ОТРИЦАТЕЛЬНОЕ МАГНИТОСОПРОТИВЛЕНИЕ В ДВОЙНЫХ ИСКАЖЕННЫХ ПЕРОВСКИТАХ Ca(Cu_xMn_{3-x})Mn₄O₁₂

А. Н. Васильев^{*}, О. С. Волкова, Е. А. Гудилин

Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

Поступила в редакцию 15 марта 2005 г.

При замещении марганца на медь в одной из позиций двойного искаженного перовскита $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ происходит изменение валентности марганца в другой позиции. Это сопровождается резким повышением температуры магнитного упорядочения и сменой полупроводникового типа проводимости на металлический. В широком интервале температур в этих материалах наблюдается отрицательное магнитосопротивление, величина которого $[\rho(H) - \rho(0)] \cdot 100 \% / \rho(0)$ достигает 10 % в поле 1 Тл при температуре жидкого азота.

PACS: 65.40.Ba, 72.80.Ga, 75.47.Gk

1. ВВЕДЕНИЕ

Колоссальное отрицательное магнитосопротивление в сложных оксидах и халькогенидах 3d-металлов наблюдается, как правило, вблизи перехода в магнитоупорядоченное состояние [1-4]. Ферромагнитная компонента этого состояния во многих случаях обусловлена присутствием в структуре этих соединений разновалентных ионов переходных металлов. В такой ситуации магнитное упорядочение связано с двойным обменным взаимодействием, которое также обусловливает высокую электропроводность [5]. Магнитные переходы в веществах с колоссальным магнитосопротивлением зачастую тесно связаны со структурными фазовыми превращениями, поскольку в структуре этих соединений содержатся ян-теллеровские ионы [6].

Двойной искаженный перовскит CaMn₃Mn₄O₁₂ содержит в своей структуре разновалентные ионы марганца (Mn⁴⁺ и 6Mn³⁺), однако достигает магнитоупорядоченного состояния лишь при низких температурах ($T_C = 49$ K) и ферромагнитная компонента в этом состоянии мала [7]. Основная роль в магнитном поведении этого соединения принадлежит, по-видимому, суперобменному взаимодействию, которое носит антиферромагнитный характер. Структурный фазовый переход в этом соединении проис-

ходит при T = 440 K, не сказываясь на его магнитных свойствах [8].

По мере замещения марганца Mn^{3+} на медь Cu^{2+} в одной из позиций $CaMn_3Mn_4O_{12}$ происходит повышение валентности марганца в другой позиции от Mn^{3+} до Mn^{4+} . Крайний член этого ряда $CaCu_3Mn_4O_{12}$ вообще не содержит разновалентных ионов одного и того же переходного металла, однако имеет высокую температуру магнитного упорядочения ($T_C = 340$ K) и ферромагнитная составляющая в его намагниченности велика [9,10]. Во всех медь-замещенных двойных искаженных перовскитах этого ряда наблюдается отрицательное магнитосопротивление, величина которого возрастает с удалением от температуры Кюри.

Свойства двойных искаженных перовскитов $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ во многом отличны от свойств других соединений со структурой перовскита [11–15], что стимулировало проведение настоящего комплексного исследования физических свойств этих материалов.

2. ПРИГОТОВЛЕНИЕ ОБРАЗЦОВ

Металлооксидное соединение $CaMn_3Mn_4O_{12}$ представляет собой двойной искаженный перовскит $AC_3B_4O_{12}$, кристаллизуется в ромбоэдрической решетке типа $NaMn_7O_{12}$, пространственная группа $R\bar{3}$

^{*}E-mail: vasil@mig.phys.msu.ru

Рис. 1. Кристаллическая структура Ca(Cu $_x$ Mn $_{3-x}$)Mn $_4$ O $_{12}$. Ионы Cu $^{2+}$ и Mn $^{3+}$ находятся в квадратной координации ионов O $^{2-}$. Ионы Mn $^{3+}$ и Mn $^{4+}$ находятся в октаэдрическом окружении ионов O $^{2-}$. Катионы Ca $^{2+}$ существенно превышают по размеру катионы Mn $^{3+}$

[16]. Структура этого соединения в полиэдрическом представлении показана на рис. 1. В квадратах MnO₄ (позиция C) находится только Mn³⁺, а в октаэдрах MnO₆ (позиция B) находятся как Mn³⁺, так и Mn⁴⁺. Квадраты MnO₄ не связаны между собой, а октаэдры MnO₆ связаны по вершинам и образуют каркас этой структуры. Замещение Mn³⁺ на Cu²⁺ в позиции C сопровождается повышением симметрии кристаллической решетки до кубической типа CaCu₃Ti₄O₁₂, пространственная группа $Im\bar{3}$ (при x > 0.5) [17].

Синтез соединений $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ (x = 0.5, 1, 2) проводился с применением пиролиза аэрозоля нитратов. Исходные реагенты СаСО₃, Mn₂O₃ и CuO в стехиометрическом соотношении растворялись при нагревании в избытке азотной кислоты. Полученный раствор затем диспергировался в ультразвуковой ванне и потоком воздуха транспортировался в реактор, где при 700°С происходило разложение нитратов. Субмикронные частицы полученного порошка были запрессованы в таблетки и затем отожжены в токе кислорода в течение 48 ч при T = 850 °С. Образец с x = 2 отжигался в атмосфере кислорода при давлении около 30 атм (48 ч, $T = 850 \,^{\circ}\text{C}$). Однофазность полученных образцов и их соответствие структурному типу $Im\bar{3}$ было подтверждено рентгенографическим ана-

Рис.2. Микрофотография CaCuMn₆O₁₂, полученная методом сканирующей электронной микроскопии на установке Leo Supra 50 VP

лизом. Морфология CaCuMn₆O₁₂ иллюстрируется рис. 2. Образец представляет собой трехмерную губку, образованную субмикронными гранулами.

Физические свойства $Ca(Cu_xMn_{3-x})Mn_4O_{12}$ (x = 0.5, 1, 2) измерялись в интервале температур 5–300 К в магнитных полях до 1 Тл. Низкополевая магнитная восприимчивость на частоте 2.5 кГц измерялась магнитометром переменного тока «Термис». Теплоемкость измерялась релаксационным квазиадиабатическим калориметром «Термис». Сопротивление и магнитосопротивление измерялись стандартным четырехточечным методом.

3. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

Температурные зависимости низкополевой магнитной восприимчивости χ для соединения $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ (x = 0.5, 1, 2) представлены на рис. 3. Они имеют вид, характерный для неупорядоченных ферримагнетиков с конкурирующими магнитными взаимодействиями. Начальное возрастание восприимчивости с переходом в магнитоупорядоченное состояние сменяется ее убыванием за счет спин-стекольных эффектов. При частичном замещении марганца на медь температура T_C магнитного упорядочения повышается примерно от 90 К при x = 0.5, составляет около 200 К при x = 1 и достигает приблизительно 290 K при x = 2. Значения T_C для каждого из исследованных образцов практически совпадают с параметром Θ в законе Кюри-Вейсса $\chi = N_A g^2 \mu_{eff}^2 / 3k_B (T - \Theta),$ что указывает на отсутствие фрустрационных эффектов в структуре этого соединения. Эффективные магнитные моменты $\mu_{eff} = 10 - 12 \mu_B$ в этих

Рис.3. Температурные зависимости низкополевой магнитной восприимчивости $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ при следующем содержании меди: $x = 0.5 - \kappa$ ривая 1, x = 1 - 2, x = 2 - 3

Рис. 4. Температурные зависимости теплоемкости Са(Си $_x$ Mn $_{3-x}$)Mn $_4$ O $_{12}$ при следующем содержании меди: x = 0.5 — кривая 1, x = 1 - 2, x = 2 - 3. На вставке эти зависимости представлены в координатах C/T-T

соединениях, рассчитанные из температурного хода χ в парамагнитной области в предположении g = 2, хорошо согласуются с теоретическими значениями, рассчитанными для каждой данной комбинации ионов Cu²⁺ (S = 1/2), Mn³⁺ (S = 2) и Mn⁴⁺ (S = 3/2).

Температурные зависимости теплоемкости С таблеток $Ca(Cu_xMn_{3-x})Mn_4O_{12}$ (x = 0.5, 1, 2) представлены на рис. 4. На зависимостях C(T)

для образцов с x = 0.5 и x = 1 четко выраженные аномалии при магнитном упорядочении отсутствуют, тогда как на зависимости C(T) для образца с x = 2 виден излом вблизи температуры Кюри. Отсутствие четко выраженных особенностей на зависимостях C(T) в $Ca(Cu_xMn_{3-x})Mn_4O_{12}$ указывает, прежде всего, на магнитную неоднородность исследованных образцов на молекулярном уровне. Катионы Cu²⁺ замещают катионы Mn³⁺ в позиции С случайным образом, и столь же случайно распределены катионы Mn³⁺ и Mn⁴⁺ в позиции В. Это приводит к размытию фазовых переходов и перераспределению магнитной теплоемкости в широком интервале температур. Видно, однако, что теплоемкость образцов с x = 0.5 и x = 1при низких температурах существенно превышает теплоемкость образца с x = 2. При высоких температурах реализуется обратная ситуация. Это связано с тем, что магнитная теплоемкость выделяется в основном ниже температуры Кюри, которая в образцах $CaCu_{0.5}Mn_{6.5}O_{12}$ ($T_C \approx 90$ K) и CaCuMn₆O₁₂ ($T_C \approx 200$ K) ниже, чем в образце $CaCu_2Mn_5O_{12}$ ($T_C \approx 290$ K). Более ярко вариации теплоемкости при изменении содержания меди в образцах проявляются в представлении приведенной теплоемкости C/T от T (см. вставку к рис. 4).

4. КИНЕТИЧЕСКИЕ СВОЙСТВА

Температурные зависимости удельного сопротивления ρ , измеренные в отсутствие магнитного поля, представлены на рис. 5. С увеличением содержания меди Cu²⁺ в исследованных образцах происходит резкое уменьшение удельного сопротивления. Характер зависимостей $\rho(T)$ меняется от полупроводникового в $CaCu_{0.5}Mn_{6.5}O_{12}$ и $CaCuMn_6O_{12}$ до металлического в $CaCu_2Mn_5O_{12}$. В образце с x = 0.5, который обладает достаточно большим удельным сопротивлением, энергию активации, рассчитанную из температурного хода удельного сопротивления $\rho = \rho_0 \exp(E_a/k_B T)$, удалось определить лишь в парамагнитной области $E_{para} = 125$ мэВ. При температуре магнитного упорядочения на зависимости $\ln \rho$ от 1/T в образце с x = 1 имеет место излом, что отвечает уменьшению энергии активации при переходе из парамагнитной фазы $E_{para} = 60$ мэВ в магнитоупорядоченную фазу $E_{ferri} = 40$ мэВ. В образце с x = 2 при переходе в магнитоупорядоченную фазу также наблюдается излом на зависимости $\ln \rho$ от 1/Т, который отвечает увеличению подвижности носителей заряда.

Рис.5. Температурные зависимости удельного сопротивления полупроводникового типа в CaCu_{0.5}Mn_{6.5}O_{12} (1) и CaCuMn_6O_{12} (2). На вставке представлена температурная зависимость удельного сопротивления металлического типа в CaCu_2Mn_5O_{12}

Рис. 6. Полевые зависимости сопротивления в CaCuMn₆O₁₂ при различных температурах выше (a), в окрестности (b) и ниже (b) температуры магнитного упорядочения $T_C \sim 200$ K

Отрицательное магнитосопротивления во всем существования интервале магнитоупорядоченной фазы наблюдалось во всех исследованных образцах $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ (x = 0.5, 1, 2). Качественно все они показывают одну и ту же эволюцию магнитосопротивления с изменением температуры. Полевые зависимости сопротивления $[\rho(H) - \rho(0)] \cdot 100 \% / \rho(0)$ в CaCuMn₆O₁₂ показаны на рис. 6. Вид этих зависимостей качественно меняется в окрестности температуры Кюри $T_C \approx 200$ К. Это связано с тем, что при высоких температурах магнитосопротивление пропорционально квадрату магнитного поля ($\rho \propto \chi H^2$), а при низких температурах магнитосопротивление пропорционально квадрату намагниченности ($\rho \propto M^2$). В магнитоупорядоченной области намагниченность М быстро нарастает в слабых магнитных полях. Тем самым, при $T > T_C$ зависимости $\rho(H)$ оказываются суперлинейными, а при $T < T_C$ зависимости $\rho(H)$ сублинейны.

В трехмерной губке, образованной спеченными субмикронными частицами, транспортные свойства определяются не только протеканием тока в гранулах, но и туннелированием носителей между гранулами. В ситуации, когда размеры магнитных доменов сопоставимы с размерами гранул, приложение магнитного поля приводит к параллельному выстраиванию магнитных моментов гранул. Этот мезоскопический эффект также проявляется в отрицательном магнитосопротивлении.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ведущую роль в формировании магнитного порядка в соединениях типа AC₃B₄O₁₂ играют, по-видимому, катионы в позиции В. Образованные ими октаэдры BO₆ связаны по вершинам как между собой, так и с катионами в квадратах СО₄. Между катионами в подрешетке С нет коротких путей магнитного взаимодействия. Наличие в структуре материнского соединения CaMn₃Mn₄O₁₂ разновалентных ионов марганца Mn⁴⁺ и 3Mn³⁺ в позиции В открывает возможность двойного магнитного взаимодействия по этой подсистеме. Двойное магнитное взаимодействие реализуется по e_a-орбиталям марганца и связано с виртуальными перескоками электрона между Mn^{3+} и Mn^{4+} . Более того, двойное магнитное взаимодействие возможно также между Mn⁴⁺ в позиции В и Mn³⁺ в позиции С. Это взаимодействие, однако, сильно ослаблено, поскольку схемы расщепления d-оболочки в квадратном и

Рис.7. Зависимости температуры магнитного упорядочения от содержания меди в Са(Cu_x Mn_{3-x})Mn₄O₁₂: кривая 1 — данные работы [9], 2 — данные настоящей работы

октаэдрическом окружениях различаются. Суперобменное взаимодействие между ионами марганца по t_{2g} -орбиталям носит, по-видимому, антиферромагнитный характер, хотя это взаимодействие заметно подавлено локальной геометрией связей Mn–O–Mn. Угол связей В–O–В в СаMn₃Mn₄O₁₂ составляет 137°, а угол связей С–O–В находится в пределах 108–113° [16]. В результате ферромагнитная компонента в намагниченности CaMn₇O₁₂ мала, а магнитный порядок наступает лишь при достаточно низкой температуре, $T_C = 49$ К.

При замещении Mn³⁺ на Cu²⁺ в позиции С меняется соотношение количества и
онов ${\rm Mn}^{3+}$ и ${\rm Mn}^{4+}$ в позиции В. В соединении CaCu_{0.5}Mn_{6.5}O₁₂ соотношение $Mn^{3+}:Mn^{4+}$ равно 5 : 3; в $CaCuMn_6O_{12}$ соотношение Mn^{3+} : Mn^{4+} равно 1 : 1; в $\mathrm{CaCu_2Mn_5O_{12}}$ соотношение Mn³⁺:Mn⁴⁺ равно 1 : 3. Углы связей Mn-O-Mn при этом замещении меняются слабо по сравнению с материнским соединением CaMn₇O₁₂. Тем самым для объяснения монотонного роста температуры Кюри и усиления ферромагнитной составляющей намагниченности следует учитывать также взаимодействие между Cu²⁺ в позиции C и Mn⁴⁺ в позиции В. Только это взаимодействие остается в соединении CaCu₃Mn₄O₁₂, которое имеет наивысшую температуру Кюри в пределах этого ряда $T_C \approx 355$ К [9]. Зависимость температуры магнитного упорядочения от содержания меди в соединениях $Ca(Cu_x Mn_{3-x})Mn_4O_{12}$ представлена на рис. 7. Согласно анализу магнитных взаимодействий, проведенному в работах [9, 10, 18], магнитная структура этих соединений при 0 < x < 3 соответствует ферримагнитному упорядочению, причем в работе [18] постулируется, что суперобменное взаимодействие между ионами Mn^{4+} по t_{2g} -орбиталям в позиции В носит ферромагнитный характер. Более важным нам, однако, представляется тот факт, что при угле примерно 109° для связи С–О–В суперобменное взаимодействие электронов на t_{2g} -орбиталях Mn^{4+} с электронами на e_g -орбиталях Cu^{2+} носит антиферромагнитный характер.

Авторы выражают благодарность А. Г. Вересову, К. В. Климову, А. В. Кнотько, Е. А. Поповой за участие в характеризации исследованных образцов. Настоящая работа выполнена при финансовой поддержке РФФИ (гранты №№ 03-02-16108, 04-03-08078, 04-03-32183а).

ЛИТЕРАТУРА

- Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, ed. by C. N. R. Rao and B. Raveau, World Sci., Singapore (1998).
- Colossal Magnetoresistive Oxides, ed. by Y. Tokura, Gordon and Breach, New York (1999).
- M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
- N. A. Babushkina, L. M. Belova, D. I. Khomskii, K. I. Kugel, O. Yu. Gorbenko, and A. R. Kaul, Phys. Rev. B 59, 6994 (1999).
- 5. A. Rozenzwaig, Phys. Rev. 181, 946 (1969).
- 6. I. Bersuker, *The Jahn-Teller Effect*, Cambridge Univ. Press, Cambridge (2005).
- E. A. Pomerantseva, D. M. Itkis, E. A. Goodilin et al., J. Mater. Chem. 14, 1 (2004).
- I. O. Troyanchuk, L. S. Lobanovsky, N. V. Kasper et al., Phys. Rev. B 58, 14903 (1998).
- Z. Zeng, M. Greenblatt, M. A. Subramanian, and M. Croft, Phys. Rev. Lett. 82, 3164 (1999).
- Z. Zeng, M. Greenblatt, J. E. Sustrom IV et al., J. Sol. St. Chem. 147, 185 (1999).
- H. Hwang, S.-W. Cheong, P. Radaelli et al., Phys. Rev. Lett. 75, 914 (1995).
- P. Schiffer, A. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

- А. Н. Васильев, Т. Н. Волошок, Р. Суриянараянан, Письма в ЖЭТФ 73, 392 (2001).
- 14. D. A. Filippov, K. V. Klimov, R. Z. Levitin et al., J. Phys.: Condens. Matter 15, 8351 (2003).
- I. O. Troyanchuk, V. A. Khomchenko, G. M. Chobot et al., J. Phys.: Condens. Matter 15, 8865 (2003).
- B. Bochu, J. L. Buevoz, J. Chenavas et al., Sol. St. Comm. 36, 133 (1980).
- 17. J. Chenavas, J. C. Joubert, M. Marezio, and B. Bochu, J. Sol. St. Chem. 14, 25 (1975).
- R. Weht and W. E. Pickett, E-print archives, cond-mat/0011316.