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SURFACE GRAVITY WAVES IN DEEP FLUIDAT VERTICAL SHEAR FLOWSG. Gogoberidze *, L. Samushia, G. D. Chagelishvili, J. G. LominadzeCenter for Plasma Astrophysis, Abastumani Astrophysial Observatory0160, Tbilisi, GeorgiaW. HortonInstitute for Fusion Studies, The University of Texas at AustinAustin, Texas 78712Submitted 28 Otober 2004Speial features of surfae gravity waves in a deep �uid �ow with a onstant vertial shear of veloity is studied.It is found that the mean �ow veloity shear leads to a nontrivial modi�ation of the dispersive harateristisof surfae gravity wave modes. Moreover, the shear indues generation of surfae gravity waves by internalvortex mode perturbations. The performed analytial and numerial study show that surfae gravity waves aree�etively generated by the internal perturbations at high shear rates. The generation is di�erent for the wavespropagating in the di�erent diretions. The generation of surfae gravity waves propagating along the main�ow onsiderably exeeds the generation of surfae gravity waves in the opposite diretion for relatively smallshear rates, whereas the latter wave is generated more e�etively for high shear rates. From the mathematialstandpoint, the wave generation is aused by non-self-adjointness of the linear operators that desribe the shear�ow.PACS: 92.10.Hm, 47.35.+i, 47.27.Pa1. INTRODUCTIONGeneration of surfae gravity waves (SGW), whihare the best known sea and oeani waves, is naturallyassoiated with winds. Momentum transfer from windto undulating movement of the oean, whih is the basimehanism of the generation of surfae waves, is inves-tigated sine Kelvin's pioneering work [1℄. Independentand inter-omplementary theories of Phillips [2℄ andMiles [3�6℄ provide the basis of theoretial understand-ing of surfae wave generation by wind. Phillips' reso-nant mehanism is responsible for exitation and initialrising of wave motion on an unexited surfae of the�uid; Miles' mehanism � energy transfer from windto �uid as a onsequene of the interation betweenwind shear �ow and surfae waves � is responsible forsubsequent ampli�ation of the waves. Aording toMiles' mehanism, the energy soure is the wind shear�ows situated outside the �uid. Other ways of SGWgeneration have also been studied, suh as the possi-*E-mail: gogober�geo.net.ge

bility of SGW generation by earthquakes [7, 8℄ and thetheory of SGW generation by intra�uid explosions [9℄.In the theories mentioned above, the soures of SGWgeneration are extrinsi to the �uid.The question arises as to whether soures intrinsifor the �uid (shear �ows and vortex perturbations, forexample) an generate SGW.This question beomes espeially interesting in viewof the impressive progress made in the understandingof spetrally stable shear �ow phenomena by the hy-drodynami ommunity in the past ten years. Theearly transient period for the perturbations has beenshown to reveal rih and ompliate behavior in smooth(without in�etion point) shear �ows. In partiular, ithas been shown that the linear dynamis of perturba-tions in the �ows are aompanied by intense tempo-ral energy exhange proesses between the bakground�ow and perturbations and/or between di�erent modesof perturbations. From the mathematial standpoint,these e�ets are aused by the non-self adjointness ofthe linear operators in shear �ows and are adequately13 ÆÝÒÔ, âûï. 1 (7) 193



G. Gogoberidze, L. Samushia, G. D. Chagelishvili et al. ÆÝÒÔ, òîì 128, âûï. 1 (7), 2005desribed in the framework of the so-alled nonmodalapproah (see, e.g., [10�12℄). The nonmodal approahinvolues a hange of independent variables from the lab-oratory frame to a moving frame and the study of tem-poral evolution of spatial Fourier harmonis (SFHs) ofperturbations without any spetral expansion in time.We examine the linear dynamis of surfae wavesand internal perturbations in deep �uid in the abseneof wind and in the presene of the �uid �ow with avertial shear of veloity. Dispersive harateristis ofshear-modi�ed SGWs and the linear mehanism of thegeneration of surfae waves in deep �uid by internalperturbations are studied in detail in the framework ofthe nonmodal approah.The paper is organized as follows: the mathematialformalism is presented in Se. 2. Shear-modi�ed SGWsand their generation are analyzed in Se. 3. Appli-ations of the obtained results to the onrete physialproblems are disussed in Se. 4. Conlusions are givenin Se. 5.2. MATHEMATICAL FORMALISMWe onsider deep �uid with the �at outer surfaeat z = 0 and a onstant shear �ow U0 = (Az; 0; 0)for z < 0. The shear parameter A is onsidered pos-itive for simpliity. The gravitational �eld is onsid-ered uniform, g = (0; 0;�g). Generally, four modesof perturbation (SGW, internal gravity waves, soundwaves, and vortex mode) an exist in the system. Toredue the mathematial ompliations as muh as pos-sible but still keep the basi physis of our analysis, weonsider �uid to be inompressible (negleting soundwaves) and disregard the strati�ation e�ets (assum-ing that the frequeny of internal gravity waves is muhless than the frequeny of SGWs, i.e., onsidering inter-nal gravity waves as aperiodi/vortex mode perturba-tions). We also ignore the e�ets of visosity in whatfollows. After these simpli�ations, we keep just twomodes of perturbation, SGW and the vortex mode, andwrite the di�erential equations for the linear dynamisof perturbations of veloity (u0) and normalized pres-sure (p0 = p=�0) as�u0x�x + �u0y�y + �u0z�z = 0; (1)�u0x�t +Az�u0x�x +Au0z = ��p0�x ; (2)�u0y�t +Az�u0y�x = ��p0�y ; (3)

�u0z�t +Az�u0z�x = ��p0�z ; (4)with the boundary ondition on the surfae z = 0:��p0�t � gu0z� ����z=0 = 0: (5)We use the standard tehnique of the nonmodalapproah [10℄: introdution of omoving variables(x0 = x+Azt, y0 = y, z0 = z, t0 = t) allows us to trans-form the spatial inhomogeneity presented in Eqs. (1)�(5) into a temporal one. Then, after the Fourier trans-formation with respet to x0 and y0,u0(r; t) = 14�2 Z u(kx; ky; z0; t)�� exp [i(kxx0 + kyy0)℄ dkxdky; (6)the dynami equations are redued toikxux + ikyuy +� ��z0 � iAt0kx�uz = 0; (7)�ux�t0 +Auz = �ikxp; (8)�uy�t0 = �ikyp; (9)�uz�t0 = �� ��z0 � iAt0kx� p; (10)� �p�t0 � guz� ����z0=0 = 0: (11)Hereafter, the primes of the z0 and t0 variables are omit-ted.From this set, we readily obtain the equation forthe perturbation of the vertial omponent of veloity,��t  "ek2 �� ��z � iAtkx�2#uz! = 0; (12)where ek =qk2x + k2y.All other perturbed quantities (ux, uy, and p)an be readily expressed through uz by ombiningEqs. (7)�(10); e.g., for p, we havep = � 1ek2 � ��t �� ��z � iAtkx�uz�� iAkxuz� : (13)Integration of Eq. (12) with respet to time yields194



ÆÝÒÔ, òîì 128, âûï. 1 (7), 2005 Surfae gravity waves in deep �uid : : :"ek2 �� ��z � iAtkx�2#uz(kx; ky; z; t) == F (kx; ky; z); (14)where F (kx; ky; z) is the onstant (in time) of integra-tion and de�nes the internal vortex mode perturbationin the �ow: F (kx; ky; z) = 0 relates to the ase wherethe internal perturbation is absent.The Fourier transformation with respet to z," uz(kx; ky; z; t)F (kx; ky; z) # == 12� 1Z�1 " uz(kx; ky; kz ; t)eF (kx; ky; kz) # eikzzdkz; (15)redues Eq. (14) tok2(t)uz(kx; ky; kz; t) = eF (kx; ky; kz) ++ 4i�ekC(kx; ky; t); (16)whereC � 14i�ek �� �� ddz � 2iAtkx � ikz�uz(kx; ky; z; t)� ����z=0: (17)De�ning uz(kx; ky; kz; t) from Eq. (16), making theinverse Fourier transformation atom with respet to kz ,taking the boundary ondition juzj < 1 at z = �1into aount, and realling that C(kz ; ky; t) is indepen-dent of z, we obtainuz(kx; ky; z; t) = 12� 1Z�1 eF (kx; ky; kz)k2(t) exp(ikzz) dkz++ C(kx; ky; t) exp[(ek + iAtkx)z℄; (18)where k2(t) = ek2 + k2z(t) and kz(t) � kz �Atkx.The �rst term in Eq. (18) is related to the vortexmode perturbation [11, 13℄, whereas the seond term,whih is exponentially dereasing with the depth, is re-lated to the SFHs of shear modi�ed surfae waves.Substituting Eq. (18) in Eq. (13) and using bound-ary ondition, Eq. (11), we obtaind2Cdt2 + iAkxek dCdt + ekgC = I(kx; ky; t); (19)whereI(kx; ky; t) �� 1Z�1 "8iA2k2xek kz(t)k6(t) � ekgk2(t)# eF (k) dkz : (20)

Generally, Eqs. (19)�(20) desribe the dynamisof surfae wave SFHs in the presene of the inter-nal vortial soure: the term I(kx; ky; t) is the re-sult of an interplay of the mean �ow shear and theinternal vortial perturbations and ouples the latterperturbation to the surfae one. Hene, there is nooupling between these perturbations in the abseneof the shear. Indeed, if there are no surfae per-turbations initially [uz(kx; ky; z = 0; t = 0) = 0℄,then we readily obtain from Eqs. (16) and (20) thatI(kx; ky ; t) � uz(kx; ky; z = 0; t = 0) at A = 0, i.e.,I(kx; ky ; t) � 0. Thus, if there is no the soure in ashearless �ow initially, it does not appear afterward.3. SGWs AND THEIR GENERATION INSHEAR FLOWWe an see from Eqs. (19) and (20) that there aretwo main e�ets of the shear: �rst, the seond term inthe left-hand side of Eq. (19) indiates that the velo-ity shear a�ets the frequenies of SGWs. Seond, thesoure term I(kx; ky; t) aused by the internal pertur-bations ouples the internal and surfae perturbationsand results in the emergene/generation of SGW in the�ow. Our further attempts are foused on the study ofthese e�ets.A. Shear modi�ed SGWsIn this subsetion, we study shear-indued modi�-ations of the properties of SGWs. For this, we assumethat there were no vortex mode perturbations initially,eF (kx; ky; kz) = 0. Consequently, I(kx; ky; t) = 0 [seeEqs. (20)℄, and Eq. (19) redues to a homogeneous one,with the solutionCh(kx; ky; t) = C1(kx; ky)�� exp(�i
1t) + C2(kx; ky) exp(�i
2t); (21)where C1;2(kx; ky) are determined by the initial ondi-tions and
1;2 = �sekg + A2k2x4ek2 � Akx2ek ==qekg �s1 + S2 k2xek2 � S kxek ! (22)represents shear-modi�ed frequenies of SFH of aSGW propagating in the opposite diretions andS � A=(4ekg)1=2 is the dimensionless shear rate. Thisequation shows that in ontrast to aousti and mag-netohydrodynami wave modes [14�16℄, the presene of195 13*
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Fig. 1. Shear-indued anisotropy of SGW propagation:the leading wave rest at three di�erent time instantst1, t2, t3, with t2 = 2t1, t3 = 3t1, whih are iru-lar but not onentri. A point soure of the SGW isloated at x = y = 0the shear does not lead to the time variability of thefrequeny. However, veloity shear leads to a nontriv-ial modi�ation of the frequenies and, onsequently,phase veloities of SFH [17, 18℄. Indeed, for the valueof the phase veloity, Eq. (22) givesVph(S; �) =rgek �p1 + S2 os2 �� S os�� ; (23)where � � aros(kx=ek).The phase veloity is isotropi in the shearlesslimit (S = 0) and depends on � in the shear �ow.The anisotropy inreases with the shear rate. Thevalue of the phase veloity is minimal at � = 0,V minph =qg=ek(p1 + S2�S), and is maximal at � = �,V maxph =qg=ek(p1 + S2+S). We suppose that a SGWis emitted by a point soure situated on the surfae atx = y = 0. From Eq. (23), it then follows that thepropagation of the leading wave rest is desribed byr(S; �; t) = Vph(S; �)t ==rg~k �p1 + S2 os2 �� S os�� t: (24)Figure 1 shows the leading wave rest of the SGW forthree di�erent time instants t1, t2, t3, with t2 = 2t1,t3 = 3t1, whih are irular but not onentri.B. Generation of SGWs by internal vortiesWe �rst analyze the soure term I(kx; ky ; t),whih is determined by eF (kx; ky; kz). We assume

that eF (kx; ky; kz) is a loalized funtion in thewavenumber spae, with the enter of loalizationat k0 = (kx0; ky0; kz0). We note that the �rst fatorin the integrand in Eq. (20) reahes its maximumwhen kz � Akxt = 0. Consequently, the maximumof the integral is in the viinity of the time instantt = t� � kz0=(Akx0). Equation (20) implies thatgenerally, I(kx; ky; t) tends to zero in both limitst ! �1. Atually, there exists some time interval2�t around t� where the soure term di�ers from zero.The value of �t depends on the degree of loalizationof the internal perturbation, i.e., of eF (kx; ky; kz), inthe wavenumber spae. (The soure loalization isdemonstrated below in a spei� example.) Thus, inthe ase of a loalized soure, the oupling betweensurfae (gravity wave) and internal (vortex mode)perturbations takes plae in some time interval 2�taround t�, and these perturbations an be onsideredseparately at jt� t�j > �t.The general solution of the inhomogeneous equa-tion, Eq. (19), is the sum of the general solution ofthe orresponding homogenous equation and a partialsolution of the equationC(kx; ky; t) = Ch(kx; ky; t) + Ci(kx; ky; t): (25)The general solution Ch(kx; ky; t) is given by Eq. (21),whereas a partial solution of Eq. (19) isCi = 12
0 exp (�i
1t) tZt0 I(kx; ky; t0)exp (i
1t0) dt0�� 12
0 exp (�i
2t)�� tZt0 I(kx; ky; t0) exp (i
2t0) dt0; (26)where
0 =sekg + A2k2x4ek2 =qekgs1 + S2 k2xek2 : (27)We assume that the oupling between the surfaeand internal modes an be negleted at the initial timeinstant t0, i.e., t0 < t� � �t. After passing throughthe oupling time interval, for any t > tf = t� + �t,the modes beome independent again. However, dur-ing the time interval [t0; tf ℄, internal vorties generateSGWs with frequenies 
1 and 
2 [see Eq. (22)℄. Asfollows from Eqs. (21), (25), and (26), if there are noSGWs (C1;2 = 0) initially, then the generated SFH am-plitudes (Q1;2) are196



ÆÝÒÔ, òîì 128, âûï. 1 (7), 2005 Surfae gravity waves in deep �uid : : :Q1(kx; ky) = 12
0 �� ������ tfZt0 I(kx; ky; t0) exp (i
1t0) dt0������ ; (28)Q2(kx; ky) = 12
0 �� ������ tfZt0 I(kx; ky; t0) exp (i
2t0) dt0������ : (29)We an replae the integration limits by �1. Afterintegration over time, this yieldsQ1;2 = �kxek3 � A2
0 � kxek � exp"� (
0 �A=2)ekAkx #�� Z eF (kx; ky; kz) exp��i (
0 �A=2)kzAkx � dkz == 2�2kxek3 � A2
0 � kxek � exp"� (
0 �A=2)ekAkx #�� F �kx; ky;�
0 �A=2Akx � : (30)We note that the last fators in Eq. (30) areproportional to the vortiity of the initial pertur-bations at z1;2 = �(
0 � A=2)=(Akx) respetively.The seond fators indiate that at small shear rates(S � A=q4ekg � 1), the amplitudes of the generatedSGWs are exponentially small with respet to the largeparameter 1=S. Equation (30) also indiates that fora �xed kx, the generation is most e�ient in the two-dimensional ase (ky = 0).We now desribe the dynami piture for a spei�example, where a pure internal vortex-mode perturba-tion (without any admixture of surfae waves) is im-posed in the �ow initially. For simpliity, we onsiderthe two-dimensional problem, where �=�y = 0. Thevertial veloity of the imposed perturbation is givenbyuz(x; z; t0) = z3�(�z)�� exp�� [(z + z0) os�+ x sin�℄2L21 ��� exp�� [(z + z0) sin�� x os�℄2L22 � ; (31)where �(z) is Heaviside funtion, (0;�z0) is the enterof the loalization, L1;2 haraterize the vertial andhorizontal sales respetively, and � is the slope of theperturbation.
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Fig. 2. I(kx; ky; t) vs time at S = 0:32 (solid line) andS = 0:08 (dashed line), kx = 1, L1 = 1, L2 = 7,z0 = 2 and � = �=18Numerial solution of the problem was performedas follows: Fourier transformation of Eq. (31) with re-spet to the x variable allows us to determine F (kx; z)through Eq. (14). Another Fourier transformation withrespet to z yields eF (kx; kz). Then the soure funtionI(kx; t) is found by Eq. (20). Thus, the solution of theproblem for a �xed kx redues to the numerial solu-tion of the inhomogeneous equation, Eq. (19), with theknown I(kx; t).The dependene of the soure funtion I(kx; t) on tat L1 = 1, L2 = 7, � = �=18, kx = 1, and z0 = 2 fortwo di�erent values of the shear rate S = 0:08 (dashedline) and S = 0:32 (solid line) is presented in Fig. 2.As was mentioned above, the soure term is a loalizedfuntion and onsiderably di�ers from zero only in theinterval t 2 (20; 40) for S = 0:08 and t 2 (5; 10) forS = 0:32.To analyze the wave generation e�ieny, it is usefulto introdue the generation oe�ients that harater-ize the ratio of the generated wave energy density andthe maximum energy density of the initial vortex modeperturbations for a �xed value of kx. Taking into a-ount that the maximum energy density of the vortexmode perturbations isEv = 12k4x 1Z�1 jF (kx; z)j2dz (32)and the energy density of the generated waves isEw1;2 = 1kxQ21;2(kx); (33)197
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Fig. 3. The generation oe�ients G1 (dashed line)and G2 (solid line) vs. the shear rate S at kx = 1,L1 = 1, L2 = 7, z0 = 2, and � = �=18we de�ne the dimensionless generation oe�ients as:G1;2 = Q1;2(kx)0BBBBBB� 2k3x1Z�1 jF (kx; z)j2dz1CCCCCCA1=2 : (34)Figure 3 represents the generation oe�ients G1(dashed line) and G2 (solid line) vs the shear rate S atL1 = 1, L2 = 7, � = �=18, kx = 1, and z0 = 2. Asan be seen, at small values of the shear rate, genera-tion of SGW with the frequeny 
1 (i.e., propagatingalong the x axis) onsiderably exeeds the generation ofSGW with the frequeny 
2 (i.e., propagating againstthe x axis), whereas the latter wave is generated moree�iently at S > 0:15.The wave generation is well traed in Figs. 4 and5, where the temporal evolution of the vertial ompo-nent of veloity perturbation at the surfae obtainedby numerial solution of Eqs. (19), (20) is presentedfor S = 0:32 and S = 0:08 respetively. The other pa-rameters are the same as in Fig. 2. A purely internalvortex mode perturbation is imposed in the equationsinitially. The generation ours in the time intervalwhere I(kz ; t) notieably di�ers from zero. Afterwards,just (two) waves with di�erent frequenies and ampli-tudes exist. At S = 0:32, presented in Fig. 4, the gen-eration ours in the time interval t 2 (5; 10). Besides,the SGW propagating against the x axis is mainly gen-erated. In ontrast to this, at S = 0:08, presented inFig. 5, the generation of SGW propagating along the x
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Fig. 4. uz(kx; t) vs. time at S = 0:32, kx = 1, L1 = 1,L2 = 7, z0 = 2, and � = �=18
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Fig. 5. uz(kx; t) vs. time at S = 0:08, kx = 1, L1 = 1,L2 = 7, z0 = 2, and � = �=18axis dominates. These numerial results are in agree-ment with the analytial ones (see Eq. (30) and Fig. 3).4. DISCUSSIONIn the previous setions, a simpli�ed model was on-sidered that allowed us to simplify the mathematialdesription and study shear-indued e�ets in a �pure�form. For instane, the in�uene of the visosity wasignored and the density ratio �a=�0 of the �uids aboveand below the surfae z = 0 was assumed to be zero.The last assumption allows us to ignore all the dynam-ial proesses in the upper �uid. On the other hand,it is well known that in the ase of oean waves, the198



ÆÝÒÔ, òîì 128, âûï. 1 (7), 2005 Surfae gravity waves in deep �uid : : :wind is the most important and powerful soure of thewaves. In this setion, we disuss possible appliationsof the studied linear e�ets to the onrete physialsituations. A. Oean wavesIt is well known [2�6℄ that the wind is the mainsoure of oean SGWs. In the ontext of future dis-ussion, the papers of Chalikov's group [19; 20℄ shouldalso be noted, where the in�uene of small-sale tur-bulene in the air on the wave growth was studied indetail. At present, there exists a well-developed the-ory of both SGW generation and nonlinear evolutionthat is mainly on�rmed by experiments as well as nu-merial simulations (see, e.g., [21℄ for a reent review).After development of a wind-driven instability, nonlin-ear 4-wave resonant interations transfer the wave en-ergy to smaller sales. The existing theory preditsthat for relatively small frequenies, the Zakharov �Philonenko [22℄ spetrum E(!) / !�4 of SGW �u-tuations (sometimes alled Toba's spetrum) shouldbe observed (in this ontext, see also [23℄), whereasfor relatively high wave numbers, nonlinearity beomesstrong and the Phillips spetrum E(!) � !�5 of thewave turbulene should develop. The existing obser-vations on�rm these preditions and provide that inthe range !p=3 < ! < 3!p, where !p is the peak fre-queny, the Zakharov �Philonenko spetrum is usuallyobserved. For ! > 3!p, the spetrum beomes verylose to the Phillips one [21℄. The properties of thewave spetrum in the very short wavelength region, aswell as dynamis of dissipation of SGW turbulent �u-tuations, are muh less lear [24℄.In the ase of oean waves, the presented linearmehanism of SGW generation an an important on-tribution to the balane of small-sale SGW �utua-tions. Indeed, a harateristi length sale of the tur-bulene is muh smaller at the oean surfae than inthe air. Namely, the harateristi length and veloitysales are u� � 1 m/s and l � 1 m respetively [25℄.On the other hand, in the presene of the wind, thestrong veloity shear A � 10 s�1 is present in the so-alled �bu�er layer� [26℄ of the water, with the thik-ness l1 � (20 � 100)l0, where l0 � �=u� is the dissi-pation length sale and � is the kinemati visosity ofwater. Simple estimates yield l1 � (0:5�1) m. Thelinear mehanism presented implies that vortial per-turbations generate SGWs with the same length sale.Therefore, in the ase of oean waves, internal vortex-mode perturbations should e�etively generate small-sale SGWs, with the wavelength just above the ap-

illary length sale � = 0:39 m [27℄. In this ontext,the study of the in�uene of apillary e�ets on the pro-esses disussed above seems to be interesting. Analysisof this problem will be presented elsewhere.B. Interfaial gravity wavesIn the analysis in Ses. 2 and 3, the density ratio�a=�0 of the �uids above and below the surfae z = 0was assumed to be zero. The obtained results an bereadily generalized to the ase of interfaial GWs. Ifthe densities of the upper and lower �uids are �1 and �2and the shear rates areA1 and A2 respetively, then theshear-modi�ed dispersion of interfaial GWs is given bythe same expression (22) with g and A replaed by g�and A�, whereg� = g �2 � �1�2 + �1 ; A� = A2�2 �A1�1�2 + �1 : (35)This equation implies that the in�uene of shear onboth the wave dispersion and the oupling with inter-nal vortex perturbations, whih is determined by thedimensionless parameterS� � A�q4~kg� = S2 1� �1A1=�2A2p1� �21=�22 ; (36)is muh more notable when the �uids have ompara-ble densities if �1A1 is not very lose to �2A2. There-fore, the desribed shear-indued e�ets should usuallyhave muh stronger e�et on the dynamis of interfaialwaves than on oean waves.5. SUMMARYWe summarize the main features of the linear dy-namis of surfae gravity waves in a simpli�ed deep�uid (at z < 0) �ow with vertial shear of the meanveloity U0 = (Az; 0; 0). The simpli�ation lies in ne-gleting the �uid ompressibility and strati�ation, inother words, in the onsideration of the system ontain-ing just two modes of perturbation: the surfae gravitywave mode and the internal vortex mode. Speial fea-tures of SGW in the system are as follows.The mean �ow veloity shear auses a nontrivialmodi�ation of the frequenies and phase veloitiesof SGWs. The frequenies are de�ned by Eq. (22).The phase veloity beomes anisotropi (see Eq. (23)and Fig. 1): its value is minimal for SFH propagat-ing along the x axis [V minph = qg=ek(p1 + S2 � S)℄and maximal for SFH propagating against the x axis[V maxph =qg=ek(p1 + S2 + S)℄.199
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