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We consider the regime in which the bands of the torsional acoustic (TA) and hydrogen-bond-stretch (HBS)
modes of the DNA interpenetrate each other. We propose a simple model accommodating the helix structure
of the DNA, and, within its framework, find a three-wave interaction between the TA and the HBS modes. The
phenomenon could be useful for studying the action of microwave radiation on a DNA molecule. Thus, using
Zhang's mechanism of the interaction between the system of electric dipoles of a DNA molecule and the mi-
crowave radiation, we show that the latter could bring about torsional vibrations maintaining the HBS-ones. We
indicate an estimate of the microwave power density necessary for generating the HBS mode, which essentially
depends on the viscous properties of ambient medium.

PACS: 87.15.-v

1. INTRODUCTION

It is generally accepted that the conformational
dynamics of the DNA relies essentially on elastic vi-
brations of the DNA molecule in the region of 107—
10'? Hz [1]. According to Kim and Prohofsky [2], the
region comprises two domains, which correspond with
different degrees of freedom of the molecule: (1) acous-
tic modes, which do not involve the hydrogen bonds;
(2) modes that stretch the hydrogen bonds between the
base pairs (the HBS modes). A local minimum of the
frequency is characteristic of the HBS modes [2], its po-
sition depending on the choice of the band. Vibrations
of the DNA were observed in the low-frequency Raman
scattering [3, 4], and the Fourier-transform infrared ab-
sorption experiments [5]. Globus et al. [6] report the
existence of internal modes generated by the interac-
tion of artificial DNA-type molecules with electromag-
netic radiation in the submillimeter range. It should be
noted that the type of modes observed depends on the
kind of DNA samples, i.e. in aqueous solutions, or films
and filaments [6,7]. The experimental data [1] is not
conclusive as to the relative positions of the acoustic
and the HBS modes.

Our work is based on the observation that if acous-
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tic torsional bands penetrate the frequency region of
HBS modes, the torsional vibrations of the double he-
lix could change periodically the elastic constants of
inter-strand motions, and thus provide a supply of en-
ergy for HBS modes. If the attenuation is small enough,
the torsional acoustic band, which has the double fre-
quency with respect to that of the HBS mode, could
maintain an HBS mode through the parametric reso-
nance. Thus, one could obtain a means for generating
an HBS mode and studying the inter-helical dynamics
of DNA.

2. THE ELASTIC DYNAMICS OF TORSIONAL
AND INTER-STRAND MODES

While considering the dynamics of the DNA one
has to take into account: (1) the DNA having the two
strands; (2) the base pairs being linked by hydrogen
bonds; (3) the helical symmetry. We utilize a quasi
one-dimensional lattice model for the elastic properties
of the DNA which accommodates these requirements.

El Hasan and Calladine [8] set up a scheme for
the internal geometry of the double helix of the DNA,
which describes the relative position of one base with
respect to the other in a Watson— Crick base pair and
the positions of two base pairs. This is achieved by in-
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troducing local frames for the bases and the base pairs,
and translation slides along their long axes. We follow
the guidelines of paper [8], but aiming at a qualitative
description of the DNA dynamics we use a simplified
set of variables. We describe the relative position of the
bases of a base pair by means of the vector Y directed
along the long axis (the y axis in [8], see also [9]); Y
is equal to zero when the base pair is at equilibrium.
The relative position of the base pairs is described by
the torsional angles ¢,,, which give deviations from the
standard equilibrium twist of the double helix. Thus,
a twist of the DNA molecule, which does not involve
inter-strand motion or mutual displacements of the
bases inside the pairs, is determined by the torsional
angles ¢, that are the angles of rotation of the base
pairs about the axis of the double helix. The twist
energy of the molecule is given by

; E o5 + é (dnt1 — dn)?

where I is the moment of inertia, and 7 is the twist
coefficient, which are assumed the same for all the base
pairs for simplicity and because of a qualitative picture
at which we aim. Inter-strand motions should corre-
spond to the relative motion of the bases inside the
base pairs, and therefore the kinetic energy due to this
degree of freedom may be cast in the form

>

n

S
where M is the effective mass of a couple.

For each base pair, we have the reference frame in
which the z axis corresponds to the axis of the double
helix, the y axis to the long axis of the base pair, and
the x axis is perpendicular to the z and y axes (see
Fig. 11in [8]). At equilibrium, the change in position of
adjacent base pairs is determined only by the twist an-
gle  of the double helix. We assume that Q = 27/10
as for the B-form of DNA. To determine the energy
due to the inter-strand displacements, we need to find
the strain taking into account the constraint imposed
by the helical structure of our system. For this, one
may utilize the method employed by Kirchhoff for the
twisted rod, that is, the covariant derivative, as was
done in [10] for the DNA molecule. But a more simple
and straightforward approach is possible.

We confine ourself only to the torsional degrees of
freedom of the double lattice and assume the vectors
Y, to be parallel to the zy plane, or two-dimensional.
Consider the displacements Y,, and Y, determined
within the frames of the two consecutive base pairs, n
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and n + 1. Since we must compare the two vectors in
the same frame, we rotate the vector Y, 11 to the frame
of the nth base pair,

back __

Yn+1 -

Ril (¢) Yn+1 .
Here, R~!(¢) is the inverse matrix of the rotation of the
nth frame to the (n + 1)th one given by the equation

fegeng]

The matrix R is 2 by 2 since the vectors Y,, are effec-
tively two-dimensional. Then the strain caused by the
displacements of the base pairs is determined by the
difference Yok — Y, 1.

It is important that the angle ¢ is given by the twist
angle () describing the double helix, in conjunction with

the torsional angles ¢,,, so that

cos ¢

sin @

—sin ¢

R(¢) (1)

cos @

=0+ bpp1 — On.

Therefore, the energy due to the inter-strand stress is
given by

M _. 2
Sy
K -1 2
+ﬁ [R (Q +¢n+1 - ¢n)Yn+1 - Yn] :

It corresponds with the fact that the equilibrium
position of the double helix is the twisted one deter-
mined by Q and all ¢, being equal to zero. We sup-
pose that the size of the DNA molecule is small enough
to be visualized as a straight double helix that is not
larger than the persistence length. Hence, the number
of base pairs N < 150, approximately. Combining the
formulas given above, we can write the total energy of
the DNA molecule as

I.
H= ; {5 o2 + # (Pns1 — ¢n)2] +
M_. 2
[R_l (Q+¢n+1_¢n)Yn+l _Yn] ’ +

K

o

€2

where K and a are the torsional elastic constant and
the inter-pairs distance, respectively. In summations
given above n is the number of a site corresponding to
the nth base pair,n = 1,2,... , N; N being the number

1) For this argument, I am indebted to D. I. Tchertov.



V. L. Golo

MKIT®, Tom 128, Bbin. 2 (8), 2005

of pairs in the segment of the DNA under considera-
tion. The last term (e/2) Y2 accommodates the energy
of the inter-strand separation due to the slides of the
bases inside the base pairs.

It should be noted that the dynamical variables ¢,
and Y, are of the same order of magnitude, that is,
the first. Consequently, preserving only terms up to
the third order, we can transform Eq. (2), so that it
takes on the form

I 2
H= Y géis
n
M_. 2 K _ 2 €
+§:{5Yn+%5m1«nmﬁrY4+5Yﬂ+
n
®
7 2 (fnt1 =
n

We have used the fact that the axis of the double
helix is directed along the z axis.

Simplify Eq. (3) by diagonalizing it with the help
of the unitary transformation

27-_2 (¢n+1 - ¢n)2:| +

) [R7HQ) Y x Yol (3)

i

V2

1 )
V2
which is a 2 x 2-matrix, for the vectors Y, and u,
are effectively two-dimensional, their third coordinates
being equal to zero. The equation for the energy (3)
becomes

M= Z{

. . € *
+Z{7un-un+§un~un+
n

Y,=Su,, S=

SIS

(¢n+1 ¢n)2] +

K B
by (e ubs = uh P+ 70— 2] -
K iQ, 1 iQ, 2 *2
- (Gns1—0n) [—ie"Pupq ull +ie " Pud  ul?],

n

where x signifies complex conjugation.

We can further simplify the equation for the energy
by applying the Fourier transformation given by the
equations

1 —inaq
fn= \/—N ; € fa:

n=+N/2

1 ina 2
fq:\/—ﬁ Z e qfn-, q—N_ama

n=—N/2

N
m=0,:|:1, ,:I:E

It is important that after the Fourier transforma-
tion the variables u, satify the following equations for
their complex conjugates

uzl = iu2_q, u;2 = z'ul_q. (4)

The equation for the energy can be written as
_ . .. T . 5 aq *
H_zq: g 9100t g S Pude| F

M. ., € .
30|+ G
q

2K 0 — Q0

— <sin2 5 «q uéuzl + sin? % ugufﬂ +
K ‘e—iaq
72 > N x

X ¢g [—€ u pU g e ’Qui, wti ] (5)

The interaction term in Eq. (5) corresponds to the
three-wave process and may result in a resonance. We
use this fact for deriving the parametric maintenance
of the u, modes, i.e., the HBS modes (see below).

In the usual way, one can obtain the equations
of motion for ug, @ = 1,2 and ¢, from the equa-
tion for the energy given above. The essential point
is the effects of dissipation, which are due to ions in
the close neighborhood of the molecule and water ef-
fects, see [11]. The dissipation can be accommodated
by writing down terms linear in 1y and éq. We take
the external force, or torque 7, into account only in
the equation for ¢,, because it corresponds to external
degrees of freedom of our model. Thus, the equations
of motion can be cast in the form

iig +waq g Tty +

4K sin Q) -
+ —F= e " ppuy_ ., =0, (6
MCLQ\/N; ¢q q—q ( )
bq + w2 bg + Vobg +
4K sin Q e'eq 1 9
| ——————— U U, = T (7)
2 a'%q—q a
Ia2 /N p
where
4K ., Q+ (—1)aq €
2 2
Wag = M Sin 5 + M’ (8)
w? = 4—T sin? %
¢ Ja? 2
are the dispersion laws for the fields ug, a = 1,2, and

¢q. We see that the spectrum of ¢, has a typical acous-
tic character, whereas that for ug has a local minimum
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determined by the helical twist 2. Thus, the spectrum
of our model is in qualitative agreement with the con-
clusions in [2]. The specific nature of the torque is to be
specified elsewhere (see Sec. 3). For the moment, we
consider the general dynamical phenomena to which
the torque may be conducive.

Suppose that on the one hand, the amplitudes of the
HBS modes given by ug are so small that the quadratic
term in Eq. (7) can be neglected, and on the other hand,
the external torque 7, is appreciable enough to main-
tain the vibration of the torsional mode ¢,. Thus, we
can visualize the torsional mode as a pump mode that
interacts with the HBS mode ug through the nonlin-
earity in Eq. (6). We confine ourself to the case of the
torque 7, being nonzero only at ¢ = ¢, and having the
frequency 2w. Therefore, the forced wave, or the pump
wave for the HBS mode, has the form

¢q* (9)

To obtain larger values for the pump wave ¢,, the res-
onance condition

_ 2wt _ —i2wt F*
=e€ P 5qq*, (b,q* =e€ P 67(1(1* .

Wer = 2w, ¢« = Q/a,

should be satisfied, even though the resonance behav-
ior of the torsional ¢,-mode itself could be attenuated
by dissipation, i.e., may be a mode of small amplitude.

The equations of motion for ug in the pumping

regime are
2K sin()
oY 2 o .
Uq +waquq +’}/qu + W W X
2wt * —i2wt
X (Ael Cug_g. A e “g+q*) =0,
where
A=e"3,

Note that the momentum conservation in the ¢-values
is preserved, as required by the three-wave interaction.
The equations given above can be rewritten in the ma-
trix form as

g + 02uy + Yoty = (eiw K+ e~ 2wt K*)ua, (10)
where K and KT are Hermitian conjugate, and

2K sin()

Ma?® /N
Tt is worth noting that Eq. (10) is a kind of the matrix
Mathieu equation. In fact, we can apply Rayleigh’s
method to it for studying parametric resonance [12].
For this, we look for the solution to Eq. (10) in the
form of a series

2
’C+’C:I< ) AP, Tij = 0y

'I.l(t) _ A1 eiwt_l_Bl efiwt_i_AS eiSwt+B3 efiSwt_i_ L
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Substituting the expression given above into Eq. (10)
and preserving only the terms corresponding to e™?,
we obtain the equations

[(—w2 +iyw) L + of)z] A +KB; =0,

[(~w? — ivuw) T+ 2] By + KT Ay =0.

The compatibility condition of the equations given
above can be cast in the form of determinant for the
block matrix,

A2 IC
det [ Ya

S A

—wl+iyw

K+ 22

] =0, (11)
wO(

where @? is the matrix of frequencies given by Eq. (8),
and w? and 7, w are the scalar frequences. We can
transform Eq. (11) into a more amenable form. Note
that it is equivalent to the equation

A2 2 .
det W5 — w? + iy,w K "
Kt 02 — w? —iyuw
y T —(@2 —w?+iyuw) ! o,
0 P2t
where
Ma?2 VN
p= (12)

2K sin)
and the matrices KT and K satisfy the equation
I+ p°KK*T =0.

We have used the fact that for the range of frequencies
under consideration, the matrix

~2 2 .
Wy — W™+ 1YW

is nondegenerate. Therefore, the equation given above
is equivalent to

det [-Z 4 p* (@2 — w® + iy w) X
X J(@0F —w? —iv,w)JT]

= )
where the matrix J is given by Jyq' = 04/ g—q. . We may
rewrite the last equation as

2

ag — w? — i'yuw)(wi a—aq« w? + W) =

2K sinQ)
Ma? /N
and it is quite similar to the usual condition for para-

metric resonance. Solutions of Eq. (13) are gener-
ally complex and therefore correspond to attenuated

(w

)2 AP =0, (13)
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regimes. But there is a specific wave number, ¢,.s, for
which the solution gives the real frequency w, and it is
easy to see that it should satisfy the constraint

2

wOf(I*Qx

= wiq, q = Qres- (14)
Thus, we may cast the condition for parametric reso-

nance in the familiar form [12]

2K sin()
Ma? /N

2 2
W —Wag,..,

( ) A2 =0. (15)

1244202 — (

3. MICROWAVE IRRADIATION AND THE
HBS MODES

We may use the results of the previous section for
assessing the action of microwave (mw) radiation on a
DNA molecule. The key point is accommodating the
fact that the wavelength of radiation is by many orders
of magnitudes larger than the characteristic size of the
region of the molecule involved in the process. It was
Zhang who suggested a mechanism to overcome this
difficulty [13]. The main point of Zhang’s argument
is that the helical configuration of the electric dipoles
corresponding to the base pairs makes the interaction
of the dipole P and the field E

U=-P-E

angle-dependent. Therefore, different torsional mo-
menta are applied at the base pairs. The equation for
the energy of interaction between the DNA dipoles and
an incident microwave is given by

—> E-R(nQ+ ¢,)Po,

where R(n) + ¢,) is the rotation matrix given by
Eq. (1), and Py is the dipole at the site n = 0. Con-
sequently, even though the radiation has a plane wave
configuration at the molecular scale, it still twists the
DNA molecule about the double helix axis. Since the
momenta change periodically in time with the incident
wave, the irradiation results in a periodic stress that
may produce elastic vibrations in the DNA molecule.
Zhang suggested that the force may generate resonance
vibrations, resulting in a cross-over mechanism that
takes up initial torsion excitations and transforms them
into longitudinal acoustic vibrations.

In the present paper, we try to combine Zhang's
mechanism [13] and the excitations of the double he-
lix studied by Prohofsky and Kim [2] with the view
of generating inter-strand waves in the DNA by mw-
irradiation. In contrast to the original idea by Zhang,
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we do not utilize a cross-over into longitudinal acous-
tic vibrations, but employ the interaction between tor-
sional oscillations and the inter-strand ones, i.e., the
three-wave, given by Eq. (5).

The main point is that by expanding the rotation
matrix R(n{l + ¢,) in the angles ¢,, and keeping only
the first-order terms, we can write Zhang's interac-
tion as

Hy = — Zqﬁn(E x P,)3 + const,
n (16)
P, = R(nQ) Py,

where Py is the dipole vector at site n = 0. Next, us-
ing Eq. (1) for the matrix R(n{) and neglecting the
constant term, we rewrite Eq. (16) as

Hy = 5 3 6n {" (B x Po)s —i(B- Po)] +
+e ™ (E x Pg)3 +i(E - Pg)]}.

Applying the Fourier transform for the ¢,, and using
the equation

1

n

we obtain the following expression for Zhang’s interac-
tion:

Hy = % {bg=0/a [(E x Pg)3 —i(E-Po)] +
+¢q:—Q/a[(E X Po)g + Z(E . Pg)]} .

Hence, the torque 7, in Eq. (7) corresponding to
‘Hz is given by
Z*

T (17)

Q
qx = —,

Z
T: 7(5q7_q* + a

5(1711*7

where N

It should be noted that +¢, are the local minima of the

HBS modes. From Eq. (8), we infer that ¢ satisfies the
constraint given by Eq. (14),
3

Qres = 5 - (18)

It is worth noting that the wave numbers ¢. and gpes

correspond to the wavelengths of one and 2/3 turns of

the double helix.
Equations given above provide an opportunity

for making numerical, order-of-magnitude estimates,
which enable us to assess the effect of mw-radiation
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on the HBS modes. From Eq. (17), we infer that the
torque 7 has the size

T x et E P,

where E and P are the external field and the dipole
moment of the base pair, respectively. Next, suppose
that the resonance condition

wq:2w_/ q=qs =

a

be true, so that the action of the radiation on the
torsional modes should be the largest possible. Then
the amplitude of the pumping wave, ¢,,, according to
Eq. (7), is of the order

VN EP

— . 19
T 2wy (19)

Next, we turn to Rayleigh’s condition for the para-
metric resonance of the HBS mode given by Eq. (15).
For the pumping wave corresponding to Eq. (19), it
gives

KsinQ EP\’
2 2 \2 2 2
Hence we have the threshold
- 2K sinQ) EP (20)
TS pre2gr T

which is the condition that the energy supplied to a
DNA molecule is greater than that dissipated, such that
the maintaining of the HBS mode can take place. We
suppose that the frequency of the HBS modes, given by
Eq. (8), is generally determined by the gap term e/M
in the equation for uqq and the first factor in Eq. (20)
does not differ much from unity. It signifies that the
energies of the inter-strand separation per base pair
and the twist of the relative positions of the two adja-
cent base pairs should be comparable. At any rate, the
hypothesis appears not to contradict the data repro-
duced in [2]. If so, we could have the estimate for the
dissipative constants, at least by orders of magnitude,

EP
Tu Yo < T (21)

Em?y/ﬁ,
c

which follows from the expression for the Pointing vec-
tor

Using the relation

c
S=—ExH
47 *

14 ZK3T®, Bem. 2 (8)

where c is the velocity of light, we rewrite Eq. (21) as

P |nS
’Yu%SQT\/T-, (22)

where S is the power density of the interaction. If we

assume
P~1D or 107'® CGS

and the inertia coefficient I oc 10736 g-cm?, correspond-
ing to the mass of the base pair ~ 10722 g and the size
~ 10 A, then for the power density S ~ 100 mW /cm?,
we have v, 74 < 10'® Hz? or v,,74 < 108 Hz. The esti-
mate suggests that the effect produced by mw-radiation
is to be looked for at the edge of the GHz zone, be-
cause in this case, the requirement on the line-width
is less stringent. It should be noted that the crucial
point in assessing the feasibility of experiments on mw-
irradiation of the DNA, and its possible influence, is the
part played by the ambient solvent and ions contained
in it. In fact, the irradiation may result in just heating
the solvent, such that the dissipation due to the ions
takes up all effects on the molecules of DNA. Generally,
the thin boundary layer of water and ions close to the
DNA molecule may have an important bearing on the
dynamics initiated by the incident mw-radiation and
result in the overdamping of the molecule’s torsional
oscillations.

Davis and VanZandt [11] put forward arguments
that the ions contained in a layer close to the DNA
molecule should have an influence small enough to al-
low the survival of the effect due to mw-irradiation.
The part played by the dissipation caused by water is
more subtle.

The current arguments [14] about the overdamping
of the DNA elastic modes rely on the Stokes law for
the friction force, F' = 6mnRuv, for a sphere of radius
R moving in a fluid of viscosity n at a speed v; and in
the specific case of the DNA, it should involve the GHz
region of frequencies. But the classical hydrodynam-
ics, that is, the Navier —Stokes theory, breaks down in
the region, as can be inferred from the phenomenon
of light scattering in liquids, which is characterized by
the triplet structure: the central Rayleigh line v due to
the elastic scattering and the Mandelstam — Brillouin
doublet v £ f of the inelastic one, with f being the
frequency of elastic waves in the liquid. The classical
hydrodynamics gives the width of a line in the Mandel-
stam — Brillouin doublet larger than the distance be-
tween this line and the maximum of the central line of
the triplet, so that the discrete triplet structure should
not be observable; in fact, it is [15]. Mandelstam and
Leontovich [15] brought about the solution to this prob-
lem by using the relaxational theory of hydrodynamics
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in which liquid is considered as a viscous elastic medium
characterized by a viscosity coefficient 1 and a shear
modulus G, the so-called Maxwell model. In fact, the
theory also takes anisotropy effects into account [15].
It predicts that in the region of hypersound, a few GHz
or more, the attenuation coefficient for sound waves,
ay, ceases to depend on the frequency w, whereas in
the low frequency classical region, in which the Stokes
law is valid, the dependence is a, ~ w?. Davis and
VanZandt [11] used the approach of the Maxwell the-
ory to find estimates for the damping of the DNA elas-
tic modes, taking the first and the second hydration
layers and the quasi-crystallin structure of water in a
neighborhood of the DNA into account. They found
the attenuation to be two orders of magnitude smaller
than that given by the Stokes law.

In fact, there is a further reason for rejecting the ap-
proach based on the Stokes law. The water molecules
form hydration shells of DNA [16]. The primary hy-
dration shell comprises the water molecules immedi-
ately adjacent to the DNA, about 20 molecules per
nucleotide pair, which constitute a medium different
from bulk water. The secondary hydration shell is gen-
erally considered to be similar to bulk water. But at
the spatial scale of the diameter of the DNA molecule,
that is, several tens A, the water in the second hy-
dration shell is hardly a condensed medium. Indeed,
in this case, one should have accommodated its local
quasicrystalline structure, described by the icosahedral
model [17,18], which is to result in sophisticated dy-
namical equations. The conclusion is that, presently, it
is difficult, if possible at all, to construct accurate the-
oretical estimates for the attenuation of DNA modes.

From the experimental standpoint, the situation is
more advanced. The DNA helical modes were observed
in the experiments on the Raman [3,4, 16] and far-in-
frared [5] scattering. Therefore, one may suggest that
the attenuation effects due to viscosity should not pre-
clude elastic modes of the DNA. At the same time,
small relaxation times for damping between the DNA
and the first hydration layer, of the order of several
tens ps (see [19]) should result in the double helix of
the DNA concerted motion with the surrounding layer
of water. The circumstance could be accommodated
within the framework of the semi-phenomenological
model in the present paper. In fact, the DNA molecule
and its first hydration layer still form a helix structure,
and the mutual motion of constituent bases of a pair
together with hydration water molecules could be de-
scribed with the field Y. Of course, the values of the
model constants, K, 7, should be changed, and for the
time being there is lack of information as to their size.
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It is also worth noting that the effects of dissipation
in aqueous solutions, where a certain form of the Stokes
law could be possible, and in films, or fibers, should be
quite different. So far, there has been no comprehen-
sive theoretical analysis of the dissipation that would
allow comparing the DNA dynamics in solutions and
in films. Nonetheless, the interplay of internal vibra-
tion modes and submillimeter electromagnetic irradi-
ation was registered in paper [6], using Fourier trans-
form spectroscopy and films of the double-stranded ho-
mopolymers poly[A]-poly[U] and poly[C]-poly[G]. Em-
ploying the concept of normal modes, or oscillators,
of macromolecules, developed earlier for proteins [20]
and used later for DNA [21], Globus et al. [6] made a
numerical simulation of their experimental results and
thus obtained an estimate for the relaxational parame-
ter 4, which has the meaning of oscillators dissipation.
It turned out that in the range of frequencies several
10 em ™', the best fit for v is less than 1 cm™!, de-
pending on the conformation of the external electric
field and the sample. This value of « is too large for
Eq. (22), but the region of frequencies studied in [6] is
far from the edge of the GHz region, and therefore one
may consider the question of the acceptable dissipation
rate still open, and suggest that studying the effects of
mw-radiation on the DNA modes may be instrumental
for understanding the phenomenon.

4. CONCLUSIONS

We have shown that the elastic dynamics of the
double helix could have enough structure for providing
a means for stretching the hydrogen bonds of the base
pairs of DNA or generating the HBS modes. If the vi-
brational modes of the DNA are not overdamped by
the ambient solvent and the balance between energies
supplied and dissipated is favorable, the maintenance
of the HBS modes could be expected at the edge of the
HBS zone. The best technique for studying the H-bond
stretching still remains the Raman spectroscopy, on
which certain improvements have been made (see [22]
and the references therein). Thus, the HBS modes and
also the breathing modes are well accessible from the
experimental standpoint.

The choice of specific means for generating torsional
excitations of the DNA is important and interesting.
In this paper, we have envisaged mw-irradiation of
the DNA. In case the interpenetration of the acoustic
and the HBS modes takes place, the mw-radiation
could maintain the HBS modes, if the power density
is sufficiently large, 100 mW/cm? or more. It is
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important that there is no need for long exposures of
the sample to the radiation. At this point, it is worth
noting that our estimate for the critical power density,
100 mW /cm?, is by orders of magnitude larger than
that officially prescribed, i.e. 0.1-0.2 mW /cm?.

I am thankful to G. Bonnet and T. Globus for
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