization phenomena [7] (see,
e.g., Ref. [8] for a recent review on charge and spin
effects in mesoscopic two-dimentional Josephson junc-
tions).

More recently, it was realized that JJAs can also
be used as quantum channels to transfer quantum in-
formation between distant sites [9-11] through the im-
plementation of the so-called superconducting qubits,
which involve both charge and phase degrees of free-
dom (see, e.g., Ref. [12] for a review on quantum-state
engineering with Josephson-junction devices).

At the same time, imaging of the granular structure
in underdoped BisSroCaCus g4 5 crystals [13] revealed
an apparent charge segregation of its electronic struc-
ture into superconducting domains (of the order of a
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few nanometers) located in an electronically distinct
background. In particular, it was found that at low lev-
els of hole doping (6 < 0.2), the holes become concen-
trated at certain hole-rich domains. Tunneling between
such domains leads to intrinsic granular superconduc-
tivity in high-T, superconductors (HTS). As was shown
earlier [14], granular superconductivity based phenom-
ena can shed some light on the origin and evolution
of the so-called paramagnetic Meissner effect (PME)
which manifests itself in both high-T, and conventional
superconductors [15, 16].

In this paper, within a previously suggested [14]
model of JJAs created by a regular two-dimentional
network of twin-boundary dislocations with strain
fields acting as an insulating barrier between hole-rich
domains in underdoped crystals, we address another
class of interesting phenomena that are actually dual
to the chemomagnetic effects described in Ref. [14].
Specifically, we discuss a possible existence of a nonzero
electric polarization P(B,d) (chemomagnetoelectic ef-
fect) and the related change of the charge balance in an
intrinsically granular nonstoichiometric material under
the influence of an applied magnetic field. In particular,
we predict an anomalous low-field magnetic behavior of
the effective junction charge Q(B,J) and concomitant
magnetocapacitance C(B, ) in paramagnetic Meissner
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phase and a charge analog of a «fishtail»-like anomaly
at high magnetic fields.

2. THE MODEL

We recall that the regular two-dimentional disloca-
tion networks of oxygen depleted regions with the size
dp of a few Burgers vectors, observed in HTS single
crystals [13,17-20], can provide quite a realistic possi-
bility for the existence of a two-dimentional Josephson
network within the CuO plane [21, 22]. In this regard,
it is also important to mention the pioneering works by
Khaikin and Khlyustikov [23-25] on twinning-induced
superconductivity in dislocated crystals.

At the same time, in underdoped crystals, there is
a realistic possibility to facilitate oxygen transport via
the so-called osmotic mechanism [14, 19, 20, 26], which
relates the local value of the chemical potential

p(x) = p(0) + V- x

with the local concentration of point defects as
c(x) = exp(—p(x)/kpT),

and allows explicitly incorporating the oxygen defi-
ciency parameter ¢ into our model by relating it to
the excess oxygen concentration of vacancies ¢, = ¢(0)
as

0=1-c¢,.

Assuming the relation between the variation of mechan-
ical and chemical properties of planar defects,

w(x) = KQge(x)

3

where
€(x) = o exp(—[x]|/do)
is the screened strain field produced by tetragonal re-
gions in a d-wave orthorhombic YBCO crystal, Qg is
an effective atomic volume of the vacancy, and K is
the bulk elastic modulus), we can study the proper-
ties of twin-boundary induced JJs under the intrin-
sic chemical pressure Vu (created by the variation of
the oxygen doping parameter §). More specifically, a
single SIS-type junction (comprising a Josephson net-
work) is formed around the twin-boundary due to a
local depression of the superconducting order param-
eter A(x) o €(x) over distance dp, thus producing a
weak link with the Josephson coupling
J(0) = e(x).Jo = Jo(0) exp(—|x|/do)

where
J0(5) = 60.]0 = (MU/IX’Q(])JO

(here, Jo o Ag/R,, with R, being the resistance of
the junction). We note that in accordance with the ob-
servations, for a stoichiometric situation (when 6 & 0),
the Josephson coupling J(§) ~ 0 and the system loses
its explicitly granular signature.

To describe the influence of chemomagnetic effects
on charge balance of an intrinsically granular super-
conductor, we use the model of two-dimentional over-
damped Josephson junction array based on the well-
known Hamiltonian

N N
qiq;
H:ZJij(l_COS¢ij)+Z2C']4. (1)
i,j 1,

We introduce a short-range (nearest-neighbor) interac-
tion between N junctions (which are formed around
oxygen-rich superconducting areas with phases ¢;), ar-
ranged in a two-dimensional lattice with coordinates
x; = (2;,y;). The areas are separated by oxygen-poor
insulating boundaries (created by twin-boundary strain
fields e(x;;)) producing a short-range Josephson cou-
pling
Jij = Jo(6) exp(—|xi;|/d).

Thus, typically for granular superconductors, the
Josephson energy of the array varies exponentially with
the distance x;; = x; — X; between neighboring junc-
tions (with d being the average junction size). Asusual,
the second term in the right-hand side of Eq. (1) ac-
counts for Coulomb effects, where ¢; = —2en; is the
junction charge with n; being the pair number oper-
ator. Naturally, the same strain fields e(x;;) are also
responsible for dielectric properties of oxygen-depleted
regions via the d-dependent capacitance tensor

Cij (0) = Cle(xij)].
If, in addition to the chemical pressure
Vu(x) = KQoVe(x),

the network of superconducting grains is under the in-
fluence of an applied frustrating magnetic field B, the
total phase difference through the contact is given by

Tw Vi -x;;t
bij = ?j‘l'go(xij/\nij)'B‘Fih =, (2

where ¢?j is the initial phase difference (see below),

Xl'j X; + X,
T X)) ! 2
and
w =2\ (T)+1,
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with A being the London penetration depth of the
superconducting area and [ the insulator thickness
(which, within the scenario discussed here, is simply
equal to the twin-boundary thickness [26]).

Ag usual, to safely neglect the influence of the
self-field effects in a real material, the corresponding
Josephson penetration length

%o

A= 4| z—
2T pojew

must be larger than the junction size d. Here, j. is the
critical current density of the superconducting (hole-
rich) area. As we see below, this condition is rather
well satisfied for HTS single crystals.

3. CHEMOMAGNETOELECTRICITY

In what follows, we are interested in the beha-
vior of the magnetic-field-induced electric polariza-
tion (chemomagnetoelectricity) in chemically induced
granular superconductivity described by a two-dimen-
tional JJA. We recall that a conventional (zero-field)
pair polarization operator within the model under dis-
cussion is given by [27, 28]

N
P = Z q4iX;. (3)
i=1

In view of Eqgs. (1)—(3) and the usual «phase-number»
commutation relation

it can be shown that the evolution of the pair polariza-
tion operator is determined by the equation of motion

dp 1 %
% = E [p., 7‘[] = E Z Jij sin ¢ij (t)xij. (4)
i,j
Solving this equation, we obtain the net value of the
magnetic-field-induced longitudinal electric polariza-
tion
P(6,B) = (p(t))

(along the x axis) and the corresponding effective junc-
tion charge

T

t
Q(5,B) = Qhe‘]O dt/dt’ X
0

0
x/%xsmx ')z exp(—|x|/d), (5)

where S = 2md? is the properly defined normalization
area, T is a characteristic time (see Discussion), and we

made a usual substitution
! / d’z A(x,t)
— T A(x
S b

1
~ Z A (t) —
i.j

valid in the long-wavelength approximation [28].

To capture the very essence of the superconduct-
ing analog of the chemomagnetoelectric effect, we as-
sume for simplicity in what follows that a stoichio-
metric sample (with § ~ 0) does not have any spon-
taneous polarization at zero magnetic field, that is,
P(0,0) = 0. According to Eq. (5), this condition im-
plies that ¢f; = 2mm for the initial phase difference
with m =0,+1,£2,...

Choosing the applied magnetic field along the ¢ axis
(and normal to the CuO plane), that is, B = (0,0, B),
we finally obtain

2b 4+ (1 — b?)

QOB =00 T vy

Qo(0) (6)
for the magnetic field behavior of the effective junction
charge in chemically induced granular superconductors.

Here,
Qo(0) = et Jo(0)/R
with Jo(d) defined earlier,

b:B/BOa b:b_bI“

and

by = By/Bo ~ (kT /h)6,

where
By, () = (vt /) Bo

is the chemically induced contribution (which disap-
pears in optimally doped systems with é ~ 0), and

BO =<I>0/wd

is a characteristic Josephson field.

Figure 1 shows changes of the initial (stoichiomet-
ric) effective junction charge @ (solid line) with the
oxygen deficiency 6. We note a sign change of @) (dot-
ted and dashed lines) driven by nonzero values of § at
low magnetic fields (a charge analog of a chemically in-
duced PME). According to Eq. (6), the effective charge
changes its sign as soon as the chemomagnetic contri-
bution B, (d) exceeds the applied magnetic field B (see
Discussion).

At the same time, Fig. 2 presents a true chemo-
electric effect with the concentration (deficiency) in-
duced effective junction charge Q(6,0) in zero magnetic
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Fig.1. The effective junction charge Q(4, B)/Q(d.,0)

(chemomagnetoelectric effect) as a function of the ap-

plied magnetic field B/ By, according to Eq. (6), for dif-

ferent values of the oxygen deficiency parameter: § ~ 0

(solid line), 6 = 0.1 (dashed line), and § = 0.2 (dotted
line)

field. We note that Q(0,0) exhibits a maximum around
d. ~ 0.2 (in agreement with the classical percolative
behavior observed in nonstoichiometric YBasCuzO7_s
samples [17]).

It is also of interest to consider the magnetic field
behavior of the concomitant effective flux capacitance

7dQ(5, B)

¢ dd

which, in view of Eq. (6), is given by

1 — 3bb — 3b% + bb?
(1+b2)(1+02)3

C(6,B) = Co(d) (7)

where
® =SB, Co(6) =71Q0(5)/Po.

Figure 3 depicts the behavior of the effective flux
capacitance C'(d, B) in an applied magnetic field for dif-
ferent values of the oxygen deficiency parameter: § ~ 0
(solid line), 6 = 0.1 (dashed line), and 6 = 0.2 (dotted
line). We note a decrease of the magnetocapacitance
amplitude and its peak shifting with increase of § and

12 ZK9T®, Bem. 5 (11)

Q(4,0)/Q(5,0)
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Fig.2. Chemically induced effective junction charge

Q(0,0)/Q(6:,0) in zero applied magnetic field (true
chemoelectric effect)

a sign change at low magnetic fields, which is another
manifestation of the charge analog of a chemically in-
duced PME (cf. Fig. 1).

4. CHARGE ANALOG OF THE «FISHTAIL»
ANOMALY

So far, we neglected a possible field dependence of
the chemical potential u, of oxygen vacancies. We re-
call, however, that in sufficiently high applied magnetic
fields B, the field-induced change of the chemical po-
tential

AMU(B) = MU(B) _Nv(o)

becomes tangible and should be taken into account [14,
29, 30]. As a result, we obtain a superconducting ana-
log of the so-called magnetoconcentration effect [14]
with field-induced creation of oxygen vacancies

cy(B) = cy(0) exp(—Apy (B)/kpT),

which in turn leads to a «fishtail»-like behavior of the
high-field chemomagnetization (see Ref. [14] for more
details).
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Fig.3. The effective flux capacitance C(4, B)/C/(éc, 0) Fig.4. A «fishtail»-like behavior of the effective

as a function of the applied magnetic field B/Bo, ac-

cording to Eq. (7), for different values of the oxygen de-

ficiency parameter: § = 0 (solid line), § = 0.1 (dashed
line), and § = 0.2 (dotted line)

Figure 4 shows the field behavior of the effec-
tive junction charge in the presence of the above-
mentioned magnetoconcentration effect. As is clearly
seen, Q(4(B), B) exhibits a «fishtaily-like anomaly typ-
ical of the previously discussed [14] chemomagnetiza-
tion in underdoped crystals with intragrain granularity
(for symmetry and better visual effect, we also plot-
ted —Q(6(B), B) in the same figure). This more com-
plex structure of the effective charge appears when the
applied magnetic field B matches the intrinsic chemo-
magnetic field B, (6(B)) (which now also depends on B
via the magnetoconcentration effect). We note that a
«fishtaily structure of Q(d(B), B) manifests itself even
at zero values of the field-free deficiency parameter 6(0)
(solid line in Fig. 4), thus confirming a field-induced na-
ture of intrinsic granularity [13, 17-20]. Likewise, Fig. 5
depicts the evolution of the effective flux capacitance
C(6(B), B) in the applied magnetic field B/By in the
presence of a magnetoconcentration effect (cf. Fig. 3).

charge Q(6(B),B)/Q(dc,0) in the applied magnetic

field B/Bg in the presence of a magnetoconcentra-

tion effect (with field-induced oxygen vacancies §(B))

for three values of the field-free deficiency parameter:

0(0) = 0 (solid line), 6(0) = 0.1 (dashed line), and
0(0) = 0.2 (dotted line)

5. DISCUSSION

Thus, the present model predicts the appearance
of two interrelated phenomena (dual to the previously
discussed behavior of chemomagnetism [14]), a charge
analog of Meissner paramagnetism at low fields and a
charge analog of the «fishtaily anomaly at high fields.
To see whether these effects can be actually observed
in a real material, we estimate the order of magnitude
of the main model parameters.

Using the values Ay, (0) &~ 150 nm, d ~ 10 nm, and
je ~ 100 A/m? typical [17, 19] for HTS single crys-
tals, we estimate the characteristic field as Bg ~ 0.5 T
and the chemomagnetic field as B, (6) ~ 0.5By. There-
fore, the predicted charge analog of PME should be
observable for applied magnetic fields B < 0.25 T. We
note that for the above set of parameters, the Joseph-
son length is of the order of A\; ~ 1 ym, which means
that the small-junction approximation assumed in this
paper is valid and the «self-field» effects can be safely
neglected.
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C(6(B),B)/C(6.,0)

3
B/B,

Fig.5. The behavior of the effective flux capaci-

tance C(6(B),B)/C(d.,0) in the applied magnetic

field B/ By in the presence of a magnetoconcentration

effect for three values of the field-free deficiency param-

eter: 6(0) =~ 0 (solid line), (0) = 0.1 (dashed line),
and 6(0) = 0.2 (dotted line)

Furthermore, the characteristic frequencies w ~ 771

needed to probe the effects suggested here are re-
lated to the processes governed by tunneling relax-
ation times 7 =~ fi/Jy(d). Because for the oxygen
the deficiency parameter § = 0.1, the chemically in-
duced zero-temperature Josephson energy in nonsto-
ichiometric YBCO single crystals is of the order of
Jo(0) = kgTcd ~ 1 meV, we obtain the required fre-
quencies w &~ 10" Hz and the estimates of the effective
junction charge Qo ~ e = 1.6-107!? C and flux capaci-
tance Cp ~ 1071® F. We note that the above estimates
fall into the range of parameters used in typical ex-
periments for studying single-electron tunneling effects
both in JJs and JJAs [1, 2, 12, 31], thus suggesting
quite an optimistic possibility to observe the predicted
field-induced effects experimentally in nonstoichiomet-
ric superconductors with pronounced networks of pla-
nar defects or in artificially prepared JJAs. (It is worth
mentioning that a somewhat similar behavior of the
magnetic-field-induced charge and related flux capaci-
tance has been observed in 2D electron systems [32].)

Finally, it can be easily verified that in view of
Eqs. (1)—(5), the field-induced Coulomb energy of the
oxygen-depleted region within our model is given by

N
_ qiq; \ Q2(5-,B)

with Q(d, B) and C(6, B) defined by Eqs. (6) and (7).

A thorough analysis of the above expression reveals
that in the PME state (when B <« B,), the chemi-
cally induced granular superconductor is always in the
so-called Coulomb blockade regime (with Ec > Jp),
while in the «fishtail» state (for B > B,,), the energy
balance tips in favor of tunneling (with E¢c < Jp). In
particular,

Ec(5,B=0.1B,) = gJO(é)

and -

Ec(6,B=B,) = gJO((S).
It would be also interesting to verify this phenomenon
of field-induced weakening of the Coulomb blockade ex-
perimentally.

6. CONCLUSION

In conclusion, within a realistic model of two-di-
mentional Josephson junction arrays created by
two-dimentional network of twin boundary dislo-
cations (with strain fields acting as an insulating
barrier between hole-rich domains in underdoped
crystals), a few novel electric polarization related
effects expected to occur in an intrinsically granular
material under applied magnetic fields were predicted,
including a phenomenon of chemomagnetoelectricity,
an anomalous low-field magnetic behavior of the
effective junction charge (and flux capacitance) in the
paramagnetic Meissner phase, and a charge analog of
a «fishtaily-like anomaly at high magnetic fields as
well as field-dependent weakening of the chemically
induced Coulomb blockade. The experimental con-
ditions needed to observe the effects predicted here
in nonstoichiometric high-T, superconductors were
discussed.
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my attention to the pioneering works by Khaikin and
Khlyustikov on twinning-induced superconductivity in
dislocated crystals.
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