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Special features of surface gravity waves in a deep fluid flow with a constant vertical shear of velocity is studied.
It is found that the mean flow velocity shear leads to a nontrivial modification of the dispersive characteristics
of surface gravity wave modes. Moreover, the shear induces generation of surface gravity waves by internal
vortex mode perturbations. The performed analytical and numerical study show that surface gravity waves are
effectively generated by the internal perturbations at high shear rates. The generation is different for the waves
propagating in the different directions. The generation of surface gravity waves propagating along the main
flow considerably exceeds the generation of surface gravity waves in the opposite direction for relatively small
shear rates, whereas the latter wave is generated more effectively for high shear rates. From the mathematical
standpoint, the wave generation is caused by non-self-adjointness of the linear operators that describe the shear

flow.

PACS: 92.10.Hm, 47.35.+i, 47.27.Pa

1. INTRODUCTION

Generation of surface gravity waves (SGW), which
are the best known sea and oceanic waves, is naturally
associated with winds. Momentum transfer from wind
to undulating movement of the ocean, which is the basic
mechanism of the generation of surface waves, is inves-
tigated since Kelvin’s pioneering work [1]. Independent
and inter-complementary theories of Phillips [2] and
Miles [3-6] provide the basics of theoretical understand-
ing of surface wave generation by wind. Phillips’ reso-
nant mechanism is responsible for excitation and initial
rising of wave motion on an unexcited surface of the
fluid; Miles’ mechanism — energy transfer from wind
to fluid as a consequence of the interaction between
wind shear flow and surface waves — is responsible for
subsequent amplification of the waves. According to
Miles’ mechanism, the energy source is the wind shear
flows situated outside the fluid. Other ways of SGW
generation have also been studied, such as the possi-
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bility of SGW generation by earthquakes [7, 8] and the
theory of SGW generation by intrafluid explosions [9].
In the theories mentioned above, the sources of SGW
generation are extrinsic to the fluid.

The question arises as to whether sources intrinsic
for the fluid (shear flows and vortex perturbations, for
example) can generate SGW.

This question becomes especially interesting in view
of the impressive progress made in the understanding
of spectrally stable shear flow phenomena by the hy-
drodynamic community in the past ten years. The
early transient period for the perturbations has been
shown to reveal rich and complicate behavior in smooth
(without inflection point) shear flows. In particular, it
has been shown that the linear dynamics of perturba-
tions in the flows are accompanied by intense tempo-
ral energy exchange processes between the background
flow and perturbations and/or between different modes
of perturbations. From the mathematical standpoint,
these effects are caused by the non-self adjointness of
the linear operators in shear flows and are adequately
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described in the framework of the so-called nonmodal
approach (see, e.g., [10-12]). The nonmodal approach
involues a change of independent variables from the lab-
oratory frame to a moving frame and the study of tem-
poral evolution of spatial Fourier harmonics (SFHs) of
perturbations without any spectral expansion in time.

We examine the linear dynamics of surface waves
and internal perturbations in deep fluid in the absence
of wind and in the presence of the fluid flow with a
vertical shear of velocity. Dispersive characteristics of
shear-modified SGWs and the linear mechanism of the
generation of surface waves in deep fluid by internal
perturbations are studied in detail in the framework of
the nonmodal approach.

The paper is organized as follows: the mathematical
formalism is presented in Sec. 2. Shear-modified SGWs
and their generation are analyzed in Sec. 3. Appli-
cations of the obtained results to the concrete physical
problems are discussed in Sec. 4. Conclusions are given
in Sec. 5.

2. MATHEMATICAL FORMALISM

We consider deep fluid with the flat outer surface
at z = 0 and a constant shear flow Uy = (A4z,0,0)
for z < 0. The shear parameter A is considered pos-
itive for simplicity. The gravitational field is consid-
ered uniform, g = (0,0, —g). Generally, four modes
of perturbation (SGW, internal gravity waves, sound
waves, and vortex mode) can exist in the system. To
reduce the mathematical complications as much as pos-
sible but still keep the basic physics of our analysis, we
consider fluid to be incompressible (neglecting sound
waves) and disregard the stratification effects (assum-
ing that the frequency of internal gravity waves is much
less than the frequency of SGWs, i.e., considering inter-
nal gravity waves as aperiodic/vortex mode perturba-
tions). We also ignore the effects of viscosity in what
follows. After these simplifications, we keep just two
modes of perturbation, SGW and the vortex mode, and
write the differential equations for the linear dynamics
of perturbations of velocity (u') and normalized pres-

sure (p' = p/po) as

ou!,  Ouy O
€T _ 9 z — 1
ox Oy + 0z 0, (1)
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with the boundary condition on the surface z = 0:

o'
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We use the standard technique of the nonmodal
approach [10]: introduction of comoving variables
(' =a+Azt,y' =y, 2 =2, t' =1t) allows us to trans-
form the spatial inhomogeneity presented in Eqs. (1)-
(5) into a temporal one. Then, after the Fourier trans-
formation with respect to 2’ and y’,

=0. (5)

z=0

1
W(r, ) = m/u(kx,ky,z',t) y

x exp [i(kyz' + kyy')] dkydky,, (6)
the dynamic equations are reduced to

ikpug + ikyu, + <i — iAt'km> u, =0, (7)
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812’ + Au, = —ik,p, (8)
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i <@ - zAt'kx> D, (10)
op >
- —gu, =0. (11)
(=),

Hereafter, the primes of the 2’ and #' variables are omit-
ted.

From this set, we readily obtain the equation for
the perturbation of the vertical component of velocity,

| R ) B

\/ K2+ k2

All other perturbed quantities (ug, u,, and p)
can be readily expressed through w, by combining
Egs. (7)-(10); e.g., for p, we have

1 /0 a . .
p= _ﬁ <a [(5 — zAtkm> uz} — zAkmuz> . (13)

Integration of Eq. (12) with respect to time yields

where k =
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-, 9 2
k* — a— — i Atk, Uz(kzakyazat) =
z

= F(ky, ky.2), (14)

where F(kg,ky, =) is the constant (in time) of integra-
tion and defines the internal vortex mode perturbation
in the flow: F(ky,ky,,z) = 0 relates to the case where
the internal perturbation is absent.

The Fourier transformation with respect to z,

Uz(kxakyazat) o
Flka,ky,z) |

1
27

Uz(kzakyakz-,t)
ﬁ(km/ ky-, kz)

] e*=2dk,, (15)

reduces Eq. (14) to

kQ(t)uZ(kz'/ ky-, kz-,t) = ﬁ(km/ ky-, kz) +

+ 4imkC(ky, ky, 1),  (16)
where

1
= X

dirk
d ) ,
X KE — 2 Atk, — zkz> uz(kx,ky,z,t)]

Defining u,(kg, ky, k-, t) from Eq. (16), making the
inverse Fourier transformation atom with respect to k.,
taking the boundary condition |u,| < oo at z = —oc
into account, and recalling that C(k., k,, t) is indepen-
dent of z, we obtain

(17)

z2=0

U [ Flha by k)
s (ky, ky, 2, t) = 27r/ 200) exp(ik,z) dk,+

+ C(ky, by, t) exp[(k + iAtky)z],  (18)

where k2(t) = k2 + k2(t) and ks (t) = k. — Atk,.

The first term in Eq. (18) is related to the vortex
mode perturbation [11, 13], whereas the second term,
which is exponentially decreasing with the depth, is re-
lated to the SFHs of shear modified surface waves.

Substituting Eq. (18) in Eq. (13) and using bound-
ary condition, Eq. (11), we obtain

2C  iAk, dC
W E %-l'kC—I(k k t) (19)
where
I(ky, ky,t) =
7 ~k(t) kg
= / S8iA Kk k ORI (k) dk.. (20)

Generally, Eqs. (19)-(20) describe the dynamics
of surface wave SFHs in the presence of the inter-
nal vortical source: the term I(k,,k,,t) is the re-
sult of an interplay of the mean flow shear and the
internal vortical perturbations and couples the latter
perturbation to the surface one. Hence, there is no
coupling between these perturbations in the absence
of the shear. Indeed, if there are no surface per-
turbations initially [u,(kg,ky,z = 0,t = 0) = 0],
then we readily obtain from Eqs. (16) and (20) that
I(ky, ky,t) ~ us(ky, ky,z = 0,t =0) at A =0, ie,
I(kg, ky,t) = 0. Thus, if there is no the source in a
shearless flow initially, it does not appear afterward.

3. SGWs AND THEIR GENERATION IN
SHEAR FLOW

We can see from Eqgs. (19) and (20) that there are
two main effects of the shear: first, the second term in
the left-hand side of Eq. (19) indicates that the veloc-
ity shear affects the frequencies of SGWs. Second, the
source term I(kg,k,,t) caused by the internal pertur-
bations couples the internal and surface perturbations
and results in the emergence/generation of SGW in the
flow. Our further attempts are focused on the study of
these effects.

A. Shear modified SGWs

In this subsection, we study shear-induced modifi-
cations of the properties of SGWs. For this, we assume
that there were no vortex mode perturbations initially,
ﬁ'(kz.,ky.,kz) = 0. Consequently, I(k;, ky,t) = 0 [see
Eqgs. (20)], and Eq. (19) reduces to a homogeneous one,
with the solution

Ch(ky, ky,t) = C1(ky, ky) %
x exp(—iQt) + Co(ka, ky) exp(—iQat), (21)

where C4 2(k,, ky) are determined by the initial condi-
tions and

2 2
4k2 2k
/ 2 kx

represents shear-modified frequencies of SFH of a
SGW propagating in the opposite directions and
S = A/(4kg)'/? is the dimensionless shear rate. This
equation shows that in contrast to acoustic and mag-
netohydrodynamic wave modes [14-16], the presence of
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Fig.1. Shear-induced anisotropy of SGW propagation:

the leading wave crest at three different time instants

ti, to, t3, with to = 2t1, t3 = 3t1, which are circu-

lar but not concentric. A point source of the SGW is
located at x =y =0

the shear does not lead to the time variability of the
frequency. However, velocity shear leads to a nontriv-
ial modification of the frequencies and, consequently,
phase velocities of SFH [17, 18]. Indeed, for the value
of the phase velocity, Eq. (22) gives

Von (S, 0) = \/% (\/1 + 52 cos? ¢ — S cos ¢) , (23)

where ¢ = arccos(k, /k).
The phase velocity is isotropic in the shearless

limit (S = 0) and depends on ¢ in the shear flow.
The anisotropy increases with the shear rate. The
value of the phase velocity is minimal at ¢ = 0,
Vpr,rz‘i“ = \/g/E(\/l + 52 —9), and is maximal at ¢ = 7,
VX = g/k(v/1T+ S%+S). We suppose that a SGW

is emitted by a point source situated on the surface at
z =y = 0. From Eq. (23), it then follows that the
propagation of the leading wave crest is described by

(S, ¢, t) = Vpu(S, 9)t =

_ \/%(m—sm) o (24)

Figure 1 shows the leading wave crest of the SGW for
three different time instants ¢, to, t3, with to = 2¢q,
t3 = 3ty, which are circular but not concentric.

B. Generation of SGWs by internal vortices

We first analyze the source term I(ky,ky,t),

which is determined by ﬁ(kz,ky,kz). We assume
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that ﬁ(kz,ky,kz) is a localized function in the
wavenumber space, with the center of localization
at ko = (kgo, kyo, kz0). We note that the first factor
in the integrand in Eq. (20) reaches its maximum
when k, — Ak,t = 0. Consequently, the maximum
of the integral is in the vicinity of the time instant
t = t, k.o/(Akyo). Equation (20) implies that
generally, I(k,,k,,t) tends to zero in both limits
t — +o0o. Actually, there exists some time interval
2At around t, where the source term differs from zero.
The value of At depends on the degree of localization
of the internal perturbation, i.e., of 15(l~cgmlc,u,7lcz)7 in
the wavenumber space. (The source localization is
demonstrated below in a specific example.) Thus, in
the case of a localized source, the coupling between
surface (gravity wave) and internal (vortex mode)
perturbations takes place in some time interval 2At
around t,, and these perturbations can be considered
separately at |t — t.| > At.

The general solution of the inhomogeneous equa-
tion, Eq. (19), is the sum of the general solution of
the corresponding homogenous equation and a partial
solution of the equation

Clky, kiy,t) = Chlky, by t) + Cilka by t).  (25)

The general solution C,(k;, ky,t) is given by Eq. (21),
whereas a partial solution of Eq. (19) is

t

1
C; = ﬁexp(—mlt)/I(km,ky.,t’)exp (iQqt") dt'—
0 i
! (—iQdat) x
50 exp (—eils
t
></I(km.,ky.,t')exp(iﬂﬂ')dt', (26)
to
where

s AR \/7 N
Qo \/kg—}— Pre kg”l—l—Sp. (27)

We assume that the coupling between the surface
and internal modes can be neglected at the initial time
instant tg, i.e., tg < t, — At. After passing through
the coupling time interval, for any ¢ > ¢y = t, + At,
the modes become independent again. However, dur-
ing the time interval [to,t;], internal vortices generate
SGWs with frequencies 0 and Q2 [see Eq. (22)]. As
follows from Eqs. (21), (25), and (26), if there are no
SGWs (C4 2 = 0) initially, then the generated SFH am-
plitudes (Q1,2) are
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fo 10 -
1 30 i
kzak = 50_
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ty 20 R
« / Tk, by, ') exp (1Q08) dt'| . (29) ol - |
to // \\
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We can replace the integration limits by +oco. After 0 10 20 30 40
t

integration over time, this yields

Ory— e (A ke | (0 F A2k
2= e, T ) Ak,
= Q0 F A/2)k.
X /F(kz,ky,kz)exp <—ZT dk’z =
2y (A ks o (D0 F A/2)k
T e\, T ) Ak,

We note that the last factors in Eq. (30) are
proportional to the vorticity of the initial pertur-
bations at z1, = —(Qo F A/2)/(Ak,) respectively.
The second factors indicate that at small shear rates
(S = A/\/@ & 1), the amplitudes of the generated
SGWs are exponentially small with respect to the large
parameter 1/S. Equation (30) also indicates that for
a fixed k,, the generation is most efficient in the two-
dimensional case (k, = 0).

We now describe the dynamic picture for a specific
example, where a pure internal vortex-mode perturba-
tion (without any admixture of surface waves) is im-
posed in the flow initially. For simplicity, we consider
the two-dimensional problem, where /0y = 0. The
vertical velocity of the imposed perturbation is given
by

us(z, 2,t0) = 2°n(=2) x

X exp <— [z +20) ) X

X exp (— ) ,  (31)

where 7)(z) is Heaviside function, (0, —zp) is the center
of the localization, L characterize the vertical and
horizontal scales respectively, and ¢ is the slope of the
perturbation.

cos ¢ + x sin ¢]?
L

[(z + 20) sin ¢ — x cos ¢]?

L3
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Fig.2. I(ks,ky,t) vs time at S = 0.32 (solid line) and
S = 0.08 (dashed line), k, = 1, Ly 1, Ly = 7,
20 =2and ¢ = 7/18

Numerical solution of the problem was performed
as follows: Fourier transformation of Eq. (31) with re-
spect to the x variable allows us to determine F'(k,, 2)
through Eq. (14). Another Fourier transformation with
respect to z yields ﬁ(kx, k). Then the source function
I(k,,t) is found by Eq. (20). Thus, the solution of the
problem for a fixed k, reduces to the numerical solu-
tion of the inhomogeneous equation, Eq. (19), with the
known I(k,,t).

The dependence of the source function I(k;,t) on ¢
at L1 =1, Ly =7, ¢ =7/18, k, = 1, and z5 = 2 for
two different values of the shear rate S = 0.08 (dashed
line) and S = 0.32 (solid line) is presented in Fig. 2.
As was mentioned above, the source term is a localized
function and considerably differs from zero only in the
interval t € (20,40) for S = 0.08 and ¢ € (5,10) for
S =0.32.

To analyze the wave generation efficiency, it is useful
to introduce the generation coefficients that character-
ize the ratio of the generated wave energy density and
the maximum energy density of the initial vortex mode
perturbations for a fixed value of k,. Taking into ac-
count that the maximum energy density of the vortex
mode perturbations is

o0
1
E, = o / \F(ky, 2)|?d2 (32)
and the energy density of the generated waves is
Lo
Eyi2 = k_QLQ(kx)a (33)
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we define the dimensionless generation coefficients as:
1/2
0.005
23
G1,2 = Q1,2(kz) Oo—z (34)
. 0
\F(ky, 2)|?dz
— 00
. . . —0.005 H
Figure 3 represents the generation coefficients G
(dashed line) and G (solid line) vs the shear rate S at
Li=1,L,=7 ¢=n/18 k, =1, and z = 2. As —0.01 ) ) ) ) )
can be seen, at small values of the shear rate, genera- 20 30 40 50 60 4
tion of SGW with the frequency Qi (i.e., propagating
along the x axis) considerably exceeds the generation of Fig.5. u.(ke,t)vs. timeat S = 0.08, k, =1, Ly = 1,

SGW with the frequency Qs (i.e., propagating against
the = axis), whereas the latter wave is generated more
efficiently at S > 0.15.

The wave generation is well traced in Figs. 4 and
5, where the temporal evolution of the vertical compo-
nent of velocity perturbation at the surface obtained
by numerical solution of Eqs. (19), (20) is presented
for S = 0.32 and S = 0.08 respectively. The other pa-
rameters are the same as in Fig. 2. A purely internal
vortex mode perturbation is imposed in the equations
initially. The generation occurs in the time interval
where I(k,,t) noticeably differs from zero. Afterwards,
just (two) waves with different frequencies and ampli-
tudes exist. At S = 0.32, presented in Fig. 4, the gen-
eration occurs in the time interval ¢ € (5,10). Besides,
the SGW propagating against the z axis is mainly gen-
erated. In contrast to this, at S = 0.08, presented in
Fig. 5, the generation of SGW propagating along the x
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Ly =7 20=2,and ¢ = 7/18

axis dominates. These numerical results are in agree-
ment with the analytical ones (see Eq. (30) and Fig. 3).

4. DISCUSSION

In the previous sections, a simplified model was con-
sidered that allowed us to simplify the mathematical
description and study shear-induced effects in a «pure»
form. For instance, the influence of the viscosity was
ignored and the density ratio p,/po of the fluids above
and below the surface z = 0 was assumed to be zero.
The last assumption allows us to ignore all the dynam-
ical processes in the upper fluid. On the other hand,
it is well known that in the case of ocean waves, the
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wind is the most important and powerful source of the
waves. In this section, we discuss possible applications
of the studied linear effects to the concrete physical
situations.

A. Ocean waves

It is well known [2-6] that the wind is the main
source of ocean SGWs. In the context of future dis-
cussion, the papers of Chalikov’s group [19, 20] should
also be noted, where the influence of small-scale tur-
bulence in the air on the wave growth was studied in
detail. At present, there exists a well-developed the-
ory of both SGW generation and nonlinear evolution
that is mainly confirmed by experiments as well as nu-
merical simulations (see, e.g., [21] for a recent review).
After development of a wind-driven instability, nonlin-
ear 4-wave resonant interactions transfer the wave en-
ergy to smaller scales. The existing theory predicts
that for relatively small frequencies, the Zakharov—
Philonenko [22] spectrum E(w) < w™* of SGW fluc-
tuations (sometimes called Toba’s spectrum) should
be observed (in this context, see also [23]), whereas
for relatively high wave numbers, nonlinearity becomes
strong and the Phillips spectrum E(w) ~ w™> of the
wave turbulence should develop. The existing obser-
vations confirm these predictions and provide that in
the range wy,/3 < w < 3wy, where w, is the peak fre-
quency, the Zakharov —Philonenko spectrum is usually
observed. For w > 3w,, the spectrum becomes very
close to the Phillips one [21]. The properties of the
wave spectrum in the very short wavelength region, as
well as dynamics of dissipation of SGW turbulent fluc-
tuations, are much less clear [24].

In the case of ocean waves, the presented linear
mechanism of SGW generation can an important con-
tribution to the balance of small-scale SGW fluctua-
tions. Indeed, a characteristic length scale of the tur-
bulence is much smaller at the ocean surface than in
the air. Namely, the characteristic length and velocity
scales are u, ~ 1 cm/s and [ ~ 1 cm respectively [25].
On the other hand, in the presence of the wind, the
strong velocity shear A ~ 10 s™! is present in the so-
called «buffer layers [26] of the water, with the thick-
ness Iy ~ (20 — 100)lg, where ly &~ v/u, is the dissi-
pation length scale and v is the kinematic viscosity of
water. Simple estimates yield [y ~ (0.5-1) cm. The
linear mechanism presented implies that vortical per-
turbations generate SGWs with the same length scale.
Therefore, in the case of ocean waves, internal vortex-
mode perturbations should effectively generate small-
scale SGWs, with the wavelength just above the cap-

~
~
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illary length scale A, = 0.39 cm [27]. In this context,
the study of the influence of capillary effects on the pro-
cesses discussed above seems to be interesting. Analysis
of this problem will be presented elsewhere.

B. Interfacial gravity waves

In the analysis in Secs. 2 and 3, the density ratio
pa/po of the fluids above and below the surface z = 0
was assumed to be zero. The obtained results can be
readily generalized to the case of interfacial GWs. If
the densities of the upper and lower fluids are p; and ps
and the shear rates are A; and A, respectively, then the
shear-modified dispersion of interfacial GWs is given by
the same expression (22) with g and A replaced by g.
and A,, where

P2 — pP1

p2+p1’

_ A2p2 - Alpl

35
P (35)

This equation implies that the influence of shear on
both the wave dispersion and the coupling with inter-
nal vortex perturbations, which is determined by the
dimensionless parameter

A, 1 —p1Ai/p2As
S* = = SQ s (36)
4kg, V1-pi/p3

is much more notable when the fluids have compara-
ble densities if p; A; is not very close to paAs. There-
fore, the described shear-induced effects should usually
have much stronger effect on the dynamics of interfacial
waves than on ocean waves.

5. SUMMARY

We summarize the main features of the linear dy-
namics of surface gravity waves in a simplified deep
fluid (at z < 0) flow with vertical shear of the mean
velocity Ug = (Az2,0,0). The simplification lies in ne-
glecting the fluid compressibility and stratification, in
other words, in the consideration of the system contain-
ing just two modes of perturbation: the surface gravity
wave mode and the internal vortex mode. Special fea-
tures of SGW in the system are as follows.

The mean flow velocity shear causes a nontrivial
modification of the frequencies and phase velocities
of SGWs. The frequencies are defined by Eq. (22).
The phase velocity becomes anisotropic (see Eq. (23)
and Fig. 1): its value is minimal for SFH propagat-

ing along the z axis [V " g/k(VT+ 5% - 9)|
and maximal for SFH propagating against the x axis

Vmar = \Jg/HVTF 52 + 9)].
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The mean flow velocity shear leads to the appear-
ance of an intrinsic (to the fluid) source of SGW gen-
eration via coupling the wave to the internal vortex-
mode perturbations; the coupling results in the emer-
gence/generation of SGWs by internal vortex-mode
perturbations at S 2 0.05. The generation is different
for the waves propagating in the different directions
(see Eq. 30). The generation of SGW with the fre-
quency 2 considerably exceeds the generation of SGW
with the frequency s for relatively small shear rates
S, whereas the latter wave is generated more effectively
for high shear rates (S > 0.15).

This research is supported by the ISTC grant G 553.
The work was supported in part by the Department of
Energy Grant Ne DE-FG03-96ER-54346.
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