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The behavior of an excess electron in condensed inert gases in an external electric field is considered at densities
and temperatures at which the mobility of a slow electron is relatively high. On the basis of experimental data
and a model of a pair electron interaction with atoms, an effective potential energy surface is constructed for
an excess electron inside a dense inert gas. The region available for a slow electron consists of many intersect-
ing channels that form a Delone network located between atoms. A drifting electron, as a quantum object,
propagates along these channels (tubes), and electron transition between intersecting potential energy tubes of
different directions provides an effective electron scattering. This mechanism of electron drift and scattering
differs from that in gases and crystals. Peculiarities of electron drift inside dense inert gases are analyzed within
the framework of this mechanism of electron scattering, leading to a moderate change of the electron mobility

upon melting.
PACS: 34.80.-i, 52.80.Wgq, 52.80.Yr, 79.20.Kz

1. INTRODUCTION

The reduced electron mobility of excess electrons in
heavy condensed inert gases (Ar, Kr, Xe) as a function
of the atom number density has a sharp maximum at
moderate number densities, as it follows from experi-
ments [1-14]. In particular, for xenon, the maximum
zero-field reduced mobility exceeds that for a gaseous
state by more than three orders of magnitude [6, 10].
Moreover, the maximum reduced zero-field mobility of
excess electrons in inert gases exceeds that for coin met-
als by one order of magnitude [15].

The simplest theoretical models [16-20] consider the
drift of an excess electron as a result of pair electron—
atom scattering and explain high electron mobility by
the Ramsauer effect in electron scattering on individual
atoms and negative electron—atom scattering lengths
for Ar, Kr, and Xe. But the approach of independent
atoms is correct only for gases; at atomic densities cor-
responding to the maximum of the electron mobility,
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the distance between nearest neighbors is comparable
with the electron-atom scattering length, and hence
this approach is not correct and may be considered
rather as a model. The effect of high electron mobility
at moderate atomic densities results from the collective
character of the interaction of an excess electron with
atoms.

Recently [21], we showed that the reason of the
electron mobility maximum is related to the transi-
tion from attraction to repulsion for an excess elec-
tron inside an inert gas as the number density of atoms
increases starting from the gaseous density. Indeed,
in gases, where an excess electron interacts with each
atom independently, the average electron potential en-
ergy is negative because of a negative electron—atom
scattering length, which leads to an attractive Fermi
exchange interaction of the electron with each atom.
At high atomic densities, when the distance between
neighboring atoms is comparable with the atom size,
the average interaction potential for the electron cor-
responds to repulsion because of the Pauli exclusion
principle. Hence, at moderate atom densities, the av-
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erage interaction potential of an excess electron with
inert gas atoms becomes zero.

Therefore, there is a range of inert gas densities
with an attractive interaction potential for an excess
electron, and these densities correspond to a high elec-
tron zero-field mobility, as is observed experimentally.
Because penetration of an excess electron into each core
leads to repulsion due to the Pauli principle, points of
the maximum attractive potential for an excess elec-
tron form a Delone (Delaunay) network [22-24], whose
lines are located between atoms and may be found on
the basis of the Voronoi-Delone method [25]. This
method consists in construction of planes located at
identical distances from neighboring atoms. Intersec-
tions of these planes form the Delone network, and the
electric potential has minima on this network. The
equipotential surfaces that are close in energy form
tubes, which are almost straight. The electron, being
a quantum object, can propagate inside an inert gas
along these almost straight channels. Electron transi-
tions between channels of different directions in regions
of their intersections lead to an effective electron scat-
tering.

We thus conclude that a specific mechanism of the
electron drift in this case differs from those in both
gases and crystals. Indeed, propagating in gases, a test
electron is scattered on individual atoms, whereas scat-
tering of an electron wave in crystals is determined by
distortion of the crystal lattice as a result of a shift of
atom positions from the equilibrium ones during mo-
tion of the electron wave. Then melting of a solid
should seemingly lead to a strong change of the electron
mobility. However, in the case under consideration, a
slow electron propagates along an individual tube near
the Delone network, the electron scattering is weak,
and therefore the electron mean free path inside an in-
ert gas with optimal parameters is large compared to
the distance between nearest neighbors. Correspond-
ingly, change of the phase state does not lead to a sig-
nificant change of the mobility for a slow electron in an
inert gas.

Below, we consider the tube mechanism of electron
drift in heavy inert gases and analyze various aspects
of the electron drift under conditions of the tube-shape
potential of a self-consistent field for an excess electron.

2. ELECTRIC POTENTIAL FOR AN EXCESS
ELECTRON IN DENSE INERT GASES

The negative spatial charge created by excess elec-
trons in dense inert gases can result in strong electric
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fields even at low electron number densities. Therefore,
we consider the regime of electron drift in an inert gas
neglecting the interaction between individual electrons;
that is, an individual electron is considered drifting in
an inert gas. We consider peculiarities of the potential
energy surface (PES) for an excess electron in an inert
gas and, correspondingly, the character of the electron
drift in condensed inert gases under the action of an
external electric field. Using the analogy with clusters
consisting of many atoms with a pair interaction be-
tween them [26-28], we represent the PES as a sum of
local minima and saddles. At atomic densities, when
the electron mobility is high, an excess electron passes
over barriers of the PES during its drift in inert gases.

Another peculiarity of the PES at optimal atomic
number densities is a large volume inside condensed in-
ert gases where the electron location is prohibited by
the Pauli exclusion principle. Indeed, a slow electron
cannot penetrate inside an atom where valence atomic
electrons are located, and hence the excluded region
for an excess electron is concentrated near atomic cores.
For simplicity, we take the prohibited volume near each
atom in the form

4
= —’]"37
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where r is the effective atom radius, which depends on
the electron energy . We take it from the relation

Vi

U(2r) =,

where U(R) is the interaction potential of two atoms
at a distance R between them. In this way, we changed
the repulsion of a free electron from the atom core by
that of a bound electron. Table 1 lists the values of
the atom radii for an exchange electron—atom interac-
tion calculated on the basis of the above formula. This
volume is compared in Table 1 with the volumes per
atom for the solid Vs, and liquid Vj;, phase states at
the triple point, and also with the volume per atom
Vimaz at the atomic number density that corresponds
to the maximum of the electron mobility. These ratios
are given for the electron energy ¢ = 0.1 eV and for the
electron energy ¢ = 1 eV in parentheses. We can see
that the prohibited volume for a free electron at low
electron energies may occupy a significant part of the
total volume.

We note that this character of the exchange interac-
tion between an excess electron and valence electrons
of atoms of condensed inert gases is preserved up to
high atomic densities until electron shells of neighbor-
ing atoms overlap significantly. In any case, it is valid
at densities related to the solid and liquid aggregate
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Table 1.  Parameters of the repulsive interaction potential for an excess electron with individual atoms of inert gases
Ar Kr Xe

T. ag 1.663 1.952 2.338
r2, a2 3.311 4.455 6.277
r A e=01eV 1.63 1.72 1.92
r A e=1ev 1.23 1.28 1.30
Vio, cm? /mol 24.6 29.6 37.1
Viig, cm® /mol 28.2 34.3 42.7
Vinaz, cm® /mol 50.2 43.0 50.2

Vi) Vsol 0.44(0.19) 0.44(0.18) 0.48(0.15)

Vi /Viig 0.39(0.17) 0.38(0.15) 0.42(0.13)

Vi /Vinaz 0.22(0.10) 0.30(0.12) 0.35(0.11)

states of inert gases, and the average exchange inter-
action potential at a given atomic density due to this
interaction can be approximated by the formula

Ues = Aexp <—a%> ) (3)
where V' is the volume per atom, and A and « are
parameters.

We now construct the difference between the poten-
tial for an excess electron located inside a condensed
inert gas and in a vacuum. Taking the electron poten-
tial in a vacuum to be zero, we vary the atomic density
from low values, when this system of atoms is a gas,
up to moderate ones, at which the mobility of an ex-
cess electron is of interest. At low atomic densities,
an excess electron interacts with individual atoms in-
dependently. In regions between atoms and far from
them, the interaction potential is zero, and nonzero in-
teraction takes place only near the atoms. On the basis
of the Fermi formula [29, 30], the interaction potential
between an electron and atoms can be represented as

>

where h is the Planck constant, m. is the electron mass,
r is the electron coordinate, R; is the coordinate of
the ith atom, and L is the electron-atom scattering
length. Because the scattering length L is negative for
Ar, Kr, and Xe (see Table 2), this interaction poten-
tial corresponds to attraction in the regions close to
atoms. Therefore, the potential energy surface consists

2 k>

Me

Ulr) Li(r — Ry), (4)

213

Table 2.  Parameters of the potential energy for an
excess electron inside inert gases
Ar Kr Xe
L, ag —-1.5 -31 —5.7
Upmin, €V [8,11,12,14] | —0.33 | —0.53 | —0.77
Nopin, 10?2 cm—3 1.1 1.2 1.1
Amin, A 4.8 4.7 4.8
Fomins A 2.8 2.7 2.8
27h2 LN pin /M, €V 0.41 0.94 1.58
C, eV 0.44 0.71 1.04
a 4 4 4
A, eV 6 10 14
Ryin, A 36 | 35 | 36
', eV 0.15 0.25 0.36
A’ eV 2.2 3.5 6.5

of regions inside atoms with a sharp electron repulsion,
regions near each atom with electron attraction, and
regions between atoms with zero interaction potential.
The attraction corresponds only to an average interac-
tion of an electron of zero energy with an individual
atom in a gas, and according to formula (4), the aver-
age interaction potential of an electron with inert gas
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atoms is given by

Uat

B 27 i

Me

LN, (5)
where N is the atom number density. This interac-
tion leads to a red shift of spectral lines emitted by
excited atoms located in inert gases [31]. Because this
shift of spectral lines is determined mostly by the ex-
change electron—atom interaction, and a long-range in-
teraction, including the polarization ion—atom interac-
tion, gives a small contribution to this shift, we account
below for the exchange part of the interaction only.

The exchange interaction of a test electron with
electrons of an internal atom region corresponds to re-
pulsion of this electron, and we describe it by formula
(3). Adding the attractive exchange interaction poten-
tial (5) to it, we represent the total electron potential
in the form

where IV is the current number density of atoms and
Npin is the number density at which the interaction
potential has a minimum. The values of N,,;, together
with ay,p, the distances between nearest neighboring
atoms at this density, are given in Table 2.

If formula (6) is valid for a gas, where the second
term is zero, the parameter C' is equal to

min

T(N) = -C .

+ Aexp <—a (6)

Nmz'n

_ 2r Lh?

Me

C =

In reality, we are based on the experimental depen-
dence U(N) that gives another value of C. Indeed, on
the basis of experimental data, which are approximated
by formula (6), we find the parameters in Eq. (6) in ac-
cordance with the formula

dU C
R A e v LR
A= (C = |Uninl) e® 2= N/Nmin.

Here, U,,;n is the minimum of the electron potential
inside an inert gas (the electron potential in a vacuum
is zero). Experimental parameters for U(x) together
with the parameters in formula (6) are given in Ta-
ble 2. Figure 1 represents experimental data for the
average electron potential energy in xenon.

Based on the experimental data for the electric po-
tential of a condensed inert gas with respect to an ex-
cess electron, we construct the potential energy surface
for an excess electron inside an inert gas. We rewrite
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Fig. 1. The potential energy of an excess electron mov-

ing in xenon in an external electric field with respect to

the vacuum vs the number density of atoms according
to experiment [8] (symbols)

formula (6) for the minimal electron energy of an excess

electron as
3
< > + Aexp <—ar3 ) , (9

~1/3
= (5)

is the Wigner — Seits radius and r,;, is the radius at the
atom number density corresponding to the maximum
attraction of an electron inside the inert gas. Formula
(9) can be rewritten in terms of the distance a between
the nearest neighbors,

). o)

where @,,;, is the distance between nearest neighbors
at which the electron potential inside an inert gas has
the minimum. We note that the atom number densities
corresponding to the minimum of the electron potential
according to formulas (9) and (10) are equal to Nyyin,
the minimal electron potentials in formulas (9) and (10)
coincide with Uy, and these parameters follow from
formula (6). In addition, we assume a classical charac-
ter of the electron interaction inside an inert gas in this
consideration, although the interaction has a quantum
character in reality.

3
'w

U(Tw) =-C

Tmin

rw

where

4N

3

3
Amin

a

U(a)z—C( )3—|—Aexp (—a g'
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3. DELONE NETWORK FOR THE
INTERACTION OF AN EXCESS ELECTRON
INSIDE AN INERT GAS

Our goal is to construct the potential energy surface
for an excess electron inside an inert gas in the range of
the atom number densities and temperatures providing
an attractive electric potential there. We concentrate
on the simplest case where atoms form a crystal lattice
and find electron positions with the minimum potential
energy. Evidently, because of the repulsive interaction
for an excess electron with atom interiors, the points
of the minimum electron potential are located equidis-
tantly from the nearest nuclei. For two nearest planes
of the crystal lattice, we then draw the Voronoi sur-
faces between each pair of nearest neighbors, such that
these surfaces separate the action of individual atoms
on an electron. Each Voronoi plane is located at identi-
cal distances from two nearest atoms, and intersections
of the Voronoi surfaces with the two considered planes
of atoms are shown in Fig. 2, where they form a net
of regular hexagons whose centers are the nuclei of the
lattice. Evidently, from the symmetry considerations,
the optimal positions of an excess electron with mini-
mal values of the electron potential energy are located
in the plane in the middle between the nearest planes of
atoms considered. Intersections of the Voronoi surface
with this plane form straight lines of three directions,
the solid lines in Fig. 2.

Evidently, the electron potential energy is minimal
on these lines forming the Delone network [22-24]. We
note that the Delone network is an important mathe-
matical concept (see, e.g., [32-34]). We here use only
the applied aspect of this problem related to the con-
struction of lines of the minimum or maximum poten-
tial (see, e.g., [25]). Electron drift inside an inert gas
proceeds near these lines. We assume that intersection
points of these lines, i.e., sites of the Delone network,
are characterized by minima of the electron potential
energy, and their values are identical for all the inter-
section points (values 4 in Fig. 2) because of the sym-
metry. Passing to three-dimensional space, we obtain
intersections of six straight lines at points whose dis-
tance from two nearest neighbors is a/2, where a is the
distance between nearest neighbors of the lattice.

Thus, assuming the optimal distance of an excess
electron from nearest nuclei at the optimal number
densities of atoms to be maximum for the minimum
electron potential energy, we obtain the optimal elec-
tron positions for the close-packed crystal lattice to
be located on the Delone network that consists of in-
tersecting straight lines. We have two types of these
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Fig.2. The character of the behavior of an excess elec-
tron between two planes of the crystal lattice of inert
gases: 1 — positions of atoms of the first layer, 2 —
positions of atoms of the second layer, 3 — vertices
of the pentagons that are intersections of the Voronoi
surface with the corresponding layer, 4 — positions of
the Voronoi surface for an excess electron in the middle
plane between these layers with the strongest interac-
tion between the electron and atoms, 5, 6 — hexagons
that are intersections of the Voronoi surface with the
corresponding layers, 7 — directions of the electron
current if it is located in the middle plane

electron ground state

A\NANNS

Fig.3. The form of the potential energy for an excess
slow electron in a condensed inert gas along lines of the
Delone network

lines, which are alternated, and the period of trans-
lation symmetry is a for the first-type lines and a/2
for the second-type lines. In Table 3, we give the dis-
tances from six nearest neighbors for points that corre-
spond to the minima of the electron potential energy or
are located in the middle between nearest such points.
The number of nuclei with an indicated distance from
a given point of the Delone network is given in paren-
theses.

In the liquid aggregate state, the Voronoi surfaces
and Delone network may be constructed in the same
manner, but the Delone network lines become curved.
Nevertheless, because of a short order in liquids, the
curvature of these lines is not large, and we can take the
crystal case as a basis for a qualitative consideration.
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Table 3.

Distances between an excess electron located in minima and maxima of the Delone network and six nearest

nuclei in the case where atoms form a close-packed crystal lattice. A number of nearest neighbors at an indicated distance

is given in parentheses

Points 4 in Fig. 2

In the middle between points 4 in Fig. 2

i a
Lines of the first type 5(2)7 5 (4) = (6)
Lines of the second type 3(2)‘/ a? (4) af (1), a? @), a? . aﬁl—“ﬁ @

In any case, the number of lines and the character of
their intersection is identical in both cases. Supposing
that positions on the Delone network correspond to the
minimal electron potential inside an inert gas, we ob-
tain that slow electron drifts inside the condensed inert
gas near the lines form the Delone network. If we move
along a given line of the Delone network, the electron
potential energy oscillates, as is shown in Fig. 3. The
behavior of the electron PES on the Delone network
lines and near them resembles that for bound atoms in
clusters [26-28], with the potential energy surface in-
cluding many potential wells separated by barriers or
saddles. But based on the experimental data for elec-
tron mobility, we take the difference between neighbor-
ing minima and maxima of the potential energy to be
relatively small if the atom number density is near that
corresponding to the maximum electron mobility [21].

4. POTENTIAL ENERGY SURFACE FOR AN
EXCESS ELECTRON INSIDE INERT GASES

We have found the character of distribution of the
electron potential inside condensed inert gases in the
density range where the electron potential energy is
negative and close to the minimal one. The lines of a
significant electron attraction inside an inert gas form a
Delone network, and this result is not based on the as-
sumption of a pairwise character of the electron—atom
interaction. We use this assumption at the next stage
of evaluation of the electron PES near the lines of max-
imum attraction, representing the interaction potential
of an electron with surrounding atoms in the form of
pair interaction potentials u(r) of this electron with

nearest atoms,
U= Z u(r;),
i

where r; is the distance of the electron from the ith
nucleus and the pair interaction potential is taken such

(11)
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that formulas (6) and (9) give the minimal electron en-
ergy inside an inert gas. Because of a short-range char-
acter of the electron interaction, we account for only
six nearest neighbors. We take the dependence u(r) to
be identical to that given by formula (10),

> . (12)

3
) + A exp <—a

This interaction potential has the minimum at the dis-
tance Ryin-

Within the framework of this model, we represent
the observed electron potential inside an inert gas as
the average for points 3 and 4 in Fig. 2. Then on the
basis of the data in Table 3, we have that the observed
electron potential energy U(N) at a given number den-
sity IV of atoms is

()m(a a

Taking this relation at the minimum of the electron po-
tential, i.e., at @ = a;nin, and expanding the interaction
potential u(r) near its minimum,

U”(Rmin)
u(r) — (r

we obtain the minimal electron potential
(min

(252) 20 (o 2E ) +

+ 3u (“\%’) = 6u(Rmin £ AR), (14)

3
Rmin

r

u(r) = —C" ( R’;

min

a

U(a)=u

a

2

f)(

- (13)

U(Rmm) + - Rmz’n)27

U(amzn) =u

where
1+2 2
AR
AR = £0123apin, 7 = £0.17.
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The above estimates together with relation (13) allow
us to determine the parameters of the interaction po-
tential u(r) taken in form (12); they are listed in Ta-
ble 2.

This approach allows us to construct the potential
energy surface of an excess electron inside inert gases
based on experimental data. Although the model uses
a pair interaction between an excess electron and inert
gas atoms, this is not of importance at the final stage
of the analysis, because parameters of this model are
taken from experimental results. In other words, the
general character of the electron interaction is based on
the Delone network and does not include the pairwise
character of the electron interaction inside an inert gas,
whereas the values of the electron potential includes
this assumption. Therefore, the above behavior of the
electron PES is valid strictly, while the accuracy of the
values of the electron potentials at a given electron po-
sition are valid qualitatively.

5. ELECTRON DRIFT AT OPTIMAL
DENSITIES OF INERT GASES AND LOW
ELECTRIC FIELDS

The above analysis allows us to schematically draw
equipotential surfaces for an excess electron inside an
inert gas at a given number density of atoms, when the
mobility of a slow excess electron is high. The lines
of the minimum potential energy then form a Delone
network, and for the crystal state of an inert gas, these
lines are straight and pass between nearest atoms. A
general shape of lines of the minimum potential energy
are also correct for liquids in principle. Indeed, first, a
change of the number density of atoms resulting from
the solid-liquid phase transition for inert gases is ap-
proximately 15 %, and a change of the average distance
between atoms is correspondingly 3 times less. Second,
the distortion of lines of the minimal potential for an
excess electron is also inessential because a slow elec-
tron is a quantum object, and the difference of the elec-
tron potentials inside and outside an inert gas allows
us to find the energy of the electron level inside the
inert gas, but not the minimum potential for an ex-
cess electron inside it. Correspondingly, the de Broglie
wavelength is not small for a slow excess electron and a
weak distortion of straight lines of the minimum elec-
tric potential for an excess electron, in passing from a
solid to a liquid, is not of importance. Hence, our con-
sideration relates simultaneously to the solid and liquid
states of condensed inert gases.

Thus, we consider motion of a slow electron inside
an inert gas whose density corresponds to electron at-
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traction inside it. Therefore, an electron is bound in-
side the inert gas and moves along tubes centered at
lines of the minimum electron potential, which are rep-
resented in Fig. 2 for a solid inert gas. These tubes
of identical potentials are widened slightly near their
intersections, and the distances between neighboring
points of tube intersections is av/3/2, as follows from
Fig. 2. When a slow electron propagates along a tube
(see Fig. 3), its scattering proceeds in nodes of tube
intersections, and as a result of this scattering, it trans-
fers to another tube. We take the probability v for the
electron scattering in an intersection node to be small,
and then the mean free path A of an electron during its
propagation along a potential tube is relatively large,
A~aly (v <1).

Electron scattering in the intersection regions of po-
tential energy tubes is similar to electron scattering on
atoms in a gas because the time of strong interaction
for an excess electron that causes scattering is a small
part of the total time in both cases. In addition, in
both cases, the electron is scattered mainly elastically,
and only a small part of the electron energy (~ m/M)
is transferred to nuclear heating (m is the electron mass
and M is the atom mass). Below, we therefore use for-
mulas for the electron drift velocity w and its average
velocity v assuming that the electron is scattered in a
gas (see, e.g., [35-37]). For an electron moving in an
external electric field of a strength F, we then have

E M
wz%, vz\/Ew, (16)
which gives
eFa 1/2 eEaM/2]'/
w [7] o {7] (a7)
y()vmM y(w)m?/?

In these formulas, we take the average electron velocity
to be large compared to the electron thermal velocity in
the absence of an external electric field. If this electric
field is weak and does not change the Maxwell velocity
distribution for excess electrons, the zero-field electron
mobility K is
ea
E.
In evaluating the parameters of the electron drift,
if it proceeds according to the above scheme, we are
based on experimental data. Table 4 contains the num-
ber densities of atoms N, and temperatures T}, q. of
liquid inert gases [13] that provide the maximum zero-
field mobility of electrons, the corresponding distances
Gmaz Detween nearest-neighbor atoms, and the thermal
electron velocity

K ~ (18)

vy = /8T maz/m™m
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Table 4.
in liquid inert gases under optimal conditions and low
electric field strengths

Parameters of the drift of an excess electron

Ar Kr Xe

Trnaz, K 155 170 223

vg, 105 cm/s 7.7 8.1 9.3

Npaz, 1022 cm™3 1.2 1.4 1.2

Umazs A 4.9 4.7 4.9
Kmaz, cm?/V-s | 1800 | 4600 | 6000
Vrmin 0.0062 | 0.0022 | 0.0015

E., V/em 16 4.5 3.2

under these conditions. Then the above formulas give
the minimal probability ~,,;, of electron scattering,
which is a typical probability for the transition to an-
other current tube at a point of tube intersection, and
a typical electric field strength E, at which a change in
the average electron velocity due to the electron drift in
an electric field is comparable to the initial thermal ve-
locity. Starting from these electric field strengths, the
electron drift parameters depend on the electric field
strength.

We note that this mechanism for the electron drift,
with the electrons propagating along the tubes whose
centers form a Delone network, is valid only for some
range of inert gas parameters at which the electron is
locked inside the inert gas in regions near the Delone
network. This mechanism of the electron drift provides
high mobility for slow electrons, which can be used for
determination of the range of the inert gas parameters
and electric field strength where this mechanism of the
electron drift applies. For xenon at least, these con-
ditions are fulfilled in a wide range of the indicated
parameters. An increase of the electric field strength
leads to an increase of the electron energy and causes
broadening of the region between atoms where an ex-
cess electron can be located. Finally, at high electron
energies, the electron scattering changes from the tube
character to scattering on atomic cores. Then the elec-
tron mobility decreases sharply with an increase of the
electric field strength. In reality, for xenon, the exper-
imental data analysis shows that this tendency exists,
but the transition is not reached.

Electron scattering is also intensified if the gas pa-
rameters differ from the optimal ones. If the atom num-
ber density deviates from the optimal one, the attrac-
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tive electron potential energy on the Delone network
decreases, which leads to a stronger electron scatter-
ing in regions of tube intersection. At a given atom
number density, the lower gas temperature, the higher
is the electron drift velocity. This is explained by dis-
tortions in the atom distributions that increase as the
temperature increases.

Thus, we represent the character of the drift of a
slow electron in condensed inert gases under the opti-
mal number density and temperature. The electron
scattering under these conditions differs in principle
from that in gases, where electrons collide with indi-
vidual atoms separately. In this case, an electron is
moving along a certain tube and transfers to another
tube at points of their intersections. Axes of these
tubes form the Delone network. This character of elec-
tron scattering also differs from the wave character of
scattering in a crystal lattice, where scattering is deter-
mined by deviation of atom positions from the crystal
lattice sites, such that scattering parameters vary sig-
nificantly during the melting. In the case of the tube
character of electron scattering, melting does not sig-
nificantly change the electron drift parameters. We add
that the tube character of the electron drift is realized
in a restricted range of the inert gas parameters and is
valid at not too high electric field strengths.

On the basis of this analysis, we can single out the
range of parameters that corresponds to the maximum
electron mobility in condensed inert gases. As the num-
ber density of atoms increases, the effective interaction
for an excess electron with atoms of a condensed in-
ert gas varies from attraction due to the exchange in-
teraction with an individual atom because of a nega-
tive electron—atom scattering length to repulsion ow-
ing to the Pauli exclusion principle when the electron
penetrates inside an atom. Evidently, the maximum
electron mobility corresponds to moderate atomic num-
ber densities corresponding to the transition from the
first form of interaction to the second one. Then the
PES part of location of an excess electron consists of
narrow tubes with intersections, and the electron can
propagate along these tubes. As the number density
of atoms increases, these tubes are destroyed in re-
gions near atoms where the electron is locked. If the
atomic number density decreases, tubes widen, and the
electron may transfer more effectively to tubes of an-
other direction. In both cases, the electron mobility
decreases.

We note that a temperature increase leads to an in-
crease of fluctuations in positions of individual atoms,
which causes the destruction of a PES tube. But a pres-
sure increase leads to a decrease of these fluctuations
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and hence stabilizes the PES tube when the tube cor-
responds to optimal conditions. In analyzing the opti-
mal conditions for the electron mobility, we are mostly
based on experimental data. But experimental data
of this problem study are fragmentary. Additional ex-
perimental studies are required in order to construct
the optimal range in coordinates of the atomic num-
ber density, temperature, and electric field strength for
each heavy inert gas (Ar, Kr, and Xe). We also ex-
pect from the subsequent experimental study that at
high pressure, the electron mobility will decrease with
an increasing pressure.

We also note the peculiarities of inelastic electron
scattering in condensed inert gases. If the electron en-
ergy is not small, and the electron can be considered
as a classical object, its inelastic scattering inside an
inert gas is related to excitation of phonons, and each
act of elastic scattering is accompanied by a loss of ap-
proximately the m/M portion of the electron energy; in
other words, the process of inelastic scattering of a clas-
sical electron in a condensed inert gas is similar to that
in rare gases. This is used in formulas (16) and (17).
But a slow electron is a quantum object, and its in-
elastic scattering proceeds in another manner. Indeed,
the electron states are characterized by discrete levels,
and inelastic electron scattering requires its transition
to an excited electron level. Therefore, at low electric
field strengths, the inelastic electron scattering is weak
and becomes the same as in a gas when the electron
is excited sufficiently strongly, such that its levels are
located sufficiently close.

In considering inelastic electron scattering, we re-
strict ourselves to just this limiting case. At high elec-
tric field strengths, the electron energy acquired from
the field suffices for excitation of inert gas atoms. The
excitation processes are in principle the same as in a
gas, which are analyzed in detail in [37]. The efficiency
of this process, that is, the electron energy part con-
sumed to atom excitation, increases with an increase
of the average electron energy  [15, 21| and is of the
order of ten percent when the ratio £/Aes > 0.1 (Ae
is the atom excitation energy). We are also guided
by the experimental efficiency value of 18 % in solid
xenon [38, 39].

6. PECULIARITIES OF SELF-SUSTAINING
DISCHARGE IN CONDENSED INERT
GASES

An applied aspect of the phenomenon of electron
drift in condensed inert gases is realized in electric dis-

charge, with the electric energy being converted into
the energy of emitted photons in the vacuum ultravi-
olet spectrum range. Excess electrons drifting in con-
densed inert gases excite inert gas atoms, which leads
to transformation of the electric energy into the en-
ergy of emitted photons. Because the electron energy
is high, the efficiency of energy transformation is rela-
tively high. During these processes, an excess electron
cannot ionize the medium because its energy is below
the ionization potential due to an effective atom excita-
tion. The electrons are therefore injected into a sample
from outside and only play the role of carriers of a neg-
ative charge, in contrast to standard gaseous discharges
with ionization inside a sample. Due to this character
of discharge maintenance, excess electrons create a non-
compensated negative charge in condensed inert gases.
This charge restricts the number density of excess elec-
trons and correspondingly the power of the discharge
and the intensity of yield radiation [42]. We find the
maximum value N"** for the electron number density
from the Poisson equation that has the form

% = —4zeN,. (19)

Here, E is the electric field strength, e is the electron
charge, IV, is the electron number density, which is con-
stant inside the inert gas layer, and the coordinate x is
perpendicular to the inert gas layer whose thickness is
[. From the Poisson equation, requiring £ = 0 in the
layer middle because of the problem symmetry, we ob-
tain the electric voltage U between the layer boundaries
due to excess electrons inside the layer as

U = meN,I>. (20)

Formula (20) implies that the electron number den-
sity is the greater, the higher is the electric field voltage
and the smaller is the layer thickness. In particular,
under typical parameters U = 1 keV and [ = 1 mm
realized in experiments [38, 39], this formula gives
Nmez = 2.10" cm™®. This electron number den-
sity locks the electric current in discharge. We note
that the number density N, = 1 - 10" cm™2 leads to
the electric current density j ~ 0.01 A/cm? and the
discharge power P = Uj ~ 10 W/cm?.

7. CONCLUSIONS

High electron mobility is observed in heavy con-
densed inert gases (Ar, Kr, Xe) in a narrow range of
atomic densities. A widespread explanation of this ef-
fect [16-20] by the Ramsauer effect in electron scatter-
ing on an individual atom is not correct because of a
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large distance of the electron—atom scattering in com-
parison with the distance between neighboring atoms
at these atomic densities. In reality, the nature of high
electron mobility is related to the transition from an
attractive interaction potential between an excess elec-
tron and the atom ensemble to a repulsive one [21].
In this paper, we have proposed a new mechanism of
electron drift in some range of atomic densities and
temperatures near the optimal ones that provide the
maximum electron mobility. This mechanism is addi-
tional to the character of electron drift in gases due to
electron scattering on individual atoms and to electron
drift in crystals due to scattering of the electron wave
on nonuniformities of the crystal lattice.

This character of electron drift consists in propa-
gation of an electron along almost straight channels;
electron scattering occurs as a result of the electron
transition to a propagation channel of another direc-
tion. This new mechanism of electron drift follows
from the structure of the potential energy surface
near its minimum; it consists of almost straight inter-
secting tubes, and the minimum of potential energy
surface forms a Delone network. The tube character
of the electron drift leads to high electron mobility.
The understanding of this phenomenon allows us to
choose optimal conditions for a self-sustaining electric
discharge in condensed inert gases as a generator
of ultraviolet radiation [38-40] and stimulates new
experimental investigations.

This work is supported in part by the RFBR (grants
NeNe 04-03-32684, 1.SS-1953.2003.2).
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