РЕЗОНАНСЫ ФАНО В СПЕКТРАХ ПРИМЕСНОГО ФОТОТОКА В ПОЛУПРОВОДНИКАХ, ЛЕГИРОВАННЫХ МЕЛКИМИ ДОНОРАМИ

В. Я. Алешкин^{*}, А. В. Антонов, Л. В. Гавриленко^{**}, В. И. Гавриленко

Институт физики микроструктур Российской академии наук 603950, Нижний Новгород, Россия

Поступила в редакцию 1 июня 2005 г.

Построена теория, описывающая пики фототока в спектральной области, соответствующей энергии продольного оптического фонона, для полупроводников, легированных донорами. Проведено сравнение экспериментальных данных для *n*-GaAs с теорией. Получено хорошее согласие теоретических и экспериментальных результатов.

PACS: 63.20.Kr, 71.55.Eq

1. ВВЕДЕНИЕ

Рассмотрим поглощение света электронами в полупроводнике, легированном мелкими донорами, в том случае, когда энергия фотона находится в окрестности энергии продольного оптического фонона. Будем считать температуру достаточно низкой, так что все примесные электроны находятся в основном состоянии донорных центров. В этом случае квант света может быть поглощен двумя способами. Во-первых, происходит поглощение при прямом переходе электрона из основного состояния донора в непрерывный спектр (рис. 1), во-вторых, — переход с поглощением фотона в любое промежуточное состояние электрона, а затем испускание продольного оптического фонона. Отметим, что во втором случае начальное и конечное состояния электрона одинаковы и локализованы около донорного атома. Общая энергия конечного состояния системы электрон + фонон равна энергии состояния электрона в непрерывном спектре, в которое электрон перешел первым способом. Таким образом, имеет место ситуация, соответствующая резонансу Фано [1]. Действительно, электрон может поглотить квант света при переходе либо в состояние непрерывного спектра, либо в состояние дискретного спектра с той же

Рис. 1. Схема оптических переходов электрона, находящегося в основном состоянии I донора, при поглощении фотона с энергией, равной $\hbar\omega_0$: 1 — переход в непрерывный спектр; 2, 3 — переходы в резонансное состояние $|\varphi_q\rangle$ через промежуточные состояния соответственно в дискретном и непрерывном спектрах; II — возбужденное состояние

энергией. Интерференция этих двух переходов может приводить к асимметричным пикам в спектре поглощения. Далее мы будем называть эти пики в

^{*}E-mail: aleshkin@ipm.sci-nnov.ru

^{**}E-mail: aritany@ipm.sci-nnov.ru

спектрах поглощения резонансами Фано. Особенности, которые впоследствии были названы резонансами Фано, впервые были обнаружены в кремнии, легированном акцепторами [2] за три года до выхода работы Фано [1]. В работах [3-5] была объяснена природа этих линий, однако количественная теория так и не была создана, поскольку тогда еще не было разработано количественное описание состояний мелких акцепторов в кремнии. Впоследствии резонансы Фано в спектрах поглощения и фототока наблюдались на глубоких донорах в кремнии [6] и недавно в спектрах фототока в полупроводниках GaAs и InP, легированных мелкими донорами [7]. Насколько известно авторам, к настоящему времени отсутствует количественная теория резонансов Фано в полупроводниках, легированных мелкими донорами. Более того, для описания наблюдаемых линий часто пользуются формулами, приведенными в работе Фано [1], полученными для частного случая, когда фазы матричных элементов оператора перехода в непрерывный спектр и на дискретный уровень совпадают [5], или пользуются приближенными формулами из работы [8] (см., например, [7]).

Цель этой работы — построить количественную теорию резонансов Фано в спектре фототока полупроводников, легированных водородоподобными мелкими донорами. В работе получено общее выражение для расчета резонансов Фано в спектрах поглощения, пригодное для описания полупроводников, легированных как донорами, так и акцепторами. Из построенной теории следует, что формулы, приведенные в работе Фано, а также в работе [8], являются в общем случае непригодными для описания рассматриваемого явления. Причина этого состоит в том, что разность фаз матричных элементов электронных переходов в континуум и в локализованное состояние отлична от нуля. Развитая теория находится в хорошем согласии с имеющимися экспериментальными данными для GaAs и в несколько худшем для InP.

2. РАСЧЕТ ВЕРОЯТНОСТИ ПОГЛОЩЕНИЯ КВАНТА СВЕТА

Рассмотрим вероятность перехода электрона в единицу времени под действием света из основного состояния донора в состояние $|\varphi_q\rangle$ (см. рис. 1). В состоянии $|\varphi_q\rangle$ электрон снова находится в основном состоянии донора, но имеется продольный оптический (LO) фонон с волновым вектором q. Очевидно, что для описания такого перехода необходимо

рассматривать взаимодействие электрона с фотоном и фононом с точностью до второго порядка теории возмущений. В этом случае процесс перехода электрона из начального состояния в конечное можно разбить на два этапа (см., например, [9]). На первом этапе электрон поглощает фотон и попадает в промежуточное состояние. На втором этапе электрон испускает оптический фонон и попадает в основное состояние донора. Отметим, что закон сохранения энергии выполняется только для всего процесса в целом, но не выполняется на промежуточных этапах. Гамильтониан системы имеет вид

$$H = H_0 + \overline{V}^{ph} + \overline{V}^{LO}, \qquad (1)$$

где слагаемы
е \overline{V}^{ph} и \overline{V}^{LO} описывают соответственно электрон-фотонное и электрон-фононное взаимодействия, а

$$H_0 = \frac{p^2}{2\mu} - \frac{e^2}{r\kappa_0}$$
(2)

— гамильтониан электрона, двигающегося в поле донора, p — оператор квазиимпульса электрона, µ эффективная масса электрона в зоне проводимости, r — радиус-вектор электрона, к₀ — низкочастотная диэлектрическая проницаемость полупроводника, e — заряд электрона. В дипольном приближении можно написать оператор взаимодействия электрона с циркулярно-поляризованным излучением, падающим в направлении z, в виде

$$\overline{V}^{ph} = \frac{eA(y-ix)}{\sqrt{2}} e^{-i\omega t} + \text{c.c.}, \qquad (3)$$

где A — амплитуда электрического поля электромагнитной волны. Первое слагаемое в выражении (3) описывает поглощение фотона, а второе (комплексно-сопряженное) — испускание. Поскольку мы интересуемся только процессом поглощения фотонов, последнее слагаемое в (3) учитывать не будем.

Оператор взаимодействия электрона с LO-фононами имеет вид [10]

$$\overline{V}^{LO} = e \sqrt{\frac{2\pi\hbar\omega_0}{V\overline{\kappa}}} \sum_q \frac{i}{q} \exp(-iqr + i\omega_0 t)b_q^{\dagger} + \text{H.c.}, \quad (4)$$

где V — объем кристалла, q и ω_0 — соответственно волновой вектор и круговая частота LO-фонона, $1/\overline{\kappa} = 1/\kappa_{\infty} - 1/\kappa_0$, κ_{∞} — высокочастотная диэлектрическая проницаемость, b_q^{\dagger} — оператор рождения фонона. Первое слагаемое в формуле (4) описывает процесс испускания фононов, а второе — процесс поглощения. Далее нас будет интересовать только первый процесс, поэтому последнее слагаемое в (4) мы опустим. С учетом сказанного гамильтониан (1) можно представить в упрощенном виде:

$$H = H_0 + V^{ph} \exp(-i\omega t) + V^{LO} \exp(i\omega_0 t), \qquad (5)$$

где V^{ph} , V^{LO} — первые слагаемые в выражениях (3) и (4) без зависящих от времени экспонент.

Используя предположение об адиабатическом включении взаимодействия [9] и теорию возмущений, получаем следующее выражение для вероятности перехода электрона из основного состояния донора, которое будем обозначать $|i\rangle$, в состояние $|\varphi_q\rangle$:

$$W_{\varphi i} = \frac{2\pi}{\hbar} |S|^2 \delta(\hbar\omega - \hbar\omega_0), \qquad (6)$$

где матричный элемент перехода равен

$$S_{\varphi i} = \sum_{m} \frac{\langle \varphi_{q} | V^{LO} | m \rangle \langle m | V^{ph} | i \rangle}{\hbar \omega_{0} + E_{i} - E_{m} + i\lambda}, \quad \lambda \to 0, \quad (7)$$

 E_i — энергия основного состояния донора, m — набор квантовых чисел промежуточных состояний. Все промежуточные состояния можно разделить на две группы: состояния дискретного и непрерывного спектров. Поскольку оператор взаимодействия с фотонами пропорционален сферической функции $Y_{1,1}$,

$$V^{ph} = eAr\sqrt{\frac{4\pi}{3}} Y_{1,1}(\theta,\varphi), \qquad (8)$$

а волновая функция начального состояния изотропна, промежуточное состояние обладает единичным моментом количества движения и единичной проекцией момента на ось z, т.е. это состояние p-типа. Имея в виду это обстоятельство, все промежуточные состояния непрерывного спектра можно характеризовать только энергией, а состояния дискретного спектра — главным квантовым числом n. Далее будем полагать, что энергия оптического фонона больше энергии ионизации мелкого донора. Тогда выражение (7) можно переписать следующим образом:

$$S_{\varphi i} = \sum_{n=2}^{\infty} \frac{\langle \varphi_q | V^{LO} | n \rangle \langle n | V^{ph} | i \rangle}{\hbar \omega_0 + E_i - E_n} + P \int dE \frac{\langle \varphi_q | V^{LO} | \psi(E) \rangle \langle \psi(E) | V^{ph} | i \rangle}{\hbar \omega_0 + E_i - E} + i\pi \langle \varphi_q | V^{LO} | \psi(E_{\varphi}) \rangle \langle \psi(E_{\varphi}) | V^{ph} | i \rangle, \quad (9)$$

где $|n\rangle$ — волновая функция промежуточного состояния в дискретном спектре, нормированная на единицу, $|\psi(\varepsilon)\rangle$ — волновая функция донора в непрерывном спектре, нормированная следующим образом:

$$\int d^3r \langle \psi(E) \rangle |\psi(E')\rangle = \delta(E - E'),$$

введено обозначение $E_{\varphi} = \hbar \omega_0 + E_i$, символ «Р» указывает на то, что интеграл берется в смысле главного значения.

Если вместо функций $|n\rangle$ ввести функции

$$|\psi(E)\rangle = \sqrt{\delta(E - E_n)} |n\rangle,$$

соответствующие дискретному спектру, но иначе нормированные, то сумму и интеграл в выражении (9) можно записать в виде только интеграла, имеющего такой же вид, как и второе слагаемого в (9). Однако область интегрирования в этом случае должна распространяться и на энергии дискретного спектра. Функции $\psi(E)$, соответствующие дискретному спектру, удовлетворяют тому же условию нормировки, что и функции непрерывного спектра. Для компактности будем использовать такой способ записи в дальнейшем, полагая, что в непрерывном спектре энергия электрона положительна, а энергии дискретного спектра изменяются от E_i до нуля. Такая замена позволяет легко учесть влияние состояний дискретного спектра на взаимодействие резонансных состояний с состояниями непрерывного спектра в рамках теории, развитой Фано [1].

Состояние $|\varphi_q\rangle$ является резонансным, поскольку его энергия соответствует непрерывному спектру, и оно взаимодействует с состояниями $\psi(\varepsilon)$ непрерывного спектра за счет электрон-фононного взаимодействия. Рассматриваемая система в точности соответствует системе, рассмотренной в разд. 5 работы Фано [1], где обсуждается случай взаимодействия нескольких резонансных состояний с состояниями непрерывного спектра. Согласно этой работе, точная волновая функция, соответствующая энергии E, может быть представлена в виде (выражение (46) в работе [1])

$$\begin{split} |\Psi(E)\rangle &= \sum_{q} a_{q}(E) |\varphi_{q}\rangle + \\ &+ \int dE' \, b(E,E') |\psi(E')\rangle, \quad (10) \end{split}$$

где

$$a_q(E) = -\frac{V_q^*(E)}{E - E_{\varphi}} \cos\left[\Delta(E)\right], \qquad (11)$$

$$b(E, E') = -\left[\sum_{q} \frac{V_q(E')V_q^*(E)}{(E-E')(E-E_{\varphi})} + \delta(E-E')\right] \times \cos\left[\Delta(E)\right], \quad (12)$$

$$\operatorname{tg}\left[\Delta(E)\right] = -\pi \sum_{q} \frac{|V_q(E)|^2}{E - E_{\varphi}},$$

$$V_q^*(E) = \langle \varphi_q | V^{LO} | \psi(E) \rangle.$$
(13)

При получении выражений (11)–(13) мы положили

$$F_{q,q'} \equiv \mathbf{P} \int dE' \frac{V_q^*(E')V_{q'}(E')}{E - E'} = 0,$$

поскольку недиагональные элементы матрицы $F_{q,q'}$ обращаются в нуль из-за произвольной разности фаз между $V_{q'}$ и V_q^* при усреднении по ансамблю, а диагональные элементы обратно пропорциональны объему системы. Поэтому суммой $\sum_{q'} F_{q,q'}(E) a_{q'}$ в уравнении (49) работы [1] можно пренебречь.

Матричный элемент оператора оптического перехода в состояние $\Psi(E)$ можно представить в следующей форме:

$$\begin{split} \langle \Psi(E) | V^{ph} | i \rangle &= \sum_{q} a_{q}^{*}(E) S_{\varphi i} + \\ &+ \int dE' b^{*}(E, E') \langle \Psi(E') | V^{ph} | i \rangle. \end{split}$$
(14)

С учетом формул (9), (11), (12) выражение (14) можно представить в виде

$$\langle \Psi(E) | V^{ph} | i \rangle = -\frac{\cos[\Delta(E)]}{E - E_{\varphi}} \times$$

$$\times \sum_{q} \left\{ P \int_{E_{i}}^{\infty} dE' V_{q}(E) V_{q}^{*}(E') \langle \psi(E') | V^{ph} | i \rangle \times \right. \\ \left. \left. \left. \left(\frac{1}{E_{\varphi} - E'} + \frac{1}{E - E'} \right) + \right. \right. \\ \left. + i \pi V_{q}(E) V_{q}^{*}(E_{\varphi}) \langle \psi(E_{\varphi}) | V^{ph} | i \rangle \right\} - \right. \\ \left. - \cos[\Delta(E)] \langle \psi(E) | V^{ph} | i \rangle.$$
 (15)

Воспользовавшись явным выражением для

$$\cos \left[\Delta(E) \right] = -\frac{E - E_{\varphi}}{\sqrt{(E - E_{\varphi})^2 + \Gamma^2(E)/4}} , \qquad (16)$$

где

$$\Gamma(E) = 2\pi \sum_{q} |V_q(E)|^2,$$

 $\Gamma(E_{\varphi})/\hbar$ — вероятность перехода электрона из состояния непрерывного спектра в состояние $|i\rangle$ за счет спонтанного испускания оптического фонона, соотношение (15) можно переписать в виде

$$\langle \Psi(E) | V^{ph} | i \rangle = \frac{\gamma(E, E_{\varphi}) \langle \psi(E) | V^{ph} | i \rangle}{\sqrt{(E - E_{\varphi})^2 + \Gamma^2(E)/4}} \times \\ \times \left[\alpha(E) + i\beta(E) + \frac{E - E_{\varphi}}{\gamma(E, E_{\varphi})} \right], \quad (17)$$

где

$$\begin{split} \alpha(E) &= \sum_{q} \mathbf{P} \int_{E_{i}}^{\infty} dE' V_{q}(E) V_{q}^{*}(E') \langle \psi(E') | V^{ph} | i \rangle \times \\ &\times \left(\frac{1}{E_{\varphi} - E'} + \frac{1}{E - E'} \right) \times \\ &\times \left(\gamma(E, E_{\varphi}) \langle \psi(E) | V^{ph} | i \rangle \right)^{-1}, \\ \beta(E) &= \frac{\langle \psi(E_{\varphi}) | V^{ph} | i \rangle}{\langle \psi(E) | V^{ph} | i \rangle}, \\ \gamma(E, E_{\varphi}) &= \pi \sum_{q} V_{q}(E) V_{q}^{*}(E_{\varphi}). \end{split}$$

Выражение (17) является основным результатом данной работы. Отметим, что для его получения нигде не использован явный вид гамильтониана H_0 , поэтому выражение (17) можно применять также для описания полупроводников, легированных акцепторами, и полупроводников с анизотропным законом дисперсии в зоне проводимости.

Если анализировать зависимость квадрата матричного элемента (17) в окрестности энергии E_{φ} , то можно положить

$$\alpha \approx 4 \sum_{q} \Pr \int_{E_{i}}^{\infty} dE' V_{q}(E) V_{q}^{*}(E') \langle \psi(E') | V^{ph} | i \rangle \times \\ \times (E_{\varphi} - E')^{-1} \left(\Gamma \langle \psi(E_{\varphi}) | V^{ph} | i \rangle \right)^{-1},$$

$$\beta(E) = 1, \quad \gamma(E, E_{\varphi}) \approx \frac{\Gamma(E_{\varphi})}{2} = \frac{\Gamma}{2},$$

$$(18)$$

а квадрат модуля матричного элемента (17) записать в виде

$$\begin{aligned} |\langle \Psi(E)|V^{ph}|i\rangle|^2 &\approx \frac{|\langle \psi(E)|V^{ph}|i\rangle|^2}{1+x^2} |\alpha+i+x|^2 = \\ &= \frac{|\langle \psi(E)|V^{ph}|i\rangle|^2}{1+x^2} \left[(\alpha+x)^2 + 1 \right], \end{aligned}$$
(19)

где $x = 2(E - E_{\varphi})/\Gamma$ — безразмерная энергия.

Выражение (19) является аналогом формулы (21) из работы [1], которая была получена Фано для одиночного резонансного уровня и которая часто используется для описания всплесков фототока вблизи энергий оптического фонона [5, 6]. Если в формуле (21) работы Фано [1] положить параметр q (который не имеет никакого отношения к волновому вектору фонона) равным $\alpha + i$, то из этой формулы получится выражение (19).

Вероятность поглощения кванта света равна

$$W(\omega) = \frac{2\pi}{\hbar} \int dE |\langle \Psi(E) | V^{ph} | i \rangle|^2 \delta(\hbar\omega + E_i - E) =$$
$$= \frac{2\pi}{\hbar} |\langle \Psi(\hbar\omega + E_i) | V^{ph} | i \rangle|^2. \quad (20)$$

3. РАСЧЕТ РЕЗОНАНСА ФАНО В СПЕКТРЕ ФОТОТОКА ДЛЯ ВОДОРОДОПОДОБНОГО ДОНОРА

Вычислим матричные элементы $\langle \psi(E)|V^{ph}|i\rangle$ и $V_q(E)$ для случая водородоподобного донора, описываемого гамильтонианом (2). Для этого воспользуемся выражением для волновых функций атома водорода. Для удобства будем измерять длину в боровских радиусах $a_B = \hbar^2 \kappa_0 / \mu e^2$, а энергию в единицах $\varepsilon_0 = \mu e^4 / \hbar^2 \kappa_0^2$. В этих переменных волновая функция основного состояния имеет вид [9]

$$|i\rangle = R_{10}(r)Y_{0,0} = 2e^{-r}/\sqrt{4\pi}$$
. (21)

Волновые функции промежуточных состояний в дискретном спектре [9] выражаются следующим образом:

$$|n\rangle = R_{n1}(r)Y_{11}(\theta,\varphi) = -\frac{2}{n^2}\sqrt{\frac{(n-2)!}{[(n+1)!]^3}}e^{-r/n} \times \frac{2r}{n}L_{n+1}^3\left(\frac{2r}{n}\right)Y_{11}(\theta,\varphi), \quad (22)$$

а в непрерывном спектре [9] —

$$\begin{aligned} |\psi(E)\rangle &= \frac{2}{2\pi (2kr)^2} \sqrt{\frac{1+1/k^2}{1-e^{-2\pi/k}}} \oint dt \times \\ &\times e^{2ikrt} \left(t + \frac{1}{2}\right)^{i/k-2} \left(t - \frac{1}{2}\right)^{-i/k-2} Y_{11}(\theta,\varphi), \quad (23) \end{aligned}$$

где $L_{n+1}^3(2r/n)$ — обобщенные полиномы Лагерра, а контур интегрирования охватывает точки ветвления $t = \pm 1/2$.

Матричные элементы оператора взаимодействия с электромагнитным излучением можно найти, используя формулу (63.4) из книги Бете и Солпитера [11] для переходов в состояния дискретного спектра. Для вычисления матричного элемента перехода в непрерывный спектр можно воспользоваться методом, изложенным в книге [11, § 71]. Получаются следующие выражения для матричных элементов переходов в дискретный и непрерывный спектры:

$$\frac{\langle n|V^{ph}|i\rangle}{eA} = \frac{1}{\sqrt{3}} \sqrt{\frac{2^8 n^7 (n-1)^{2n-5}}{(n+1)^{2n+5}}} , \qquad (24)$$

$$\frac{\langle \psi(E)|V^{ph}|i\rangle}{eA} = \sqrt{\frac{1}{1 - e^{-2\pi/k}}} \times \frac{16}{\sqrt{3} (1 + k^2)^{5/2}} \exp\left(-\frac{2}{k}\operatorname{arctg} k\right), \quad (25)$$

где k — волновое число электрона, соответствующее энергии E, измеренное в обратных боровских радиусах. Для перехода к размерным единицам выражение (24) надо умножить на a_B , a (25) — на $a_B/\sqrt{\varepsilon_0}$.

Для вычисления $V_q(E)$, согласно соотношениям (4) и (5), надо вычислить матричный элемент оператора $\exp(-i\mathbf{q}\cdot\mathbf{r})$. Для этого воспользуется разложением экспоненты по сферическим гармоникам [9]:

$$e^{-i\mathbf{q}\cdot\mathbf{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (-i)^{l} j_{l}(qr) \times Y_{lm}^{*}\left(\frac{\mathbf{q}}{q}\right) Y_{lm}\left(\frac{\mathbf{r}}{r}\right), \quad (26)$$

где $j_l(x) = \sqrt{\pi/2x} J_{l+1/2}(x), J_{l+1/2}(x)$ — функция Бесселя полуцелого индекса. Для дальнейших вычислений нам понадобится функция

$$j_1(qr) = \frac{\sin^2(qr)}{(qr)^2} - \frac{\cos(qr)}{qr}$$

Действительно, согласно (13) матричный элемент $V_q = \langle \psi(E) | V^{LO} | \varphi_q \rangle$. Угловая зависимость волновой функции $| \psi(E) \rangle$ от координат электрона пропорциональна $Y_{1,1}$, а волновая функция электрона в состоянии $| \varphi_q \rangle$ сферически-симметрична, поскольку электрон находится в основном состоянии донора. В Приложении показано, что для волновых функций $\psi(E)$ непрерывного спектра имеем

$$\begin{aligned} \langle \psi(E) | e^{-i\mathbf{q} \cdot \mathbf{r}} | i \rangle &= \frac{i}{k^2 \sqrt{\pi}} \times \\ &\times \sqrt{\frac{1+1/k^2}{1-e^{-2\pi/k}}} I(k,q) Y_{1,1}^* \left(\frac{\mathbf{q}}{q}\right), \end{aligned} (27)$$

где

$$\begin{split} I(k,q) &= -16\pi k^3 \int_0^1 dx \, x \times \\ &\times \operatorname{Im}\left\{ \left(\frac{qx+k-i}{qx-k-i} \right)^{i/k} \left[(qx-i)^2 - k^2 \right]^{-2} \right\}, \end{split}$$

а для волновых функций nдиск
ретного спектра —

$$\langle n|e^{-iqr}|i\rangle = -i\sqrt{4\pi} I_2(n,q) Y_{11}^*(\mathbf{q}/q), \qquad (28)$$

где

$$I_2(n,q) = \int_0^\infty dr \, r^2 R_{n1}(r) R_{1,0}(r) \left[\frac{\sin(qr)}{q^2 r^2} - \frac{\cos(qr)}{qr} \right]$$

Согласно закону сохранения момента импульса, момент испущенного фонона равен моменту поглощенного фотона, поскольку волновые функции электрона в основном и резонансном состояниях одинаковы, поэтому $V_q \sim Y_{11}^*(\mathbf{q}/q).$

Используя соотношения (27), (28), а также (4), находим

$$\alpha(E) = \frac{2P\int_{0}^{\infty} dk' \frac{\exp\left(-\frac{2}{k'} \operatorname{arctg} k'\right)}{k'^{2}(1+k'^{2})^{2}(1-e^{-2\pi/k'})} \left(\frac{1}{k_{\varphi}^{2}-k'^{2}} + \frac{1}{k^{2}-k'^{2}}\right) \int_{0}^{\infty} dq \, I(k,q)I(k',q)}{\frac{\pi}{k_{\varphi}^{3}} \sqrt{\frac{1+k_{\varphi}^{2}}{(1-e^{-2\pi/k_{\varphi}})(1-e^{-2\pi/k})}}} \frac{\exp\left(-\frac{2}{k} \operatorname{arctg} k\right)}{(1+k^{2})^{5/2}} \int_{0}^{\infty} dq \, I(k,q)I(k_{\varphi},q)} + \frac{\frac{1}{4}\sum_{n=2}^{\infty} \sqrt{\frac{2^{8}n^{7}(n-1)^{2n-5}}{(n+1)^{2n+5}}}}{\frac{1}{k_{\varphi}^{2}} + 1/n^{2}} + \frac{1}{k^{2}+1/n^{2}} \int_{0}^{\infty} dq \, I_{2}(n,q)I(k,q)}{\frac{1}{k_{\varphi}^{3}} \sqrt{\frac{1+k_{\varphi}^{2}}{(1-e^{-2\pi/k_{\varphi}})(1-e^{-2\pi/k})}}} \frac{\exp\left(-\frac{2}{k} \operatorname{arctg} k\right)}{(1+k^{2})^{5/2}} \int_{0}^{\infty} dq \, I(k,q)I(k_{\varphi},q)}, \quad (29)$$

$$\beta(E) = \sqrt{\frac{1 - e^{-2\pi/k}}{1 - e^{-2\pi/k_{\varphi}}}} \left(\frac{1 + k_{\varphi}^2}{1 + k^2}\right)^{5/2} \times \\ \times \exp\left(\frac{2}{k_{\varphi}}\operatorname{arctg} k_{\varphi} - \frac{2}{k}\operatorname{arctg} k\right), \quad (30)$$

$$\gamma(E, E_{\varphi}) = \frac{\hbar\omega_0\kappa_0}{(2\pi)^{2}\overline{\kappa}} \frac{1}{(kk_{\varphi})^2} \sqrt{\frac{1+1/k^2}{1-e^{-2\pi/k}}} \times \sqrt{\frac{1+1/k_{\varphi}^2}{1-e^{-2\pi/k_{\varphi}}}} \int_0^{\infty} I(k, q)I(k_{\varphi}, q) \, dq. \quad (31)$$

4. СРАВНЕНИЕ ТЕОРИИ И ЭКСПЕРИМЕНТА ДЛЯ GaAs и InP

Вклад в фототок дают электроны, оказывающиеся после поглощения света в делокализованных состояниях. Поэтому кажется, что для получения спектра фототока необходимо умножить выражение (20) на вероятность оказаться электрону в делокализованном состоянии. Однако, используя соотношение (10) и асимптотическое поведение волновой функции $\psi(E)$ при больших r ($\psi(E) \propto \sin(kr + \delta)$), нетрудно показать, что волновые функции $\Psi(E)$ и $\psi(E)$ при больших r различаются лишь фазой, но не амплитудой (см. вычисления в работе [1] после формулы (4)). Это означает, что электрон в состоянии $\Psi(E)$ является полностью делокализованным,

а взаимодействие с резонансными состояниями не приводит к частичной локализации волновой функции.

Заметное влияние на спектр фототока в области резонанса Фано оказывают частотные зависимости коэффициентов отражения и поглощения света, которые быстро изменяются в этой области спектра из-за поглощения света поперечными оптическими (TO) фононами. Фототок с учетом этих факторов можно записать в виде

$$J(\omega) = BI(\omega) \frac{W(\omega)}{|A|^2} \left[1 - R(\omega)\right] \int_0^d e^{-\eta(\omega)x} dx, \quad (32)$$

где B — некоторая не зависящая от частоты постоянная, $I(\omega)$ — интенсивность падающего на образец света, $\eta(\omega)$ — коэффициент поглощения света, d — толщина легированной области. Поглощение и отражение света в этой области спектра определяются в основном оптическими колебаниями решетки и могут быть описаны с помощью диэлектрической проницаемости в форме [12]

$$\kappa(\omega) = \kappa_{\infty} + \frac{\kappa_0 - \kappa_{\infty}}{1 - \frac{\omega^2}{\omega_{TO}^2} - i\frac{\omega\gamma}{\omega_{TO}^2}},$$
(33)

где ω_{TO} и γ — соответственно частота и постоянная затухания ТО-фонона. Коэффициенты отражения $R(\omega)$ и поглощения $\eta(\omega)$ света имеют вид

$$R(\omega) = \frac{\left[\operatorname{Re}\left(\sqrt{\kappa(\omega)}\right) - 1\right]^2 + \operatorname{Im}^2\left(\sqrt{\kappa(\omega)}\right)}{\left[\operatorname{Re}\left(\sqrt{\kappa(\omega)}\right) + 1\right]^2 + \operatorname{Im}^2\left(\sqrt{\kappa(\omega)}\right)}, \quad (34)$$
$$\eta(\omega) = \frac{2\omega}{c}\operatorname{Im}\left(\sqrt{\eta(\omega)}\right),$$

где *с* — скорость света.

На рис. 2 приведены рассчитанные и измеренный спектры фототока в области резонанса Фано в образце *n*-GaAs. Для расчета были использованы следующие параметры GaAs:

$$\mu = 0.0665m_0, \quad \kappa_0 = 12.46, \quad \kappa_\infty = 10.58,$$
$$\hbar\omega_0 = 36.588 \text{ M} \cdot \text{B} \ [13], \quad \gamma = 0.001\omega_{TO},$$
$$\omega_{TO} = \omega_0 \sqrt{\kappa_\infty/\kappa_0}$$

 m_0 — масса свободного электрона. Один спектр, изображенный сплошной линией, был рассчитан для случая, когда толщина слоя полупроводника, дающая основной вклад в фототок, много меньше $1/\eta(\omega)$. В этом случае вычисление спектра фототока проводилось с использованием выражения (32), в котором интегрирование по *x* дало величину *d*. Второй вычисленный спектр, изображенный штриховой линией, был рассчитан в предположении, что толщина полупроводника, из которой собираются фотоэлектроны, много больше $1/\eta(\omega)$. В этом случае интеграл в (32) равен $1/\eta(\omega)$. Очевидно, что спектр фототока

Рис.2. Рассчитанные (кривые) и измеренный (точки) спектры фототока в n-GaAs при T=4.2 К. Сплошная линия соответствует случаю $\eta d\ll 1$, штриховая — $\eta d\gg 1$. Расчетные спектры были нормированы так, чтобы максимум тока соответствовал 100

для любой толщины d должен располагаться между двумя этими линиями.

Измерения проводились на образце эпитаксиального полупроводника *n*-GaAs, выращенного на полуизолирующей подложке GaAs методом жидкофазной эпитаксии. Эпитаксиальный слой был легирован кремнием с концентрацией $8.3 \cdot 10^{14}$ см⁻³ и имел толщину 70 мкм. Подвижность электронов при 77 K составила $5.9 \cdot 10^4$ см²/В·с. Измерения были проведены на фурье-спектрометре BOMEM при T = 4.2 K.

На рис. 2 видно, что наблюдаемый спектр хорошо согласуется с рассчитанным спектром для случая тонкого слоя полупроводника. Характерная величина η в этой области составляет несколько тысяч обратных сантиметров и $\eta d \gg 1$. Отметим, что спектр фототока в GaAs, измеренный в работе [7], отличается от нашего большей асимметрией и значительно хуже согласуется с расчетом.

Расчеты величины $\alpha(E)$ показывают, что вклад в эту величину состояний дискретного спектра в GaAs составляет около 28 %. Отметим также, что вычисление спектра фототока с использованием приближенной формулы (19) дает практически те же результаты, что и при использовании точного выражения (17) для *n*-GaAs. Значения α и Γ , вычисленные с помощью выражения (18), составили

$$\alpha_{\rm GaAs} = 7.962, \quad \Gamma_{\rm GaAs} = 0.413 \ \text{sB}.$$

Для того чтобы проиллюстрировать влияние коэффициента отражения на форму резонанса Фано

Рис. 3. Рассчитанные спектры фототока в *n*-GaAs с учетом отражения (сплошная линия) и без учета отражения от кристалла (штриховая линия)

Рис.4. Рассчитанные спектры фототока в InP. Сплошная линия соответствует случаю $\eta d \ll 1$, штриховая — $\eta d \gg 1$. Спектры были нормированы так, чтобы максимум тока соответствовал 100

в спектре фототока, на рис. 3 приведены рассчитанные спектры фототока для GaAs. На рисунке видно, что учет отражения делает пик более асимметричным и более узким.

На рис. 4 приведены результаты расчета спектра фототока в окрестности резонанса Фано для InP. В расчете использованы следующие параметры:

> $\mu = 0.081 m_0, \quad \kappa_0 = 12.2, \quad \kappa_\infty = 9.487,$ $\hbar\omega_0 = 43.33 \text{ M} \cdot \text{B} \ [13],$ $\gamma = 0.001 \omega_{TO}, \quad \hbar\omega_{TO} = 38.21 \text{ M} \cdot \text{B}.$

Вычисленное положение пика находится в неплохом согласии с измеренным в работе [7]. Однако полуширина измеренного в [7] пика фототока примерно вдвое меньше рассчитанной. Кроме того, так же как и для GaAs, форма измеренного пика фототока оказывается более асимметричной по сравнению с рассчитанной. Причина расхождений расчетов с результатами измерений, проведенных в [7], как в GaAs, так и в InP остается неизвестной. Отметим, что рассчитанная полуширина резонансного пика фототока в GaAs примерно вдвое меньше, чем в InP, поскольку $\Gamma_{InP} = 0.852$ мэВ. Однако полуширины, измеренные в работе [7], для этих полупроводников примерно одинаковы.

5. ЗАКЛЮЧЕНИЕ

В заключение обсудим вопрос о том, почему в спектрах фототока в *n*-GaAs и *n*-InP резонанс Фано проявляется как пик, а в спектрах фототока и поглощения в *p*-Si — как узкие провалы. Обратим внимание на то, что в материалах GaAs и InP энергии ионизации мелких доноров в пять-шесть раз меньше энергии продольного оптического фонона. Поэтому при поглощении кванта света с энергией оптического фонона электрон оказывается высоко в непрерывном спектре. Вероятность таких переходов невелика, поскольку матричный элемент дипольного момента быстро уменьшается с ростом энергии кванта в этой области, т.е. такой переход почти запрещен. Поэтому вероятности процессов поглощения фотона, которые идут с участием резонансных состояний и имеют второй порядок малости, больше вероятности прямого перехода. Из-за взаимодействия резонансных состояний и состояний непрерывного спектра волновая функция $\Psi(E)$ непрерывного спектра вблизи энергии резонанса содержит в себе волновые функции φ_a резонансных состояний, а также и волновые функции $\psi(E')$. В результате вероятность поглощения фотона с энергией, близкой к энергии оптического фонона, резко увеличивается.

Совершенно другая ситуация имеет место в *p*-Si, легированном бором. Энергия оптического фонона в кремнии составляет около 64 мэВ, а энергия ионизации бора около 45 мэВ, т.е. эти энергии одного порядка. В этом случае резонанс Фано располагается недалеко от максимума вероятности ионизации акцептора, и в этой области вероятность прямого перехода в непрерывный спектр заметно превосходит вероятность перехода как в резонансное состояние, так и в состояния непрерывного спектра с иной энергией. Поэтому «подмешивание» резонансного состояния приводит к уменьшению поглощения и к наблюдению узких провалов как в спектрах фототоков, так и в спектрах поглощения.

Авторы выражают благодарность Б. А. Андрееву за многочисленные обсуждения, которые способствовали появлению этой работы. Работа выполнена при поддержке РФФИ (грант № 04-02-17178) и Международного научно-технического центра (грант № 2293).

ПРИЛОЖЕНИЕ

Рассмотрим	матричный	й эле	мент
$\langle \psi(E) \exp(-i\mathbf{q} \cdot \mathbf{r}) i \rangle.$	Используя	выражения	для

волновых функций (21), (23) и разложение (26), а также условие ортонормированности сферических функций Y_{lm} , можно получить следующее выражение для этого матричного элемента:

$$\begin{aligned} \langle \psi(E) | \exp(-i\mathbf{q} \cdot \mathbf{r}) | i \rangle &= \\ &= -\frac{i}{k^2} \sqrt{\frac{1+1/k^2}{\pi(1-e^{-2\pi/k})}} \, Y_{1,1}^* \left(\frac{\mathbf{q}}{q}\right) \times \\ &\times \int_0^\infty dr \, e^{-r} \left[\frac{\sin^2(qr)}{q^2 r^2} - \frac{\cos(qr)}{qr}\right] \times \\ &\times \oint e^{2ikrt} \left(t + \frac{1}{2}\right)^{i/k-2} \left(t - \frac{1}{2}\right)^{-i/k-2} dt. \quad (\Pi.1) \end{aligned}$$

Интеграл по *г* легко вычисляется:

$$\int_{0}^{\infty} dr \, e^{-r+2ikrt} \left[\frac{\sin(qr)}{q^2 r^2} - \frac{\cos(qr)}{qr} \right] = \frac{1}{q} \left\{ 1 + \frac{1-2ikt}{q} \left[\operatorname{arctg} \left(\frac{1-2ikt}{q} \right) - \frac{\pi}{2} \right] \right\}. \quad (\Pi.2)$$

Интеграл по контуру, получающийся с использованием выражения (П.2), можно вычислить только численно. Но для численного счета он неудобен из-за резких всплесков подынтегральной функции. Чтобы привести его к удобному для численного вычисления виду, представим выражение (П.2) в интегральном виде, который позволяет провести интегрирование по контуру:

$$\frac{1}{q} \left\{ 1 + \frac{1 - 2ikt}{q} \left[\operatorname{arctg} \left(\frac{1 - 2ikt}{q} \right) - \frac{\pi}{2} \right] \right\} = \frac{1}{q} \left[1 - \left(\frac{1 - 2ikt}{q} \right)^2 \int_0^1 \frac{dx}{x^2 + (1 - 2ikt)^2/q^2} \right]. \quad (\Pi.3)$$

Интеграл по контуру с использованием правой части выражения (П.3) может быть вычислен по теории вычетов. Для этого контур интегрирования полагается кругом с бесконечным радиусом и находятся вычеты в двух полюсах, в которых сумма $x^2 + (1 - 2ikt)^2/q^2$ обращается в нуль. Интеграл по контуру от первого слагаемого в квадратных скобках в правой части выражения (П.3) равен нулю. Если обозначить

$$I(k,q) = \frac{1}{q} \oint dt \left(t + \frac{1}{2}\right)^{i/k-2} \left(t - \frac{1}{2}\right)^{-i/k-2} \times \\ \times \left[1 + \left(\frac{1-2ikt}{q}\right)^2 \int_0^1 \frac{dx}{x^2 + (1-2ikt)^2/q^2}\right] = \\ = -16\pi k^3 \int_0^1 dx \, x \times \\ \times \operatorname{Im}\left\{\left(\frac{qx+k-i}{qx-k-i}\right)^{i/k} \left[(qx-i)^2 - k^2\right]^{-2}\right\}, \quad (\Pi.4)$$

то интеграл в правой части выражения (П.4) хорошо вычисляется численно. Используя (П.4), получаем выражение (27).

ЛИТЕРАТУРА

- 1. U. Fano, Phys. Rev. 124, 1866 (1961).
- H. J. Hrostowski and R. H. Kaiser, J. Phys. Chem. Sol. 4, 148 (1958).
- A. Onton, P. Fisher, and A. K. Ramdas, Phys. Rev. 163, 686 (1967).
- H. R. Chandrasekhar, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 14, 2417 (1976).
- G. D. Watkins and W. B. Fowler, Phys. Rev. B 16, 4524 (1977).
- E. Janzen, G. Grossmann, R. Stedman et al., Phys. Rev. B 31, 8000 (1985).
- K. Jin, J. Zhang, Z. Chen et al., Phys. Rev. B 64, 205203 (2001).
- 8. М. В. Клейн, в сб. *Рассеяние света в твердых телах*, под ред. М. Кардоны, Мир, Москва (1979).
- 9. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1989).
- 10. В. Ф. Гантмахер, И. Б. Левинсон, Рассеяние носителей тока в металлах и полупроводниках, Наука, Москва (1984).
- Г. Бете, Э. Солпитер, Квантовая механика атомов с одним и двумя электронами, Физматлит, Москва (1960).
- 12. П. Ю, М. Кардона, Основы физики полупроводников, Физматлит, Москва (2002).
- 13. W. J. Moore and R. T. Holm, J. Appl. Phys. 80, 6939 (1996).
- A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs, and InP, Science and Encyclopedia Publishers, Vilnius (1994).