ЭФФЕКТИВНЫЙ РАЗМАГНИЧИВАЮЩИЙ ФАКТОР КВАЗИМОНОКРИСТАЛЛИЧЕСКИХ И ГРАНУЛИРОВАННЫХ ТОНКИХ ДИСКОВ YBa₂Cu₃O_{7-x}

X. P. Pocmamu^{*}

Институт радиотехники и электроники Российской академии наук 141190, Фрязино, Московская обл., Россия

Поступила в редакцию 25 февраля 2005 г.

При использовании захваченного магнитного потока в качестве тестирующего поля выделен и измерен с помощью датчика Холла эффективный размагничивающий фактор n_{eff} квазимонокристаллических и гранулированных тонких дисков YBa₂Cu₃O_{7-x} с разными высотами краевого барьера, объемными пиннингами и размагничиванием. С ростом захваченного магнитного потока обнаружен максимум зависимости n_{eff} от внешнего поля, качественно не меняющийся при существенном изменении морфологии образца. Показано, что в случае различия примерно на полтора порядка плотности внутригранульных и межгранульных критических токов размагничивающий фактор n_{eff} в основном определяется геометрией образца, а не энергией джозефсоновской связи между гранулами. Экспериментальные данные согласуются с результатами расчетов в рамках предлагаемой модели «изолированных» кристаллитов (гранул).

PACS: 74.25.Ha, 74.25.Qt, 74.25.Sz

1. ВВЕДЕНИЕ

В последнее время для построения обобщенной модели критического состояния сверхпроводников второго рода интенсивно изучаются нелокальные эффекты, эффекты размагничивания, эффекты объемного и краевого пиннинга магнитного потока в высокотемпературных сверхпроводниках (ВТСП) (см., например, [1-6]). Обнаружено, что эти эффекты в ВТСП-пластинах и пленках приводят к отклонению распределения профиля потока и плотности тока от модели Бина [7]. В связи с этим значительный интерес представляют вопросы а) трансформации размагничивающего фактора образца с ростом внешнего магнитного поля (H_0) [8,9], когда после проникновения поля в образец единым макроскопическим размагничивающим фактором образца *п* становится эффективный размагничивающий фактор n_{eff}, являющийся интегральным размагничивающим фактором отдельных кристаллитов (гранул); б) влияния n_{eff} образца на

1) процессы проникновения (выхода), распределения и захвата магнитного потока; 2) перераспределение плотности тока в образце;

3) процесс перехода [10] от области полей установления критического состояния в джозефсоновской среде [11, 12] до области полей установления критического состояния внутри отдельных кристаллитов (гранул) [10, 13];

4) степени проявления перечисленных выше эффектов;

5) формирование макроскопических параметров ВТСП-образцов.

Зависимость полей размагничивания от предыстории образца и конфигурации захваченного магнитного потока [14, 15] и определение размагничивающего фактора образца с захваченным магнитным потоком [2] также до сих пор слабо изучены.

Обычно, при анализе процессов, происходящих в джозефсоновской среде, во избежание сложностей, связанных с учетом размагничивающего фактора кристаллитов (гранул), предполагается, что в ВТСП-образцах все гранулы имеют одинаковый размер, форму бесконечно длинных цилиндров [13, 16] либо бесконечных тонких пластин [17] в продольном поле.

В данной работе предлагается и демонстриру-

^{*}E-mail: rost18@yandex.ru

ется способ экспериментального измерения n_{eff}. В плотных, почти плавленых ВТСП-образцах, n_{eff} в основном определятся суммарным размагничивающим фактором кристаллитов (гранул). Известно [18], что критический ток в ВТСП-керамиках и поликристаллах при 77.4 К в полях до 100 Э убывает более чем на два порядка. В случае, когда локальные поля рассеяния абрикосовских вихрей, захваченных в кристаллиты (гранулы), превышают характерное поле H_{0m} подавления межкристаллитного (межгранульного) критического тока $J_{cJ}^{(1)}$, происходит разрушение слабых связей. В процессе захвата образцом магнитного потока и с ростом этого захвата можно проследить динамику образования «изолированных» конгломератов кристаллитов (гранул), либо невзаимодействующих между собой [13, 19] одинаково намагниченных кристаллитов (гранул) [10], или их сочетания. Намагниченность образца $\mathbf{I} = V^{-1} \Sigma \mathbf{M}_a$ будет определяться экранирующими сверхтоками, образованными внутри отдельных кристаллитов (гранул), $\mathbf{J}_{cg} = c \cdot \operatorname{rot} \mathbf{M}_g$ (где V объем образца, \mathbf{M}_{g} — магнитный момент, c — скорость света) [20].

Как известно, внутреннее поле в образце [21]

$$H_i = H_0 - H_D. \tag{1}$$

Чем больше намагниченность образца $4\pi n \mathbf{I}$, тем сильнее поле размагничивания H_D . Для определения зависимости n_{eff} от плотности захваченного магнитного потока B_{tr} и H_0 в двух близких режимах ZFC₁ и ZFC₂ (объяснение см. ниже) проведем намагничивание образца так, чтобы $B_{tr}^{ZFC_2} > B_{tr}^{ZFC_1}$. Величины полей определяются формулами

$$H_{i2} = H_0 - 4\pi n_{eff} B_{tr}^{ZFC_2} \tag{2}$$

$$H_{i1} = H_0 - 4\pi n_{eff} B_{tr}^{ZFC_1}.$$
 (3)

Вычтем друг из друга уравнения (2) и (3) и получим

$$n_{eff} = \frac{H_{i1} - H_{i2}}{4\pi (B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1})} \,. \tag{4}$$

Величина $H_{i1} - H_{i2}$ согласно формуле (4) растет с ростом $B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1}$. При этом из-за того что уменьшение объема образца за счет подавления слабых связей происходит быстрее, чем намагничивание кристаллитов (гранул), темп роста $H_{i1} - H_{i2}$ будет опережать темп роста $B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1}$, сохраняя закон его изменения. В разд. 4 будет приведен Эффективный размагничивающий фактор ...

алгоритм вычисления (для заданных величин H_0 и B_{tr}) значений n_{eff} из экспериментальной зависимости от H_0 :

$$n_{eff}(B_{tr}) \equiv B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1}.$$
 (5)

Целью работы является разработка методики измерения n_{eff} , исследование влияния на n_{eff} величин H_0 и B_{tr} и морфологии образца, а также выяснения роли размагничивающего фактора кристаллитов (гранул) в макроскопическом распределении магнитных полей вблизи образца и токов в образце.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

В связи с тем, что диапазоны и проявления эффектов размагничивания, краевого и объемного пиннинга магнитного потока во многом перекрываются, для изучения зависимости $n_{eff}(H_0)$ и влияния на них морфологии образца проводились

 сканирование объема образцов внешним полем [10, 15];

2) одновременное измерение отмеченных параметров в режимах FC, ZFC_1 , ZFC_2 (см. ниже);

3) изменение толщины образцов;

4) изучение «эволюции» пространственного распределения захваченного магнитного потока [10, 15].

Сравнительный анализ проводился на образцах $YBa_2Cu_3O_{7-x}$ с разными структурой, высотой краевого барьера, объемным пиннингом и размагничиванием. Квазимонокристаллические (негранулированные) и керамические образцы в форме диска диаметром 9 мм разной толщины вырезались из заготовки цилиндрической формы. Квазимонокристаллические плавленые текстурированные образцы (с ориентацией оси с параллельно оси цилиндра) синтезировались с помощью затравки, устанавливаемой сверху при высокой температуре [22]. Под микроскопом по периметру и на хорошо механическим образом отполированной поверхности были видны блестящие (монокристаллические) блоки размером примерно 0.11 см², разделенные узкими включениями зеленого оттенка. Это подтверждало картографирование захваченного магнитного потока с помощью датчика Холла. Керамические образцы синтезировались по стандартной твердофазной технологии, имели относительную плотность около 95 % (за теоретическую плотность бралась величина 6.38 г \cdot см⁻³) со средним размерам гранул примерно 1 мкм [10]. С целью исключения неоднородности распределения кислорода на торцах по отношению к объему

¹⁾ Для YBa₂Cu₃O_{7-x} при температуре 77.4 К поле $H_{0m} \approx 22.5$ Э, а величина первого критического магнитного поля гранул $H_{c1q} \approx 40$ Э [18].

торцевые поверхности образцов удалялись алмазным резцом. Температура сверхпроводящего перехода $(T_c, \Delta T_c)$ измерялась индуктивным методом, при этом для поликристаллических и керамических образцов $T_c \approx 91.5$ K, а $\Delta T_c \approx 0.8$ K, 3.5 K, соответственно. Измерения проводились при температуре жидкого азота в стационарных магнитных полях до 1 кЭ датчиком Холла с размером рабочей области 50×50 мкм² и чувствительностью примерно 20 мкВ · Гс⁻¹. Установка позволяла регистрировать сигнал датчика Холла с точностью не хуже 2.5 · 10⁻⁶ Гс и перемещать датчик от центра вдоль оси z и к периферии образца. В центре на минимальном расстоянии около 200 мкм от поверхности образцов измерялись величины индукции B(0)и $B_{tr}(0)$ (начало отсчета координаты z от величины z = 200 мкм связано с толщиной токовых и холловских контактов на поверхности датчика Холла) в зависимости от H_0 , нормированные осевые распределения $B_{tr}(z)/B_{tr}^{max}(0)$ от координаты $z; B_{tr}(z)$ осевая зависимость B_{tr} , измеренная для разных значений внешнего поля, $B_{tr}^{max}(0)$ — величина максимальной плотности захваченного магнитного потока в центре на поверхности образцов. Зависимость $B_{tr}(0)$ от H_0 измерялась следующим образом.

1) Режим FC — образец в заданном поле охлаждался до температуры жидкого азота, затем внешнее поле выключалось и через 10 мин (время, достаточное для релаксации составляющей B_{tr} , связанной с вязким течением потока и процессами установления жестко укрепленной вихревой решетки) в центре на поверхности образца измерялось значение B_{tr} . Далее образец нагревался до температуры выше T_c и эксперимент повторялся для другого значения H_0 .

2) Режим ZFC₁ — образец охлаждался до температуры жидкого азота в нулевом магнитном поле, затем подавался импульс внешнего магнитного поля и через 10 мин в центре на поверхности образца измерялось значение B_{tr} . Далее образец нагревался до температуры выше T_c и эксперимент повторялся для другого значения H_0 .

3) Режим ZFC₂ отличается от режима ZFC₁ тем, что после первоначального захвата при сохранении без изменения величины захваченного B_{tr} и без нагрева образца подавался импульс H_0 следующей ступени и через 10 мин измерялось суммарное значение B_{tr} и т. д. В данном случае величина ступеней монотонно увеличивалась шаг за шагом на равные величины. Такой подход был применен с целью поэтапного разрушения слабых связей полями рассеяния захваченных в образце вихрей и по

возможности обеспечения взаимодействия внешнего поля с раздельными кристаллитами (гранулами). Импульс внешнего магнитного поля длительностью $\tau \geq 1$ мин был направлен перпендикулярно плоскости образцов. Для устранения влияния выбросов в области фронтов, возникающих при переключения источника питания соленоида индуктивностью больше 10 Гн, а также для преобразования импульса прямоугольной формы в трапецевидную, соленоид шунтировался конденсатором емкостью 50 мкФ. Длительность τ задавалась в зависимости от напряжения источника. Эти меры были приняты в целях исключения влияния скорости ввода и вывода магнитного поля на намагниченность образцов [23]. Компонента поля Земли H_z компенсировалась катушкой, соосной соленоиду, задающему внешнее магнитное поле. Методика и установка подробно описаны в [15, 24].

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На рис. 1 приведены типичные магнитополевые зависимости $B_{tr}(H_0)$ для поликристаллических (рис. 1a) и керамических (рис. 1b) образцов диаметром D = 9 мм, толщиной d = 1 мм при температуре 77.4 К в трех режимах измерения. Как видно на рис. 1 (кривые 2, вставки), для поликристаллического образца величина первого критического магнитного поля $H_{c1} = H_0/(1-n) \approx 14$ Э, а для керамического образца $H_{c1} \approx 0.5$ Э. Насыщение зависимости $B_{tr}(H_0)$ для поликристаллического образца наступает в более низких полях, $H_0 \approx 600$ Э, чем для керамического образца, $H_0 > 650$ Э. Для поликристаллического образца $B_{tr}^{max}(0) \approx 22$ Гс, а для керамического $B_{tr}^{max}(0) \approx 42$ Гс. Характеристики показывают, что поликристаллический образец имеет более узкий энергетический спектр распределения центров пиннинга, обладает высоким краевым барьером и низким объемным пиннингом по сравнению с керамическим образцом [25].

В режиме FC (кривые 1 на рис. 1) магнитные поля малой величины проникают в образец и захватываются после снятия поля. Такая ситуация аналогична случаю бесконечной пленки в перпендикулярном магнитном поле с размагничивающим фактором n = 1. В режиме ZFC₁ (кривые 2 на рис. 1) захват магнитного поля не влияет на n. В режиме ZFC₂ (кривые 3 на рис. 1) перед подачей последующей ступени магнитного поля запоминается захваченный магнитный поток от предыдущей ступени. В связи с тем, что для режимов ZFC₁ и ZFC₂ влияние краевого и объемного пиннингов вихрей на величину n можно считать примерно одинаковым, увели-

Рис. 1. Типичные магнитополевые зависимости плотности захваченного магнитного потока $B_{tr}(H_0)$ для УВа₂Си₃О_{7-x} поликристаллического (*a*); керамического (*б*) образцов диаметром D = 9 мм и толщиной d = 1 мм. Кривые 1 — режим FC, кривые 2 — режим ZFC₁, кривые 3 — режим ZFC₂. Температура 77.4 К

чение n_{eff} (смещение кривых 3 в сторону кривых 1 на рис. 1) происходит за счет роста захваченного магнитного потока. При этом, как видно на рис. 1, высокий уровень захваченного поля сильнее влияет на n_{eff} (зазор между кривыми 1, 3 для керамического образца меньше, чем для поликристаллического образца).

Для выяснения зависимости n_{eff} от структуры захваченного магнитного потока проанализируем зависимости B_{tr} и $B_{tr}(z)/B_{tr}^{max}(0)$ от толщины d для серии образцов, измеренных в трех режимах.

На рис. 2 приведена зависимость $B_{tr}(H_0)$ поликристаллического образца диаметром D = 9 мм разной толщины d. Кривые 1, 2 соответствуют d = 5.7 мм, 3, 4 - d = 2.2 мм, 5, 6 - d = 0.7 мм. Кривые 1, 3, 5 измерены в режиме ZFC₂, а кривые 2, 4, 6 - в режиме ZFC₁. Как видно на рис. 2, с уменьшением d влияние захваченного магнитного потока на n_{eff} усиливается, несмотря на снижение уровня B_{tr} . Это обстоятельство наглядно демонстрирует рис. 3a, иллюстрирующий зависимость n_{eff} (B_{tr}) $\equiv B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1}$ от H_0 , полученную из рис. 2 вычитанием кривых 2 из 1 (кривая 1); 4 из 3 (кривая 2); 6 из 5 (кривая 3). На рис. 36 приведена зависимость $n_{eff}(B_{tr}) \equiv B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1} - B_{tr}^{ZFC_1}$ от H_0 , полученная вычитанием кривых 2 из 3, рис. 1. Кривая 1 соответствует поликристаллическому образцу, а 2 - керамическому.

Рисунок 4 демонстрирует нормированное осевое

Рис.2. Зависимости $B_{tr}(H_0)$ для разных толщин d поликристаллического образца диаметром D = 9 мм. Кривые 1, 2 - d = 5.7 мм, 3, 4 - d = 2.2 мм, 5, 6 - d = 0.7 мм. Кривые 1, 3, 5 -режим ZFC₂, кривые 2, 4, 6 -режим ZFC₁. Температура 77.4 К

распределение $B_{tr}(z)/B_{tr}^{max}(0)$ для поликристаллических образцов диаметром D = 9 мм. В режиме FC распределение захваченного магнитного потока более однородно, чем в режиме ZFC₂, поскольку исходно однородное внешнее поле более однородно за-

Рис. 3. Зависимости $B_{tr}^{ZFC_2} - B_{tr}^{ZFC_1}$ от H_0 . a) Кривая 1 -разность кривых 1, 2 (рис. 2), кривая 2 -разность кривых 3, 4 (рис. 2); кривая 3 -разность кривых 5, 6 (рис. 2). 6) Кривая 1 -разность кривых 3, 2 (рис. 1a); кривая 2 -разность кривых 3, 2 (рис. 1a); кривая 2 -разность кривых 3, 2 (рис. 16). Температура 77.4 К

Рис. 4. Нормированное осевое распределение $B_{tr}(z)/B_{tr}^{max}(0)$ для поликристаллических образцов диаметром D = 9 мм: a - d = 1 мм, в режимах FC (кривая 1), ZFC₂ (кривая 2); δ) режим ZFC₂ для различных толщин: кривая 1 - d = 8 мм, 2 - 4 мм, 3 - 1 мм. Температура 77.4 К

хватывается после его снятия. Как видно на рис. 4a, в случае однородной намагниченности зависимость $B_{tr}(z)/B_{tr}^{max}(0)$ убывает медленнее (кривая 1), чем в случае неоднородной намагниченности (кривая 2). Согласно рис. 4δ (см. также рис. 3a), меняется морфология образца с уменьшением его толщины и распределение захваченного магнитного потока становится более неоднородным. Таким образом, неоднородное пространственное распределение захваченного магнитного потока в образце сильнее деформирует поле вокруг него. Изменение амплитуды n_{eff} , площади под кривой зависимости $n_{eff}(H_0)$ и смещение по оси H_0 положения максимума с изменением толщины образцов (рис. 3a) связаны с изменением соотношения числа кристаллитов (гранул), различающихся размерами, формой и ориентацией по отношению к внешнему магнитному полю, а также с изменением их взаимного расположения.

Следует отметить, что аналогичные зависимости были получены и для керамических образцов.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для интерпретации зависимостей $n_{eff}(H_0)$ и демонстрации усиления с помощью захваченного магнитного потока эффекта размагничивания образца или отдельных кристаллитов (гранул) и распределения поля вокруг образца воспользуемся схемой, приведенной на рис. 5. При индукции внешнего поля $B_0 \leq B_{tr}$ внешнее поле вокруг образца компенсируется либо отдаляется от его краев (см. сплошную силовую линию на рис. 5, $B_{tr} \neq 0$ и штриховую силовую линию, $B_{tr} = 0$). Вначале разность между увеличением эффективного диаметра и толщиной образца будет расти за счет усиления взаимодействия между возрастающими полями рассеяния B_{tr} и полем B_0 . При $B_0 \ge B_{tr}$ внешнее поле подавляет поля рассеяния захваченного магнитного потока и сплошная силовая линия приближается к краям образца, сливаясь со штриховой линией. В результате зависимость $n_{eff}(H_0)$ проходит через максимум.

Объяснение полученных результатов в более общем случае невозможно в рамках модели взаимодействующих контуров. Согласно работе [26], размер контура с захваченным магнитным потоком в поле 50 Э составляет (30–40) мкм и уменьшается с увеличением поля. Поэтому максимум зависимости

Рис. 5. Распределение силовых линий плотности захваченного магнитного потока B_{tr} и индукции B_0 внешнего поля вокруг образца

 $n_{eff}(H_0)$, наблюдаемый в полях около 200 Э, можно объяснить, используя контуры гораздо меньшего размера. Учитывая то, что в поликристаллическом образце площадь кристаллитов составляет примерно 0.11 см², а для образования контура необходимы 2–3 кристаллита, размеры контуров должны быть весьма большими, что противоречит приведенным выше доводам.

Полученные результаты можно объяснить, исходя из следующих представлений. Как известно [27], для образца в форме сплюснутого эллипсоида вращения с малой осью d и диаметром $D \gg d$, находящегося во внешнем однородном поле, направленном вдоль малой оси, термодинамическое или внутреннее поле H_i и индукция B связаны с внешним полем H_0 соотношением

$$(1-n)H_i = H_0 - nB, (6)$$

где $n = 1 - \pi d/D$ — размагничивающий фактор в направлении поля. В смешанном состоянии для использования формулы (6) необходимо, чтобы образец состоял из однородно распределенных одинаковых магнитных моментов — диполей [10]. Такая ситуация может создаться в ВТСП-образцах в области насыщения захваченного магнитного потока, когда модель Бина ($J_{cg} = \text{const}$) справедлива в пределах рассматриваемых кристаллитов (гранул) [13]. В этом случае [28] термодинамическое поле H_i зависит не только от внешнего поля H_0 , но и от координаты y, а индукция B — еще и от B_{tr} . Решение уравнения (6) получено путем обработки зависимостей $B_1(y, H_0)$ и $B_2(y, B_{tr}, H_0)$ от H_0 , измеренных в режимах ZFC₁ и ZFC₂. Для режима ZFC₁ формула (6) имеет вид

$$H_i(y, H_0) = \frac{H_0 - nB_1(y, H_0)}{1 - n}.$$
 (7)

В выражении (7) величина n фиксирует начало проникновения магнитного поля в образец, а изменение n в ходе проникновения внешнего поля в образец [29] учитывается зависимостью H_i и B_1 от H_0 и координаты y. Для нахождения n_{eff} в режиме ZFC₂ преобразуем формулу (7) к следующему виду:

$$n_{eff} = \frac{H_i(y, H_0) - H_0}{H_i(y, H_0) - B_2(y, B_{tr}, H_0)}.$$
 (8)

На рис. 6 приведены рассчитанные по формуле (8) зависимости $n_{eff}(H_0)$ и $n_{eff}(B_{tr})$ для образца, описанного на рис. 1*a*. На рис. 3*б* (кривая 1) и 6*a* видно качественное согласие экспериментальных и расчетных кривых. Значения $n_{eff} \approx 0.66$ (при

Рис. 6. Расчетная магнитополевая зависимость эффективного размагничивающего фактора образца n_{eff} : *a*) зависимость $n_{eff}(H_0)$; *b*) зависимость $n_{eff}(B_{tr})$ (образец тот же, что и на рис. 1*a*). Температура 77.4 К

 $B_{tr}=0$) и $n_{eff} \approx 0.65$ (в диапазоне отсутствия влияния B_{tr} на n_{eff}) совпадают со значением $n \approx 0.65$, определенным из геометрических размеров образца, находящегося в мейснеровском состоянии. Этот факт подтверждает результаты настоящих исследований и согласуется с ранее полученными экспериментальными результатами в том, что в плотных, почти плавленых ВТСП-образцах подавляющую часть объема занимают кристаллиты (гранулы). Согласно рис. 1 (кривые 2), плотность критического тока $J_{c,I}$ в поликристаллическом образце примерно в 28 раз превышает величину J_{cJ} в керамическом образце. Значения полей H_p, при которых их фронты достигают осей поликристаллических и керамических образцов, являются величинами одного порядка, что сильно расходится с оценками по формуле [7]

$$H_p = \frac{2\pi}{c} J_{cJ} D. \tag{9}$$

Следовательно, совпадение полей ($H_0 \approx 200$ Э), при которых наблюдаются максимумы зависимостей $n_{eff}(H_0)$ (рис. 3δ), связаны с величиной J_{cg} , задающей примерно одинаковые эффективные токи намагничивания (J = cId) [10,20] в поликристаллических и керамических образцах.

Проведенный анализ показывает, что в случае различия величин J_{cg} и J_{cJ} примерно в 28 раз размагничивающий фактор в основном определяется геометрией образца, а не энергией джозефсоновской связи между кристаллитами (гранулами).

Полученные в работе результаты интерпретиро-

ваны в соответствии с приближениями, для реализации которых были выбраны ВТСП-образцы со сравнительно низкими значениями J_{cJ} и высоким значением захваченного магнитного потока в кристаллиты (гранулы). Для более качественных образцов [30, 31] уровень такого захвата недостаточен для подавления J_{cJ} . Поскольку даже в качественных ВТСП-образцах $J_{cg} \geq 10J_{cJ}$, в области сильных полей с учетом усиления H_0 за счет концентрации поля вокруг кристаллитов (гранул) будут происходить подавление J_{cJ} и распад образца на изолированные кристаллиты (гранулы).

Итак, на основании полученных результатов характер зависимости $n_{eff}(H_0)$ не изменяется при изменении морфологии (рис. 3a), а также параметров образцов, изначально различающихся по структуре и критическим параметрам (рис. 3b). Имея также в виду то, что ВТСП-пленки и монокристаллы являются многосвязными джозефсоновскими средами, можно полагать, что аналогичная зависимость $n_{eff}(H_0)$ может наблюдаться как в них, так и в пространственно-неоднородных традиционных сверхпроводниках второго рода [32].

5. ЗАКЛЮЧЕНИЕ

Таким образом, при исследовании взаимодействия захваченного образцом магнитного потока с внешним полем демонстрируется возможность выделения и изучения динамики изменения эффективного размагничивающего фактора на примере квазимонокристаллических и гранулированных тонких дисков YBa₂Cu₃O_{7-x}. Проведен анализ влияния внешнего поля, величины и топологии захвата магнитного потока на n_{eff} . Для заданных B_{tr} и H_0 измерен пространственный профиль термодинамического магнитного поля. С ростом захваченного магнитного потока обнаружен максимум зависимости $n_{eff}(H_0)$, качественно не меняющийся при существенном изменении морфологии образца. Показано, что в случае $J_{cg} \geq 28J_{cJ}$ размагничивающий фактор в основном определяется геометрией образца, а не энергией джозефсоновской связи между кристаллитами (гранулами).

Полученные результаты и планируемый цикл исследования полезны в плане корректного определения таких фундаментальных величин, как первые и вторые критические магнитные поля и практически важной величины J_c , а также для уточнения существующих моделей критического состояния сверхпроводников второго рода.

Автор выражает благодарность В. Н. Губанкову за проявленный интерес, полезные обсуждения работы и ценные замечания.

ЛИТЕРАТУРА

- В. С. Горбачев, С. Е. Савельев, ЖЭТФ 109, 1387 (1996).
- А. А. Елистратов, И. Л. Максимов, ФТТ 42, 196 (2000).
- M. Benkraouda and J. R. Clem, Phys. Rev. B 53, 5716 (1996).
- E. Zeldov, A. Larkin, V. Geshkenbein et al., Phys. Rev. Lett. 73, 1428 (1994).
- E. Zeldov, J. R. Clem, M. Mcelfresh et al., Phys. Rev. B 49, 9802 (1994).
- **6**. Д. Ю. Водолазов, Письма в ЖТФ **25**, 84 (1999).
- 7. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
- Х. Р. Ростами, Физика электронных материалов. Материалы Международной конференции 1–4 октября 2002 г., Калуга, Россия, с. 402.
- Kh. R. Rostami, The 23rd International Conference on Low Temperature Physics LT 23, August 20-27, 2002, Hiroshima, Japan, Program and Abstracts, p. 312.

- X. Р. Ростами, В. В. Манторов, В. И. Омельченко, ФНТ 22, 736 (1996).
- 11. Э. Б. Сонин, Письма в ЖЭТФ 47, 415 (1988).
- 12. Н. Д. Кузмичев, Письма в ЖЭТФ 74, 291 (2001).
- Е. Е. Кокорина, М. В. Медведев, СФХТ 7, 1127, 1136 (1994); 8, 533, 551 (1995).
- **14**. М. П. Петров, М. В. Красинькова, Ю. И. Кузьмин и др., ФТТ **32**, 379 (1990).
- 15. Х. Р. Ростами, ФНТ 27, 103 (2001).
- 16. J. R. Clem, Physica C 153–155, 50 (1988).
- В. А. Кашурников, И. А. Руднев, М. В. Зюбин, ЖЭТФ 121, 442 (2002).
- 18. H. Dersch and G. Blatter, Phys. Rev. B 38, 11391 (1988).
- D. D. Stancil, T. E. Schlesinger, A. K. Stamper et al., J. Appl. Phys. 64, 5899 (1988).
- **20**. И. Е. Тамм, *Основы теории электричества*, Наука, Москва (1989).
- **21**. Э. А. Линтон, Сверхпроводимость, Мир, Москва, (1964).
- И. Ф. Волошин, А. В. Калинов, Л. М. Фишер и др., ЖЭТФ 120, 1273 (2001).
- 23. С. А. Иванов, В. И. Кулаков, Р. К. Николаев и др., ФТТ 33, 1387 (1991).
- 24. Х. Р. Ростами, ПТЭ № 6, 95 (2004).
- **25**. В. Н. Губанков, Х. Р. Ростами, ФТТ **43**, 1168 (2001).
- Kh. R. Rostami, A. A. Sukhanov, and V. V. Mantorov, Supercond. Sci. Technol. 9, 736 (1996).
- 27. А. А. Абрикосов, Основы теории металлов, Наука, Москва (1987), с. 384.
- 28. В. Г. Антонов, Л. М. Петров, А. П. Щелкин, Средства измерений магнитных параметров материалов, Энергоатомиздат, Ленинград (1986), с. 76.
- 29. V. M. Krasnov, V. A. Larkin, and V. V. Ryazanov, Physica C 174, 440 (1991).
- 30. A. S. Mel'nikov, Yu. N. Nozdrin, I. D. Tokman et al., Phys. Rev. B 58, 11672 (1998).
- 31. С. А. Позигун, В. М. Пан, В. А. Алексеев и др., УФМ 5, 167 (2004).
- **32**. Л. Б. Иоффе, А. И. Ларкин, ЖЭТФ **81**, 707 (1981).