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NON-MARKOVIAN STOCHASTIC LIOUVILLE EQUATION ANDANOMALOUS QUANTUM RELAXATION KINETICSA. I. Shushin *Institute of Chemi
al Physi
s, Russian A
ademy of S
ien
es117977, Mos
ow, RussiaSubmitted 25 January 2005The kineti
s of phase and population relaxation in quantum systems indu
ed by noise with the anomalouslyslowly de
aying 
orrelation fun
tion P (t) / (wt)��, where 0 < � < 1, is analyzed within the 
ontinuous-timerandom walk approa
h. The relaxation kineti
s is shown to be anomalously slow. Moreover, for � < 1, in thelimit of short 
hara
teristi
 time of �u
tuations w�1, the kineti
s is independent of w. As � ! 1, the relax-ation regime 
hanges from the stati
 limit to �u
tuation narrowing. Simple analyti
al expressions are obtaineddes
ribing the spe
i�
 features of the kineti
s.PACS: 05.40.Fb, 02.50.-r, 76.20.+q1. INTRODUCTIONThe noise-indu
ed relaxation in quantum systemsis a very important pro
ess observed in magneti
resonan
e [1℄, quantum opti
s and nonlinear spe
-tros
opy [2℄, et
. These pro
esses are often analyzed as-suming 
onventional sto
hasti
 properties of the noise:fast de
ay of 
orrelation fun
tions and a short 
orre-lation time �
 [1℄. In the absen
e of memory, the re-laxation is des
ribed by very popular Blo
h-type equa-tions. The memory e�e
ts are also dis
ussed (withinthe Zwanzig proje
tion operator approa
h [3℄), but ei-ther in the lowest orders in the �u
tuating intera
tionV that indu
es the relaxation or by approximate sum-mation of terms of di�erent orders in V [4℄.Re
ently, mu
h attention was drawn to the pro-
esses governed by noises with anomalously slowly de-
aying 
orrelation fun
tions P (t) / t�� with � < 1.They are dis
ussed in relation to spe
tros
opi
 studiesof quantum dots (see [5, 6℄ and the referen
es therein).Similar problems are analyzed in the theory of sto
has-ti
 resonan
es [7℄.Su
h anomalous pro
esses 
annot be properly de-s
ribed by methods based on expansion in powers ofV . The goal of this paper is to analyze the 
orrespond-ing anomalous relaxation within the 
ontinuous-timerandom walk approa
h (CTRWA) [8℄ with the use of*E-mail: shushin�
hph.ras.ru

the re
ently derived non-Markovian sto
hasti
 Liouvilleequation (SLE) [9℄, whi
h enables one to des
ribe re-laxation kineti
s without the above-mentioned approx-imations (expansions in V ), although assumes the 
las-si
al nature of the noise. In some physi
ally reasonablemodels, it allows des
ribing the phase and populationrelaxation kineti
s in the analyti
al form even for mul-tilevel systems. In parti
ular, the kineti
s is shown tobe strongly nonexponential.2. GENERAL FORMULATIONWe 
onsider noise-indu
ed relaxation in the quan-tum system whose dynami
al evolution is governed bythe Hamiltonian H(t) = Hs + V (t); (1)where Hs is the term independent of time and V (t) isthe �u
tuating intera
tion, whi
h models e�e
ts of thenoise. The evolution is des
ribed by the density matrix�(t) satisfying the Liouville equation (~ = 1)_� = �iĤ(t)�;Ĥ� = [H; �℄ = [H�� �H ℄: (2)V (t)-�u
tuations are assumed to be symmetri
(hV i = 0) and to result from sto
hasti
 jumps betweenthe states jx�i in the (dis
rete or 
ontinuum) spa
e675



A. I. Shushin ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005fx�g � fxg with di�erent V = V� and H = H� (i.e.,di�erent V̂ = V̂� � [V� ; : : : ℄ and Ĥ = Ĥ�):V̂ =X� jx�iV̂�hx� j;Ĥ =X� jx�iĤ�hx� j: (3)We use the bra�ket notation jki and jkk0i � jkihk0jfor eigenstates of H (in the original spa
e) and Ĥ (inthe Liouville spa
e), respe
tively, and the notation jxifor states in the fxg-spa
e.The ma
ros
opi
 evolution of the system understudy is determined by the evolution operator R̂(t) inthe Liouville spa
e averaged over V (t)-�u
tuations,�(t) = R̂(t)�i;R̂(t) = Xx;xiĜ(x; xijt)Pe(xi); (4)where Ĝ(x; x0jt) is the averaged evolution operator andPe(x) is the equilibrium distribution in the fxg-spa
e.Non-Markovian V (t)-�u
tuations are des
ribedwith the use of the CTRWA (whi
h leads to thenon-Markovian SLE [9℄ for Ĝ(t)). It treats �u
tuationsas a sequen
e of sudden 
hanges of V̂ . The onset ofany parti
ular 
hange labeled by j is des
ribed by thematrix P̂j�1 (in the fxg-spa
e) of the probabilities notto have any 
hange during time t and its derivativeŴj�1(t) = �dP̂j�1(t)dt :These matri
es are diagonal and independent of j:P̂j�1(t) = P̂ (t); Ŵj�1(t) = Ŵ (t) = �dP̂ (t)dt ; j > 1;ex
eptP̂0(t) � P̂i(t); Ŵ0(t) � Ŵi(t) = �dP̂i(t)dtdepending on the problem 
onsidered. For nonstation-ary (n) and stationary (s) �u
tuations [8℄,Ŵi(t) = Ŵn(t) = Ŵ (t);Ŵi(t) = Ŵs(t) = t̂�1w 1Zt d� Ŵ (�);respe
tively, wherêtw = 1Z0 d� �Ŵ (�)

is the matrix of average times of waiting for the
hange [8℄.In what follows, we mainly operate with the Lapla
etransforms denoted aseZ(�) = 1Z0 dtZ(t)e��tfor any fun
tion Z(t). In parti
ular, noteworthy is therelation êP j(�) = 1� f̂W j(�)�and suitable representationsf̂W (�) = [1 + �̂(�)℄�1;êP (�) = [�+ �=�̂(�)℄�1 (5)in terms of a diagonal matrix �̂(�) with�̂(�) �!0� (�=ŵ)�;where ŵ is a 
onstant matrix and � � 1 (see below).Evolution in the fxg-spa
e is governed by the jumpoperator L̂ = 1� P̂ ;where P̂ is the nondiagonal matrix of jump probabili-ties. This evolution results in relaxation to the equilib-rium state jexi, satisfying the equationL̂ŵ�jexi = 0and represented asjexi =Xx Pe(x)jxi;hexj =Xx hxj(see [9℄). We note that (see Eq. (4))R̂(t) = hexjĜjexi � hĜi: (6)The CTRWA leads to the non-Markovian SLE forĜ(x; xijt) [9℄. Solving this SLE yields [9℄êG = êP i(
̂) + 
̂�1�̂(
̂)[�̂(
̂) + L̂℄�1P̂f̂W i(
̂); (7)where L̂ = 1� P̂ ;
̂ = �+ iĤ: (8)676



ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005 Non-Markovian sto
hasti
 Liouville equation : : :In parti
ular, in the 
ase of n-�u
tuations (Ŵi = Ŵ ),êG = êGn = 
̂�1�̂(�̂ + L̂)�1: (9)For s-�u
tuations (Ŵi = Ŵs),êG = 
̂�1 � êGnL̂(
̂t̂w)�1:Hereafter, for brevity, we omit the argument 
̂ of allLapla
e transforms if this does not result in 
onfusion.3. USEFUL MODELS AND APPROACHES3.1. Sudden relaxation modelThe sudden relaxation model (SRM) [9℄ assumessudden equilibration in the fxg-spa
e des
ribed by theoperator L̂ = (1� je0ihe0j)Q̂�1;Q̂ = 1�Xx P0(x)jxihxj; (10)where je0i =Xx P0(x)jxi; he0j =Xx hxj:For this L̂, jexi = q̂je0i;q̂ = Q̂ŵ��he0jQ̂ŵ��je0i (11)and hexj = he0j:In model (10), one obtainsêRi = h êPQii+ hq̂�1 ePQi[1� hq̂�1f̂WQi℄�1hf̂WQii (12)for any f̂W i, whereêPQi = 1� f̂WQi
̂ ; f̂WQ = (1 + �̂Q̂)�1 (13)and f̂WQi = f̂W i(f̂WQ=f̂W ):3.2. Short 
orrelation time limitIn pra
ti
al appli
ations, of spe
ial importan
e isthe short 
orrelation time limit (SCTL) for V (t)-�u
-tuations, in whi
h Eq. (12) 
an be markedly simpli�ed.

It 
orresponds to large 
hara
teristi
 rates w
 of thedependen
e �̂(
̂) � �̂(
̂=w
):w
 � kV k:In this limit, the relaxation kineti
s is des
ribed by the�rst terms of the expansion of �̂(
̂=w
) in small 
̂=w
,be
ause �̂(�) is an in
reasing fun
tion of � with�̂(�) �!0�! 0:Some important general 
on
lusions, however, 
an bemade independently of the form of �̂(
) (see below).3.3. Models for quantum evolution and�u
tuationsThe obtained general results are 
onveniently il-lustrated with the quantum two-level model and thesto
hasti
 two-state SRM for V (t)-�u
tuations.Quantum evolution of the two-level system is gov-erned by the Hamiltonian (assumed to be a real matrix)Hs = !s2 " 1 00 �1 # ;V = " Vd VnVn �Vd # j+ij�i : (14)The two-state SRM suggests that �u
tuations re-sult from jumps between two states (in the fxg-spa
e),for example, jx+i and jx�i, whose kineti
s is des
ribedby L̂ = 2(1� jexihexj);jexi = 12 ��jx+i+ jx�i�: (15)Below, we 
onsider two examples of these models.1. Diagonal noise [10℄:!s = 0; Vn = 0;Vd = !0(jx+ihx+j � jx�ihx�j);and H�=� = �12 !0(j+ih+j � j�ih�j): (16)2. Nondiagonal noise:Vd = 0; Vn = v(jx+ihx+j � jx�ihx�j);and hen
eH�=� = Hs � v(j+ih�j + j�ih+j): (17)677



A. I. Shushin ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005The �rst model des
ribes dephasing and the se
ondis useful for studying population relaxation.In model (14), dephasing and population relaxationare 
hara
terized by two fun
tions.1. The spe
trum I(!), whi
h is taken in the form
orresponding to Fourier transformed free-indu
tion-de
ay (FTFID) experiments [11℄I(!) = 1� Rehsj êR(i!)jsi: (18)2. The di�eren
e of level populationsN(t) = hnjR̂(t)jni: (19)In these two fun
tions,jsi = 1p2 ��j+�i+ j�+i�;jni = 1p2 ��j++i � j��i�: (20)4. GENERAL RESULTS IN THE SCTLWithin the SCTL (kV k=w
 � 1), espe
ially simpleresults are obtained for kHsk=w
 � 1. In the lowestorder in k�̂(
̂=w
)k � 1,êR � êRn � hq̂�1Q̂
̂�1�̂(
̂)ihq̂�1Q̂�̂(
̂)i = (21)= hŵ�
̂�1�̂(
̂)ihŵ��̂(
̂)i : (22)This formula holds for any initial matrix f̂W i and, inparti
ular, for s-�u
tuations, ifkt̂wk � 1w
 � 1k
̂k :The more 
ompli
ated SCTL-
asekHsk=w
 � 1
an be analyzed by expanding êG in powers of the pa-rameter � = kV k=kHsk � 1:In parti
ular, within the general two-level model(Eq. (14)) with Vd = 0, in the se
ond order in �, the di-agonal and nondiagonal elements of �(t) are de
oupledand the 
orresponding elements of R̂(t) are expressedin terms of the universal fun
tionRk(t) = 12�i i1Z�i1 d� ei�t�+ k�=h�̂(�)i ; (23)

h�jR̂(t)j�i = exp(�i!�t)Rk�(t);(� = n;+�; �+); (24)where !� = h�jĤsj�i; kn = 2Re(k+�);k+� = k��+ = 12!�2s hVnq̂�1[1� f̂WQ(2i!s)℄Vni: (25)5. ANOMALOUS FLUCTUATIONSThe simplest model for anomalous �u
tuations 
anbe written as [12℄�̂(�) = (�=ŵ)�; 0 < � < 1; (26)where ŵ is the matrix of �u
tuation rates, diagonal inthe jxi-basis. For simpli
ity, ŵ is assumed to be in-dependent of x, i.e., ŵ � w (this parameter 
an beasso
iated with w
 mentioned above). Model (26) de-s
ribes the anomalously slow de
ay of the matrixŴ (t) / 1=t1+�(very long memory e�e
ts in the system [12℄), for whi
honly the 
ase of n-�u
tuations is physi
ally sensible.In SCTL (22), model (26) yields the expressionêRn(�) = h
̂��1(�)ih
̂�(�)i�1;
̂(�) = �+ iĤ; (27)whi
h shows that êRn(�) (and R̂n(t)) is independentof the 
hara
teristi
 rate w. For � = 0 and � = 1,Eq. (27) reprodu
es the stati
 and �u
tuation narrow-ing limits [1℄: êRn(�) = h
̂�1(�)iand êRn(�) = 1h
̂(�)i ;respe
tively.Of 
ertain interest is the limit as � ! 1, in whi
hformula (27) predi
ts the Blo
h-type exponential relax-ation̂eRn(�) � h�+ iĤs + (�� 1)h
̂ ln(
̂)i�!0i�1 ; (28)
ontrolled by the relaxation rate matrixŴr = (� � 1)Reh
̂ ln(
̂)i�!0and a

ompanied by frequen
y shifts represented byĥ = i(�� 1) Imh
̂ ln(
̂)i�!0:However, the matri
es Ŵr and ĥ (unlike those in the
onventional Blo
h equation) are independent of the
hara
teristi
 rate w of V (t)-�u
tuations.678



ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005 Non-Markovian sto
hasti
 Liouville equation : : :5.1. Dephasing for diagonal noiseIn model (16), the spe
trum I(!) 
an be obtainedin the general SRM (10),I(!) = n�  �� ��1+ +  ��1�  �+( ��)2 + ( �+)2 + 2 �� �+ 
os(��) ; (29)where  ��(!) = hj! � 2Vdj��[�(! � 2Vd)℄iwith �(z) being the Heaviside step-fun
tion andn� = sin(��)=�:In the two-state SRM (16),I(!) = n�2!0 �(y) y + y�1 + 2y� + y�� + 2 
os(��) ; (30)where y = !0 + !!0 � !(see also Ref. [6℄). A

ording to this formula, theanomalous dephasing (unlike the 
onventional one [1℄)leads to broadening of I(!) only in the region j!j < !0and singular behavior of I(!) at ! ! �!0:I(!) � 1(! � !0)1�� :For � > �
 � 0:59 (�
 satis�es the relation�
 = 
os(��
=2)), the two-state-SRM formula also pre-di
ts the o

urren
e of the 
entral peak (at ! = 0) [6℄of the Lorenzian shape and widthwL � !0 
os(��=2)p�2 � 
os2(��=2) ;I(!) � 12� tg(��=2)!�101 + (!=wL)2 ;whose intensity in
reases with the in
rease of � � �
(Fig. 1). At � � 1, the parameters of this peak arereprodu
ed by Eq. (28) in whi
hh
̂ ln 
̂i� = ��2!0:The origin of the peak indi
ates the transition fromstati
 broadening at � � 1 to narrowing at � � 1(see Eq. (27)). For systems with 
omplex spe
tra, thistransition 
an, of 
ourse, be strongly smoothed. Thebehavior of I(!) is illustrated in Fig. 1 for di�erentvalues of the parameters of the model.
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Fig. 1. The spe
trum I(x) = I(!)!0, where x == !=!0, 
al
ulated in model (16) (using Eq. (29))for di�erent values of � = 5 (1 ), 7 (2 ), 8 (3 ), and9 (4 )5.2. Dephasing for nondiagonal noiseThe model in Eq. (17) allows revealing some addi-tional spe
i�
 features of dephasing. We restri
t our-selves to the analysis of the 
ase where kHsk � !s & wand the most interesting part of the spe
trum atj!j � !s. Equations (23) and (24) show that theelements h�jR(t)j�i; (� = +�; �+); whi
h des
ribephase relaxation, are then given byh�jR(t)j�i = exp(�i!�t)E�[�k�(wt)�℄; (31)where E�(�z) = (2�i)�1 i1Z�i1 dy eyy + zy1��is the Mittag � Le�er fun
tion [12℄. Therefore, forj!j � !s, I(!) = I0(!s + !) + I0(!s � !); (32)whereI0(!) = n0 sin�x(jxj1+�+jxj1��+2jxj 
os�x)�1 (33)with x = !jk+�j1=�w; n0 = (�jk+�j1=�w)�1;�x = ��2 ++ signx ar
tg� sin(��=2)
os(��=2) + 2���1!s=w� : (34)679



A. I. Shushin ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005Formula (32) predi
ts singular behavior of I(!) at! � �!s: I(!) � 1j! � !sj1�� ;and slow de
rease of I(!) with the in
rease of j!�!sj:I(!) � 1j! � !sj1+� :In the limit !s=w � 1, we have�x � ���(x)and hen
e I0(!) � �(!):This implies that for !s=w � 1, the spe
trum I(!) islo
alized in the region j!j < !s and looks similar toI(!) for diagonal dephasing at � < �
. For !s=w & 1,however, I(!) is nonzero outside this region; moreover,in the limit !s=w � 1, the spe
trum I0(!) be
omessymmetri
, I0(!) = I0(�!), similarly to the 
onven-tional spe
tra.It is worth noting that for !s=w � 1, the fun
-tions h�jR(t)j�i and I(!) are independent of w (inagreement with Eq. (22)) be
ause k� / (!s=w)� andk�(wt)� / (!st)�. In the opposite limit, however,k� � w0, and therefore the 
hara
teristi
 relaxationtime behaves as w�1.5.3. Population relaxationSpe
i�
 features of the anomalous population relax-ation 
an be analyzed with the model of nondiagonalnoise (17).In parti
ular, in the respe
tive limits kHsk � !s && w and 1 � � � 1, Eqs. (23), (24), and (28) implythatN(t) = E�[�kn(wt)�℄; N(t) = exp(�w�t); (35)where E�(�x) is the Mittag � Le�er fun
tion de�nedabove and w� � kn(�! 1)w � 1� �:The �rst of these formulas predi
ts a very slow popu-lation relaxation att > �r = w�1(kn=w)1=�;namely, N(t) / 1=t�:Similarly to I(!), the fun
tion N(t) is in fa
t indepen-dent of w in the limit !s=w � 1 be
ause kn / (!s=w)�

ττ

NN

1

0.1

4 3 2 1
à b

0 5 10 15 20 1 10 100Fig. 2. Population relaxation kineti
s N(�), where� = E0t, 
al
ulated with Eq. (36) (a) for large � anddi�erent r = 2v=!s: � = 0:95, r = 1:0 (1 ); � = 0:95,r = 2:0 (2 ); � = 0:88, r = 1:0 (3 ); � = 0:88, r = 2:0(4 ); and (b) for small � = 0:3 (solid line) and � = 0:5(dashed line) (r = 0:7). Straight lines in �gures a and brepresent exponential (Eq. (35)) and t�� dependen
es,respe
tively (in a, they are shown by dashed lines)in this 
ase. In the opposite limit !s=w > 1, the 
har-a
teristi
 time population relaxation behaves as w�1be
ause kn is independent of w (as in the 
ase of phaserelaxation).In the limit kHsk; kV k � w, we obtainN(t) = 12�i i1Z�i1d� e�t !2s���1 + 4v2
��1(�)!2s�� + 4v2
�(�) ; (36)where 
�(�) = [(�+ 2iE0)� + (�� 2iE0)� ℄=2 (37)and E0 =pv2 + !2s=4:Naturally, in the 
orresponding limits, expression (36)reprodu
es formulas (35) withkn � 2��1 
os(��=2)(E0=w)�and w� � �(1� �)v2=E0(see Fig. 2). Outside these limits, N(t) 
an be evalu-ated numeri
ally (some results are shown in Fig. 2). Ingeneral, N(t) is the os
illating fun
tion (of frequen
y� E0) with slowly de
reasing average value and os
il-lation amplitude: for E0t� 1680



ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005 Non-Markovian sto
hasti
 Liouville equation : : :N(t) � 1=t�(ex
ept in the limit as �! 1).6. CONCLUDING REMARKSThe presented analysis of relaxation kineti
s inquantum systems indu
ed by anomalous noise demon-strates a number of pe
uliarities of this kineti
s. Thepe
uliarities are analyzed with the use of the two-level quantum model, as an example, although the ob-served anomalous e�e
ts 
an manifest themselves inmore 
ompli
ated multi-level quantum systems. Theproposed theoreti
al method is quite suitable for theanalysis of these systems. This work is 
urrently inprogress.Noteworthy is that in some limits, the developedtheory predi
ts relaxation kineti
s des
ribed by theMittag � Le�er fun
tion E�[�(wt)�℄. Following a num-ber of re
ent works (for review, see Ref. [12℄) this ki-neti
s 
an be 
onsidered as a result of the anomalousBlo
h equation with a fra
tional time derivative. Forbrevity, we have not dis
ussed the 
orresponding rep-resentations.It is also interesting to note that with the in
rease of�, the e�e
ts of anomaly of �u
tuations de
rease butstill persist. To 
larify them, we brie�y 
onsider themodel �(�) = (�=w) + �(�=w)1+�;in whi
h 0 < � < 1, and w and � are 
onstants with� � 1 (a small value of � ensures that W (t) > 0).Possible e�e
ts 
an be analyzed within the SCTL withthe use of Eqs. (22)�(24). For example, in the limitkHk=w� 1, we obtain the formulaeR � [�+ iĤs + �w��h(iĤ)1+� � (iĤs)1+�i℄�1;predi
ting the Blo
h-type relaxation of both phase andpopulation, but with the rateŴr = �w�� Reh(iĤ)1+� � (iĤs)1+�ithat depends on w as w�� and is therefore slower thanin the 
onventional Blo
h equation (Ŵr � 1=w, [1℄).Analysis also shows that in the expression for eR, the

terms proportional to w(�=w)1+� o

ur as well. Theylead to the inverse power- type asymptoti
 behavior ofh�jR̂(t)j�i / 1=t2+�;observed, however, only at very long times t� w�1.In our brief analysis, we negle
ted the e�e
t of apossible natural width of lines 
orresponding to theadditional slow exponential relaxation in the system.It is 
lear that the developed method allows takingthese e�e
ts into a

ount straightforwardly wheneverneeded.This paper was supported in part by the RFBR(grant � 03-03-32253).REFERENCES1. A. Abragam, The Prin
iples of Nu
lear Magnetism,Clarendon Press, Oxford (1961).2. S. Mukamel, Prin
iples of Nonlinear Opti
al Spe
t-ros
opy, Oxford Unviersity Press, Oxford (1995).3. D. Forster, Hydrodynami
 Flu
tuations, Broken Sym-metry, and Correlation Fun
tions, W. A. BenjaminIn
., London (1975).4. P. N. Argyres and P. L. Kelley, Phys. Rev. A 134, 98(1964).5. K. Shimizu, R. G. Neuhauser et al., Phys. Rev. B 63,205316 (2001).6. Y. Jung, E. Barkai, and R. J. Silbey, Adv. Chem. Phys.123, 199 (2002).7. I. Goy
huk and P. Hänggi, Phys. Rev. E 69, 021104(2004).8. J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263(1987).9. A. I. Shushin, Phys. Rev. E 64, 051108 (2001); E 67,061107 (2003).10. P. W. Anderson, J. Phys. So
. Jpn. B 9, 316 (1954).11. H. van Willigen, P. R. Levstein, and M. H. Ebersole,Chem. Rev. 93, 173 (1993).12. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
681


