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The electron terms are constructed for oxygen dimer ions at large ion—atom distances with accounting for a
certain scheme of summation of electron moments on the basis of a hierarchy of various ion—atom interactions.
Because the number of interaction types exceeds that in the Hund scheme, the realistic hierarchy of interactions
and corresponding quantum numbers of the diatomic ion are outside the Hund coupling scheme. Electron terms
are evaluated for the oxygen dimer ion in the case where the ground and first excited states of an atom and
an ion belong to the respective valence electron shells p* and p® and correspond to the range of separations
that determine the cross sections of resonant charge exchange in plasma. These electron terms allow us to
calculate the partial and average cross sections for resonant charge exchange involving an oxygen ion and atom
in the ground and first excited states in the range of collision energies that is of interest for oxygen plasma.
Peculiarities of electron terms of the oxygen ion dimer and the cross section of electron transfer are analyzed.

PACS: 31.25.-v, 34.20.Mq, 34.70.+e

1. INTRODUCTION

In slow collision processes, electrons follow changes
of atomic fields, and therefore the cross section of a
slow collision process is determined by the behavior of
electron terms for the quasimolecule consisting of the
colliding atomic particles. Below, we consider the res-
onant charge exchange processes

0*(2p*)(*S.*D.’P) + O(2p") (*P.'D,'S) —

- 0(2p")(*P'D,'S) + OF (2p°)("S.’D,°P) (1)
at low collision velocities compared to those of valence
electrons. Because the cross section of resonant charge
exchange is large in comparison with a typical atomic
cross section, i.e., the electron transfer proceeds at large
distances between colliding particles, the analysis of
electron terms is required at large ion—atom distances,
where various types of interactions may be separated.

The character of coupling of electron moments may
be constructed on the basis of the Hund coupling
scheme [1-3] that consists in analyzing the hierarchy
of interactions in the quasimolecule, which also allows
one to determine the quasimolecule quantum numbers.
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Because the potentials of different interactions depend
on distances between atomic particles, the coupling
scheme and quantum numbers of the quasimolecule can
vary with a change of distances between atomic parti-
cles. Therefore, for the analysis of collision processes,
the relative trajectory of particle motion can be con-
veniently divided into several parts such that a certain
type of coupling of electron moments is realized in each
part [4-7]. The transition between different coupling
schemes leads to a change of quantum numbers of col-
liding particles.

The processes under consideration are of impor-
tance for a nonequilibrium dissociating oxygen plasma,
in particular, for the atmospheric plasma at altitudes
above 100 km. Indeed, oxygen is atomic partially at
these altitudes due to the oxygen dissociation under the
action of Sun’s radiation. Because the cross section of
resonant charge exchange significantly exceeds the cross
sections of other processes, including elastic collisions
of atoms and molecules, the resonant charge exchange
process determines the mobility of ions in this plasma
and the parameters of other transport processes involv-
ing ions. Oxygen atoms and ions are in the ground and
lowest excited electron states, and the cross sections
of resonant charge exchange depends on these states.
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Because the distribution over these states at a given
point of space depends on external conditions, mea-
surement of the mobility for oxygen ions in different
electron states at this point allows us to determine the
atom distribution over the lowest electron states at the
specified point. Hence, determination of the cross sec-
tions of resonant electron transfer for oxygen atoms and
ions in different states has an applied interest.

The first stage of determination of the cross sec-
tions is the construction of electron terms of the quasi-
molecule, which can be done on the basis of the stan-
dard Mulliken scheme of moment summation [1]. This
scheme includes three types of interactions in the quasi-
molecule: V,, the electrostatic interaction, which is re-
sponsible for the energy splitting at different angular
momentum projections on the molecule axis; d¢, which
corresponds to the spin—orbit interaction and other rel-
ativistic interactions; and V.., the rotational energy or
Coriolis interaction, which accounts for the interaction
between the orbital and spin electron momenta with
the rotation of the molecular axis. Depending on the
ratio between these interaction energies, one can con-
struct six cases of Hund coupling [1-3], each of which
corresponds to a certain scheme of moment summation
and is characterized by certain quantum numbers of the
diatomic molecule. These cases can be used as model
ones for the analysis of some transitions in atomic col-
lisions [6-8].

This general scheme may be used for the anal-
ysis of the resonant charge exchange process involv-
ing an ion and an atom with nonfilled electron shells
when different schemes are possible for coupling of
electron moments and, correspondingly, the resonant
charge exchange process is entangled with other pro-
cesses (rotation of electron moments, transitions be-
tween fine structure states) in different ways. Nev-
ertheless, the electron exchange and other transition
processes usually correspond to different trajectory seg-
ments, which allows separating the exchange process
from other processes. It is therefore necessary to use
the correct scheme of angular momentum coupling in
the quasimolecule consisting of the colliding ion and
atom. The analysis of the resonant charge exchange
for halogens [9, 10] shows that the real character of an-
gular momentum coupling corresponds to none of the
Hund cases because the number of different interac-
tions is greater than that used in the standard scheme.
Nevertheless, a general concept of constructing electron
terms of a quasimolecule on the basis of the interaction
hierarchy remains valid and underlies the analysis.

Thus, the goal of this paper is to find the character
of coupling for the oxygen diatomic ion OF at large dis-
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tances between the nuclei on the basis of construction
of an interaction hierarchy in this quasimolecule. This
allows us to evaluate the partial and average cross sec-
tions of resonant charge exchange in the case of oxygen
for the lowest state of the electron shells. Solution of
this problem also gives a general scheme for determi-
nation of the cross section of resonant charge exchange
for ion and atom with nonfilled electron shells.

2. HIERARCHY OF ION-ATOM
INTERACTIONS FOR OXYGEN

We determine the cross sections of processes (1) on
the basis of the asymptotic theory [11-13], i.e., as a
result of expansion of the cross section with respect to
a small parameter, the ratio of the typical atomic size
to the typical distance of electron transfer. This theory
uses a large electron transfer cross section compared to
the typical atomic cross section at low velocities, and its
first stage is the evaluation of the electron terms for the
quasimolecule consisting of colliding particles. We find
a hierarchy of interactions at large distances between
O*(2p?®) and O(2p*) and then the electron terms of this
system and quantum numbers for the description of the
molecular ion states.

Based on the experience for the halogen case [9, 10],
as the basis ion-atom interactions at large distances
R, we use the fine spin—orbit interaction for OF(2p?)
and O(2p*) and the quadrupole interaction of the ion
charge with the atom quadrupole moment. In this ap-
proximation, the Hamiltonian of the molecular ion at
large distances between the nuclei is given by
eQ

S R

(2)
This is valid for light atoms in the case of the LS cou-
pling scheme for atoms and ions; here, L is the operator
of the angular atom momentum, S is the atom spin op-
erator, 1is the operator of the angular ion momentum,
§ is the ion spin operator, and Q is the quadrupole
moment operator for the atom, and we take the inter-
action of a positively charged ion with the quadrupole
moment of valence electrons into account.

The parameters of the spin—orbit interaction of an
oxygen atom and its ion are given by a = 77 £2 cm ™!
for the atom state P, b = 8.4 em ™! for the oxygen ion
state 2D, and b = 0.7 cm ! for the ion state 2P [14, 15].
Because a typical value of the ion—atom exchange in-
teraction potential is several cm™!, we can ignore the
fine splitting of levels in the last case. Correspondingly,
the matrix elements for the spin—orbit interaction are
equal to [3, 16, 17]
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(My, Ms|L - S|Mp, Ms) = M Ms,

(My, Mg|L-S|My, +1, Mg — 1)

(My, +1,Mg —1|L - S| My, Ms) =

(Mp,Mg|L-S|Mp —1, Mg + 1)

1
5\/(L+ (M| + 1)(L — [Mg|)(S + [Ms])(S = [Ms] + 1),
(Mp —1,Mg + 1L - S|Mp, Ms) =

(3)

= /(L + ML) (L~ |ML|+ 1)(S + [Ms| + 1)(S — [ Ms]),

where L and My are the atom orbital momentum and
its projection onto the molecular axis, S and Mg are
the atom spin and its projection on the molecular axis.
For the matrix elements of the ion spin—orbit interac-
tion, we have identical expressions.

We consider the quadrupole interaction between an
ion and an oxygen atom, which in this case corresponds
to the second expansion term of the ion charge—valence
electron interaction

This respects to the small parameter r/R, where r is
the valence electron coordinate in its atom, R is the
distance between the ion of charge e and the atom nu-
cleus, and an average is taken over the wave function
of the valence electron. The quadrupole moment of an
individual electron is then given by [18]
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R
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R —rf

le(le +1) — 3m? 5
,
oL -1 +3)

q=2 <r2P2 cos €> =2 (4)
where r, 6 are spherical coordinates of the valence elec-
tron and l.,m are the orbital momentum of this elec-
tron and its projection on the molecular axis.

For oxygen, it is more convenient to consider a va-
lence electron shell as two p-holes in addition to a com-
pleted p-electron shell. The hole quadrupole moment
differs from that of the electron by sign only. The total
wave function of these holes that corresponds to the
total orbital momentum of holes L and its projection
M onto a given direction is given by

Uiy = Z [
(5)

m
where 11,,,(i) is the wave function of ith p-hole with
the angular momentum projection m, and the Cleb-
sch —Gordan coefficient

1 1 L
m M—-—-m M

X wlm(1)¢17M—m(2)a

X
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is responsible for summation of the moments of individ-
ual holes into the moment of the entire system. Corre-
spondingly, the electron shell is characterized by quan-
tum numbers L, —M in this case, and because atom
quadrupole moment is conserved under M — — M, we
ignore the difference between a hole and an electron
below.

We use that the sum of quadrupole moments of
an electron shell and a hole shell is zero, and there-
fore, expressing the quadrupole moment of an electron
shell through the quadrupole moments of a hole shell,
it is necessary to change the sign of the quadrupole
moment. In other manner;, the sign of the electron
quadrupole moment is reciprocal to that of a hole,
and therefore, constructing the quadrupole moment of
an electron shell through those of individual holes, we
must change sign. Hence, the quadrupole moment of

|

where ¢, is the quadrupole moment of an individual

electron with the moment projection m on the molec-
ular axis, and according to formula (3), we have

4er?

do = 5

an oxygen atom is given by

1 1 L

M|Q|M'Y = —bprar
(M|Q|M') MMZmM—mM

m

(6)

X (qm + qM—m)a

2er?
@1 =q-1 =g (7)
where r2 is the mean square of a valence electron or-
bit. For an oxygen atom in the ground state, we have
r? = 2a3 [15], where ag is the Bohr radius. For excited

oxygen atom states, we take

r2~1/4% 42 =T0/)Ju,

J is the ionization potential for this state, and Jy is the
ionization potential for a hydrogen atom in the ground
state. In particular, it follows that 72 = 2.33a2 for the
! D-state of an oxygen atom. Table 1 contains values of
the quadrupole moments for an oxygen atom, and we
use these values for determination of electron terms of
a diatomic oxygen ion.
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Table 1. Diagonal matrix elements of the quadrupole moment Qarar expressed in ea? for an oxygen atom with the
electron shell 2p*
State 3P M =0 3P M =41 D, M =0 'D, M =+1 'D, M = +£2
Qumm 1.6 -0.8 —-1.87 -0.93 1.87

In addition, Table 2 contains the values of v for
the oxygen atom and ion states. The atom ionization
potential with transition to a given ion state is

J=J"— AE, + AE;, (8)

where JO is the oxygen ionization potential with the
electron transition from the ground atom state to the
ion ground state, AF, is the atom excitation energy,
and AFE; is the ion excitation energy. Because a given
ion state results from a one-electron transition from an
indicated atom state, we ignore the cases of ion—atom
interactions if a given ion state cannot be formed from
the indicated atom state as the result of a one-electron
transition.

In considering the electron terms of the quasi-
molecule OF , we start from large distances R between
the nuclei, where the electron energy is equal to

aJ(J+1)
2

ce=cog+AE, + AE; +

aJo(Jo+1) bi(i+1)  Dbjoljo +1) ©)
2 2 2 '

where £ corresponds to the atom and ion ground state,
such that AE, and AE; account for electron excitation
of the quasimolecule; Jy and jy are the total electron
moments of the atom and ion in the ground fine state,
and the last terms in formula (9) take fine states of the
atom and ion into account. Therefore, in evaluating
the quasimolecule electron terms, we count the quasi-
molecule energy from the value ¢g + AE, + AE; at
large separations, adding Hamiltonian (2) to this at fi-
nite separations. Because the ion and atom parts of this
Hamiltonian commute, we can add the ion and atom

parts to the electron energy independently. Quantum
numbers due to the ion part — the total ion angu-
lar momentum j and its projection on the molecular
axis m; — are conserved at any ion-atom distances,
whereas the atom quantum numbers J and M; are
valid at large separations, or quantum numbers My and
Mg are accurate quantum numbers only if we neglect
the spin—orbit interaction. Therefore, finding electron
terms accurately, we use the notation M7y, Mg or J, M
for them only to label the quasimolecule states.
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In addition, because the quadrupole interaction is
symmetric under the transformation M; — —M and
the spin—orbit interaction is symmetric under the trans-
formation My + Mg — —M — Mg, we find that the
electron terms of a quasimolecule described by Hamil-
tonian (2) are degenerate with respect to the simulta-
neous transformations

ML,Ms—)—ML,—Ms. (10)
We can therefore restrict ourselves to a part of the elec-
tron terms for the diatomic ion OF at large separations
with
|ML + Ms‘ > 0.

In particular, if the oxygen atom is in the ground state
O(®P), the number of nondegenerate electron terms is
6 with respect to atom states.

In constructing the electron terms for the atom
part, we construct the Hamiltonian matrix elements

<ML7MS|ﬁ‘M£7Mé'>

Next, by diagonalization of this matrix, we find the
energy positions at a fixed distance R between the nu-
clei by solving the secular equation for the Hamiltonian
matrix elements [3]. This is given by the vanishing con-
dition for the determinant,

|Edag, s Oars v, —( My, Ms|H|Mj, Mg)| = 0. (11)
Solutions E(R) of Eq. (10) give positions of the electron
terms at a given separation R.

Table 3 gives the Hamiltonian matrix H;;, for the
interaction of 07 (*S) + O(*P) as an example. We here
use the Hamiltonian (2), and the electron energies of an
oxygen diatomic ion at a given separation follow from
solution of Eq. (10). We can see that this matrix can
be divided into five independent blocks, such that one
block contains three diagonal elements, two identical
blocks contain two diagonal elements, and two identi-
cal blocks contain one diagonal element. These identi-
cal matrix blocks can be converted into each other by
transformations (10), and we include only one of the
two identical matrices in Table 2.
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Table 2. The parameter v = /.J/Ju for various
atom and ion oxygen states
Atom state 3p 'D 1S
Ion state
49 1.000 — -
’D 1.116 1.049 -
2p 1.170 1.107 1.030
E,cv?
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In Figs. 1-3, we give the electron terms of the oxy-
gen diatomic ion for the respective atom and ion states

and

0(3P) + 0" (19),

O(*P) + 0" (*D),

O('D)+ O*(*D)

with the interactions in Hamiltonian (2) taken into ac-
count. The range of separations is such that it gives
the main contribution to the cross section of resonant
charge exchange at thermal and eV-energies of colli-
sion. We characterize the atom state by the quantum
numbers J and M, the total atom moment and its pro-
jection on the molecular axis, which are precise atomic

500
TENING

100N
350
300

250
200

150
100
50

—50
~100
—150
200 : : L

E.cm !
1000

0" (°D) + O('D)
800N

V4

600 F X
400} X o

2,
200} 2,

—200
—400F
~600

—800

—1000 1 1 1 1 |
10 11 12 13 14 15

R, ag

Fig. 3.

718

R — o

<

I

o
(S

E

Il
T w
I




MITP, Tom 128, Bemn. 4 (10), 2005

3

Electron terms and resonant charge exchange ...

numbers at very large separations and are used as a no-
tation at smaller separations where the ion—quadrupole
interaction becomes important. Correspondingly, the
electron terms of the oxygen diatomic ion are described
by the quantum numbers .J, [M |, j, where j is the total
ion angular momentum.

3. ION-ATOM EXCHANGE INTERACTION
POTENTIAL

The next step of our program is to determine the
ion—-atom exchange interaction potential. It is small
compared to the interactions in Hamiltonian (2), and
therefore each electron term splits into levels with dif-
ferent parities. The ion—atom exchange interaction re-
moves the degeneration with respect to different mj,
the ion moment projection on the molecular axis. The
exchange ion—atom interaction allows us to evaluate the
partial cross section of resonant charge exchange that
proceeds inside a given electron term.

The exchange ion—atom interaction results from the
transition of a valence electron from one atomic rest to
another one. This interaction divides the quasimolecule
states into even (g) and odd (u) according to the prop-
erty of the corresponding molecular wave function to
preserve or change sign as a result of reflection of all
the electrons with respect to the symmetry plane per-
pendicular to the molecular axis. If a valence electron
with an orbital momentum /. and its projection p on
the molecular axis is located in the field of two struc-
tureless cores, the exchange interaction potential A,
is given by the formula [5, 7, 13, 19]

Aleu(R) =

QLD+ )
(e = D! () e

where R is the distance between the nuclei, and v, A
are the parameters of the asymptotic wave function of
the valence electron; the normalized radial wave func-
tion of this electron in the atom at large distances r
from its center is given by

P(r) = Arﬁfle_m,

— A2R5 1 lulg—Ry—3

roy > 1.

Formula (12) contains the first term of the asymptotic
expansion with respect to the small parameter 1/yR
for the ion—atom exchange interaction potential at large
distances between nuclei. For a valence p-electron, for-
mula (12) becomes

Alo(R) = 31421%_7167}%}/7l
Ars1(R) = —Aso(R) 1)
1,+1 _R’)/ 10 .
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This one-electron interaction is the basis of the ex-
change interaction potential in the case where the in-
teracting atom and ion have nonfilled electron shells,
and the coupling of electron moments for a transfer-
ring electron and the atomic rest is of importance. We
use the LS coupling scheme, which is suitable for light
atoms. Then the wave function of an atom with n va-
lence electrons of moment [, is given by [16, 17, 20]

@LSMLMS(I,Q,...

le 1 L
xl’m7s’%%g G5 (le,n) ’: M, ] X
[5 5 5]
Lo s |

X ¢le%pa(1)¢lsmms (27 ,n). (14)

Here, ®,1, and ¢ are the respective wave functions
of the atom, ion, and valence electron with the indi-
cated quantum numbers, u and o are the projections
of the angular momentum and spin of the valence elec-
tron, the argument of the wave function indicates elec-
trons involved in each atomic particle, the operator p
permutes these electrons, and the parentage coefficient
GES(l.,n) is responsible for addition of a valence elec-
tron to the ion for construction of an atom for given
quantum numbers of these atomic particles.

The exchange interaction potential is given by the
formula |7, 13]

A(R) =2 <x111 ‘f]‘ \I!2> _

- 2<‘1’1 ‘ﬁ‘ ‘I’1> () 1] ®y), (15)

where ¥, is the wave function of the quasimolecule in
the case where a valence electron is located near the
first core (the electron is connected with the first nu-
cleus), ¥, corresponds to the electron location near
the second nucleus, and H is the Hamiltonian of the
electrons. We note that an accurate evaluation of this
interaction requires using the accurate wave functions
of the quasimolecule such that the interaction of a va-
lence electron located between the cores with both cores
is taken into account simultaneously. We assume this
to be fulfilled within the framework of the asymptotic
theory. Using a general method of calculation of the
exchange interaction potential A(R) by analogy with
that for case «a» of the Hund coupling [13,21-23] and
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Table 3. The Hamiltonian matrix H; for the quasimolecule 07" (*S3/2) + O(*P) if the exchange ion—atom interaction
is neglected and the Hamiltonian is given by formula (2); a =77+ 2 cm™!
My, Ms 1,1 1,0 0,1 1, -1 0,0 -1,1
0.8¢%a?
1,1 —0- g 0 0 0 0 0
0.8¢%a?
1,0 0 ~ s —a 0 0 0
1.6e%a3
0,1 0 —a i 0 0 0
0.8¢%a?
1, -1 0 0 0 a— Rfsao —a 0
1.6e2a2
0,0 0 0 0 —a Rfsao —a
0.8¢%a?
-1,1 0 0 0 0 —a -
using the properties of Clebsch—Gordan coefficients, formula (16) becomes
we obtain
2
Arsmy Msisjm, (R) =n (G[;7)” x
2 l l L
ALsyy Msismm, (R) =n (GL®)” x X ‘ X
LMs | (lls) . ;;rrruzms uw Mp—p My
> | x 1
g 1% ML - M ML le l L |- - S S -|
H,o, % 2 X
s [ze I L wom omtp ]| o Mo Ms |
x | 2 X 1
o Mg—0o Mg Beomom+ |-— S S 1[1 S ]]
1 X2 X
Z g S [a My ms-l-aJ m.oms myj
X | 2 Ay, (R). (16)
o ms mg+o / .
X s J Aleu' (17)
Mp—pu Mg—o Mp—pu+Mg—o

Here, we take the character of the coupling of elec-
tron moments in the quasimolecule into account,
such that the quantum numbers of an atomic core
ls, My — pu, Mg — 0 and the atomic quantum num-
bers of a valence electron le,u%a are first summed into
the atomic quantum numbers LS My, Mg, and after the
electron transition to another atomic rest, the other
quantum numbers of the atomic core lsmm, and elec-
tron quantum numbers le,u%a’ are summed into the
atom quantum numbers LS, m + p, ms + o'. We note
that the electron spin projections are identical, o = o,
in the fields of both cores because of normalization of
the electron spin wave functions. If we use the atom
basis M Mg and the ion quantum numbers are [sjm;,
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In reality, due to the properties of the Clebsch — Gordan
coefficients, this formula is simplified. In particular, the
exchange interaction potential is conserved under the
transformations

ML,Ms,mj —>—ML-,_MSv_mj' (18)

4. ION-ATOM EXCHANGE INTERACTION
FOR THE DIATOMIC OXYGEN ION

Formula (17) gives the ion-atom exchange interac-
tion potential that determines the cross section of reso-
nant charge exchange at given quantum numbers. This
is considered below for different states of an oxygen
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Table 4.

The exchange interaction potential Arsar, argsm, for the ground state of the quasimolecule 0+ (*S) + O3 P)

at given quantum numbers M, Mg of an atom and quantum numbers s, m; of an ion on the basis of formula (18)

My, Ms 1,1 1,0 0,1 1, -1 1,1 0,0
5,my
3 3 2 1 2
575 All gAll Al(] ﬁAll All gAIU
31 1++v6 24++/2 1+ 6 3+ V2 1+ +v6 2442
21 Voa, V2 A VO, | YBEV2 VoL, V2 A0
2°2 3 3 3 3 3 3
3 1 3+ V2 24++/2 24+4/3 1+ V6 24+43 2442
31| VBV, V20| V2B, VB | V2V, V2,5
2 2 3 3 3 3 3 3
3 3 1 2 1 1 2
57_5 _SAll gAll _3A10 All _3A11 gAIU

atom and an ion. We start from the ground state of
the atom and ion, with the ion—atom exchange inter-
action potential given by formula (18). The analysis of
this case in [9,10] was based on the limiting coupling
cases where the quasimolecule is characterized by the
quantum numbers .J, My or J, M} depending on the re-
lation between spin—orbit and quadrupole interactions.
We now consider the general case numerically by the
Hamiltonian diagonalization for an arbitrary relation
between these values.

Formula (17) gives the ion—atom exchange interac-
tion potential at large separations for the ion ground
state OT(*S3/5) (1 =0, m =0, s =j = 3/2). We then
have My = u, m; = m,, and formula (17) is reduced
to the form (lo = 1,n =4, GE® = —1//3)

4
Arsmy Msism, (R) = gAlML(R) X
1
S
o g Ms—O' MS

o
l

Table 4 contains the values of the ion-atom interaction
potential obtained on the basis of formula (19). We ac-
count for symmetry (18) and the one-electron exchange
interaction potentials are given by formulas (13).

We next use the same operation for determination
of the exchange interaction potential for excited ion
and atom states at large separations. Table 5 con-

.

ms Mmg—+o J (19)

Q N =

4 ZKST®, Bom. 4 (10)

tains the exchange interaction potential for the quasi-
molecule O (2D) + O(3P) and Table 6 contains the
exchange interaction potentials for the quasimolecule
O*(®D) + O('D) for the basis My, Mg,j,mj. Be-
cause A11(R) € Ajg(R) at large separations, we ig-
nore Ay (R) wherever possible. We also take the sym-
metry of the exchange interaction potential in (18) into
account, and in the atom basis M, Mg used, the iden-
tical values of the exchange interaction potential corre-
spond to quantum numbers in parentheses.

The electron terms of the quasimolecule with the ion—
atom exchange interaction potential taken into account
can be found by diagonalization of the corresponding
Hamiltonian matrix. Because the splitting of electron
terms due to the exchange interaction depends on a fine
ion state, the number of electron levels in this case in-
creases in comparison with the case of Hamiltonian (2).
Performing this diagonalization for each fine ion state
at the distance 12ag between the nuclei (this distance
determines the resonant charge exchange cross section
in thermal collisions), we assume that the renormal-
ization of the exchange interaction potential in com-
parison with the basis My, Mg, j, m; is the same in
a neighboring range of distances. This allows us to
determine the exchange interaction potentials given in
Table 5 for the quasimolecule and in Table 7 for the
quasimolecule OT (2P)+ O(3P). As the quantum num-
bers of the quasimolecule, we now take the total atom
moment J and its projection M ; on the molecular axis.
Although these are accurate quantum numbers only at
very large separations, where the ion—atom quadrupole
interaction can be ignored, they can be used for label-
ing electron states of the quasimolecule.
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Table 5. The exchange interaction potential for the quasimolecule O (D) + O(®*P) at given quantum numbers
Mp, Ms of an atom and quantum numbers j, m; of an ion

My, Mg 1,1 1,0 0, 1, -1 0,0 -1,1
j‘,mj
55 V10 + 2 V2 1 V2 1
55 ANTY —F—A1 —An —Aq —=Aq ——=Aq
2°2 2v/10 V5 V10 V5 V10
5 3 2 2 2 1 V241 V2
— = —A —A —A —A A —A
23 5210 5210 5210 5210 5 10 5 510
51 3 7 3 2 1 3 3v2
- = A — —A —A — (24— A —A
23 5210 T 5210 5210 5 < + \/5> 10 10 ~o
5 1 2V/2 V2 2v/2 3v2 1 3 2
-, —= —A —A —A —A — 24+ —]A -A
279 5 10 5 210 5 10 10 2o 5 < + \/§> 10 5210
5 3 V2 3v2 V2 V2 V241 1
373 ?Am WAN ?Am ?Am 5 ANTS gAlo
5 5 1 10 +2V/5 1 1 V2 1
-, —= —A —— A —A —A —A —A
5" 73 NG 11 /20 11 /10 11 /10 11 NG 11 /10 11
33 1 —V6+1 V6 -6 V6 —2V3 V3
22 | W00 | Tag ot | st | T o R N s
31 NG —-3-6 1 1 —V2-2 V2
-, = —A —A —A —A A —A
272 60 60 1o 1571 10" 30 1o 20
3 1 V3 -3v2-3 V2 V2 —V2-2 1
373 —%Am TAN 1—5A10 2—0A10 TAN EAN
3 3 -1 -3 -2 -1 3 6 —2v3 —/6
575 —=A1 qu —=A1 £A10 uA10 ——Ap
27 2 102 20 5v/3 10 30 20

5. MIXING OF EXCHANGE INTERACTIONS
FOR COUPLED ELECTRON TERMS

Above, we have determined the ion—-atom exchange
interaction potential in the basis My, Mg, j, m;, which
are not quantum numbers of the quasimolecule, and the
Hamiltonian matrix H;; is not diagonal in this basis.
The electron terms of the quasimolecule follow from di-
agonalization of the Hamiltonian matrix, and the elec-
tron levels E(R) at a given separation are solutions of
the secular equation

|Edir, — Hir| = 0.

Above (see Figs. 1-3), we solved this equation for
Hamiltonian (2) with the ion—atom exchange interac-
tion ignored. We now solve this equation including the
ion—atom exchange interaction potential into consider-
ation and determine the exchange interaction potential
for eigenstates of the quasimolecule.

We demonstrate this operation for the interaction
of the oxygen ion and atom in the ground states
O(P)+ 0T (*S). Table 3 then gives the Hamiltonian
matrix without the exchange interaction, and the ma-
trix of the ion—atom exchange interaction potential is
diagonal in the basis My, Mg, j,m;. We note that the
matrix H;; in Table 3 is divided into three blocks con-
sisting of matrices with 1, 2, and 3 diagonal elements.
For a block with one element, where M7 =1, Mg =1,
the exchange interaction potential is Aqq(R). For two
other blocks, the exchange interaction follows from di-
agonalization of the Hamiltonian matrix for the ger-
ade and ungerade states of the quasimolecule, and the
exchange interaction potential is the difference of the
electron energies for the gerade and ungerade quasi-
molecule states with accounting for the smallness of
the exchange interaction potential in comparison with
a typical potential of electrostatic interaction.

We perform this operation analytically for the block
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Table 6. The exchange interaction potential ALss, argisjm; (R) for the quasimolecule O (*D) + O(' D) at given
quantum numbers My, Ms of an atom and quantum numbers j, m; of an ion
My, Ms 2,0(-2,0) 1,0 (-1,0) 0,0
jamj
55 1 V3
= = A —A —A
2°2 10 V5 10 0 11
53 11 242 32+ V3
505 — + <] A Aqp ( )An
2°2 NG 10 10
51 1 1 3 3 /3 V3
- = —=A —A — 4+ —1\/= A
272 5020 10" <10+10 2 " 2) "
5 1 1 -1 33 /3 V3
— == ——=A —A — 4+ —\/=+—= A
272 vio 520 <1o+10 > " 2) "
5 3 —V5-1 —V2-1 3(2+V3)
=, —= —A A A
2" 2 V5 10 52 10 10 11
5 5 1 1 V3
— == ——A ——=A —A
275 NG 10 /10 10 /10 11
33 4 1+4V3 3 9
- = —A A —+—=]A
272 5710 20 0 <20+10 2) "
31 V3 3 9 3 [3 3
23 B 207 (%*E 275 2> Au
301 6+ 32 -3 9 3 [3 3
- —= A e — 4+ —\/-+—=|A
27 2 20 20 "° (20 TVt 5\/§> "
3 3 1 -3 -4 3 9
- == —=A A —+——1]A
2' 2 510 20 <20+10 2> H
consisting of two diagonal terms. Diagonalization of  we have
the Hamiltonian matrix gives the energy of two levels
as [3] Ho. - _0gt% aéiAl
11 — R3 2 )
ezaé Ay
= 4+ —= 20a
Hop = 1.6—73" + ==, (20a)
e?a?
H12 = a, AHZHH —H22 =24

Err = 11;— zzi\/( 11 — - 29)? —|—|H12\2,

where the indices 1, 2 relate to the first and second
states in the basis M, Ms. We next construct the en-
ergy matrix for the interaction of an oxygen ion and
an atom with the exchange interaction taken into ac-
count in addition to Hamiltonian (2). For the states
under consideration, according to the data in Table 3,

R3’

where the plus sign corresponds to the gerade state and
the minus sign corresponds to the ungerade state. From
this, we have the energy levels of eigenstates given by

1 1
E[:EO—EiEA[., E]]:E[)'FE:‘:EA]],

22 2,2 2
E0:0.46R—a;)., g:\/<1.2eR—a?P> +a.

(20b)
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Table 7.

The exchange interaction potential for the quasimolecule O (*P) + O(*P) at given quantum numbers j, m;

of an ion obtained in the basis M, Mg

My, Mg 1,1 1,0 0,1 1, -1 0,0 -1, 1
j7 my;
33 1 3+V6 1 1 3+ 6 -1
- = A ——A A —A A —A
53 5210 2 10 5o WG 10 D 11 53 10
31 1 1+6 3v6 +2V/3 1 3+v2+2v3+3V6 ~1
35 ——=Aqo Ajg —— A Ao Ay | —=Ag
2792 21/6 12 12 6 12 6v2
31 1 -V3-2 2+ /3 1 34+v2+2V3+3V6 1
5 =5 | ==l | ————Aw Aqy ———=A1p Aqy A
27 2 23 12 6 62 12 6
33 1 -3v2-3 1 1 3+6 1
-, — | ——=A —A —A -——A A —A
5' 73 52 10 2 10 56 11 e 10 D 11 56 10
11 1 1 1 1 1 1
=, = -A —-A —=A —A —=A —=A
279 gou g oo 32 11 3210 62 11 32 10
1 1 1 1 1 1 1 1
- —= —A —A ——A —A —A —A
5' 73 62 11 372 10 g 32 10 62 11 3210
Table 8. _ The values °fl“ f°l”°""i”g flrom diagonali- tween nuclei for different electron terms; this distance
zation of the Hamiltonian matrix determines the cross section of the resonant charge
exchange process in thermal collisions involving the
Mp, Ms | 1,11 1,010,111, -1}1-1,1]0,0 O(*P) atom and O*(*S3/5) ion in the ground states.
S,Mmg We note that according to formula (13), at this dis-
3 3 tance, A1g = 6A11, which is used in Table 8. In Table
99 111351095 1.4 1.36 | 0.87 8, we give the values of the coefficient
31 A
- = 1 [1.27]1096| 1.05 | 1.65 | 0.88 K= ,
22 Angms
§7 1 1 11251096 1.65 | 1.05 | 0.88 where Ay, v is the exchange interaction potential for
2 2 the basis My, Msmg according to formula (19) and A is
3 3 its value after diagonalization of the Hamiltonian ma-
2 9 111181095 1.37 | 1.37 1 0.88 trix. As follows from the data in Table 8, the value &

Correspondingly, the exchange interaction potential for
each state is

A+ A AH
AI = % 4—(A1 - A2)7
At A, AH (21)
21T/ = _
A= 5 i (A1 = Ay).

As can be seen, if @ = 0 and hence the Hamiltonian ma-
trix is diagonal in the basis My, Mg, we have A; = Ay
and A;; = Ay in accordance with the expression for
the Hamiltonian diagonal elements.

We use the expressions in Table 8 for the ex-
change interaction potential at the distance 12ag be-

is close to one; below, because of the logarithmic de-
pendence of the cross section on this value, we ignore
the variation of the exchange interaction potential due
to diagonalization of the Hamiltonian. This simplifies
the problem.

6. RESONANT CHARGE EXCHANGE
PROCESS FOR OXYGEN

The above values of the ion—atom exchange interac-
tion potentials allow us to determine the partial cross
sections of resonant charge exchange on the basis of the
asymptotic theory [11, 12]. The asymptotic theory of
resonant charge exchange is based on the assumption
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that the main contribution to the cross section of this
process is given by large impact parameters of colli-
sions in comparison with the typical atomic size. Then
the inverse value is a small parameter of the asymp-
totic theory, and the cross section is represented as an
expansion over this small parameter. Hence, determi-
nation of the exchange ion—atom interaction potential
at large separations allows us to determine the cross
section of resonant charge exchange. If electron terms
are nondegenerate, the relation between the probability
and cross section of this process and the exchange in-
teraction potential in the two-level approximation can
be used [24]. In particular, this approximation is valid
for the transition of an s-electron between two struc-
tureless cores (for example, for the processes HT-H,
Het-He), and then the cross section ., of the reso-
nant charge exchange process is given by [11,12, 24]

(22)

where
1

’/W—ROA(RO) =0.28.

v\l 2y

This formula can be used in the cases under consider-
ation for the structureless oxygen ion OF(*S) or if the
fine ion splitting is small compared to the exchange in-
teraction potential, as for O (2P). We take quantum
numbers J, M; to characterize the atom state at the
beginning. Of course, this is valid only at very large
distances between the nuclei when the ion—quadrupole
interaction can be neglected. Therefore, we use these
quantum numbers for labeling the electron terms only.
In addition, the cross section of the processes

0F(*S) + 0('D) = O('D) + O*+(*S)
0+ (*S) + 0('S) — 0('S) + O+ (1S)
0+ (2D) + O('S) = O(1S) + O+ (2D)

(23)

is zero for the one-electron atom scheme under consid-
eration because the transition of a p-electron cannot
lead to these processes.

In Tables 9-13, we give the partial cross sections of
other electron transfer processes involving the electron
shells 2p? and 2p? for the oxygen ion and atom at en-
ergies that are of interest for plasma. The indicated
quantum numbers J, M of the atom and j,m; of the
ion are accurate only at large separations and are used
for labeling the electron states at intermediate sepa-
rations when the ion—-atom quadrupole interaction is
important.
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Table 9. The cross section of resonant charge ex-

change o., (in 1076 cm?) for the process O (*S) +

+O0(*P) = O(®*P) + 0" (15) at the collision energies

0.1 eV and 1 eV (in parentheses) in the laboratory frame
of reference

J, My

J,mj

2,2 12120 1,1|10]00

60(48)|57(46) |54(43) [82(67)|60(48)| 79(64)

61(49)[61(49) [60(48) |84(69) |61(49)|83(68)

W [N w
MO = o] o

60(48)[61(49) [61(49) |82(67) |60(48)|83(68)

N [N w
ol |[ho] =

54(43)|57(46) |60(48) | 74(60) | 54(43)| 79(64)

average

59(47)[59(47) [59(47) |81(66) |59(47)|81(66)

We also note that the small parameter of the asymp-
totic theory is now

1
— < 1.

vRo (24)

In evaluating the cross section of electron transfer,
we use the values of the parameter v in accordance
with the data in Table 2. Expanding with respect to
this small parameter, we keep two expansion terms in
formula (22). For the cases in Tables 8 and 9, the val-
ues of YRy are between 10 and 14. This means that
the accuracy of the asymptotic theory is about 1%. Of
course, the real accuracy is worse because of additional
factors [26] affecting the accuracy of the cross sections.
Nevertheless, we estimate this accuracy as several per-
cent.

If an electron term is degenerate for the quasi-
molecule consisting of a colliding ion and an atom and
the ion—atom exchange interaction removes this degen-
eracy, the charge exchange process in the course of ion—
atom collisions is entangled with other transition pro-
cesses. In the case under consideration, this degeneracy
relates to the projection of the ion total moment on the
molecular axis, and hence the exchange process is en-
tangled with rotation of the ion total moment. But be-
cause the ion—atom exchange interaction potential de-
creases exponentially as the separation increases, the
region of the exchange process is narrow, and hence
the rotation angle of the molecular axis is relatively
small [5]. This allows us to separate the process of res-
onant charge exchange from the processes of moment



A. V. Kosarim, B. M. Smirnov

MIOTP, Tom 128, Bein. 4 (10), 2005

3

Table 10.  The cross section of resonant charge ex-
change o, (in 107% cm?) for the process O (*D) +
+ O(®P) — O(®*P) + O"(*D) at the collision en-
ergies 0.1 eV and 1 eV in the laboratory frame of

Table 11.  The cross section of resonant charge ex-
change o, (in 107% cm?) for the process O (*D) +
+0('D) — O('D) + OT(*D) at the collision en-
ergies 0.1 eV and 1 eV in the laboratory frame of

reference reference

JM;| 222,120 1,1]10]00 J, M 2 1 0
Jymj J.mj

gg 43(34)| 41(33)|30(31)| 34(26) | 34(26) | 39.(31) gg 718) | 62(49) | 46(36)
g% 50(40) | 50(40) | 50(40)| 44(34) | 47(37) | 52(41) g% 66(33) | 59(47) | 53(42)
g% 54(43)|55(45) | 54(43)| 50(40) | 51(40) | 57(46) g% 19(38) | 4635 | 47(37)
;_1 53(43)|56(45) | 53(43)| 51(40) | 50(40) | 57(46) g—% 58(46) | 49(38) | 47(37)
g,_g 47(37)|51(40) |47(37) | 47(37) | 44(34) | 52(41) g—g 7562) | 59(47) | 53(42)
g,—g 32(25)|36(28) | 34(26)| 34(26) | 34(26) | 39(31) g—g 62(49) | 58(46) | 46(36)
%% 38(29)|35(26)[42(32)|39(30) | 42(33) | 20(21) %% 63(35) | 60(48) | 49(39)
%% 31(22)|37(28)|34(26)| 38(20) | 35(26) | 39(30) %% 5947) | 50(39) | 54(43)
2,—% 33(25)|38(29)|37(28)| 35(26) | 38(29) | 39(30) %—% 45(36) | 44(34) | 54(43)
2,—2 35(26)|24(16)|30(30)| 42(33) | 39(30) |20(21) %—g 53(41) | 57(45) | 49(39)
average|42(32) [42(33) [41(32)[43(34) |41(32) [ 43(34) average 61(48) 54(43) 50(40)

rotation, i.e., to consider the resonant charge process
for each angular momentum direction of the ion inde-
pendently. Therefore, we evaluate the cross section of
resonant charge exchange for each ion moment projec-
tion on the basis of formula (22).

On the basis of the partial cross sections of resonant
charge exchange in Tables 9-13, we can find the aver-
age cross sections (see Table 14) that are convenient for
applications. In averaging a cross section, we assume
that the population of electron levels of a given group
is proportional to statistical weights of the individual
states, which is valid at high temperatures. As a result,
in Table 12, we give the average cross sections of res-
onant charge exchange for a given orbital momentum
and spin of the colliding ion and atom.

We note that the difference in the cross section for
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ions in different states is determined mostly by differ-
ent ionization potentials of the oxygen atom in a given
state with ion formation in these states.

The cross sections obtained allow us to determine
the mobilities of an oxygen ion in atomic oxygen. In
particular, if the atoms are in the ground electron and
the fine state O(®P,), the respective mobilities of the
oxygen ions O1(4S), OT(®2D), and O*(®>P) in atomic
oxygen are 2.6, 5.1, and 4.6 cm? /V -s; for the mixture of
atoms in the electron states O(3P,) and O(! D) with
equal populations of these states at room temperature,
the respective mobilities are 2.6, 3.8, and 4.3 cm?/V -5
at room temperature. These values may be of interest
for plasmas of the upper Earth atmosphere and for a
nonequilibrium gas-discharge oxygen plasma. We see
that measurement of the mobilities of ions in different
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Table 12.  The cross section of resonant charge ex-

change o, (in 1071 cm?) for the process OT(*P) +

+0(®P) — O(®*P) + 0" (*P) at given quantum num-

bers .J, M; of an atom and j, m; of an ion at the col-

lision energies 0.1 eV and 1 €V in the laboratory frame
of reference

Table 13.  The cross section of resonant charge ex-

change o, (in 107*¢ cm?) for the proceses O+ (*D) +

+ O('D) — O('D) + O*(*>D) and O*(*°P) +

+0('S) — 0O('S) + O (*P) (the last column) at

the collision energies 0.1 eV and 1 €V in the laboratory
frame of reference

J, M, 2121 2, 1,1 1,000

b

45(36)|45(35)[33(25)|38(29)|29(22) [45(35)

38(29)[41(32)|37(29)|36(28)|34(26) [39(31)

41(32)40(31)(34(27)[34(26) |34(28) |39(31)

42(33)[45(36)|27(20)|41(32)|36(29) [45(35)

W ([N =

26(19)|36(28) |28(21)[42(33)[38(30) |24(18)

DO | =

24(18)[39(30) |26(19)|39(30) [39(33) |24(18)

average|36(28)[41(32)[31(24)|38(30)|36(28)|36(28)

states allows analyzing the atom distribution over ex-
cited states.

Thus, due to a high symmetry of atoms and ions
with nonfilled electron shells, we obtain a large num-
ber of electron terms within the framework of the LS
coupling scheme for a diatomic ion when the ion and
the atom have nonfilled electron shells. Because the ex-
change interaction is shared between these states, the
cross sections of resonant charge exchange are lower.
This can be demonstrated by comparison of the cross
sections of resonant charge exchange for the LS and
j — j types of electron coupling in the oxygen atom
and ion. In the case of the j — j coupling, we have a
lower symmetry, and therefore a simpler character of
this process.

The accuracy of the cross sections of resonant
charge exchange is mostly determined by the accuracy
of determination of the asymptotic coefficient A and,
according to the analysis in [23, 26], is several percent.
Comparison for the ground state of a colliding ion and
an atom shows [8, 10] that the average cross section
differs by about 10% from that evaluated within the
framework of the Hund coupling. As regards the two-le-
vel approximation for the electron terms of OF, any
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1D 1D 1D 1S
L_/ M b b bl bl
Mp=2|Mp=1|Mp=0| M =0
jamj
33
53 38(30) 47(37) 46(36) 50(40)
31
53 38(29) 49(39) 50(40) 65(52)
3 1
375 34(25) 48(38) 50(40) 65(52)
3 3
375 28(21) 42(32) 46(36) 50(40)
11
33 35(27) 43(33) 47(37) 57(45)
1 1
373 30(23) 41(31) 47(37) 57(45)
average| 34(26) 45(35) | 47(38) 58(46)
Table 14. The average cross sections of resonant

charge exchange o, (in 107'% c¢m?) at the collision
energies 0.1 eV, 1 €V, and 10 eV (in square brackets)
in the laboratory frame of reference

Atom state O(P) 0('D) 0('s)
Ion state
0+ (19) 66(53)[44] 0(0)[0] 0(0)[0]
0T(D) | 42(33)[25] | 56(44)[34] | 0(0)[0]
OT(2P) | 37(20)[22] | 41(32)[24] | 58(46)[35]

coincidence may be occasional, because this scheme of
electron term splitting does not take the important pe-
culiarities of this interaction analyzed above into ac-
count.

7. COMPARISON WITH OTHER SCHEMES OF
ELECTRON COUPLING

We have constructed the lowest electron terms of
O;’ at large separations, which determine the cross sec-
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tions of resonant charge exchange. Of course, the char-
acter of coupling in this range of distances between the
nuclei differs from those at low separations [27]. We
next use the LS type of electron coupling in the atom
and ion, and the accuracy of using this coupling scheme
is about 2 %, which is determined by the coincidence
of the level positions for fine states of an oxygen atom
located in the ground electron state with formula (9).

Nevertheless, we use the 7 — j coupling scheme in
the case under consideration in order to understand the
dependence of the resonant charge exchange cross sec-
tions on the coupling type. We consider the collision
of an oxygen ion and an atom in the ground electron
states, with the resonant charge exchange process oc-
curring according to the scheme

o[ Q) ol ] -
o[ @] [

instead of the process

0T (*S3) + O P) — O(GPR) + 0T (*S

), (26)

3 3
2 2

that occurs in the case of the LS coupling scheme. As
follows from process (25), within the framework of the
j — j coupling scheme, the ion—atom exchange inter-
action and the resonant charge exchange process are
determined by the transition of a valence electron with
J = 3/2 from the field of one core to the other one.

Based on the j — j coupling scheme for valence elec-
trons in the atom and ion for the electron terms of the
ion dimer at large separations [23], we note that the
character of the exchange splitting is simpler in this
case than in the case of the LS coupling scheme. In-
deed, we represent the wave function of two valence
electrons from a nonfilled electron shell j = 3/2 of an
oxygen atom as

- 3 [0 1]
X3y (D3, (2). (27)

This wave function is simpler than formula (14) for the
LS coupling in an atom. From Eq. (15), we obtain the
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ion—atom exchange interaction potential
3 3
2 3 7
Ay jm; (R) =Y x
m My—m m My
3 3
- = J
X 2 2 X
m; m m;+m
% Ag,(R), (28)

which is simpler than formula (17) for the LS coupling
in an atom and an ion. The one-electron exchange in-
teraction potentials for case «c» of the Hund coupling,
which are used in this formula, are given by [22, 26]

Az 3(R) = An(R),
(29)
Ay y(R) = ;AlO(R) + %AH(R),

where the one-electron exchange interaction potentials
A1o(R) and Ay (R) for case «a» of the Hund coupling
are given by formula (13). Below, we neglect Ay com-
pared A10~

We note that according to formula (28), the
ion—atom exchange interaction potential Az, jm, (R)
for the j — j coupling in the atom and ion is unchanged
under the transformations

MJ./m]‘ — —MJ,—m]‘. (30)
Table 15 contains the exchange interaction potentials
in the case of oxygen and the j — j coupling scheme.
Evidently, this scheme may be valid for heavy atoms of
the fourth group of the periodical table of elements.

Table 16 contains the partial cross sections for re-
sonant charge exchange. We see that they are in a
restricted range of values. The average cross sections
of the resonant charge exchange process (25) at the
collision energies 0.1 eV, 1 eV, and 10 €V in the labora-
tory frame of reference are 107'% cm?. As follows from
Table 16, although the partial cross sections are differ-
ent, the average cross sections for a given total atom
momentum practically coincide.

Above, we have rigorously found the partial cross
sections of resonant charge exchange in slow collisions
for oxygen. We account for various factors that influ-
ence the positions of electron terms of the OF quasi-
molecule at large separations within the framework of
the LS coupling scheme for valence electrons. This
allows us to evaluate the partial cross sections. At
the next step, we can find the average cross sections
of resonant charge exchange by averaging over states
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Table 15. The ion-atom exchange interaction po-
tential Asar,jm; (R) for the j — j coupling scheme for
oxygen
My 0 1 2
m;
3 V2 1 1
— —A —A —A
5 3 210 3810 3810
1 1 1 1
— —A —A A
5 g oo 32 10 p o
1 1 1 1
—— =A AN —A
5 g oo s o1 372 10
3 V2 1 1
—— —A —A —A
5 3 210 3810 3810
Table 16. The partial cross sections o, (in

10710 cm?) of resonant charge exchange process (25)
at the collision energies 0.1 eV, 1 eV, and 10 eV in the
laboratory frame of reference

M, 0 1 2
% 72(58)[45] | 67(54)[42] | 67(54)[42]
% 59(46)[35] | 63(50)[38] | 52(41)[32]
_% 59(46)[35] | 52(41)[32] | 63(50)[38]
_g 72(58)[45] | 67(54)[42] | 67(54)[42]
average | 65(52)[40] | 63(50)[38] | 63(50)[38]

using a real distribution over excited states of the
quasimolecule. Although this operation is accurate,
it is quite cumbersome, and it is therefore interest-
ing to compare the accurate cross sections with those
obtained in simplified schemes. We do not consider
the two-level approximation [24] that is suitable for
transition of an s-electron between two structureless
cores. This approximation was also used for oxygen
(see, e.g., [28, 29]). This approximation may lead to
a relatively large error because it is restricted by one
transferring electron, while each valence electron can in
fact transfer to the ion core. In the case of oxygen, this
gives the factor 7/3 [22, 26] for the exchange interac-

tion potential for case «a» of the Hund coupling. For
an ion and an atom in the ground electron state, this
leads to an error of approximately 20 % [9] for the cross
section of resonant charge exchange and for the range
0.1-10 eV of the collision energies. Rejecting the model
of a transferring s-electron and a structureless core, we
restrict ourselves to cases «a» and «c» of the Hund cou-
pling for a valence p-electron and assume the ion—atom
exchange interaction potential to be independent of the
fine ion state.

Reducing the problem of the ion-atom exchange in-
teraction to the standard Hund coupling scheme for the
interaction of ion and atom valence electrons, we can
consider this for the Hamiltonian if we ignore the spin—
orbit interaction for the atom (Hund case «a») or the
ion—quadrupole interaction (Hund case «c»). There-
fore, averaging the exchange interaction potential in
(16) over ion and atom spins, we obtain the ion-atom
exchange interaction potential for case «a» of the Hund
coupling [5, 8, 13],

Arsaism(R) =n (GlLSS)2 X

XZ le l L
~lmw Mp—p Mg

l. I L
poomoom+p

X Aru(R). (31)

In the same manner, in case «a» of the Hund coupling,
if we sum the atom orbital L and spin S moments into
the total electron moment .J and average over ion fine
states according to formulas (14) and (17), we obtain

Apsimyis;(R) =n (GlLSS)2 X

DD

o m,mg,mj;,Mr,Ms

le 1 L
X
nwom m+pu

" % S S
o

X

le l L
w Mp—p Mg
1
|-§ S S -|><
[a Mg — o MSJ
; .
s j "
m ms mj
l s j
X X
Mp—-p Ms—o Mp—p+Ms—o
[L S J
X

ms Mmg—+o

My, Ms My

L S J
m+pu mg+o m+pu+mgs+o

At (32)

In Table 17, cases «a» and «c» of the Hund coupling
are compared with a rigorous evaluation for the quasi-
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Table 17.

The cross section of resonant charge exchange g¢; (in 107'¢ cm?) for the process OF(*S) + O(®P) at given

quantum numbers J, M; of an atom and j,m; of an ion at the collision energies 0.1 eV and 1 eV in the laboratory frame

of reference. The indicated quantum numbers are accurate only at large separations and are used for labeling the electron

states at intermediate separations where the ion—atom quadrupole interaction is important

Quantum numbers M, M, 1,1 1,0 1, -1 0,1 -1,1 0,0
Quantum numbers .J, M 2,2 2,1 2,0 1,1 1,0 0,0
Case «a» 69(56) | s84(68) | 63(31) | 77(62) | 51(41) | 63(50)
Case «c» 63(51) | 77(62) | 81(66) | 77(62) | 56(44) | 72(57)
Average for the accurate scheme 59(47) 59(47) 59(47) 81(66) 59(47) 81(66)

molecule under consideration. A general conclusion
from this and previous comparisons is that the average
cross sections for the precise and approximate methods
are close if we account for the transition of any electron
from the atom valence electron shell. If we reduce the
problem to the electron transfer between two structure-
less cores, the difference in average cross sections may
reach 20 %.

8. CONCLUSIONS

We have constructed the electron terms for the oxy-
gen ion dimer at large separations by the asymptoti-
cally accurate method with various interactions in this
system taken into account within the framework of the
LS coupling scheme for the oxygen atom and ion. The
hierarchy of interactions in this quasimolecule is such
that the exchange electrostatic interaction is stronger
for lowest nonfilled electron shells p* and p* for the ion
and atom. As a result, the atom orbital momentum L
its spin S, the ion orbital momentum [, and its spin s
are the quasimolecule quantum numbers. Weaker in-
teractions are the spin—orbit interaction for an atom
and an ion and the interaction of the ion charge and
the atom quadrupole moment. Because these interac-
tions are comparable, one can find the electron terms
at large separations with these interactions taken into
account by diagonalization of the Hamiltonian matrix.
The quasimolecule eigenstates are characterized by the
total ion angular momentum j and its projection m;
on the molecular axis; atom moments and their pro-
jections are mixed in eigenstates of the quasimolecule.
The electron term positions for the quasimolecule is de-
termined for each electron term of the diatomic oxygen
ion; the exchange interaction potentials for each elec-
tron term and for each ion state are also evaluated at
large separations. Although this is done for the quasi-
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molecule OF , we thus obtain a general scheme for de-
termination of electron term energies and exchange in-
teraction potentials at large separations for an atom
and its ion with nonfilled electron shells within the LS
scheme of electron coupling.

We note that a general scheme developed for the
evaluation of electron terms and the cross sections of
resonant charge exchange is asymptotically accurate,
but it is simultaneously quite cumbersome. Indeed, in
the case of the interaction Ot (*S) + O(®P), we have
9 electron terms that are partially degenerate if we
neglect the ion—atom exchange interaction; accounting
for the ion—atom exchange interaction, we obtain 36
partially degenerate electron terms. In the case of
the interaction O (2D) + O(*P), we have 18 partially
degenerate electron terms with the ion—atom exchange
interaction ignored and 90 electron terms with the
ion—atom exchange interaction taken into account. Be-
cause this method is cumbersome, it may be simplified
with a partial loss of rigor but with small accuracy
loss. Nevertheless, at least one accurate evaluation is
needed in the asymptotically accurate scheme in order
to know the accuracy of various approximate methods.
This procedure is fulfilled in this paper in the case of
oxygen.

This paper is supported in part by the RFBR, (grant
Ne04-03-32736) and the grant LSS-1958.2003.2.
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