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We present a theoretical description and electrical conductivity measurements for amorphous (Gd,Y).Sii—,
alloys with 0.1 < & < 0.2. In our model, we take into account the strong topological disorder in the system,
causing the appearance of regions with higher electron density (electron «drops») around nanoscale structural
defects enriched with rare-earth ions («clusters»). We calculate the local density of electron states in the drops
and in the matrix and establish the criterion for local instability towards ferromagnetism. In the framework of
the «local phase transition» approach, we find that short-range ferromagnetic order is more favorable inside
the drops than in the matrix and exists in a wide temperature range. We analyze recent measurements of
the temperature and magnetic-field dependence of the electrical conductivity in these systems and show that
the spin polarization of the electron states in the drops enhances the tendency towards the metal-insulator

transition.

PACS: 72.15.-Gd, 75.25.+7, 75.47.De, 75.50.Kj, 75.50.Pp

1. INTRODUCTION

The anomalous transport and magnetic properties
of amorphous (a-) RE;Si;_, alloys (with RE = Gd,
Th, Y and 0.1 < 2 < 0.2) have been the object of a
controversial debate in recent years. The standard ap-
proach to these systems, described as disordered mag-
netic semiconductors, is unable to account for various
peculiarities in a wide range of temperatures and mag-
netic fields and, in particular, for transformations in
the electronic and magnetic structure. Various exper-
iments [1-5] reveal that the presence of doped mag-
netic moments in a strongly disordered semiconduc-
tor can combine features of the usual doping-driven
metal-insulator transition in amorphous systems with
the physics of the temperature- and field-driven mag-
netic (spin glass) transition. The competition between
structural and magnetic disorder, which is responsible
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for the features observed at low temperatures in the
magnetic and transport properties of a-RE,;Si; ., has
been analyzed in Refs. [6,7] within the framework of
the Anderson —Mott transition driven by spin disorder.
ESR and dc-magnetization results show (see Ref. [8])
that RE is incorporated as a trivalent ion (RE**") in
the a-Si matrix. Two (s — d) electrons of RE form sat-
urated bonds with (s — p) electrons of neighbored Si,
while the third (s — d) electron remains itinerant and
participates in the conductivity; below, we consider RE
as the one-electron donor in the amorphous silicon host.

So far, the a-RE,Si;_, alloy was considered as a
completely disordered, heavily doped, magnetic semi-
conductor, and the role of the short-range structural
and magnetic order was not discussed. However, as a
rule, different kinds of disorder exist in such amorphous
alloys [9]. The compositional disorder at the atomic
scale distances, associated with dangling bonds, vacan-
cies, and substitutional and interstitial centers, can be
qualitatively described within a model of point defects
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in a regular crystal lattice. The structural (topological)
disorder at nanoscale distances, which is originated by
dislocations or inclusions, has to be described in a dif-
ferent way, within a model of continuous defects with
a short-range order, embedded into a completely disor-
dered effective medium (matrix).

As we argue below, sharp spatial fluctuations of
the RE concentration play an important role in a-
RE,Si; . in a wide temperature range, far above both
the paramagnet—spin glass and the metal —insulator
phase transitions (see, e.g., Ref. [9] for a discussion
on the role of the so-called compositional disorder in
amorphous semiconducting alloys). Experiments [1-5]
revealed five distinct temperature regimes, character-
ized by different magnetic and transport properties.
For instance, at T > 70 K, the temperature depen-
dence of the electrical conductivity ¢ in a-Gd,Sij—, is
similar to that of its nonmagnetic structural analogue
a-Y,Si;_,. At T < 50-70 K, instead, a significant dif-
ference in their behavior has been observed, and the
conductivity diminishes with decreasing temperature
more rapidly in a-Gd,Si;_, than in a-Y,Si;_,. This
fact points to the magnetic nature of the phenomenon.
In the temperature range 5 K < T' < 50-70 K, the
low-field magnetization qualitatively obeys the Curie—
Weiss law, although with a small Curie constant and
the effective temperature ©; large negative magnetore-
sistance is found at 7' < 50 K. At T' < 5 K, the material
shows a spin-glass freezing. Samples that are metal-
lic at high temperature show a tendency towards the
metal-insulator transition at low temperature.

To explain these properties, the authors of Ref. [10]
proposed that the strong structural disorder of the sys-
tem favors the formation of clusters, i.e., nanoscale
structural defects with an enhanced concentration of
RE ions, leading to a redistribution of the electron den-
sity, such that regions with the higher electron den-
sity (electron «drops») appear within the a-RE,Si;_,
matrix. Magnetic ordering inside the drops, more fa-
vorable than in the matrix, was predicted. To verify
the magnetic state of the drops, a «localy experimen-
tal method, electron spin resonance (ESR), was pro-
posed, together with conductivity and Hall-effect mea-
surements. Preliminary ESR results were reported in
Ref. [10] and allowed a rough estimate of some parame-
ters of the drops. As is shown below, the typical radius
of a drop for a-Gd,Sii_, is rp ~ 4.5-6 A, correspond-
ing to the volume vp = 4nr} /3 ~ 400-800 A®; the
number of RE ions inside a cluster is kp ~ 10-13; the
volume fraction occupied by the drops is f =~ 0.05—
0.1. The short-range ferromagnetic order inside the
drops develops at a temperature 7' ~ 100 K and satu-
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rates in the temperature range 50 K < 7' < 100 K; for
2-5 K < T < 50 K, the magnetic moments of different
drops are uncorrelated, but at T < 2-5 K, they are
frozen by a spin-glass transition in the matrix.

In this paper, we study the a-RE,Si;_, system in
the temperature regime far above the metal —insulator
and paramagnet—spin glass transitions, i.e., at 7' > 2—
5 K for the a-Gd,Si;_, alloy. We describe the dis-
ordered amorphous magnetic semiconductor within a
model similar to the one adopted in Refs. [6, 7], tak-
ing the short-range structural, electronic, and magnetic
correlations into account in a semi-phenomenological
way, within the so-called «local phase transition» ap-
proach [11]. To describe the effective electron potential
and the charge and spin density distributions of elec-
trons in the drops embedded into the a-RE,Si;_, ma-
trix, we define the corresponding «order parametersy.
To obtain the ground-state electron density, we intro-
duce a self-consistency equation in the form of a local
electrical neutrality condition for an isolated drop. We
also derive the criterion for a ferromagnetic instability
and calculate the temperature of the «localy ferromag-
netic transition inside a drop. Finally, we discuss some
experimental findings on the behavior of the electrical
conductivity as a function of temperature and magnetic
field, and their correspondence to the predictions of our
theory.

2. THE MODEL

a-RE,Si; _, alloys are systems with a rather compli-
cated topological and compositional disorder. Itinerant
electrons move in the crystal potential consisting of a
periodic and a disordered part, the latter having com-
ponents with very different characteristic length scales.
Together with the local part, conventional for all amor-
phous alloys, provided by the potentials of Si dangling
bonds and isolated RE ions included in the a-Si net-
work, there is also a continuous part of the disordered
potential. We suppose that it is formed in the vicinity
of the RE clusters by the Coulomb «tails» of the poten-
tial of charged RE ions. Obviously, to make an analytic
treatment possible, we need to simplify the real distri-
bution of the crystal potential within some reasonable
modeling, which we discuss in what follows.

We consider a set of structurally isolated clusters
embedded into a weakly disordered matrix. The ma-
trix is assumed quasi-homogeneous on length scales ex-
ceeding the inter-atomic distances, but small compared
with the characteristic cluster size and the inter-cluster
distance. We assume that the electron structure of
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the matrix averaged over the realizations of the local
random potential is qualitatively described in terms of
quasi-periodic electron states with a finite lifetime. Fol-
lowing Ref. [9], we write the electron Hamiltonian of
our system as a one-band model in the k — r represen-
tation,

H=> EK) ,cxa+
k,a

4 [ S Uas@) + Bw)00s] W) Tae), (1)

a3

where k = —id/0r is the quasimomentum and E(k) is
the Bloch band dispersion of an ideal periodic lattice.
The operator cl(j)a annihilates (creates) an electron in
the Bloch state labeled by k with spin projection «,
and the operator ‘IJ,(J)(I‘) annihilates (creates) an elec-
tron at the point r with spin projection a.

The local part of the disordered potential has the
form

Uag(r) =Y (Voag+ TSi - 0ag)d(r —1;),  (2)
2
where V and J are the Coulomb and exchange cou-
plings of the electrons with the impurities, respectively,
S; is the local spin vector, and o is the vector of Pauli
matrices. The sum in Eq. (2) ranges over the positions
of the impurities located at the lattice sites r;, which
are randomly distributed.
The continuous part of the potential is nonzero only
inside the clusters and can be written as

T(r) = Z ®;(r),

where ®;(r) is an effective «envelope» Coulomb po-
tential of the jth cluster. In principle, the equation
for ®(r) has to be derived and solved self-consistently
with the charge redistribution in the system. But in our
model, for simplicity, we take ®;(r) = ¢, independent
of r, inside the j-th cluster, and ®,(r) = 0 elsewhere.
Within this simple approximation, ¢ occurs as a local
shift of the bulk chemical potential p inside a drop,
HD = p+ .

To characterize the drops, we have to specify their
properties. We let Np and Nj; denote the total num-
ber of RE ions in the clusters and in the matrix, respec-
tively, with the total number of RE ions N = Np+ Ny,
being fixed. The total volume occupied by the drops
is Vp and the volume of the matrix is Vj;, the total
volume of the system V' = Vp + Vs being fixed. The
volume fraction occupied by the drops is denoted by
f=Vp/V < 1. The RE ion density in the clusters is

9 ZKST®, Bem. 2 (8)

np = Np/Vp = yn, where v > 1 is the enhancement
factor, and n = N/V is the nominal concentration of
RE ions. Because Vp = fV, we have Np = fyN,
Ny = (1 — fv)N, and using Vyy = (1 — f)V, we can
calculate the RE ion density in the matrix as
ny = N—M = 1- f’}/
\ %Y 1—f
To proceed further, we have to make some assump-
tions about the drops. For simplicity, we assume the
drops to be equal and spherical, with the radius rp
and volume vp = 47r¥, /3. The number of RE ions in
a single cluster is then kp = npvp and the excess of
RE ions with respect to the matrix is

n.

v—1
Ak = — = —
k= (np—nu)up l—fﬁ’
where Kk = nup is the nominal number of RE ions in a
single cluster. Thus, we have

y=140- 28 @

and in what follows, we assume that Ak is a parameter
of our model, which is possibly determined by the alloy
growing conditions. It is related to the number of RE
ions in a cluster by kp = vk =k + (1 — f)Ak.

We still have to find a connection between f and
vp. Let Np be the total number of drops. Then
fV = Vp = Npup, ie, f = Npvp/V. Assuming
that the number of drops per unit volume ANp/V is
technologically fixed, we have that f is proportional to
the volume of a drop vp, i.e., to the nominal number
of RE ions in a cluster, kK = nvp. We write f = Ak,
with N B N
‘N Vn
viewed as a parameter. We must find a physical condi-
tion to determine x, and hence all the drop parameters.
As we show in Sec. 3A, this is the electrical neutrality
condition for an isolated drop.

The potential ¢, which determines the position of
the local chemical potential in the drops up = u + ¢,
can be qualitatively estimated as an average electro-
static potential inside a drop of radius rp,

A

2
w= ze Ak. (4)

€rp
Here, e is the electron charge, we take the RE ion as a
donor with the effective uncompensated positive charge
Zle|, and € is the static dielectric constant of the sys-
tem. For a-Gd,Si;_,, we have Z = 1 (see Sec. 1),
e ~ 12-15, the bandwidth of the itinerant electron
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band is W =~ 6-8 €V, the average volume of the el- p
ementary cell is a® ~ 20A3, ie., the average lattice 0.7 : : : : :
spacing is a ~ 2.7A. Thus, for a nominal chemical Y
composition x = 0.14, the average concentration of '
RE ions is n ~ 7-10?! em™? [4,5]. From the ex- 0.5 7
perimental results [10], we can estimate Ak ~ 7-9, 041 |
Kk ~ 3-4, A ~ 0.01-0.03. This gives the estimate
Np/V = flvop = (6-25) - 10*° cm 3 for the number 031 i
of drops per unit volume. 0.2 F \ .
0.1f -
L Em \
0 |_| I I I i
3. LOCAL DENSITY OF ELECTRON STATES 215 O Zos 0 05 1 15

AND BASIC EQUATIONS

In this section, we derive the equations that fix all
the parameters of our model. We start by calculating
the local density of states (DOS) in the matrix and
in the drops, in the paramagnetic phase, through the
usual expression [9] p(¢) = 71 Im(G4(r,r;¢)), where
¢ is the electron energy and G 4(r,r;¢) is the advanced
one-particle Green’s function associated with Hamilto-
nian (1), averaged over the realizations of disordered
potential (2). Assuming that magnetic order is absent,
i.e., (S;) = 0 everywhere in the system, we obtain the
expression

+oo

pe) =1m |

— 00

po(z) % (5)
e—z—34e) m’
where the energy ¢ is measured from the center of
the band of the ideal lattice. The function pg(z) in
Eq. (5) is the DOS corresponding to the electron spec-
trum E(k) of the ideal lattice, and for definiteness, we
adopt the semi-elliptic form

z\/1—227 |z <1,
po(z) =4 T
0, |z] > 1.
We take energy and length units such that half the
bandwidth W/2 and the size of the elementary cell a
are equal to one. The advanced self-energy ¥ 4(¢) is
obtained by averaging over the realizations of the disor-
dered potential U(r) in Eq. (2) within some approxima-
tion scheme. As is customary, we include the average
(U(r)) into the chemical potential y; if we then assume
that the impurities giving rise to the random poten-
tial in Eq. (2) are uncorrelated over different impurity
sites r;, we find ([U(r)]?) = V2 + S(S + 1) T?|Nimyp in
the noncrossing Born approximation, where 1, is the
concentration of impurities. Explicit results for X(e)
were obtained in Refs. [6, 7] by means of numerical
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Fig.1. Dashed line: the semi-elliptic DOS, Eq. (6), of
the ideal lattice. Solid line: the DOS resulting from
the inclusion of «local» impurity effects, resulting in
a broadening of the semi-elliptic DOS, Eq. (7), with
I' = 0.1. The empty square marks the position of the
mobility edge assumed at the bottom of the ideal band,
em = —1. The black square, labeled by M, and the
black circle, labeled by D, mark the value of the DOS
in the matrix and in the drops, respectively, for the set
of parameters adopted in the text

calculations for different values of the scattering pa-
rameter ([2U/W]?). For our qualitative purposes, it
is sufficient to assume that the fluctuations of poten-
tial (2) lead to a simple homogeneous broadening of the
ideal semi-elliptic DOS (6), with a finite inverse lifetime
2T proportional to the scattering parameter. Thus, the
resulting local DOS in our model is characterized by a
tail of localized states (see Fig. 1). Using Eq. (5) with
Y a(e) = 4T and with pg(2) given by Eq. (6), we find

p(6)=% (\/\/m—n—r>7

(7)

where R = (2 —T? — 1)/2.

A. The paramagnetic phase

We start our analysis by discussing the properties
of the paramagnetic phase. Hereafter, the subscript p
indicates that the corresponding quantity is evaluated
in the paramagnetic phase, whenever this is expected
to have a different value in the phase with a short-range
ferromagnetic order, discussed in Sec. 3B.

The chemical potential of the system in the param-
agnetic phase, jp, is fixed by the condition of conser-
vation of the average number of electrons,
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+o00
2= £,) [ o) (e = ) de +
. B
+2fp / p(E)f(e —pp —pp)de =z, (8)

where the factors 2 account for the spin degeneracy,
fp = Akp is the volume fraction occupied by the drops
in the paramagnetic phase, f(z) = [exp(z/T) + 1]7! is
the Fermi— Dirac distribution function at the temper-
ature T (in energy units), and z = na® is the nominal
RE content of the alloy (here, RE ions are taken as
donors with Z = 1, such that the number of doped
electrons in the conduction band equals the number of
RE ions). For simplicity, we assume that the inverse
lifetime T" is the same in the matrix and in the drops,
although this assumption plays no role in the following
derivation, and we could even adopt a different DOS
pm,p(€) in the matrix and in the drops.

As discussed in Sec. 2, the excess of RE ions inside
a cluster, Ak, causes an increase of the electron den-
sity with respect to the matrix, which is controlled by
the average potential ¢, in Eq. (4) with rp — rpp in
the paramagnetic phase. We assume that the electrical
neutrality condition is satisfied for an isolated drop, en-
suring that the excess of the RE ion density is screened
by the corresponding excess of the electron density,

“+oc
Q/QEVQ—M—¢M%ZVM» (9)

— o0

where 7, is the density enhancement factor, Eq. (3),
calculated in the paramagnetic phase (i.e., with
f = fp, K = kp). With Eq. (9), we can rewrite Eq. (8)
in the simpler form

“+oc
2 [ e)f(e = np)de = (1= Aan)

— 00

(10)

whence it is evident that the chemical potential p,, is
uniquely determined in terms of the parameters of our
model. Once p, is obtained form Eq. (10), Eq. (9)
contains k, (or, equivalently, rp ,) as the only vari-
able, and can be easily solved by means of standard
numerical methods.

The simultaneous numerical solution of Egs. (9) and
(10) at T =0, e.g., for x = 0.14, W = 8 eV, € = 12,
Arx =9, and A ~ 0.029, with ' &~ 0.1 (chosen as in
Refs. [6, 7] to fix the chemical potential at the mobility
edge, pp, = —1, see below) yields , ~ 3.1, which gives
fp = 0.091 and v, ~ 3.34. Hence, the number of RE

ions in a cluster is rp , ~ 10.4, the volume of a drop is
vp,p ~ 440 A3 and the radius of a drop is rp, ~ 4.7 A.
The value of the Coulomb shift of the chemical poten-
tial in the drops is ¢, &~ 0.51 (which corresponds to
an energy approximately 2 eV). The local DOS at the
Fermi level is p(pp) &~ 0.14 and p(pp + ¢p) & 0.50 in
the matrix and in the drops, respectively (the maxi-
mum value for the DOS is ppq. & 0.58 for the chosen
set of parameters, see Fig. 1).

So far, we have discussed only the paramagnetic
phase of the system, and hence our results are valid for
both the magnetic alloy a-Gd,Sii_, (at T > Tp, see
Sec. 3B) and the nonmagnetic alloy a-Y,Sii—.

For small f,, well below the percolation limit of the
drops, the electron states within the drops are localized
in the volume vp and are separated from the matrix by
a surface energy barrier, which determines the excita-
tion energy of a drop, £p. Also the electron states
within the tail of the DOS of the matrix are localized
at the scale of inter-atomic distances. Therefore, at
T < &p, the fraction of itinerant electrons within the
elementary cell in our system can be estimated as

+o0

mM@=%Lﬁw/ﬁ@n@—%ma

Em

(11)

where ¢, is the mobility edge, which depends on the
scattering potential. We assume, for simplicity, that
it is located at the bottom of the ideal lattice band,
em = —1. Although, strictly speaking, one should de-
fine the position of the mobility edge self-consistently,
from the calculation of the two-particle Green’s func-
tion of the system, our simplifying assumption does not
play a relevant role.

The variation of 24, with increasing temperature
in the paramagnetic phase, together with tiny varia-
tion of the chemical potential j;, and of the Coulomb
shift ¢, is reported in Fig. 2 for the chosen set of pa-
rameters. As can be noticed, because the Fermi level
was fixed at the mobility edge at 7' = 0, the itiner-
ant electrons are thermally excited from the localized
states in the tails of the DOS at finite temperature,
and their density increases almost linearly with 7. We
note that x;n , is at most about 0.006x at the high-
est temperature reported in Fig. 2 (which corresponds
to T' = 200 K), and therefore itinerant electrons are
a tiny fraction of all the electrons in the system, the
most part being localized into the DOS tails. There-
fore, whereas the nominal density of doped electrons
is n ~ 7-10%" cm™2, the density of thermally excited
itinerant electrons is, e.g., Nitin,p ~ 4 - 109 ecm™? at
T ~ 200 K.

355 9*
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Fig.2. a) Temperature dependence of the chemical potential y, in the paramagnetic phase as resulting from the numerical

solution of Eq. (10) at finite temperature. b) Temperature dependence of the Coulomb shift ¢, in the paramagnetic phase as

resulting from the numerical solution of Eq. (9) at finite temperature and with y,,(T) previously determined. ¢) Temperature

dependence of the fraction of itinerant electrons in the paramagnetic phase, xitin,p, calculated according to Eq. (11). In

all the three panels, the black circle on the temperature axis marks the transition point to the phase with a short-range
ferromagnetic order in the drops

B. The phase with a short-range ferromagnetic
order

In this section, we treat the exchange part of Hamil-
tonian (1) in the mean-field approximation, supposing
(S;) = 0 in the matrix and (S;) # 0 inside the drops.
This assumption is quite reasonable in a wide temper-
ature range, because the local DOS at the Fermi level
is larger in the drops than in the matrix (see Fig. 1),
and therefore the condition for ferromagnetic ordering
in the presence of an exchange coupling between mag-
netic RE ions and electrons is more easily realized in
the drops. The magnetic RE ions inside the clusters
experience the effective magnetic field

+oo
Hyr = J / [ple +m) — ple — m)] x

X fle—p—p)de, (12)

where m = Jxp(S.), xp = vz is the concentration of
magnetic (e.g., Gd) RE ions per unit cell in a cluster,
the index z defines the direction of the local quantiza-
tion axis, and the average value of the spin at the RE
site is defined self-consistently as

SH,
(S.) = SBs (Tff) ,

where

25 +1 25 +1 1 1
Bs(y) = 53 Ch< 53 y) 35 <ﬁy>
is the Brillouin function for spin S. For Gd ions,

S =7/2.

The above equations should be solved simultane-
ously, together with the equation for the chemical po-
tential p,

+oo

21— ) / p(e)f (e — ) de +

— 00

+o0
+f / p(e+m)+p(e—m)] fe—p—g)de =z, (13)

— 00

which corresponds to the conservation of the average
number of electrons in the phase with a short-range
ferromagnetic order within the drops, and the equation
for k, which enforces charge neutrality for an isolated
drop,

+oe
/ (o +m) + ple —m)] (e — p— p) de = 7z, (14)

— o

where 7 is the density enhancement factor defined in
Eq. (3). As discussed above, we assume that the num-
ber of excess RE ions Ak does not change in pass-
ing from the paramagnetic phase to the phase with a
short-range ferromagnetic order, whereas the radius of
the drops changes from rp, to rp (i.e., the nominal
number of RE ions within the clusters changes from
kp to k). The volume fraction occupied by the drops
is f = Ak, where )\ is the same as in the paramag-
netic phase, assuming that the number of drops per
unit volume does not change across the local ferromag-
netic transition.
Using Eq. (14), we can rewrite Eq. (13) as



MKIT®, Tom 128, Boin. 2 (8), 2005 Short-range ferromagnetism and transport properties ...
+00
2 [ nde = (1= Adw)z, (15)

which concides with Eq. (10). Therefore, it is evident
that for a given set of parameters, the chemical poten-
tial has the same value as in the paramagnetic phase
at the same temperature, p(T) = u,(T).

The typical value of the exchange potential in the
units of W/2 is JS 0.1-0.2 <« ¢. In what
follows, we take m as a small expansion parame-
ter and seek solutions of the above self-consistency
equations that are close to the solutions in the para-
magnetic phase, rp = rp, + 1, with n < rp).
We observe that ¢ ~ ¢, — e*Arn/ery, , = ¢, + ¢,
with ¢ = -nyp/rpp <K ¢p.  The volume of a
drop changes as vp = vp,(l + 3n/rp,p), and hence
k=nvp x kp(1+3n/rpy), f =Ac~ fp(1+3n/rpp),
and v & vp(1 + 3AKN/VpkprD,p)-

Now, we expand the DOS and the Fermi— Dirac dis-
tribution function as

~
~

~

~

1
ple +om)  p(e) + pl(€)om + 5p ()m? +
1
2" @om® (o= 1),

fle—mp =) = fle =1 —¢p) = f'(e = 1o — )¢
(here and in what follows, the prime is a short notation

for the derivative with respect to ¢). Then Eq. (14) for
charge neutrality, at this order of approximation, gives

400

2| [0 - - o ¢+
o 3zA
Y O oG (s)

i.e., L + Mm? = 0, where the coefficients L and M
are calculated in the paramagnetic phase. The coef-
ficient M is reexpressed in a more suitable form via
integration by parts that transfers the derivative with
respect to ¢ from p to the Fermi—Dirac distribution
function f. At low temperature 7' < ¢,, we find
L =2p(pp+¢p) — BrAk/kppy) and M = p' (1 + o).

It is evident that ¢ ~ m?, as expected, because cor-
rections to the Coulomb shift cannot depend on the
sign of the magnetization. Finally, expression (12) for
the effective field up to O(m?) becomes
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0.0016
T

0 1 1
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Fig.3. Temperature dependence of the magnetization
of a Gd ion in a cluster, (S.) = m/Jxp, obtained
by solving Eq. (18) for T close to Tp. The values of
the parameters are given in the text. The local transi-
tion point at T = Tp = 0.0016 is marked by a black

circle

+oo T

Hy 27 | [ $Ef(E o= oy de| mot
— 00 .
+oo ]

Z " _ _ d 3 _

+ 3 p"(e)f(e — pp — pp)de| m
+0o0 )
=27 | [ FOF (e ep) | me.
i.e., Hepp ~ Am + Bm?® + Cm(, where the coefficients

A, B, and C are calculated in the paramagnetic phase.
The coefficients A and B are reexpressed in a more ap-
propriate form via integration by parts that transfers
the derivative with respect to € from p to f. At low
temperature, A =27 p(up +¢p), B = Tp" (1p+¥p) /3.
and C =2Tp'(p + 0p) = 2T M.

We find the solution of Eqs. (12)—(15) near the «lo-
cal phase transitiony, i.e., at temperatures close to the
local Curie point of the drops Tp (which is defined be-
low), where our expansion in powers of m and ( is valid.
We must expand the Brillouin function, observing that
ch(y) ~ 1)y +y/3 —y3/45, i.e.,

S+l 253 + (25 +1)% ,

35 U~ o058 -

Then, the self-consistency equation for m in the
phase with a short-range ferromagnetic order for
T < Tp (Tp is defined below), at the same order of
approximation, becomes

Bs(y)

~
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3T
253 + (25 + 1)2

B 907

12.750’7;)5{ [A—l—BmQ—}—(C—l—D)(]—

A3m2} . (17)

where D = 3AAk/ypkppp accounts for the variation
of v (i.e., of p = x) in entering the phase with the
short-range ferromagnetic order. Equation (17) must
be solved together with Eq. (16) to yield ¢ and m?.

It is evident that the local transition tempera-
ture for the drops is Tp JA*S(S + 1)/3, where
A* = Azy, = Aa’kp/vp. We note that in our sim-
ple mean-field approach and within the approximation
of isolated drops, the full dependence of the transition
temperature Tp on the mean RE concentration x might

not be correctly described, because kp and vp are the
local parameters of a drop, which within our model are
self-consistently determined by x and by the cluster
parameters Ax and A, assumed fixed. A more devel-
oped theory has to account for both charge and spin
correlations in the system (which may introduce a de-
pendence of Ax and A on z), as well as an exchange
between moments of different drops, to describe the
correct dependence of Tp on x. However, this quanti-
tative description is beyond the scope of our paper.

For T > Tp, Eq. (17) has no real solutions and
m = 0. For T' < Tp, the ferromagnetic solution within
the drops becomes stable. From Eq. (16), we find
¢ —Mm?/L, and substituing this in Eq. (17), we
obtain the equation for m? for T < Tp,

1
3JAzpS(S+1) =T _Ip-T _Tp-T (18)
M(C +D)—BL 25%+ (25 +1)? - Q - Q 7

TS | (S +1) 3L 5073 AP Pz P+_T%

where P and @) are constants, which depend on the‘
parameters calculated in the paramagnetic phase, and
whose expression can be easily deduced from Eq. (18).
For a-Gdg.14Sig.s6, we have p'(up, + ©p) 0.35,
p"(1p + ¢p) &~ —0.91, and taking J ~ 0.026 (which
corresponds to the energy 0.1 eV, a typical exchange
energy in wide-band magnetic semiconductors), we
find Tp = 0.0016 (which corresponds to the temper-
ature 70 K) and P + Q/T3 ~ 0.45. The magneti-
zation of the magnetic RE ions within the clusters,
(S:) = m/JTxp = m/Txvyy, near the local transition
point Tp is reported in Fig. 3.

We point out that our results are correct only within
the mean-field approximation for the RE spin density.
The finite volume of the drops causes a «tail» of fluctu-
ations of the magnetization to occur at T' > Tp, in the
temperature range (T —Tp)/Tp ~ (rp/a)~2 ~ 0.1-0.2.

~

~

4. EXPERIMENTS AND DISCUSSION

The X-ray study of the local structure of a-
Gd,Si;_, revealed a strong local distortion of the ma-
trix around Gd ions, as well as the absence of fluctua-
tions on macroscopic scales in the system [12]. Detailed
conductivity and tunneling measurements revealed the
coexistence of metallic and semiconducting domains
(micro- or meso-scopic), identifying the percolation na-
ture of electron transport at low temperatures, near
the metal —insulator transition [13]. Here, we con-
sider some interesting experimental results, obtained

358

at temperatures far above the metal —insulator transi-
tion, and discuss their correspondence to the predic-
tions of our theory. The results are obtained using the
samples prepared in Prof F. Hellman’s laboratory by
a technique described previously [2]. Amorphous films
of a-(Gd,Y),Si;—», 100-500 nm thick, were grown by
e-beam coevaporation on Si/SiN substrates. Magneto-
transport measurements were carried out in the tem-
perature range 5-300 K in magnetic fields up to 4 T
using the Van der Pauw and standard Hall bar tech-
nique.

Experiments [1-5] have clearly shown that the elec-
trical conductivity o increases almost linearly with the
temperature 7" in a-Y,Si;_, at 7> 2-5 K and in a-
Gd;Si;_, at T > 50-70 K. This dependence is well
described by the expression

JP(T) R oo+ Uitin,p(T) (19)

where o is constant and 044, (T") depends on the tem-
perature. To explain these results, we propose that in
a-RE,Si;_, alloys, the electrically neutral drops play
a significant role in the itinerant electron transport.
The constant part og is associated with the tunnel-
ing between the drops and the matrix through the sur-
face barrier, while 0i1in p(T) = Zitin,p(T)vp(T), where
vp(T') is the itinerant electron mobility in the paramag-
netic state. To clarify the role of the itinerant electron
concentration in the temperature dependence of the
electrical conductivity, Hall effect measurements were
carried out.
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Fig.4. Temperature dependence of the itinerant elec-
tron conductivity (solid line) and concentration (open
circles) for the nonmagnetic Yo.17Sio.s3 sample

In Fig. 4, we present the experimentally determined
itinerant electron concentration n(7) for nonmagnetic
a-Y,Si; ., which linearly increases with temperature
in the whole temperature range. According to our
model, this implies that the dependence of v,(T) on
T is weak enough, as resulting from the scattering of
itinerant electrons on electrically neutral centers. The
temperature dependence of the itinerant electron elec-
trical conductivity presented in Fig. 4 is build by tak-
ing into account some shunting tunneling conductivity
0p, which does not contribute to the Hall effect. The
data show that oiin p(T)/0itinp(0) = n(T)/n(0) and
confirm that the variation of o;1in,,(T") is produced by
n(T'), which increases linearly with T

For the a-Gd,Si; _, magnetic alloys, the increase of
op(T) with T is strongly nonlinear at T' below approx-
imately 50-70 K and becomes quasilinear only above
this temperature (see Fig. 5). We attribute this nonlin-
earity to complex magnetic transformations in the sys-
tem. Consistently with the theory developed in Sec. 2,
for T < Tp = 50-70 K, when the short-range ferromag-
netic order is formed in the alloys containing magnetic
RE atoms, two factors modify the temperature depen-
dence of the conductivity o (7).

First, there occurs the exchange scattering of elec-
trons on the noncorrelated magnetic moments of the
drops, which shifts the mobility edge ¢, in Eq. (11)
upwards,

Acs,,
r

~B(T) = AMTkp(5:)” (jK52<SZ>) :

thus decreasing the concentration of itinerant electrons

o, (Ohm - cm)™? Oz, (Ohm - cm)™?
150 | 1 100 E
100 F 110 E
T
50 11 47
3
2
1
Il Il 01' Il Il Il O'
0 100 200 300 O 0.05 0.10 0.15 0.20

T, K 1/T, 1/K

Fig.5. a) Conductivity vs temperature dependence for

the Gdo.135Si0.865 sample Ne5 at zero magnetic field.

b) Conductivity vs 1/T at various magnetic fields, for
the same sample

in the phase with a short-range ferro-magnetic order,
Tipin (T).

Second, a dependence of the mobility v(T') of the
itinerant electrons on 7" appears, which is qualitatively
described as a superposition of the potential and ex-
change mechanisms for electron scattering on the dis-
ordered magnetic drops with a characteristic size that
is small compared to the electron mean free path,
v(T)/vp(T) ~ 1 — B(T). Thus, the reduction of o(T)
with decreasing temperature is driven, in principle, by
both mechanisms.

The parameter 3(T) is zero at T > Tp and may
be of the order 0.01-0.1 at T <« Tp if 7S/V ~ 0.1-
0.3, kp ~ 10-12, and A\ =~ 0.01-0.03. From the data
in Fig. 5, we conclude that the variation of the itiner-
ant electron concentration plays the major role in our
system, and the variation of the itinerant electron mo-
bility can be neglected in the following discussion. In
any case, the appearance of a short-range ferromag-
netic order obviously enhances the tendency towards
the metal —insulator transition.

We briefy discuss the variation of the conductiv-
ity o of our system as a function of the temperature
and of the external magnetic field B. At T < 50-70 K,
a strong exponential dependence of the conductivity
on the temperature (see Fig. 5b) and on the magnetic
field (see Fig. 6) is observed. There are two regimes of
magnetic fields characterized by a different behavior of
o(B). In a magnetic field less than some critical value
B¢, the conductivity slightly depends on the magnetic
field. At B > B¢, the aforementioned exponential de-
pendence of o on B is observed (see Fig. 6b); the criti-
cal value B¢ increases with increasing temperature (see
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Fig.6. a) Conductivity vs magnetic field dependence for the Gdo.135Si0.865 sample Ne5 at different temperatures. b) The
same dependence when the conductivity is rescaled by the zero-field vale o(0). ¢) The same dependence when the magnetic
field is rescaled by the critical value B¢, which evidences the data collapse
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Fig. 7. Temperature dependence of the critical mag-
netic field B¢ for the Gdg.135Si0.865 sample Nes

Fig. 7). B is determined by the intersection of the lo-
cal fit of the experimental log[o/o(0)] as a function of
B with the line 0/0(0) = 1 at low temperatures. For
high temperatures, B¢ is the scaling parameter from
Fig. 6¢. We suppose that B¢ corresponds to the criti-
cal magnetic field that aligns the magnetic moments of
the drops. At low magnetic field, the magnetic energy
of the drop kp(S.)mpgB (here, mp is the Bohr mag-
neton and g is the gyromagnetic ratio) is smaller than
the thermal energy kT and the magnetic moments of
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Fig.8. Temperature dependence of the mean mag-

netic moment of the clusters for the Gdg.135Si0.865 sam-

ple Ne5 (open circles), for the Gdo.14Sio.s6 sample Ne 3

(open squares), and for the Gdo.145Si0.855 sample Ne7
(open triangles)

different drops are disordered. This leads to an addi-
tional fluctuation potential in the system and raises the
mobility edge. Magnetic fields larger than B¢ align the
magnetic moments of different drops and eliminate this
scattering channel. This reduces the mobility edge and
increases the itinerant electron concentration, leading
to an increase in the conductivity.
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It is important that the value of the magnetic mo-
ment of the drop obtained from the low-temperature
part of the curve Be(T) allows us to estimate
the average number of Gd atoms in the clus-
ter, kp. The experimentally determined value of
(kp(S2)/S)expt = kBT /mpSgBc is shown in Fig. 8.
At low T, when (S.) ~ S, we obtain Kp ezpt ~ 10,
which is consistent with the prediction of our theory.
The experimentally determined xp values are close for
different samples. We suppose that if the clusters arise
during the sample growth, their size may depend on
the synthesis conditions.

We note that the magnetic-field dependence of the
conductivity has a universal form for different temper-
atures. The experimental dependences of /0 (0) vs.
(B/B¢) (here, o(0) is the zero-field conductivity) for
different temperatures are presented in Fig. 6¢. The
experimentally observed behavior of ¢/c(0)(B/Bc¢)
obeys the law

o B
—— ~exp| —=—-1), 20
e (5 1) 20
at B > Bg, where Be = kgT/M and
M = mg(S;)gkD,expt- At B> Bc, this gives
n B
—— ~exp| =], 21
2w~ (z5) 21

where n (n(0)) is the density of itinerant electrons (at
zero field). Our explanation of this result is as fol-
lows. We suppose that the Zeeman splitting in the ma-
trix leads to a downward (upward) shift of the bottom
of the itinerant electron spin-up (spin-down) subband
with respect to the Fermi level. At high B, the full
splitting regime sets in when the spin-down sub-band
remains empty, the local Fermi energy measured from
the bottom of the spin-up subband rises linearly with
B, and the itinerant electron concentration increases
according to Eq. (11).

Our experiments as well as previous data [1-5]
have shown that the application of a strong magnetic
field B suppresses the tendency towards the metal—-
insulator transition and even induces an insulator-to-
metal transformation in some a-RE,Si;_, alloys with
low RE concentration. This fact is naturally explained
within our model, if we take into account either the
increase of the itinerant electron concentration or the
suppression of the electron exchange scattering on the
magnetic drops provided by their coherent orientation
in the magnetic field.

What is an external influence, besides the magnetic
field, that may increase the itinerant electron concen-

tration in the studied system? A way to vary the elec-
tron concentration is to increase the current I through
the sample. To provide a more uniform current density
distribution over the sample, we have used the stan-
dard Hall bar geometry of measurements. The conduc-
tance G and relative conductivity o/0(0) dependences
on the current at different temperatures are presented
in Fig. 9, where o (¢(0)) is the conductivity (at zero
current limit). (G is used because of the small sam-
ple size and not well-defined geometrical factor for o
calculation.) We note that these dependences are anal-
ogous to such dependences vs. magnetic field, shown
in Fig. 10. These figures clearly demonstrate that the
current effect on the system is analogous to the influ-
ence of the external magnetic field. We suppose that a
current flow I through the sample enhances the effec-
tive exchange between the magnetic moments of disor-
dered drops, because it increases the itinerant electron
concentration. If I exceeds some critical value I, de-
termined by the same procedure as B¢, all the drops
on the percolation path become magnetically ordered,
which leads to a suppression of the fluctuation poten-
tial of the magnetic disorder. Increasing the current
also leads to the rise of the itinerant electron concen-
tration and to the reduction of the activation energy
between the Fermi level and the mobility edge, which
is consistent with Eq. (11).

5. CONCLUSION

We presented the theoretical description and elec-
trical conductivity measurements for amorphous a-
(Gd,Y),Si;_, alloys with 0.1 < 2 < 0.2. We took
the strong topological disorder in the system into ac-
count: in our approach, the nanoscale structural de-
fects, enriched with rare-earth ions («clustersy ), cause
the appearance of regions with higher electron density
(electron «dropsy). The value of the local DOS at
the Fermi level in the drops significantly exceeds the
value of the DOS at the Fermi level in the matrix, and
therefore a short-range ferromagnetic order appears in
the drops below some characteristic temperature Tp.
We estimated Tp in the «local phase transition» ap-
proach and analyzed measurements of the temperature
and magnetic-field dependence of the electrical conduc-
tivity in amorphous (Gd,Y),Si;—, alloys, in the frame-
work of the drop description. We obtained a qualitative
agreement between the experimental results and the
theoretical predictions. Further ESR measurements,
scanning electron microscopy with polarization analy-
sis (SEMPA) and neutron diffraction (ND) experiments
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Fig.9. a) Conductance as a function of the current through the Gdo.14Sio.s6 sample Ne3 at different temperatures. b) The
same dependence when the conductivity is rescaled by the zero-current value o(0). ¢) The same dependence when the
current is rescaled by the critical value I, to put in evidence the data collapse
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Fig.10. o) Conductance vs magnetic field dependence for the Gdo.14Sio.s6 sample Ne3 at different temperatures. b) The
same dependence when the conductivity is rescaled by the zero-field value o(0). ¢) The same dependence when the field is
rescaled by the critical value B¢, to put in evidence the data collapse

are necessary to reveal details of the electron and mag-
netic structure of the drops.

In our theoretical model, we have neglected the
low-temperature effects leading to the metal —insulator
transition and associated with the Mott — Hubbard [6,
7] or percolation [13] mechanisms. Nevertheless, our
experimental results are in accordance with the con-
clusions in Ref. [13] about the percolation character of
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the electron transport and the metal —insulator transi-
tion in the studied system.
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