СТИМУЛИРОВАННОЕ РАМАНОВСКОЕ АДИАБАТИЧЕСКОЕ ПРОХОЖДЕНИЕ В ПОЛЯХ СО СТОХАСТИЧЕСКОЙ АМПЛИТУДОЙ

В. И. Романенко^{*}, Л. П. Яценко

Институт физики Национальной академии наук Украины 03028, Киев, Украина

Поступила в редакцию 23 июня 2005 г.

Теоретически изучается влияние корреляции амплитудных флуктуаций лазерных импульсов на перенос населенности между связанными полем состояниями трехуровневого атома. Несущие частоты импульсов близки к частотам переходов между основным ($|1\rangle$) и возбужденным ($|2\rangle$), возбужденным и метастабильным ($|3\rangle$) состояниями атома (Λ -система). Последовательность лазерных импульсов выбрана так, что при условии отсутствия флуктуаций реализуется эффективный перенос населенности между состояниями $|1\rangle$ и $|3\rangle$ в процессе стимулированного рамановского адиабатического прохождения (СТИРАП). Для некоррелированных лазерных полей эффект СТИРАП отсутствует. В случае, когда флуктуации амплитуды одного из импульсов повторяют флуктуации другого, эффект СТИРАП может наблюдаться при больших, чем при отсутствии флуктуаций, амплитудах импульсов.

PACS: 32.80.Bx, 32.80.Qk, 42.50.Gy, 42.50.Hz

1. ВВЕДЕНИЕ

Одним из перспективных путей управления внутренним состоянием атомов и молекул, которому посвящен ряд теоретических и экспериментальных исследований (см., например, обзор [1]), является стимулированное рамановское адиабатическое прохождение (СТИРАП, STIRAP). Это явление наблюдается в атомах и молекулах (говоря об атоме, в дальнейшем мы также будем иметь в виду и молекулы), взаимодействующих с двумя лазерными импульсами, частично перекрывающимися во времени. В простейшем случае СТИРАП взаимодействие атома с полем можно описать, принимая во внимание только три состояния атома (А-схема взаимодействия атома с полем, см. рис. 1). Сначала атом находится в стабильном или метастабильном состоянии 1). Это состояние связывается импульсом накачки с возбужденным состоянием $|2\rangle$, которое в свою очередь связывается стоксовым импульсом с метастабильным состоянием (3). Явление переноса населенности из состояния $|1\rangle$ в состояние $|3\rangle$ наблюдается, если на атом вначале действует стоксовый импульс,

Рис.1. Схема взаимодействия атома с полем. Первым на атом действует стоксов импульс с несущей частотой ω_S

а импульс накачки приходит позже. Существенно, что в течение некоторого времени атом взаимодействует с обоими импульсами одновременно, а в конце — только с импульсом накачки.

В основе переноса населенности в трехуровневом атоме лежит тот факт, что одно из собственных состояний гамильтониана («темное» состояние), которые описывают атом в поле двух импульсов, является линейной комбинацией только состояний |1) и

^{*}E-mail: vr@iop.kiev.ua, victor_romanenko@list.ru

 $|3\rangle$ атома, причем в начале взаимодействия атома с полем это состояние совпадает с состоянием $|1\rangle$, а в конце — с состоянием $|3\rangle$. В результате при условии достаточно медленного изменения полей, при котором процесс взаимодействия атома с полем можно считать адиабатическим, атом переходит из состояния $|1\rangle$ в состояние $|3\rangle$, не заселяя в процессе взаимодействия возбужденное состояние $|2\rangle$. Таким образом, перенос населенностей при помощи СТИРАП практически нечувствителен к спонтанному излучению с возбужденного состояния, что существенно для экспериментов с атомными пучками, где время взаимодействия атома со светом обычно значительно превышает время жизни атома в возбужденном состоянии.

Эффективность переноса населенности при помощи СТИРАП определяется тем, насколько этот процесс близок к адиабатическому, и точностью поддерживания двухфотонного резонанса, при котором «темное» состояние является собственным состоянием гамильтониана атома в электромагнитном поле. Зависимость эффективности переноса населенности от отстройки несущих частот полей от двухфотонного резонанса (двухфотонная форма линии) изучалась в работах [2–5]. Неконтролированная отстройка частот полей от двухфотонного резонанса возникает за счет флуктуаций частот лазерного излучения, влияние которых на эффективность переноса населенности изучалось в [5-7]. Совсем не изучено на сегодняшний день влияние флуктуаций амплитуды лазерных полей на перенос населенности в процессе СТИРАП. Освещению этого вопроса и посвящена настоящая работа.

2. ОСНОВНЫЕ УРАВНЕНИЯ

Чтобы отделить эффекты, связанные с шумом, от влияния отстройки несущих частот импульсов от частот переходов на эффективность переноса населенности, изученного ранее [2–5], мы здесь рассматриваем резонансный случай, когда несущая частота импульса накачки ω_p совпадает с частотой перехода $|1\rangle \rightarrow |2\rangle$, а несущая частота стоксова импульса $\omega_S - c$ частотой перехода $|3\rangle \rightarrow |2\rangle$. Поле, действующее на атом, можно записать в виде

$$E = E_p(t) \exp(-i\omega_p t) + E_S(t) \exp(-i\omega_S t) + \text{c.c.} \quad (1)$$

Будем считать, что доля атомов, возвращающихся в состояние $|1\rangle$ или $|3\rangle$ в процессе спонтанного излучения из состояния $|2\rangle$, незначительна, и здесь мы ей

пренебрежем. Тогда состояние атома можно описать волновой функцией

$$\Psi = \left[c_1(t), c_2(t), c_3(t)\right]^T,$$

где $c_k(t)$ (k = 1, 2, 3) — амплитуда вероятности найти атом в состоянии $|k\rangle$. Ее изменение со временем описывается уравнением Шредингера с гамильтонианом

$$H = \frac{\hbar}{2} \begin{bmatrix} 0 & \Omega_p(t) & 0\\ \Omega_p^*(t) & -i\gamma & \Omega_S^*(t)\\ 0 & \Omega_S(t) & 0 \end{bmatrix}, \qquad (2)$$

где

$$\Omega_p(t) = -d_{12}E_p(t)/\hbar, \quad \Omega_S(t) = -d_{32}E_S(t)/\hbar$$

— частоты Раби, связанные с действующими на атом импульсом накачки и стоксовым импульсом, γ — скорость перехода атома в другие, отличные от $|1\rangle$ и $|3\rangle$, состояния за счет спонтанного излучения с возбужденного состояния.

3. ФОРМА ИМПУЛЬСОВ

Аналитические вычисление и численное моделирование мы проведем для двух форм лазерных импульсов, а именно

$$\begin{split} \Omega_p(t) &= \\ &= \begin{cases} \Omega_0 f_p(t) \sin(\pi t/\tau) , & 0 \le t \le \tau, \\ 0, & \text{в других случаях,} \end{cases} \\ \Omega_S(t) &= \\ &= \begin{cases} \Omega_0 f_S(t) \cos(\pi t/\tau) , & -\frac{1}{2}\tau \le t \le \frac{1}{2}\tau, \\ 0, & \text{в других случаях,} \end{cases} \end{split}$$
(3)

И

$$\Omega_p(t) = \Omega_0 f_p(t) \exp\left(-\frac{(t - t_d/2)^2}{\tau^2}\right),$$

$$\Omega_S(t) = \Omega_0 f_S(t) \exp\left(-\frac{(t + t_d/2)^2}{\tau^2}\right).$$
(4)

Здесь Ω_0 — максимальная амплитуда лазерных импульсов при отсутствии флуктуаций, τ — длительность импульсов, t_d — длительность задержки импульса накачки относительно стоксова импульса (для импульсов вида (3) эта задержка равна $\tau/2$), $f_p(t)$ и $f_S(t)$ описывают флуктуации амплитуд импульсов. В случае отсутствия флуктуаций

$$f_p(t) = f_S(t) = 1.$$

Мы рассматриваем две модели амплитудных флуктуаций огибающих лазерных импульсов [8]: гауссову модель амплитудных флуктуаций, когда $f_p(t)$ и $f_S(t)$ можно считать действительными величинами с функциями корреляции

$$\langle f_n(t) \rangle = 0, \langle f_n(t) f_n(t') \rangle = \exp\left(-G|t - t'|\right),$$
(5)

где n = p, S, и модель хаотического поля, когда флуктуируют как действительные, так и мнимые части $f_n(t)$:

$$\langle f_n(t) \rangle = 0, \quad \langle \operatorname{Re} f_n(t) \operatorname{Im} f_n(t') \rangle = 0, \langle \operatorname{Re} f_n(t) \operatorname{Re} f_n(t') \rangle = \frac{1}{2} \exp\left(-G|t - t'|\right), \qquad (6) \langle \operatorname{Im} f_n(t) \operatorname{Im} f_n(t') \rangle = \frac{1}{2} \exp\left(-G|t - t'|\right).$$

Здесь скобки () означают усреднение по ансамблю. Множитель 1/2 в правой части выражения (6) введен для того, чтобы средние значения $|f_n(t)|^2$ для обеих моделей амплитудных флуктуаций (5) и (6) совпадали. Модель хаотического поля (6) близка к реальному полю излучения многомодового лазера [8].

Введем корреляцию стоксова поля и поля накачки, считая, что $f_p(t)$ повторяет $f_S(t)$ с некоторым опозданием:

$$f_p(t) = f_S(t - t_N).$$
 (7)

Предельным случаям $t_N = 0$ и $t_N = \infty$ отвечают полная корреляция и независимость флуктуаций этих полей.

4. ПРИМЕР РЕАЛИЗАЦИИ КОРРЕЛИРОВАННЫХ ФЛУКТУАЦИЙ

Примером реализации коррелированных флуктуаций стоксова поля и поля накачки может быть взаимодействие атома, находящегося в состоянии с полным моментом J = 1 и его проекцией M = 1, с двумя циркулярно поляризованными полями импульсов, полученными из одного многомодового лазера. Эти поля связывают упомянутое состояние с возбужденным с J = 0 и возбужденное с J = 1, M = -1. Атом движется поперек пространственно смещенных параллельных лазерных лучей, пересекая вначале стоксов луч, вызывающий переходы $J = 0 \leftrightarrow J = 1, M = -1$. В результате возможен перенос населенности из состояния J = 1, M = 1в J = 1, M = -1 (до начала взаимодействия это состояние должно быть опустошено оптической накачкой). Желаемую задержку t_N можно легко реализовать, выбирая надлежащим образом разность времени прохода лучей до области взаимодействия с атомом.

5. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФЛУКТУАЦИЙ

Последовательности значений случайной величины $\xi(t_j)$, моделирующие действительную (гауссова модель амплитудных флуктуаций) и действительную и мнимую (модель хаотического поля) части $f_S(t_j)$ в моменты времени $t_j = t_{j-1} + \Delta t$, получаем, пользуясь предложенным в [9, 10] алгоритмом реализации цветного шума:

$$\xi(t_{j+1}) = \xi(t_j) \exp(-G\Delta t) + h(t_j),$$
(8)

причем $h(t_j)$ распределены по гауссову закону с нулевым первым моментом, а

$$\langle h(t_j)^2 \rangle = \left(1 - e^{-2G\Delta t}\right)$$
 (9)

для гауссовой модели флуктуаций и

$$\left\langle h(t_j)^2 \right\rangle = \frac{1}{2} \left(1 - e^{-2G\Delta t} \right) \tag{10}$$

для модели стохастического поля. Последовательность $h(t_j)$ формируем, пользуясь стандартной функцией Matlab randn.

5.1. Пример численного расчета

На рис. 2 приведена зависимость населенности целевого состояния $|3\rangle$ от времени задержки t_N между флуктуациями импульса накачки и стоксова импульса для гауссовой модели амплитудных флуктуаций, когда флуктуирует только амплитуда поля, а его фаза остается постоянной (5). С увеличением $|t_N|$ выше времени корреляции 1/G эффективность переноса населенности (населенность n_3 состояния (3) значительно уменьшается, в большей степени для больших скоростей спонтанного излучения. Следует отметить, что эффективность переноса населенности максимальна не в случае полной корреляции флуктуаций амплитуд световых импульсов, а при некоторой, значительно меньшей времени корреляции 1/G, задержке флуктуаций стоксова импульса относительно импульса накачки. Значения n_3 в

Рис.2. Зависимости населенности целевого состояния $|3\rangle$ от задержки t_N между флуктуациями импульса накачки и стоксова импульса в единицах τ для гауссовой модели амплитудных флуктуаций и поля вида (3), полученные из решения уравнения Шредингера усреднением по 100 реализациям случайного процесса. Параметры: $\Omega_0 \tau = 100, G \tau = 50$ для всех кривых, $\gamma \tau = 0$ (кривая 1), $\gamma \tau = 10$ (кривая 2), $\gamma \tau = 20$ (кривая 3)

максимумах приведенных зависимостей для разных γ практически не различаются, что указывает на незначительное заселение возбужденного состояния в процессе взаимодействия атома с полем, характерное для процесса СТИРАП.

6. ГАУССОВА МОДЕЛЬ ФЛУКТУАЦИЙ АМПЛИТУДЫ

Рассмотрим сначала гауссову модель флуктуаций амплитуды, когда флуктуирует лишь амплитуда поля, а его фаза остается постоянной (5). В этом случае без ограничения общности фазы можно положить равными нулю. Кроме того, будем считать, что флуктуации поля накачки повторяют флуктуации стоксова поля $(t_N = 0)$, что даст возможность в случае, когда время спонтанного излучения с возбужденного состояния |2) значительно меньше времени взаимодействия атома с полем, найти выражение для эффективности переноса населенности из состояния |1) в состояние |3). При этом эффективность переноса несколько меньше максимальной, которую можно получить, выбирая надлежащим образом t_N . Для удобства перейдем от частот Раби $\Omega_p(t)$, $\Omega_S(t)$ к среднеквадратичной частоте Раби $\Omega_m(t)$ и углу смешения $\theta(t)$:

$$\Omega_p(t) = \Omega_m(t)\sin\theta(t),$$

$$\Omega_S(t) = \Omega_m(t)\cos\theta(t),$$
(11)

где $\Omega_m(t)$ и $\theta(t)$ — действительные величины, и от базиса «голых» состояний атома $|1\rangle$, $|2\rangle$ и $|3\rangle$ к базису возбужденного $\varphi_2 = |2\rangle$, «яркого» φ_b и «темного» φ_d состояний, определяемых выражениями

$$\varphi_b = \sin\theta(t) |1\rangle + \cos\theta(t) |3\rangle, \varphi_d = \cos\theta(t) |1\rangle - \sin\theta(t) |3\rangle.$$
(12)

Тогда состояние атома можно описать волновой функцией

$$\Psi = [B_b(t), B_2(t), B_d(t)]^T$$

где $B_k(t)$ (k = b, 2, d) — амплитуда вероятности найти атом в состоянии φ_k . Гамильтониан атома в этом базисе имеет вид:

$$H_d = \frac{\hbar}{2} \begin{bmatrix} 0 & \Omega_m(t) & 2i\dot{\theta}(t) \\ \Omega_m(t) & -i\gamma & 0 \\ 2i\dot{\theta}(t) & 0 & 0 \end{bmatrix}.$$
 (13)

Мы считаем, что до начала взаимодействия с полем лазерных импульсов атом находился в состоянии $|1\rangle$. Вначале на атом действует стоксов импульс, потом некоторое время вместе с ним на атом действует импульс накачки, и в конце взаимодействия атома с полем на атом действует только импульс накачки. При отсутствии флуктуаций амплитуды в рассматриваемом здесь случае такая последовательность приводит к монотонному изменению от 0 до $\pi/2$ угла смешения

$$\theta(t) = \operatorname{arctg}(\Omega_p(t) / \Omega_S(t))$$

с течением времени. До начала взаимодействия атома с полем заселено только состояние φ_d , которое в этом случае совпадает с $|1\rangle.$ В случае, если $\Omega_0\tau\gg 1$ (процесс взаимодействия с полем при отсутствии флуктуаций близок к адиабатическому), производной в гамильтониане (13) можно пренебречь, так что населенность «темного» состояния φ_d остается неизменной в течение всего времени взаимодействия атома с полем. После окончания взаимодействия с полем φ_d совпадает с $|3\rangle$ и имеет место 100 % перенос населенности из состояния $|1\rangle$ в состояние $|3\rangle$. Учет скорости изменения $\theta(t)$ в гамильтониане (13) приведет к заселению состояний $|2\rangle$ и $|b\rangle$ и уменьшению эффективности переноса населенности. Можно построить теорию переноса населенности в нефлуктуирующих полях, исходя из разложения волновой функции в ряд по малому параметру $\theta(t)\tau$. Теорию

возмущений по $\dot{\theta}(t)\tau$ можно также построить и в случае флуктуаций амплитуды при условии полной корреляции флуктуаций (синхронности флуктуаций), $f_p(t) = f_S(t)$, когда значение $\theta(t)$ от флуктуаций не зависит.

Далее будем рассматривать случай полной корреляции флуктуаций, когда при условии большой длительности импульсов производной $\dot{\theta}(t)$ в гамильтониане (13) можно пренебречь, а его собственные значения λ_n и соответствующие им собственные функции χ_n имеют вид

$$\lambda_1 = \frac{1}{2}\Omega_m(t), \quad \chi_1 = \frac{1}{\sqrt{2}} \left(\varphi_2 + \varphi_b\right),$$

$$\lambda_2 = -\frac{1}{2}\Omega_m(t), \quad \chi_2 = \frac{1}{\sqrt{2}} \left(\varphi_2 - \varphi_b\right), \quad (14)$$

$$\lambda_3 = 0, \quad \chi_3 = \varphi_d.$$

Благодаря синхронности флуктуаций стоксова поля и поля накачки мгновенное распределение среднеквадратичной частоты Раби $\Omega_m(t)$ гауссово, с наиболее вероятным значением нуль. В результате в течение всего времени взаимодействия атома с полем не может быть выполнено условие адиабатического приближения

$$|\lambda_3 - \lambda_n| \tau_{corr} \gg 1, \quad n = 1, 2,$$

где $\tau_{corr} = 1/G$ — время автокорреляции лазерных полей, что приводит к потере населенности «темного состояния» и вследствие этого к уменьшению эффективности переноса населенности. В случае независимых флуктуаций световых импульсов значение $|\lambda_3 - \lambda_n| \tau_{corr}$ значительно возрастает, поскольку вероятность одновременно иметь близкие к нулю значения для двух независимых величин значительно меньше, чем для одной. Однако в этом случае флуктуирует $\theta(t)$ с характерным временем τ_{corr} , что также приводит к уменьшению населенности «темного» состояния, и в результате потери населенности становятся бо́льшими, чем в случае синхронных флуктуаций, как это видно на рис. 2. Небольшая же временная задержка между флуктуациями полей $t_N \ll \tau_{corr}$ может сыграть положительную роль увеличить $|\lambda_3 - \lambda_n|$ без значительных флуктуаций $\theta(t)$ (за исключением тех промежутков времени, где $\Omega_p(t)$ или $\Omega_S(t)$ близки к нулю). Вероятно, этим объясняется сдвиг максимумов кривых на рис. 2 относительно нуля.

Введем

$$\Phi(t) = \frac{1}{2} \int_{-\infty}^{t} \Omega_m(t') dt'$$
(15)

И

$$a_{d}(t) = \ln(B_{d}(t)),$$

$$a_{2}(t) = B_{2}(t)/B_{d}(t),$$

$$a_{b}(t) = B_{b}(t)/B_{d}(t).$$

(16)

Тогда, вводя явно малый параметр ε для обозначения малости скорости изменения угла $\theta(t)$, получим уравнения для $a_b(t)$, $a_2(t)$, $a_d(t)$:

$$\dot{a}_b(t) = \varepsilon \dot{\theta}(t) - \dot{a}_d(t) a_b(t) - i \dot{\Phi}(t) a_2(t),$$

$$\dot{a}_2(t) = -\dot{a}_d(t) a_2(t) - i \dot{\Phi}(t) a_b(t) - \frac{\gamma}{2} a_2(t), \qquad (17)$$

$$\dot{a}_d(t) = -\varepsilon \dot{\theta}(t) a_b(t).$$

Эти уравнения можно решить методом теории возмущений, разлагая $a_b(t)$, $a_2(t)$, $a_d(t)$ в ряд по ε и принимая во внимание, что до начала взаимодействия с полем заселено лишь «темное» состояние. В общем случае произвольной формы импульсов так же, как и при взаимодействии двухуровневого атома со световым импульсом с несущей частотой, резонансной частоте атомного перехода [11], решение можно получить только в случае, когда спонтанным излучением из возбужденного состояния можно пренебречь. Положив $\gamma = 0$, находим из (17) во втором порядке по ε

$$\dot{a}_d(t) = -\varepsilon^2 \dot{\theta}(t) \int_{-\infty}^t \dot{\theta}(t') \cos(\Phi(t) - \Phi(t')) dt'.$$
(18)

Будем считать, что время корреляции флуктуаций амплитуды 1/G мало по сравнению с длительностью лазерных импульсов τ . Противоположный случай, $1/G \gg \tau$, когда амплитуды не флуктуируют в течение времени взаимодействия атома с полем, но флуктуируют от одного импульса к другому, и задача сводится к усреднению эффективности переноса населенности в нефлуктуирующих полях по распределению амплитуд лазерных импульсов, здесь рассматривать не будем.

Принимая во внимание, что для произвольного гауссова процесса $\xi(t)$ с нулевым средним значением справедливо выражение [12]

$$\langle \exp\left(i\,\xi(t)\right)\rangle = \exp\left(-\frac{1}{2}\langle\xi(t)\rangle^2\right),$$
 (19)

и учитывая (5), можно записать

$$\begin{aligned} \langle a_d(t) \rangle &= -\int_{-\infty}^t \dot{\theta}(t') \int_{-\infty}^{t'} \dot{\theta}(t'') \times \\ &\times \exp\left(-\frac{1}{8G} \int_{t''}^{t'} \langle \Omega_m(t''')^2 \rangle \times \right. \\ &\times \left[2 - \exp(G(t'' - t''')) - \exp(G(t''' - t'))\right] dt''' \right) \times \\ &\times dt'' dt'. \quad (20) \end{aligned}$$

Здесь мы положили $\varepsilon = 1$ и приняли во внимание неравенство $G\tau \gg 1$. После окончания взаимодействия атома с полем населенность «темного» состояния совпадает с населенностью состояния $|3\rangle$, так что эффективность переноса населенности из состояния $|1\rangle$ в состояние $|3\rangle$ определяется выражением

$$\eta = \langle \exp\left(2a_d(\infty)\right) \rangle.$$

Принимая во внимание равенство

$$\langle \exp(X) \rangle = \exp(\langle X \rangle) \left(1 + \frac{1}{2} \langle (X - \langle X \rangle)^2 \rangle + \dots \right),$$

мы для вычисления η будем пользоваться приближенным выражением

$$\eta = \exp\left(2\langle a_d(\infty)\rangle\right),\tag{21}$$

справедливым при небольших среднеквадратичных отклонениях $a_d(\infty)$ от среднего значения. Это приближение уже использовалось при изучении влияния флуктуаций частоты на перенос населенности в процессе СТИРАП [7]. Выражения (20) и (21) позволяют найти эффективность переноса населенности в поле импульсов с флуктуирующей амплитудой для гауссовой модели флуктуаций амплитуды с произвольной временной зависимостью интенсивности световых импульсов, усредненной по ансамблю.

Для полей вида (3) выражение (20) значительно упрощается. Проводя интегрирование и учитывая условие $G\tau \gg 1$, при котором оно справедливо, получим, подставляя значение $a_d(t)$ при $t \to \infty$ в (21):

$$\eta = \exp\left\{-\frac{\pi^2}{(G\tau)^2} \left[\frac{e^z}{z^z} \left(G\tau - 2\right) \left(\Gamma(z) - \Gamma(z, z)\right) + \frac{2}{z^2} \left(e^{z(1 - G\tau/2)} - 1\right)\right]\right\}.$$
 (22)

Здесь $z = \Omega_0^2 / (2G)^2$,

$$\Gamma(x,y) = \int_{y}^{\infty} \exp(-t) t^{x-1} dt \qquad (23)$$

Рис. 3. Зависимости населенности целевого состояния $|3\rangle$ от площади лазерных импульсов, параметризованных значением $\Omega_0 \tau$, для гауссовой модели амплитудных флуктуаций и поля вида (3), полученные из решения уравнения Шредингера усреднением по 100 реализациям случайного процесса (кружки и квадраты) и из формулы (22) (кривые 2 и 3). Отрезками показано среднеквадратичное отклонение эффективности переноса от среднего значения. Кривая 1 отвечает случаю отсутствия флуктуаций амплитуды. Параметры: $\gamma = 0$ для всех кривых, $G\tau = 20$ (кривая 2 и кружки), $G\tau = 100$ (кривая 3 и квадраты). Штрихами показана зависимость (24)

— неполная гамма-функция. В предельном случае $\Omega_0 \gg G$ имеем

$$\eta = \exp\left[\frac{8\pi^2}{\Omega_0^2 \tau^2} - \frac{\pi^2 \sqrt{2\pi}}{\Omega_0 \tau}\right].$$
 (24)

Здесь мы приняли во внимание, что в этом случае основной вклад в выражение (20) дают значения t''', близкие к t'' и t', такие что

$$G(t''' - t'') \ll 1, \quad G(t' - t''') \ll 1.$$

При отсутствии флуктуаций амплитуды $(f_p(t) = f_S(t) = 1)$ для эффективности переноса населенности находим из (18):

$$\eta_0 = \exp\left[-\frac{8\pi^2}{\Omega_0^2 \tau^2} \left(1 - \cos\frac{\Omega_0 \tau}{4}\right)\right].$$
 (25)

Сравнение выражений (25) и (24) показывает, что быстрые флуктуации амплитуды световых импульсов приводят к изменению закона стремления к нулю логарифма эффективности переноса населенности с возрастанием $\Omega_0 \tau$ с $(\Omega_0 \tau)^{-2}$ на $(\Omega_0 \tau)^{-1}$.

На рис. 3 показаны зависимости населенности состояния $|3\rangle$ от $\Omega_0 \tau$ для гауссовой модели амплитудных флуктуаций и поля вида (3), полученные для различных значений времени корреляции флуктуаций G^{-1} из решения уравнения Шредингера усреднением по 100 реализациям случайного процесса и из формулы (22). Кривая 1 отвечает случаю отсутствия флуктуаций амплитуды; она практически совпадает с зависимостью (25), начиная с $\Omega_0 \tau \approx 20$. Численные расчеты по методу Монте-Карло хорошо согласуются с расчетами по формуле (22). Видно, что флуктуации амплитуды значительно уменьшают эффективность переноса населенности по сравнению с идеальным случаем отсутствия флуктуаций, но в то же время увеличение интенсивности световых импульсов может компенсировать негативное влияние флуктуаций амплитуды. С увеличением интенсивности импульсов эффективность переноса стремится к пунктирной кривой, описывающейся зависимостью (24), практически совпадая с ней при $\Omega_0 > 4G.$

Для полей вида (4) непосредственное применение выражения (20) для вычисления эффективности переноса населенности требует длительных вычислений в связи с необходимостью интегрирования по трем переменным. Замечая, что основной вклад в (20) дают близкие между собой значения t', t'' и t''', такие что разница между ними составляет величину порядка 1/G, можно вычислить интеграл в экспоненте (20). В результате получим

$$\langle a_d(t) \rangle = -\int_{-\infty}^t \dot{\theta}(t')^2 \int_{-\infty}^{t'} \exp\left\{-\frac{1}{4G^2} \langle \Omega_m(t')^2 \rangle \times \left[-1 + G(t' - t'') - \exp(-G(t' - t''))\right]\right\} dt'' dt'.$$
(26)

Это выражение несправедливо при малых значениях $\Omega_0^2 \tau/G$, но эта область параметров малоинтересна, поскольку в данном случае эффективность переноса населенности мала.

На рис. 4 показаны зависимости населенности состояния $|3\rangle$ от $\Omega_0 \tau$ для гауссовой модели амплитудных флуктуаций и гауссовой формы световых импульсов (4), найденные из численного решения уравнения Шредингера и из формул (21), (26). Как видно из рисунка, вычисления эффективности переноса населенности по формулам (21), (26) хорошо согласуются с вычислениями по методу Монте-Карло. Это дает основания ожидать, что вычисления эффективности переноса населенности можно проводить по формулам (21), (26) и для импульсов другой, негауссовой формы с плавной огибающей интенсивности, усредненной по ансамблю.

Рис. 4. Зависимости населенности целевого состояния $|3\rangle$ от площади лазерных импульсов, параметризованных значением $\Omega_0 \tau$, для гауссовой модели амплитудных флуктуаций и поля вида (4), полученные из решения уравнения Шредингера усреднением по 100 реализациям случайного процесса (кружки) и из формул (21), (26) (сплошная кривая). Отрезками показано среднеквадратичное отклонение эффективности переноса от среднего значения. Параметры: $\gamma = 0$, $G\tau = 50$, $t_d = \tau$

7. МОДЕЛЬ ХАОТИЧЕСКОГО ПОЛЯ

Для модели хаотического поля, когда флуктуируют как действительная, так и мнимая части комплексной амплитуды лазерного поля и эти флуктуации независимы, построение теории аналогично рассмотренному выше случаю гауссовой модели флуктуаций амплитуды невозможно. Основным препятствием на этом пути являются трудности усреднения по ансамблю в случае двух случайных гауссовых величин.

Рисунок 5 показывает, что достижение высокого, большего 90 %, переноса населенности в этом случае также связано с корреляцией флуктуаций амплитуды стоксова поля и поля накачки. На нем приведено изменение населенностей n_1 , n_2 и n_3 состояний $|1\rangle$, $|2\rangle$ и $|3\rangle$ со временем для случаев полной корреляции $(t_N = 0)$ флуктуаций и сдвига временной зависимости флуктуаций амплитуды стоксова поля относительно флуктуаций амплитуды поля накачки на время корреляции 1/G. Видно, что в последнем случае изменение населенностей со временем носит бессистемный характер, тогда как в случае $t_N = 0$ изменение населенностей со временем близко к соответствующей зависимости для СТИРАП в поле нефлуктуирующих импульсов [1]. Кроме того, при полной корреляции флуктуаций, как и в СТИРАП в нефлуктуирующих полях, населенность возбужден-

Рис.5. Зависимости населенностей состояний $|1\rangle$ (тонкая кривая), $|2\rangle$ (пунктир), $|3\rangle$ (толстая кривая) от $\Omega_0 \tau$ для модели хаотического поля и импульсов вида (4), полученные из решения уравнения Шредингера для одной из реализаций случайного процесса. Параметры: $\gamma = 0$, $t_d = \tau$, $G\tau = 50$, $\Omega_0 \tau = 100$; $t_N = 0$ (a), 1/G (b)

ного состояния очень мала, что, собственно говоря, и делает процесс СТИРАП привлекательным для переноса населенности между метастабильными состояниями.

На рис. 6 показаны зависимости n_3 населенности состояния $|3\rangle$ от частоты Раби Ω_0 для модели стохастического поля, гауссовой формы световых импульсов (4) и синхронных флуктуаций стоксова поля и поля накачки ($t_N = 0$), полученные из решения уравнения Шредингера усреднением по ансамблю 100 реализаций случайного процесса. Как и в случае гауссовых флуктуаций, наблюдается значительное возрастание эффективности переноса с увеличением площади импульсов.

Рис. 6. Зависимости населенности целевого состояния $|3\rangle$ от $\Omega_0 \tau$ для модели хаотического поля и импульсов вида (4), полученные из решения уравнения Шредингера усреднением по 100 реализациям случайного процесса. Параметры: $\gamma = 0$, $t_d = \tau$, $G\tau = 20$ (кружки), $G\tau = 50$ (квадраты)

8. ВЫВОДЫ

Мы показали, что флуктуации амплитуды лазерного излучения не являются препятствием для переноса населенности между метастабильными состояниями атомов и молекул в процессе СТИРАП в случае, когда эти флуктуации происходят синхронно.

Для короткого по сравнению со временем спонтанного излучения времени взаимодействия атома с полем и гауссовой модели флуктуаций амплитуды найдено выражение для населенности целевого состояния, зависящее от параметров лазерных импульсов. Полученные результаты хорошо согласуются с результатами численного моделирования методом Монте-Карло.

Перенос населенности в случае флуктуаций амплитуды, описываемых моделью стохастического поля (независимо флуктуируют действительная и мнимая части комплексной амплитуды электрического поля) исследован численно. Полученные зависимости эффективности переноса населенности от площади световых импульсов близки к аналогичным, построенным для модели гауссовых флуктуаций амплитуды.

Авторы благодарны профессору К. Бергманну за плодотворное обсуждение работы.

Работа выполнена в рамках тем НАН Украины ВЦ 93/24, В/112 и $\Phi7/445$.

ЛИТЕРАТУРА

- K. Bergmann, H. Theur, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
- M. V. Danileiko, V. I. Romanenko, and L. P. Yatsenko, Opt. Comm. 109, 462 (1994).
- V. I. Romanenko and L. P. Yatsenko, Opt. Comm. 140, 231 (1997).
- F. Renzoni, A. Lindner, and E. Arimondo, Phys. Rev. A 60, 450 (1999).
- В. И. Романенко, Л. П. Яценко, Л. Бергманн, УФЖ 48, 533, (2003).
- A. Kuhn, S. Schiemann, G. Z. He, G. Coulston, W. S. Warren, and K. Bergmann, J. Chem. Phys. 96, 4215 (1992).

- V. I. Romanenko, L. P. Yatsenko, B. W. Shore, and K. Bergmann, Phys. Rev. A 65, 043409 (2002).
- 8. A. T. Georges, Phys. Rev. A 21, 2034 (1980).
- R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A 38, 5938 (1988).
- 10. G. Vemuri and R. Roy, Opt. Comm. 77, 318 (1990).
- 11. B. W. Shore, *The Theory of Coherent Atomic Excitation*, Wiley, New York (1990).
- 12. С. А. Ахманов, Ю. Е. Дьяков, А. С. Чиркин, Введение в статистическую радиофизику и оптику, Наука, Москва (1981).