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SURFACE GRAVITY WAVES IN DEEP FLUIDAT VERTICAL SHEAR FLOWSG. Gogoberidze *, L. Samushia, G. D. Chagelishvili, J. G. LominadzeCenter for Plasma Astrophysi
s, Abastumani Astrophysi
al Observatory0160, Tbilisi, GeorgiaW. HortonInstitute for Fusion Studies, The University of Texas at AustinAustin, Texas 78712Submitted 28 O
tober 2004Spe
ial features of surfa
e gravity waves in a deep �uid �ow with a 
onstant verti
al shear of velo
ity is studied.It is found that the mean �ow velo
ity shear leads to a nontrivial modi�
ation of the dispersive 
hara
teristi
sof surfa
e gravity wave modes. Moreover, the shear indu
es generation of surfa
e gravity waves by internalvortex mode perturbations. The performed analyti
al and numeri
al study show that surfa
e gravity waves aree�e
tively generated by the internal perturbations at high shear rates. The generation is di�erent for the wavespropagating in the di�erent dire
tions. The generation of surfa
e gravity waves propagating along the main�ow 
onsiderably ex
eeds the generation of surfa
e gravity waves in the opposite dire
tion for relatively smallshear rates, whereas the latter wave is generated more e�e
tively for high shear rates. From the mathemati
alstandpoint, the wave generation is 
aused by non-self-adjointness of the linear operators that des
ribe the shear�ow.PACS: 92.10.Hm, 47.35.+i, 47.27.Pa1. INTRODUCTIONGeneration of surfa
e gravity waves (SGW), whi
hare the best known sea and o
eani
 waves, is naturallyasso
iated with winds. Momentum transfer from windto undulating movement of the o
ean, whi
h is the basi
me
hanism of the generation of surfa
e waves, is inves-tigated sin
e Kelvin's pioneering work [1℄. Independentand inter-
omplementary theories of Phillips [2℄ andMiles [3�6℄ provide the basi
s of theoreti
al understand-ing of surfa
e wave generation by wind. Phillips' reso-nant me
hanism is responsible for ex
itation and initialrising of wave motion on an unex
ited surfa
e of the�uid; Miles' me
hanism � energy transfer from windto �uid as a 
onsequen
e of the intera
tion betweenwind shear �ow and surfa
e waves � is responsible forsubsequent ampli�
ation of the waves. A

ording toMiles' me
hanism, the energy sour
e is the wind shear�ows situated outside the �uid. Other ways of SGWgeneration have also been studied, su
h as the possi-*E-mail: gogober�geo.net.ge

bility of SGW generation by earthquakes [7, 8℄ and thetheory of SGW generation by intra�uid explosions [9℄.In the theories mentioned above, the sour
es of SGWgeneration are extrinsi
 to the �uid.The question arises as to whether sour
es intrinsi
for the �uid (shear �ows and vortex perturbations, forexample) 
an generate SGW.This question be
omes espe
ially interesting in viewof the impressive progress made in the understandingof spe
trally stable shear �ow phenomena by the hy-drodynami
 
ommunity in the past ten years. Theearly transient period for the perturbations has beenshown to reveal ri
h and 
ompli
ate behavior in smooth(without in�e
tion point) shear �ows. In parti
ular, ithas been shown that the linear dynami
s of perturba-tions in the �ows are a

ompanied by intense tempo-ral energy ex
hange pro
esses between the ba
kground�ow and perturbations and/or between di�erent modesof perturbations. From the mathemati
al standpoint,these e�e
ts are 
aused by the non-self adjointness ofthe linear operators in shear �ows and are adequately13 ÆÝÒÔ, âûï. 1 (7) 193
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ribed in the framework of the so-
alled nonmodalapproa
h (see, e.g., [10�12℄). The nonmodal approa
hinvolues a 
hange of independent variables from the lab-oratory frame to a moving frame and the study of tem-poral evolution of spatial Fourier harmoni
s (SFHs) ofperturbations without any spe
tral expansion in time.We examine the linear dynami
s of surfa
e wavesand internal perturbations in deep �uid in the absen
eof wind and in the presen
e of the �uid �ow with averti
al shear of velo
ity. Dispersive 
hara
teristi
s ofshear-modi�ed SGWs and the linear me
hanism of thegeneration of surfa
e waves in deep �uid by internalperturbations are studied in detail in the framework ofthe nonmodal approa
h.The paper is organized as follows: the mathemati
alformalism is presented in Se
. 2. Shear-modi�ed SGWsand their generation are analyzed in Se
. 3. Appli-
ations of the obtained results to the 
on
rete physi
alproblems are dis
ussed in Se
. 4. Con
lusions are givenin Se
. 5.2. MATHEMATICAL FORMALISMWe 
onsider deep �uid with the �at outer surfa
eat z = 0 and a 
onstant shear �ow U0 = (Az; 0; 0)for z < 0. The shear parameter A is 
onsidered pos-itive for simpli
ity. The gravitational �eld is 
onsid-ered uniform, g = (0; 0;�g). Generally, four modesof perturbation (SGW, internal gravity waves, soundwaves, and vortex mode) 
an exist in the system. Toredu
e the mathemati
al 
ompli
ations as mu
h as pos-sible but still keep the basi
 physi
s of our analysis, we
onsider �uid to be in
ompressible (negle
ting soundwaves) and disregard the strati�
ation e�e
ts (assum-ing that the frequen
y of internal gravity waves is mu
hless than the frequen
y of SGWs, i.e., 
onsidering inter-nal gravity waves as aperiodi
/vortex mode perturba-tions). We also ignore the e�e
ts of vis
osity in whatfollows. After these simpli�
ations, we keep just twomodes of perturbation, SGW and the vortex mode, andwrite the di�erential equations for the linear dynami
sof perturbations of velo
ity (u0) and normalized pres-sure (p0 = p=�0) as�u0x�x + �u0y�y + �u0z�z = 0; (1)�u0x�t +Az�u0x�x +Au0z = ��p0�x ; (2)�u0y�t +Az�u0y�x = ��p0�y ; (3)

�u0z�t +Az�u0z�x = ��p0�z ; (4)with the boundary 
ondition on the surfa
e z = 0:��p0�t � gu0z� ����z=0 = 0: (5)We use the standard te
hnique of the nonmodalapproa
h [10℄: introdu
tion of 
omoving variables(x0 = x+Azt, y0 = y, z0 = z, t0 = t) allows us to trans-form the spatial inhomogeneity presented in Eqs. (1)�(5) into a temporal one. Then, after the Fourier trans-formation with respe
t to x0 and y0,u0(r; t) = 14�2 Z u(kx; ky; z0; t)�� exp [i(kxx0 + kyy0)℄ dkxdky; (6)the dynami
 equations are redu
ed toikxux + ikyuy +� ��z0 � iAt0kx�uz = 0; (7)�ux�t0 +Auz = �ikxp; (8)�uy�t0 = �ikyp; (9)�uz�t0 = �� ��z0 � iAt0kx� p; (10)� �p�t0 � guz� ����z0=0 = 0: (11)Hereafter, the primes of the z0 and t0 variables are omit-ted.From this set, we readily obtain the equation forthe perturbation of the verti
al 
omponent of velo
ity,��t  "ek2 �� ��z � iAtkx�2#uz! = 0; (12)where ek =qk2x + k2y.All other perturbed quantities (ux, uy, and p)
an be readily expressed through uz by 
ombiningEqs. (7)�(10); e.g., for p, we havep = � 1ek2 � ��t �� ��z � iAtkx�uz�� iAkxuz� : (13)Integration of Eq. (12) with respe
t to time yields194
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e gravity waves in deep �uid : : :"ek2 �� ��z � iAtkx�2#uz(kx; ky; z; t) == F (kx; ky; z); (14)where F (kx; ky; z) is the 
onstant (in time) of integra-tion and de�nes the internal vortex mode perturbationin the �ow: F (kx; ky; z) = 0 relates to the 
ase wherethe internal perturbation is absent.The Fourier transformation with respe
t to z," uz(kx; ky; z; t)F (kx; ky; z) # == 12� 1Z�1 " uz(kx; ky; kz ; t)eF (kx; ky; kz) # eikzzdkz; (15)redu
es Eq. (14) tok2(t)uz(kx; ky; kz; t) = eF (kx; ky; kz) ++ 4i�ekC(kx; ky; t); (16)whereC � 14i�ek �� �� ddz � 2iAtkx � ikz�uz(kx; ky; z; t)� ����z=0: (17)De�ning uz(kx; ky; kz; t) from Eq. (16), making theinverse Fourier transformation atom with respe
t to kz ,taking the boundary 
ondition juzj < 1 at z = �1into a

ount, and re
alling that C(kz ; ky; t) is indepen-dent of z, we obtainuz(kx; ky; z; t) = 12� 1Z�1 eF (kx; ky; kz)k2(t) exp(ikzz) dkz++ C(kx; ky; t) exp[(ek + iAtkx)z℄; (18)where k2(t) = ek2 + k2z(t) and kz(t) � kz �Atkx.The �rst term in Eq. (18) is related to the vortexmode perturbation [11, 13℄, whereas the se
ond term,whi
h is exponentially de
reasing with the depth, is re-lated to the SFHs of shear modi�ed surfa
e waves.Substituting Eq. (18) in Eq. (13) and using bound-ary 
ondition, Eq. (11), we obtaind2Cdt2 + iAkxek dCdt + ekgC = I(kx; ky; t); (19)whereI(kx; ky; t) �� 1Z�1 "8iA2k2xek kz(t)k6(t) � ekgk2(t)# eF (k) dkz : (20)

Generally, Eqs. (19)�(20) des
ribe the dynami
sof surfa
e wave SFHs in the presen
e of the inter-nal vorti
al sour
e: the term I(kx; ky; t) is the re-sult of an interplay of the mean �ow shear and theinternal vorti
al perturbations and 
ouples the latterperturbation to the surfa
e one. Hen
e, there is no
oupling between these perturbations in the absen
eof the shear. Indeed, if there are no surfa
e per-turbations initially [uz(kx; ky; z = 0; t = 0) = 0℄,then we readily obtain from Eqs. (16) and (20) thatI(kx; ky ; t) � uz(kx; ky; z = 0; t = 0) at A = 0, i.e.,I(kx; ky ; t) � 0. Thus, if there is no the sour
e in ashearless �ow initially, it does not appear afterward.3. SGWs AND THEIR GENERATION INSHEAR FLOWWe 
an see from Eqs. (19) and (20) that there aretwo main e�e
ts of the shear: �rst, the se
ond term inthe left-hand side of Eq. (19) indi
ates that the velo
-ity shear a�e
ts the frequen
ies of SGWs. Se
ond, thesour
e term I(kx; ky; t) 
aused by the internal pertur-bations 
ouples the internal and surfa
e perturbationsand results in the emergen
e/generation of SGW in the�ow. Our further attempts are fo
used on the study ofthese e�e
ts.A. Shear modi�ed SGWsIn this subse
tion, we study shear-indu
ed modi�-
ations of the properties of SGWs. For this, we assumethat there were no vortex mode perturbations initially,eF (kx; ky; kz) = 0. Consequently, I(kx; ky; t) = 0 [seeEqs. (20)℄, and Eq. (19) redu
es to a homogeneous one,with the solutionCh(kx; ky; t) = C1(kx; ky)�� exp(�i
1t) + C2(kx; ky) exp(�i
2t); (21)where C1;2(kx; ky) are determined by the initial 
ondi-tions and
1;2 = �sekg + A2k2x4ek2 � Akx2ek ==qekg �s1 + S2 k2xek2 � S kxek ! (22)represents shear-modi�ed frequen
ies of SFH of aSGW propagating in the opposite dire
tions andS � A=(4ekg)1=2 is the dimensionless shear rate. Thisequation shows that in 
ontrast to a
ousti
 and mag-netohydrodynami
 wave modes [14�16℄, the presen
e of195 13*
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Fig. 1. Shear-indu
ed anisotropy of SGW propagation:the leading wave 
rest at three di�erent time instantst1, t2, t3, with t2 = 2t1, t3 = 3t1, whi
h are 
ir
u-lar but not 
on
entri
. A point sour
e of the SGW islo
ated at x = y = 0the shear does not lead to the time variability of thefrequen
y. However, velo
ity shear leads to a nontriv-ial modi�
ation of the frequen
ies and, 
onsequently,phase velo
ities of SFH [17, 18℄. Indeed, for the valueof the phase velo
ity, Eq. (22) givesVph(S; �) =rgek �p1 + S2 
os2 �� S 
os�� ; (23)where � � ar

os(kx=ek).The phase velo
ity is isotropi
 in the shearlesslimit (S = 0) and depends on � in the shear �ow.The anisotropy in
reases with the shear rate. Thevalue of the phase velo
ity is minimal at � = 0,V minph =qg=ek(p1 + S2�S), and is maximal at � = �,V maxph =qg=ek(p1 + S2+S). We suppose that a SGWis emitted by a point sour
e situated on the surfa
e atx = y = 0. From Eq. (23), it then follows that thepropagation of the leading wave 
rest is des
ribed byr(S; �; t) = Vph(S; �)t ==rg~k �p1 + S2 
os2 �� S 
os�� t: (24)Figure 1 shows the leading wave 
rest of the SGW forthree di�erent time instants t1, t2, t3, with t2 = 2t1,t3 = 3t1, whi
h are 
ir
ular but not 
on
entri
.B. Generation of SGWs by internal vorti
esWe �rst analyze the sour
e term I(kx; ky ; t),whi
h is determined by eF (kx; ky; kz). We assume

that eF (kx; ky; kz) is a lo
alized fun
tion in thewavenumber spa
e, with the 
enter of lo
alizationat k0 = (kx0; ky0; kz0). We note that the �rst fa
torin the integrand in Eq. (20) rea
hes its maximumwhen kz � Akxt = 0. Consequently, the maximumof the integral is in the vi
inity of the time instantt = t� � kz0=(Akx0). Equation (20) implies thatgenerally, I(kx; ky; t) tends to zero in both limitst ! �1. A
tually, there exists some time interval2�t around t� where the sour
e term di�ers from zero.The value of �t depends on the degree of lo
alizationof the internal perturbation, i.e., of eF (kx; ky; kz), inthe wavenumber spa
e. (The sour
e lo
alization isdemonstrated below in a spe
i�
 example.) Thus, inthe 
ase of a lo
alized sour
e, the 
oupling betweensurfa
e (gravity wave) and internal (vortex mode)perturbations takes pla
e in some time interval 2�taround t�, and these perturbations 
an be 
onsideredseparately at jt� t�j > �t.The general solution of the inhomogeneous equa-tion, Eq. (19), is the sum of the general solution ofthe 
orresponding homogenous equation and a partialsolution of the equationC(kx; ky; t) = Ch(kx; ky; t) + Ci(kx; ky; t): (25)The general solution Ch(kx; ky; t) is given by Eq. (21),whereas a partial solution of Eq. (19) isCi = 12
0 exp (�i
1t) tZt0 I(kx; ky; t0)exp (i
1t0) dt0�� 12
0 exp (�i
2t)�� tZt0 I(kx; ky; t0) exp (i
2t0) dt0; (26)where
0 =sekg + A2k2x4ek2 =qekgs1 + S2 k2xek2 : (27)We assume that the 
oupling between the surfa
eand internal modes 
an be negle
ted at the initial timeinstant t0, i.e., t0 < t� � �t. After passing throughthe 
oupling time interval, for any t > tf = t� + �t,the modes be
ome independent again. However, dur-ing the time interval [t0; tf ℄, internal vorti
es generateSGWs with frequen
ies 
1 and 
2 [see Eq. (22)℄. Asfollows from Eqs. (21), (25), and (26), if there are noSGWs (C1;2 = 0) initially, then the generated SFH am-plitudes (Q1;2) are196
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e gravity waves in deep �uid : : :Q1(kx; ky) = 12
0 �� ������ tfZt0 I(kx; ky; t0) exp (i
1t0) dt0������ ; (28)Q2(kx; ky) = 12
0 �� ������ tfZt0 I(kx; ky; t0) exp (i
2t0) dt0������ : (29)We 
an repla
e the integration limits by �1. Afterintegration over time, this yieldsQ1;2 = �kxek3 � A2
0 � kxek � exp"� (
0 �A=2)ekAkx #�� Z eF (kx; ky; kz) exp��i (
0 �A=2)kzAkx � dkz == 2�2kxek3 � A2
0 � kxek � exp"� (
0 �A=2)ekAkx #�� F �kx; ky;�
0 �A=2Akx � : (30)We note that the last fa
tors in Eq. (30) areproportional to the vorti
ity of the initial pertur-bations at z1;2 = �(
0 � A=2)=(Akx) respe
tively.The se
ond fa
tors indi
ate that at small shear rates(S � A=q4ekg � 1), the amplitudes of the generatedSGWs are exponentially small with respe
t to the largeparameter 1=S. Equation (30) also indi
ates that fora �xed kx, the generation is most e�
ient in the two-dimensional 
ase (ky = 0).We now des
ribe the dynami
 pi
ture for a spe
i�
example, where a pure internal vortex-mode perturba-tion (without any admixture of surfa
e waves) is im-posed in the �ow initially. For simpli
ity, we 
onsiderthe two-dimensional problem, where �=�y = 0. Theverti
al velo
ity of the imposed perturbation is givenbyuz(x; z; t0) = z3�(�z)�� exp�� [(z + z0) 
os�+ x sin�℄2L21 ��� exp�� [(z + z0) sin�� x 
os�℄2L22 � ; (31)where �(z) is Heaviside fun
tion, (0;�z0) is the 
enterof the lo
alization, L1;2 
hara
terize the verti
al andhorizontal s
ales respe
tively, and � is the slope of theperturbation.
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Fig. 2. I(kx; ky; t) vs time at S = 0:32 (solid line) andS = 0:08 (dashed line), kx = 1, L1 = 1, L2 = 7,z0 = 2 and � = �=18Numeri
al solution of the problem was performedas follows: Fourier transformation of Eq. (31) with re-spe
t to the x variable allows us to determine F (kx; z)through Eq. (14). Another Fourier transformation withrespe
t to z yields eF (kx; kz). Then the sour
e fun
tionI(kx; t) is found by Eq. (20). Thus, the solution of theproblem for a �xed kx redu
es to the numeri
al solu-tion of the inhomogeneous equation, Eq. (19), with theknown I(kx; t).The dependen
e of the sour
e fun
tion I(kx; t) on tat L1 = 1, L2 = 7, � = �=18, kx = 1, and z0 = 2 fortwo di�erent values of the shear rate S = 0:08 (dashedline) and S = 0:32 (solid line) is presented in Fig. 2.As was mentioned above, the sour
e term is a lo
alizedfun
tion and 
onsiderably di�ers from zero only in theinterval t 2 (20; 40) for S = 0:08 and t 2 (5; 10) forS = 0:32.To analyze the wave generation e�
ien
y, it is usefulto introdu
e the generation 
oe�
ients that 
hara
ter-ize the ratio of the generated wave energy density andthe maximum energy density of the initial vortex modeperturbations for a �xed value of kx. Taking into a
-
ount that the maximum energy density of the vortexmode perturbations isEv = 12k4x 1Z�1 jF (kx; z)j2dz (32)and the energy density of the generated waves isEw1;2 = 1kxQ21;2(kx); (33)197
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Fig. 3. The generation 
oe�
ients G1 (dashed line)and G2 (solid line) vs. the shear rate S at kx = 1,L1 = 1, L2 = 7, z0 = 2, and � = �=18we de�ne the dimensionless generation 
oe�
ients as:G1;2 = Q1;2(kx)0BBBBBB� 2k3x1Z�1 jF (kx; z)j2dz1CCCCCCA1=2 : (34)Figure 3 represents the generation 
oe�
ients G1(dashed line) and G2 (solid line) vs the shear rate S atL1 = 1, L2 = 7, � = �=18, kx = 1, and z0 = 2. As
an be seen, at small values of the shear rate, genera-tion of SGW with the frequen
y 
1 (i.e., propagatingalong the x axis) 
onsiderably ex
eeds the generation ofSGW with the frequen
y 
2 (i.e., propagating againstthe x axis), whereas the latter wave is generated moree�
iently at S > 0:15.The wave generation is well tra
ed in Figs. 4 and5, where the temporal evolution of the verti
al 
ompo-nent of velo
ity perturbation at the surfa
e obtainedby numeri
al solution of Eqs. (19), (20) is presentedfor S = 0:32 and S = 0:08 respe
tively. The other pa-rameters are the same as in Fig. 2. A purely internalvortex mode perturbation is imposed in the equationsinitially. The generation o

urs in the time intervalwhere I(kz ; t) noti
eably di�ers from zero. Afterwards,just (two) waves with di�erent frequen
ies and ampli-tudes exist. At S = 0:32, presented in Fig. 4, the gen-eration o

urs in the time interval t 2 (5; 10). Besides,the SGW propagating against the x axis is mainly gen-erated. In 
ontrast to this, at S = 0:08, presented inFig. 5, the generation of SGW propagating along the x

0 5040302010

t

0.04

−0.04
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Fig. 4. uz(kx; t) vs. time at S = 0:32, kx = 1, L1 = 1,L2 = 7, z0 = 2, and � = �=18
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Fig. 5. uz(kx; t) vs. time at S = 0:08, kx = 1, L1 = 1,L2 = 7, z0 = 2, and � = �=18axis dominates. These numeri
al results are in agree-ment with the analyti
al ones (see Eq. (30) and Fig. 3).4. DISCUSSIONIn the previous se
tions, a simpli�ed model was 
on-sidered that allowed us to simplify the mathemati
aldes
ription and study shear-indu
ed e�e
ts in a �pure�form. For instan
e, the in�uen
e of the vis
osity wasignored and the density ratio �a=�0 of the �uids aboveand below the surfa
e z = 0 was assumed to be zero.The last assumption allows us to ignore all the dynam-i
al pro
esses in the upper �uid. On the other hand,it is well known that in the 
ase of o
ean waves, the198
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e gravity waves in deep �uid : : :wind is the most important and powerful sour
e of thewaves. In this se
tion, we dis
uss possible appli
ationsof the studied linear e�e
ts to the 
on
rete physi
alsituations. A. O
ean wavesIt is well known [2�6℄ that the wind is the mainsour
e of o
ean SGWs. In the 
ontext of future dis-
ussion, the papers of Chalikov's group [19; 20℄ shouldalso be noted, where the in�uen
e of small-s
ale tur-bulen
e in the air on the wave growth was studied indetail. At present, there exists a well-developed the-ory of both SGW generation and nonlinear evolutionthat is mainly 
on�rmed by experiments as well as nu-meri
al simulations (see, e.g., [21℄ for a re
ent review).After development of a wind-driven instability, nonlin-ear 4-wave resonant intera
tions transfer the wave en-ergy to smaller s
ales. The existing theory predi
tsthat for relatively small frequen
ies, the Zakharov �Philonenko [22℄ spe
trum E(!) / !�4 of SGW �u
-tuations (sometimes 
alled Toba's spe
trum) shouldbe observed (in this 
ontext, see also [23℄), whereasfor relatively high wave numbers, nonlinearity be
omesstrong and the Phillips spe
trum E(!) � !�5 of thewave turbulen
e should develop. The existing obser-vations 
on�rm these predi
tions and provide that inthe range !p=3 < ! < 3!p, where !p is the peak fre-quen
y, the Zakharov �Philonenko spe
trum is usuallyobserved. For ! > 3!p, the spe
trum be
omes very
lose to the Phillips one [21℄. The properties of thewave spe
trum in the very short wavelength region, aswell as dynami
s of dissipation of SGW turbulent �u
-tuations, are mu
h less 
lear [24℄.In the 
ase of o
ean waves, the presented linearme
hanism of SGW generation 
an an important 
on-tribution to the balan
e of small-s
ale SGW �u
tua-tions. Indeed, a 
hara
teristi
 length s
ale of the tur-bulen
e is mu
h smaller at the o
ean surfa
e than inthe air. Namely, the 
hara
teristi
 length and velo
itys
ales are u� � 1 
m/s and l � 1 
m respe
tively [25℄.On the other hand, in the presen
e of the wind, thestrong velo
ity shear A � 10 s�1 is present in the so-
alled �bu�er layer� [26℄ of the water, with the thi
k-ness l1 � (20 � 100)l0, where l0 � �=u� is the dissi-pation length s
ale and � is the kinemati
 vis
osity ofwater. Simple estimates yield l1 � (0:5�1) 
m. Thelinear me
hanism presented implies that vorti
al per-turbations generate SGWs with the same length s
ale.Therefore, in the 
ase of o
ean waves, internal vortex-mode perturbations should e�e
tively generate small-s
ale SGWs, with the wavelength just above the 
ap-

illary length s
ale �
 = 0:39 
m [27℄. In this 
ontext,the study of the in�uen
e of 
apillary e�e
ts on the pro-
esses dis
ussed above seems to be interesting. Analysisof this problem will be presented elsewhere.B. Interfa
ial gravity wavesIn the analysis in Se
s. 2 and 3, the density ratio�a=�0 of the �uids above and below the surfa
e z = 0was assumed to be zero. The obtained results 
an bereadily generalized to the 
ase of interfa
ial GWs. Ifthe densities of the upper and lower �uids are �1 and �2and the shear rates areA1 and A2 respe
tively, then theshear-modi�ed dispersion of interfa
ial GWs is given bythe same expression (22) with g and A repla
ed by g�and A�, whereg� = g �2 � �1�2 + �1 ; A� = A2�2 �A1�1�2 + �1 : (35)This equation implies that the in�uen
e of shear onboth the wave dispersion and the 
oupling with inter-nal vortex perturbations, whi
h is determined by thedimensionless parameterS� � A�q4~kg� = S2 1� �1A1=�2A2p1� �21=�22 ; (36)is mu
h more notable when the �uids have 
ompara-ble densities if �1A1 is not very 
lose to �2A2. There-fore, the des
ribed shear-indu
ed e�e
ts should usuallyhave mu
h stronger e�e
t on the dynami
s of interfa
ialwaves than on o
ean waves.5. SUMMARYWe summarize the main features of the linear dy-nami
s of surfa
e gravity waves in a simpli�ed deep�uid (at z < 0) �ow with verti
al shear of the meanvelo
ity U0 = (Az; 0; 0). The simpli�
ation lies in ne-gle
ting the �uid 
ompressibility and strati�
ation, inother words, in the 
onsideration of the system 
ontain-ing just two modes of perturbation: the surfa
e gravitywave mode and the internal vortex mode. Spe
ial fea-tures of SGW in the system are as follows.The mean �ow velo
ity shear 
auses a nontrivialmodi�
ation of the frequen
ies and phase velo
itiesof SGWs. The frequen
ies are de�ned by Eq. (22).The phase velo
ity be
omes anisotropi
 (see Eq. (23)and Fig. 1): its value is minimal for SFH propagat-ing along the x axis [V minph = qg=ek(p1 + S2 � S)℄and maximal for SFH propagating against the x axis[V maxph =qg=ek(p1 + S2 + S)℄.199



G. Gogoberidze, L. Samushia, G. D. Chagelishvili et al. ÆÝÒÔ, òîì 128, âûï. 1 (7), 2005The mean �ow velo
ity shear leads to the appear-an
e of an intrinsi
 (to the �uid) sour
e of SGW gen-eration via 
oupling the wave to the internal vortex-mode perturbations; the 
oupling results in the emer-gen
e/generation of SGWs by internal vortex-modeperturbations at S & 0:05. The generation is di�erentfor the waves propagating in the di�erent dire
tions(see Eq. 30). The generation of SGW with the fre-quen
y 
1 
onsiderably ex
eeds the generation of SGWwith the frequen
y 
2 for relatively small shear ratesS, whereas the latter wave is generated more e�e
tivelyfor high shear rates (S > 0:15).This resear
h is supported by the ISTC grant G 553.The work was supported in part by the Department ofEnergy Grant �DE-FG03-96ER-54346.REFERENCES1. W. Kelvin, Phylos. Mag. 42, 368 (1871).2. P. O. Phillips, J. Fluid. Me
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