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The kinetics of phase and population relaxation in quantum systems induced by noise with the anomalously

@

slowly decaying correlation function P(t) o< (wt)™

, where 0 < a < 1, is analyzed within the continuous-time

random walk approach. The relaxation kinetics is shown to be anomalously slow. Moreover, for a < 1, in the
limit of short characteristic time of fluctuations w ™!, the kinetics is independent of w. As a — 1, the relax-
ation regime changes from the static limit to fluctuation narrowing. Simple analytical expressions are obtained

describing the specific features of the kinetics.
PACS: 05.40.Fb, 02.50.-r, 76.20.4q

1. INTRODUCTION

The noise-induced relaxation in quantum systems
is a very important process observed in magnetic
resonance [1], quantum optics and nonlinear spec-
troscopy [2], etc. These processes are often analyzed as-
suming conventional stochastic properties of the noise:
fast decay of correlation functions and a short corre-
lation time 7, [1]. In the absence of memory, the re-
laxation is described by very popular Bloch-type equa-
tions. The memory effects are also discussed (within
the Zwanzig projection operator approach [3]), but ei-
ther in the lowest orders in the fluctuating interaction
V that induces the relaxation or by approximate sum-
mation of terms of different orders in V' [4].

Recently, much attention was drawn to the pro-
cesses governed by noises with anomalously slowly de-
caying correlation functions P(t) o t~% with a < 1.
They are discussed in relation to spectroscopic studies
of quantum dots (see [5, 6] and the references therein).
Similar problems are analyzed in the theory of stochas-
tic resonances [7].

Such anomalous processes cannot be properly de-
scribed by methods based on expansion in powers of
V. The goal of this paper is to analyze the correspond-
ing anomalous relaxation within the continuous-time
random walk approach (CTRWA) [8] with the use of
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the recently derived non-Markovian stochastic Liouville
equation (SLE) [9], which enables one to describe re-
laxation kinetics without the above-mentioned approx-
imations (expansions in V'), although assumes the clas-
sical nature of the noise. In some physically reasonable
models, it allows describing the phase and population
relaxation kinetics in the analytical form even for mul-
tilevel systems. In particular, the kinetics is shown to
be strongly nonexponential.

2. GENERAL FORMULATION

We consider noise-induced relaxation in the quan-
tum system whose dynamical evolution is governed by
the Hamiltonian

H(t) = Hs + V(1) (1)
where H; is the term independent of time and V' (t) is
the fluctuating interaction, which models effects of the
noise. The evolution is described by the density matrix
p(t) satisfying the Liouville equation (A = 1)

. (2)
Hp=[H.p] =[Hp— pH].
V(t)-fluctuations are assumed to be symmetric
((V) = 0) and to result from stochastic jumps between
the states |z,) in the (discrete or continuum) space
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{z,} = {2} with different V =V, and H = H, (i.e.,,
different V.=V, =[V,,...] and H = H,):

_ (3)

We use the bra—ket notation |k) and |kk') = |k) (k']
for eigenstates of H (in the original space) and H (in
the Liouville space), respectively, and the notation |z)
for states in the {x}-space.

The macroscopic evolution of the system under
study is determined by the evolution operator ﬁ(t) in
the Liouville space averaged over V (¢)-fluctuations,

N

p(t) =R(t)pi,
R(t) = ZA(JE,ocilt)PE (24), (4)

where G (2, 2'|t) is the averaged evolution operator and
P.(z) is the equilibrium distribution in the {z}-space.

Non-Markovian V (t)-fluctuations are described
with the use of the CTRWA (which leads to the
non-Markovian SLE [9] for G(£)). It treats fluctuations
as a sequence of sudden changes of V. The onset of
any particular change labeled by j is described by the
matrix If’j,l (in the {z}-space) of the probabilities not
to have any change during time ¢ and its derivative

. dpb;_ (t
W 1(t) = —%().

These matrices are diagonal and independent of j:

Por(t) = P(o). Wit = (0 = =200 sy,
except
Pty = (D). TWo(t) = Wi(e) = ~ 20

depending on the problem considered. For nonstation-
ary (n) and stationary (s) fluctuations [8],

respectively, where

tw = /dT W (r)
0

is the matrix of average times of waiting for the
change [8].

In what follows, we mainly operate with the Laplace
transforms denoted as

oo

Z(e) = /dtZ(t)e—ft

for any function Z(t). In particular, noteworthy is the
relation

Py = 1 Wyto

€

and suitable representations

W(e) = [1+d(e)] ", 5
P(e) = e +¢/8(e)] !

in terms of a diagonal matrix ®(¢) with

B(e) R’ (e/i)°,

where w is a constant matrix and o < 1 (see below).
Evolution in the {a}-space is governed by the jump
operator

~ A~

L=1-7P,

where P is the nondiagonal matrix of jump probabili-
ties. This evolution results in relaxation to the equilib-
rium state |e, ), satisfying the equation

Li®|e,) =0
and represented as

€z) = ZPE(I')‘@-,

(eal = D (2l

T

(see [9]). We note that (see Eq. (4))
R(t) = (eslGles) = (9). (6)

The CTRWA leads to the non-Markovian SLE for
G(x,x;[t) [9]. Solving this SLE yields [9]

G = Pi(Q) + 01 @)[6(Q) + L]7PWL(Q),  (7)

where
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In particular, in the case of n-fluctuations (W, = W),

~

g

A~

(9)

For s-fluctuations (W, = Ws),

A~

g:

A~
~ ~ .

Q' — G L0,

Hereafter, for brevity, we omit the argument Q of all
Laplace transforms if this does not result in confusion.

3. USEFUL MODELS AND APPROACHES

3.1. Sudden relaxation model

The sudden relaxation model (SRM) [9] assumes
sudden equilibration in the {z}-space described by the
operator

L=(1-lea)(ea)Q ",
0 =1-3 P} al, (10)
where
leo) =Y Po(z)|z),  (eol = (al.
For this EA.,
ez) = qleo),
. Que (11)
T lealQuo e
and

(ea| = (eol:

In model (10), one obtains

and . o .
Wao, = Wi(Wa/W).

3.2. Short correlation time limit

In practical applications, of special importance is
the short correlation time limit (SCTL) for V (¢)-fluc-
tuations, in which Eq. (12) can be markedly simplified.
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It corresponds to large characteristic rates w, of the
dependence ®(Q2) = ¢(2/w,):

we > [[V].

In this limit, the relaxation kinetics is described by the
first terms of the expansion of ®({2/w,) in small Q/w..,
because ®(¢) is an increasing function of ¢ with

®(e)

€e—0

— 0.

Some important general conclusions, however, can be
made independently of the form of ®(£) (see below).

3.3. Models for quantum evolution and
fluctuations

The obtained general results are conveniently il-
lustrated with the quantum two-level model and the
stochastic two-state SRM for V' (¢)-fluctuations.

Quantum evolution of the two-level system is gov-
erned by the Hamiltonian (assumed to be a real matrix)

ws | 1 0
Hs = 5 ;
o )
(14)
Y= Vd Vn ‘+>
Vo —Va ‘_> ‘

The two-state SRM suggests that fluctuations re-
sult from jumps between two states (in the {a}-space),
for example, |z ) and |x_), whose kinetics is described
by

L£=2(1—lex)(ex]),
(15)

le2) = glles) + o).

Below, we consider two examples of these models.
1. Diagonal noise [10]:
ws =0, V,=0,

Va = wo(lz4 ) (24| — o) {z-]),

and
Hyms = 2o 4)(H = |)-). (16)
2. Nondiagonal noise:
Va=0, Vo=l el = e e ),
and hence
Hyes = Hy % o([#)(-] + |-)(4). (D)
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The first model describes dephasing and the second <,u\7é(t)\u> = exp(—iw,t) Ry, (1), (24)
is useful for studying population relaxation. (n=n,+—, —4),
In model (14), dephasing and population relaxation
are characterized by two functions. where N
1. The spectrum I(w), which is taken in the form wu = (ulHslu), kn = 2Re(k—),
corresponding to Fourier transformed free-induction- 1 S
decay (FTFID) experiments [11] ko =k, = §W;2<Vn i [ = Wq(2iws)]Va). (25)

1 A
I(w) = - Re(s|R (iw)]s). (18)
2. The difference of level populations
N(#) = (n|R(t)|n). (19)
In these two functions,
) = Z5ll+=) + 1=+,
(20)

1
\n>=ﬁ\\++>—\——>>-

4. GENERAL RESULTS IN THE SCTL

Within the SCTL (||V]|/w. < 1), especially simple
results are obtained for ||Hg||/w. < 1. In the lowest
order in ||®(Q/w,)|| < 1,

AR n O0RQ) (1)
(1Q% ()
_ o0 e@) 02)
(W@ (€))

This formula holds for any initial matrix Wl and, in
particular, for s-fluctuations, if

1

il ~ — <
wl|| ~ — Q= .
we 4

Cc

The more complicated SCTL-case

| Hs|| /we =~ 1

can be analyzed by expanding G in powers of the pa-
rameter
E=VII/IIHs || < 1.

In particular, within the general two-level model
(Eq. (14)) with V; = 0, in the second order in &, the di-
agonal and nondiagonal elements of p(t) are decoupled
and the corresponding elements of ﬁ(t) are expressed
in terms of the universal function

ezet

de — = (23)
€+ ke/{®(e))
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5. ANOMALOUS FLUCTUATIONS

The simplest model for anomalous fluctuations can
be written as [12]

®(e) = (e/w)*,
where w is the matrix of fluctuation rates, diagonal in
the |x)-basis. For simplicity, @ is assumed to be in-
dependent of z, i.e., w w (this parameter can be

associated with w, mentioned above). Model (26) de-
scribes the anomalously slow decay of the matrix

W(t) o 1/t1+

0<a<l, (26)

(very long memory effects in the system [12]), for which
only the case of n-fluctuations is physically sensible.
In SCTL (22), model (26) yields the expression

Rale) = (271 ())(Q2(e))

. . (27)
N(e) =e+iH,

which shows that R, () (and R, (t)) is independent

of the characteristic rate w. For o = 0 and a = 1,

Eq. (27) reproduces the static and fluctuation narrow-

ing limits [1]:

Ra(e) = (27" (€))

and

Q(e))
respectively.

Of certain interest is the limit as & — 1, in which
formula (27) predicts the Bloch-type exponential relax-
ation

~

Ran(€)

e+iH, + (a — D(QIQ))eso|

~
~

(28)
controlled by the relaxation rate matrix
W, = (a — 1) Re(QIn(Q))es0
and accompanied by frequency shifts represented by
h=i(a—1)Im(QIn(Q)) 0.

However, the matrices W, and h (unlike those in the
conventional Bloch equation) are independent of the
characteristic rate w of V'(t)-fluctuations.
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5.1. Dephasing for diagonal noise

In model (16), the spectrum I(w) can be obtained

3

in the general SRM (10),

YOPs gLy

1) = e fyayr s (a7 + 20209 contra)” 27
where
Vi (@) = (|w = 2Va B[ (w — 2V2)])
with 0(z) being the Heaviside step-function and
ne = sin(ra) /.
In the two-state SRM (16),
—1
1) = 3,000 35 +1;fay+ 2-|(;025(7ro¢) 60
where o+ w
wo — w

(see also Ref. [6]). According to this formula, the
anomalous dephasing (unlike the conventional one [1])
leads to broadening of I(w) only in the region |w| < wy
and singular behavior of I(w) at w — Fwy:

1

e s

~

For a > a. 0.59 (a, satisfies the relation
a. = cos(ma./2)), the two-state-SRM formula also pre-
dicts the occurrence of the central peak (at w = 0) [6]

of the Lorenzian shape and width
wo cos(ma/2)

b= Va2 = cos?(ra/2)’

1 tg(ra/2)wy
I(UJ) ~ % 1+ (OJ/U)LO)2 3

whose intensity increases with the increase of a — a,
(Fig. 1). At a ~ 1, the parameters of this peak are
reproduced by Eq. (28) in which

Q) = —gwo.

The origin of the peak indicates the transition from
static broadening at a < 1 to narrowing at a ~ 1
(see Eq. (27)). For systems with complex spectra, this
transition can, of course, be strongly smoothed. The
behavior of I(w) is illustrated in Fig. 1 for different
values of the parameters of the model.
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Fig.1. The spectrum I(z) = I(w)wo, where z =

w/wo, calculated in model (16) (using Eq. (29))
for different values of @« = 5 (1), 7 (2), 8 (3), and
9 (4)

5.2. Dephasing for nondiagonal noise

The model in Eq. (17) allows revealing some addi-
tional specific features of dephasing. We restrict our-
selves to the analysis of the case where ||Hs|| ~ ws 2 w
and the most interesting part of the spectrum at
|w] ~ ws. Equations (23) and (24) show that the
elements (u|R(t)|u), (u +—, —+), which describe
phase relaxation, are then given by

(R (8)|1) = exp(—iw,t) o[-k (wt)?], (31)
where '
100 d v
_ N —1 ye
Eo(—z) = (2mi) / I
—1100
is the Mittag—Leffler function [12]. Therefore, for
w| ~ ws,
I(w) = Ip(ws + w) + lo(ws —w), (32)
where
Io(w) = ng sing, (|2t +|z[ ~*+2|2| cosg, )™ (33)
with
- w _ 1 -1
TS ey Mo = (e /ew)™t,
T
i 2
+ sign z arctg sin(ra/2) (34)

cos(ma/2) + 270wy /w
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Formula (32) predicts singular behavior of I(w) at

w ~ fws: )

@)~ gao e

and slow decrease of I(w) with the increase of |w % ws|:

1

I(OJ) ~ 7‘(-0 iws‘1+0‘.

In the limit wy/w < 1, we have
. ~ Tab(x)

and hence
Iy(w) ~ B(w).

This implies that for ws/w < 1, the spectrum I(w) is
localized in the region |w| < ws and looks similar to
I(w) for diagonal dephasing at a < a.. For wg/w 2 1,
however, I(w) is nonzero outside this region; moreover,
in the limit ws/w > 1, the spectrum Iy(w) becomes
symmetric, Io(w) = I[o(—w), similarly to the conven-
tional spectra.

It is worth noting that for ws/w < 1, the func-
tions (u|R(t)|p) and I(w) are independent of w (in
agreement with Eq. (22)) because k, o (ws/w)® and
Ey(wt)® o (wst)®. In the opposite limit, however,
k, ~ wP and therefore the characteristic relaxation
time behaves as w 1.

5.3. Population relaxation

Specific features of the anomalous population relax-
ation can be analyzed with the model of nondiagonal
noise (17).

In particular, in the respective limits ||Hg|| ~ ws =
2w and 1 —a < 1, Egs. (23), (24), and (28) imply

that

N(t) = Eq|—kn(wt)®], N(t) = exp(—wat), (35)
where E,(—=z) is the Mittag— Leffler function defined
above and

W R kp(a = Nw~1-a.

The first of these formulas predicts a very slow popu-
lation relaxation at

t>T1, =w"

1(]%1/11))1/0(7

namely,
N(t) o< 1/t*.

Similarly to I(w), the function N (#) is in fact indepen-
dent of w in the limit w, /w < 1 because k,, o< (ws/w)®
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Fig.2. Population relaxation kinetics N(7), where
7 = Eot, calculated with Eq. (36) (a) for large a and
different r = 2v/ws: @ =0.95, r =1.0 (1); a = 0.95,
r=20(2);a=083,r=10(3); a=0.88, r=2.0
(4); and (b) for small @ = 0.3 (solid line) and o = 0.5
(dashed line) (r = 0.7). Straight lines in figures a and b
represent exponential (Eq. (35)) and ¢t~ dependences,
respectively (in a, they are shown by dashed lines)

in this case. In the opposite limit ws/w > 1, the char-
acteristic time population relaxation behaves as w™!
because k,, is independent of w (as in the case of phase
relaxation).

In the limit [|H|, ||V|] < w, we obtain

a—1 2
o W2 + 40200 ()
" 2mi /d w2e + 4020, (e) (36)
where
Qp(e) = [(e+2iEo)” + (e — 2iEy)P)/2  (37)
and

Ey = Vv +w?/4.

Naturally, in the corresponding limits, expression (36)
reproduces formulas (35) with

kp = 297! cos(ma/2)(Fo /w)®
and
we ~ (1 —a)v?/Fy
(see Fig. 2). Outside these limits, N(¢) can be evalu-

ated numerically (some results are shown in Fig. 2). In
general, N (t) is the oscillating function (of frequency
~ FEy) with slowly decreasing average value and oscil-
lation amplitude: for Egt > 1
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N(t) ~ 1/t

(except in the limit as a — 1).

6. CONCLUDING REMARKS

The presented analysis of relaxation kinetics in
quantum systems induced by anomalous noise demon-
strates a number of peculiarities of this kinetics. The
peculiarities are analyzed with the use of the two-
level quantum model, as an example, although the ob-
served anomalous effects can manifest themselves in
more complicated multi-level quantum systems. The
proposed theoretical method is quite suitable for the
analysis of these systems. This work is currently in
progress.

Noteworthy is that in some limits, the developed
theory predicts relaxation kinetics described by the
Mittag — Leffler function E, [—(wt)?]. Following a num-
ber of recent works (for review, see Ref. [12]) this ki-
netics can be considered as a result of the anomalous
Bloch equation with a fractional time derivative. For
brevity, we have not discussed the corresponding rep-
resentations.

It is also interesting to note that with the increase of
a, the effects of anomaly of fluctuations decrease but
still persist. To clarify them, we briefly consider the
model

B(e) = (e/w) + ((e/w)' ™,

in which 0 < a < 1, and w and ( are constants with
¢ < 1 (a small value of ¢ ensures that W(t) > 0).
Possible effects can be analyzed within the SCTL with
the use of Eqs. (22)—(24). For example, in the limit
[|[H||/w < 1, we obtain the formula

R~ e+ iH, + Cw *((H)'* — (iH,) o)1,

predicting the Bloch-type relaxation of both phase and
population, but with the rate

W, = Cw “Re((iH)' " — (iH,)'**)
that depends on w as w™® and is therefore slower than

in the conventional Bloch equation (W, ~ 1w, [1]).
Analysis also shows that in the expression for R, the

terms proportional to w(e/w)'** occur as well. They
lead to the inverse power- type asymptotic behavior of

(R o 1/8+,

observed, however, only at very long times ¢ > w™!.

In our brief analysis, we neglected the effect of a
possible natural width of lines corresponding to the
additional slow exponential relaxation in the system.
It is clear that the developed method allows taking
these effects into account straightforwardly whenever
needed.

This paper was supported in part by the RFBR
(grant Ne(03-03-32253).
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