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Formation of the liquid state of clusters with pairwise interactions between atoms is examined within the frame-
work of the void model, in which configurational excitation of atoms results from formation of voids. Void
parameters are found from computer simulation by molecular dynamics methods for Lennard— Jones clusters.
From that standpoint, phase transitions are analyzed in terms of two aggregate states. This information allows
us to divide the entropy jump during a solid-liquid phase transition into two parts: one corresponds to con-
figurational excitation at zero temperature and the other arises from thermal vibrations of atoms. The latter
part contributes approximately 40 % for Lennard —Jones clusters consisting of 13 and 55 atoms, increasing to
56 % for bulk inert gases. These magnitudes explain the validity of melting criteria based on thermal motion of
atoms, even though the distinctive mechanism of this phase transition results from configurational excitations.
It is shown that the void concept allows analyzing various aspects of the liquid state of clusters including the
existence of a limiting freezing temperature below which no metastable liquid state exists, and the existence
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and properties of glassy states that may exist below the freezing limit.

PACS: 61.20.Gy, 61.25.Bi, 61.43.Fs, 64.70.Dv

1. INTRODUCTION

Clusters, being systems of relatively small finite
numbers of bound atoms, differ from macroscopic
atomic systems in several properties. Their solid states
are characterized by sharp, nonmonotonic dependence
of their population on the number of component atoms.
The most striking aspect is the occurrence of «magic
numbersy that corresponds to completed atomic shells,
often of polyhedra rather than lattices. In experiments,
these favorable structures exhibit heightened popula-
tions and stabilities, see, e.g., [1-3]. In the subsequent
analysis, we focus on clusters with pairwise interactions
between atoms. In this case, the pairwise character and
magnitude of the interaction means that the interaction
energies between atoms of a cluster are small compared
with a typical electronic excitation energy. This crite-
rion is valid for clusters of inert gas atoms and clus-
ters of molecules typically found in a gaseous state un-
der normal conditions. (It does not hold for covalently
bound clusters or metallic clusters.) We consider the
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phase change of clusters between the solid and liquid
states and examine how it differs in principle from the
traditional melting/freezing transition in macroscopic
systems. Indeed, the phase transition in macroscopic
systems proceeds by a sharp step in specific proper-
ties, and hence, in classical thermodynamics, there are
phase transitions of the first and second orders [4-9],
depending on the behavior of the derivatives of spe-
cific thermodynamical quantities. In the cluster case,
computer simulation exhibits coexistence of the solid
and liquid phases [10-13] over some finite tempera-
ture and pressure band that makes the phase change
of clusters richer than for macroscopic systems, and,
in a sense, makes the classical thermodynamic classifi-
cation of phase transitions, based on specific disconti-
nuities, inapplicable here, even while the basic laws of
thermodynamics remain completely valid. Because of
the coexistence of aggregate states in the phase change
of clusters, dividing the phase transitions into sharply
divided types loses its sense.

The phase transition is a collective phenomenon
that results from simultaneous interaction of many
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atoms. Therefore, simple analytical one-particle mod-
els are not suitable for its analysis. In considering the
phase change in clusters, we use the results of computer
simulation for clusters whose atoms interact through
the Lennard — Jones potential. We focus mainly on the
liquid state of these systems, whose properties depend
monotonically on the number of cluster atoms, in con-
trast to the solid state, which exhibits its irregular de-
pendence (with magic numbers) on the number of clus-
ter atoms. As a result of melting, the crystalline distri-
bution of atoms is lost, and the liquid state has more
or less amorphous structure, although a shell-like dis-
tribution of atoms may be conserved to some degree.
The aim of this paper is the analysis of some proper-
ties of liquid cluster systems on the basis of appropriate
models. In constructing our model, we must take the
specifics of the cluster liquid state into account. In
general, this can follow from the probability of the to-
tal kinetic energy of cluster atoms held at constant en-
ergy, for example, as was done in [11] for the Lennard —
Jones cluster of 13 atoms. Here, this probability has a
bimodal form in a range of internal energies near the
state of classical melting, i.e., where the chemical po-
tentials of the solid and liquid states are equal. (For
convenience, we here refer to this state as the «melting
point».) The two maxima of this distribution and their
vicinities correspond to two aggregate states, solid and
liquid.

In modelling a large liquid cluster with pair interac-
tions between atoms by a spherical liquid drop, we take
into account that atoms in this aggregate state occupy
a larger volume than in the solid state. Then we can
consider the cluster’s transition from solid to liquid as
a result of formation of voids inside the cluster [14]. We
consider a void as an elementary configuration excita-
tion. A void is a perturbed, even a relaxed, vacancy;
in contrast to a vacancy in a solid, a void has an indef-
inite volume and shape that changes in time. On the
basis of computer simulation results, we find the av-
erage void parameters as they emerge for macroscopic
inert gases [15-19] on the basis of their measured pa-
rameters. This allows us to analyze various aspects of
the phase transitions in condensed inert gases as well
as in Lennard - Jones clusters.

Introduction of a void as an elementary configura-
tion excitation is in reality a simplification of a general
analysis of the potential energy surface of an ensem-
ble of interacting atoms [20]. In a multidimensional
space of atomic coordinates, the potential energy sur-
face for an atomic ensemble with pairwise interactions
consists of many potential wells separated by saddles
[13,21-24]. Evolution of this ensemble is described by

saddle-crossing dynamics [23]. In particular, a clus-
ter is found near a minimum of the potential energy
long enough to equilibrate its vibrations; transition to
a neighboring minimum typically proceeds relatively
slowly by comparison [25]. (Of course, if there are
minima separated by low barriers, equilibration among
these may occur on the same time scale as vibrational
relaxation, and can be treated appropriately.) First,
this leads to a short-range, short-duration order for any
amorphous structure of atoms, because each configura-
tion of atoms is preserved for a relatively long time
(such that the atomic kinetic energy is not very large).
Second, this allows us to introduce an average void by
averaging parameters over times that exceed the typical
vibrational period but are shorter than typical well-to-
well passages. This allows us to separate configuration
excitation that is responsible for the phase transition
from vibrational excitation associated with an increase
of the kinetic energy of the atoms. This fact is of im-
portance for the analysis of the phase transition.

We note that the phase change in clusters is richer
and more complicated than in bulk systems. In par-
ticular, the sharp onset of a liquid state is absent for
Lennard — Jones clusters of 8 and 14 atoms (and oth-
ers) [26]; these are examples of systems that do not
show bimodal distributions of kinetic energies on time
scales of vibrational relaxation. In addition, large clus-
ters can exhibit several aggregate states associated with
melting of various atomic shells [27, 28]. Below, we fo-
cus on clusters with completed atomic shells and con-
sider melting of surface shells. In these cases, the melt-
ing process is clearer and more easily distinguished.
First, because the surface shell contains a considerable
fraction of the cluster’s atoms, the statistical weight of
configurationally excited states with voids in the sur-
face shell is relatively large, as is the entropy of tran-
sition to this state. This leads to a stable liquid state
for the surface layer of these clusters, as well as a state
composed entirely of liquid. Next, in contrast to the lig-
uid state of bulk systems, where a void differs clearly
from the vacancy in a solid, a surface void in a not-
so-large cluster can be considered a perturbed vacancy.
For example, the energy of formation of a void in the
liquid state of a bulk inert gase is approximately half
the energy of formation of a vacancy in the solid state
of a bulk inert gas [15-17]. In the case of clusters un-
der consideration, the energy difference of formation
of surface vacancies and voids is not very large, and
hence a void can be considered a perturbed vacancy.
This facilitates the analysis.

Because some concepts of classical thermodynamics
of macroscopic systems are not valid for clusters, it is
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necessary to revise some of those concepts in order to
apply them to clusters. In particular, the phase of an
aggregate state is defined in classical thermodynamics
as a uniform distribution of atoms that is restricted by
boundaries. From the standpoint of the void concept,
this means that the liquid aggregate state as a configu-
rationally excited state has to contain many elementary
excitations — voids. To transfer this concept to small
clusters, it is necessary to revise the definition, to be
done in what follows.

The void concept gives a sufficiently detailed pic-
ture of the liquid aggregate state, in comparison with
classical thermodynamics, and allows us to resolve its
apparent paradoxes. As an example, we consider the
criterion of the phase transition for macroscopic sys-
tems. According to the widely used Lindemann cri-
terion [29, 30], bulk melting proceeds at the tempera-
ture at which the ratio of the atomic oscillation ampli-
tude to the distance between nearest neighbors reaches
a certain value (10-15%). Development of numerical
methods for computer cluster simulation gave new vari-
ants of this criterion of cluster melting on the basis of
the Etters—Kaelberer parameter [31-33] or Berry pa-
rameter [12, 34]; these account for pair correlations in
positions of atoms. These parameters have jumps at
melting and, as with the Lindemann criterion, are con-
nected with thermal motion of atoms, even though the
melting results from configurational excitation. Hence,
there is an apparent contradiction between the nature
of the phase transition in ensembles of bound atoms
due to configurational excitation and the practical cri-
teria for this transition based on thermal motion of
atoms. The subsequent analysis of numerical parame-
ters of this phase transition exhibits the resolution of
this apparent contradiction.

Although vibrational excitation of finite and «infi-
nitey» numbers of bound atoms that characterizes ther-
mal motion of atoms is separated from configuration
excitation that is responsible for the phase transition,
thermal motion of atoms gives a contribution to the en-
tropy jump AS at the melting point, because the solid
state is more compact than the liquid aggregate state.
Reflecting just the thermal (kinetic energy) part of the
entropy jump, the vibrational parameters nevertheless
simultaneously characterize the phase transition. By
exhibiting the connection between the configurational
and kinetic-energy aspects, the void analysis justifies
applying the melting criteria based on thermal motion
of atoms.

The goal of this paper is the analysis of Lennard—
Jones clusters with completed shells from the stand-
point of the void concept. This consists in obtaining

the void parameters from treatment of numerical com-
puter calculations and in the analysis of these data to
connect the two kinds of excitation.

2. CHARACTER OF CLUSTER
CONFIGURATIONAL EXCITATION

We consider an ensemble of interacting atoms in
which the ground electronic state is well separated from
electronically excited states, and these excited states do
not partake in evolution of the atomic ensemble, i.e.,
development of this system can be described in terms
of motion on the potential energy surface (PES) in a
multidimensional space of nuclear coordinates, and this
PES corresponds to the electron ground state. The
PES has many local minima, which was discovered in
first numerical calculations of the cluster energy at zero
temperature for a simple character of atomic interac-
tions [35-37]. Early algorithms that made oversimpli-
fying assumptions about the potential landscape led to
underestimations of the number of minima, but with
increasing the computing power, more elaborate meth-
ods made it possible to explore these landscapes fairly
thoroughly and to obtain plausible estimates regard-
ing the dependence of the number of minima on the
number n of atoms in the cluster. For Lennard —Jones
clusters, the number of geometrically distinct minima
increases somewhat faster than exponentially with n;
there are roughly n! permutational isomers of each of
these, and hence the total number increases roughly
as nlexp(an) [21,36-39]. As a result, cluster evolution
consists of transitions between neighboring local min-
ima of PES that correspond to saddle-crossing dynam-
ics [13,22-24]. This concept is a basis for investigation
of various ensembles of interacting atoms, from simple
clusters to biological molecules [20, 24].

The character of transitions between neighbor-
ing minima of PES is given in Fig. 1, which shows
schematic projections of a PES on planes in the space
of atomic coordinates where only the coordinate related
to a specific transition between two local minima of the
PES varies. (These planes are different for each tran-
sition.) Energy levels for each well indicate an average
atomic energy along the coordinate of the transition.
Because this energy is significantly less than the barrier
height, such transitions proceed seldom, only when the
kinetic energy of atoms in the transition degree of free-
dom exceeds its average energy adequately. Hence, the
system has many oscillations inside a given well until it
transfers to another local minimum of the PES. Then
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Fig.1. The evolution of an ensemble of atoms in the

ground electron state as the propagation of a point in

the phase space of atomic coordinates resulting from

transition between neighboring local minima of the po-
tential energy surface

identifying a given local (but not global) minimum of
the PES as a configurational excitation of the system
of interacting atoms, we can separate it from thermal
motion associated with atomic oscillations. This allows
us to consider the configurational excitation indepen-
dently of vibrational excitations and is the basis of the
following analysis. Moreover, taking a realistic assump-
tion that a typical time of establishment of the ther-
modynamic equilibrium for thermal motion of atoms is
short compared to a typical time of transition between
local minima of the PES, we can introduce the tem-
perature of thermal motion of bound atoms for each
configuration excitation.

We use an approach based on the assumption of a
large number of local minima on the PES. In particular,
the Lennard — Jones cluster of 13 atoms is characterized
by 1478 local minima and 17357 saddle points of the
potential energy surface [22]; early estimates found only
988 local minima [35, 36]. As noted above, the number
of geometrically distinct local minima increases roughly
exponentially with increasing the number n of atoms
in the cluster [20, 21, 38]. We construct an aggregate
state from configurationally excited states. Restricting
ourselves to the local minima of the PES that are oc-
cupied with a nonnegligible probability in a range of
cluster temperatures under consideration, we join the
local minima with similar excitation energies into one
aggregate state. Because of the large number of such
local minima, the aggregate state is characterized by a
large statistical weight and, correspondingly, by a large
entropy, and hence the probability for a cluster to be
found in this aggregate state may be considerable, even
when the excitation energy is significantly less than k7.
Below, we illustrate this definition of the cluster aggre-
gate state with examples.

Fig. 2. The character of the lowest configurational exci-
tation in the icosahedral cluster consisting of 13 atoms
at zero temperature

3. CONFIGURATIONAL EXCITATION OF THE
ICOSAHEDRAL CLUSTER OF 13 ATOMS

Dividing cluster excitations into two parts, configu-
rational and vibrational, we consider these parts inde-
pendent. Next, for configurational excitation, we use
the void model, considering this excitation as a result
of formation of voids. Then we can express the param-
eters of the phase transition and other cluster proper-
ties through the parameters of forming voids. We re-
strict ourselves to clusters with completed shells, which
simplifies this analysis because a void, an elementary
configurational excitation, is in reality a perturbed va-
cancy.

We start the analysis of configurational excitation
from the simplest cluster with completed shells that
has the icosahedral structure and consists of 13 atoms.
In the lowest-energy state, its first (and only) shell is
filled. Configurational excitation of this cluster consists
in transition of one atom from the surface shell to the
cluster surface as shown in Fig. 2. After formation of a
vacancy on the cluster shell, the atoms around the va-
cancy are distributed over a larger space due to thermal
motion, and the promoted atom moves over the cluster
surface more freely than any of the other atoms. As a
result of the configurational transition, an excited clus-
ter state has the statistical weight ¢ and the additional
entropy ASy given by

g=12-15=180, ASy=1Ing=52. (1)

Here, the value 12 is the number of shell atoms, any
of which can be promoted, and 15 is the number of
positions for a promoted atom if it is not in a site bor-
dering the new vacancy. It is important that thermal
motion of atoms gives a contribution to these values
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near the melting point because of the free motion of
bound atoms in this configurationally excited state.

We now determine energetic parameters of this
transition. In the ground state, each surface atom of
this icosahedral cluster has five atoms from the sur-
face shell and the central atom as nearest neighbors.
The pairwise interactions therefore yield six «bonds»
to these atoms. When this atom is located on the clus-
ter surface, it has only three nearest neighbors. Then
the energy of this atomic transition onto the hollow
between three atoms on the cluster surface is roughly
equal to 3D, where D is the energy needed to break
one bond. (We assume atoms to be classical, and hence
the depth of the potential well D for the two-atom in-
teraction coincides with the dissociation energy of a
diatomic molecule.) Next, if a surface atom is trans-
ferred to a neighboring position on the cluster surface,
it retains two bonds between nearest neighbors as it
makes the transition between neighboring hollows on
the cluster surface. Hence, for this transition, an atom
must overcome the barrier whose magnitude is roughly
1D. Figure 3 gives the energies of these states at zero
temperature and the values of barriers that separate
them for the Lennard — Jones interaction potential be-
tween atoms [40]. We see that the difference between
the data in Fig. 3 and the above values is not substan-
tial. Hence, our consideration of an elementary config-
urational excitation, a void, as a perturbed vacancy is
justified.

Figure 3 gives the energies of these states at zero
temperature and the values of barriers that separate
them [40]. As a result of configurational excitation, an
atom transfers from the shell of 12 atoms, as shown in
Fig. 2. For this transition, an atom must overcome a
barrier; likewise, transitions to other positions on the
cluster surface are accompanied by overcoming ener-
getic barriers. Increasing the energy facilitates tran-
sitions between different stable positions on the clus-
ter surface, as well as exchanges between a configura-
tionally excited atom and another one. All configu-
rationally excited states with promotion of one atom
are connected in the liquid state, and hence the system
may find all permutations among the atoms of any at-
tainable structure. This follows from the data in Fig. 3.
Thus, all the configurational states with one atom pro-
moted from the outer shell comprise the lowest-energy
excited aggregate state.

We now analyze the character of configurational ex-
citation of this cluster in the phase coexistence range
where thermal motion of atoms influences the transi-
tion parameters. We base this on the results of com-
puter simulation of the Lennard—Jones cluster of 13

atoms [11], in which this cluster is considered a mem-
ber of a microcanonical ensemble [41], i.e., the total
cluster energy is conserved during the cluster’s evolu-
tion. In a particular band of energies, the probability
distribution of the total kinetic energy (or mean kinetic
energy per atom) of the cluster becomes the bimodal
distribution, which confirms the existence of the ag-
gregate states in the dynamic equilibrium in this case
(solid and liquid). Therefore, in this range, we can
treat the results of computer simulation [11] in terms
of a dynamic equilibrium of two aggregate states. This
was fulfilled partially in [42-44], and we give the results
of this treatment below.

We now give general formulas of this consideration
in which the results of numerical calculations are com-
pared with simple formulas that reflect a simple con-
cept. For the classical motion of bound atoms inside the
cluster, we represent the energy E of a cluster consist-
ing of n atoms, with a pair interaction between them,
in the form

E:U+K:;u(rij)+%z<%>2. 2)

i

Here, U is the total potential energy, K is the total
kinetic energy of atoms, u(r;;) is the pair interaction
potential between atoms at a distance

rjj =T — Ty,

where r; and r; are the atomic coordinates, and m is
the atomic mass. This formula is the basis of our anal-
ysis of cluster computer simulations. We consider the
properties of two terms of this formula, taking into ac-
count that thermal equilibrium is usually established
for atomic vibrations. This allows us to introduce
the atomic temperature 7', with the motion of atoms
treated as that of a set of harmonic oscillators. The
cluster temperature is defined from the relation
K= 3T, 3)
2
where n > 1 and the total kinetic energy of atoms
is averaged over times much longer than the period
of atomic oscillation. A typical oscillation time 7 for
atoms can be expressed through the Debye frequency
wp as . N
T ~ on ~ D (4)
We note that for a microcanonical ensemble, this defi-
nition of the effective temperature, although useful and
widely chosen, is not the only one, and different defini-

tions are not equivalent [45].
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Fig.3. The energy and barrier positions for the lowest configurational excitations of the Lennard — Jones cluster consisting
of 13 atoms according to [40]

The global minimum of the potential energy surface
of this cluster has the structure of a regular icosahe-
dron, and it corresponds to the cluster’s ground state,
its equilibrium state at zero temperature. Transitions
from the global minimum to other local minima of the
potential energy surface for a 13-atom cluster are re-
sponsible for the phase transition to the liquid aggre-
gate state. Figure 3 gives the energies of the lowest
configurationally excited states of this cluster at zero
temperature and the values of barriers that separate
them [40]. As a result of configurational excitation, an
atom transfers from the shell of 12 atoms, as shown
in Fig. 2. At high temperatures, the lowest configu-
rationally excited state is the liquid aggregate state,
which is to be justified below.

The energy of an isolated cluster of 13 atoms in the
energy range where both solid and liquid may be stable
can be represent as

E=—Fo+FEe =UL) 4+ Ksot = AE+ UL, + Kiiq, (5)

where Ej is the binding energy of cluster atoms at zero
temperature, F., is the excitation energy, Ky, and
K, are the total kinetic energies of atoms for the solid
and liquid cluster states, Uskoz and Uﬁq are the average
potential energies of the cluster for the kth local min-
imum of the potential energy surface, and AF is the
average excitation energy above the energy needed to

reach Uﬁq required to produce the labile liquid aggre-
gate state. The values in this formula are averaged over
times that exceed a typical time of atom oscillations but
are less than a typical transition time between cluster
aggregate states. Within the framework of this consid-
eration, we join energetically similar local minima of
the cluster potential energy into one aggregate state,
assuming the transitions between local minima of the
same aggregate state to be more effective than transi-
tions between states that belong to different aggregate
states. In other words, we assume that the system, al-
though liquid, explores the local minima available to
it far more frequently than it returns to the solid with
which it is in the dynamic equilibrium on long enough
time scales.

We introduce the effective temperature for a given
aggregate state of the cluster on the basis of a formula
transformed from formula (3):

2 . 2K
_3n—6A_33’ (6)

where n = 13 is the number of cluster atoms, and the
energy fraction 7 related to the kinetic energy of atoms
is

Kool Kiiq (7)
E.,’ E., — AE’

If atomic motion is a combination of harmonic oscilla-
tors, we have = 0.5. Anharmonicity of the oscillations

Nsol = Niig =

1287



R. S. Berry, B. M. Smirnov

MWITD, Tom 127, BHIm. 6, 2005

n
0.46 LJis '
0.44 -
0.42 l i
0.40 b
0.38F .
0.36 s 1 s 1 s 1 s 1 s 1

6 8 10 12 14 16

Eex/D

Fig.4. The dependence on the excitation energy for the

energy part related to the kinetic energy of atoms for

an isolated Lennard - Jones cluster of 13 atoms. This

value is identical for the solid and liquid cluster states.

The arrow indicates the excitation energy of the phase
transition wso; = wiig

typically leads to a decrease of this value, and n(E..)
decreases with an increase of E,,. Treatment of the
results of computer simulation [11] for this cluster by
the method in [43] gives the dependence n(E,,) that is
represented in Fig. 4. We note that

Nsol (Eeac ) = Niiq (Eex)

within the limits of the result accuracy, while this quan-
tity has different values for the solid and liquid states
at identical temperatures. This value starts from

where the system can be described in terms of harmonic
oscillators and decreases monotonically with increas-
ing the excitation energy because of the increasing role
of anharmonicity of the dominant stretching modes®).
Hence, the parameter 1 characterizes the influence of
the anharmonicity in atomic motion of an isolated clus-
ter as the excitation energy increases.

From these data, we have the excitation energy of
the cluster liquid state,

1) Some modes, notably bending modes in molecules and, at
high energies, high-frequency phonons in large clusters and solids,
may have negative anharmonicities. For such systems, this line
of reasoning requires further scrutiny. But for clusters of at least
several hundred atoms, it is a valid assumption that the anhar-
monicity reduces the spacing of the relevant modes as the energy
increases.

- E., <1 - I‘f’”) —2.49+0.05. (8)
Asol

Comparison of formula (8) with the data in Fig. 3 for
the excitation energies at zero energy shows that the
difference of these energies is not significant. In con-
trast to this, the ratio of the energy of void formation
for bulk inert gases to the vacancy energy formation is
approximately one half. The energy of void formation
at the melting point T, = 0.29D allows us to find the
entropy jump of the bulk system at the melting point
_AE

== —86+02. (9)

ASp
S T

Comparing this with the entropy jump ASq of the clus-
ter at zero temperature according to formula (1), we
find

ASy
~ 0.6. 1
AS,. 0.6 (10)

Thus, the different character of atom motion in the
solid compact aggregate state and in the liquid aggre-
gate state with its sparser distribution of atoms in-
creases the entropy jump.

An isolated cluster, viewed as a microcanonical en-
semble of atoms, is characterized by two temperatures
if it can be found in two aggregate states only. These
temperatures are determined by formula (6) for each
aggregate state, and ignoring the anharmonicity, which
gives n = 0.5, we use formula (8) to obtain the differ-
ence of the atomic temperatures T, and Tj;, of the
solid and liquid aggregate states near the melting point:

2AE

Tsol - Tliq - Y

~ 0.15D. (11)
Figure 5 gives the values of these temperatures for the
Lennard — Jones cluster of 13 atoms as a function of the
cluster excitation energy, and these data follow from
treatment of the computer simulation results [11] for
this cluster. Along with these temperatures, we can
introduce the configurational cluster temperature 7Ty
that follows from the equilibrium between the solid and
liquid cluster states according to the formula

M o _AF o _AE
Dot —exp< Tef> = exp< T, +AS |, (12)

where wg, and wy;, are the respective probabilities for
the cluster to be found in the solid or liquid states and
AF is the free energy jump at melting. The configu-
rational temperature is determined by populations of
the solid and liquid aggregate states. Figure 5 gives
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the dependence of the configurational temperature on
the cluster excitation energy. The configurational tem-
perature tends to the solid temperature in the limit of
low temperatures, and to the liquid temperature in the
limit of high temperatures.

4. CONFIGURATIONAL EXCITATION OF THE
ICOSAHEDRAL CLUSTER OF 55 ATOMS

We consider a cluster as a member of a canoni-
cal ensemble [41], when it is maintained under isother-
mal conditions. Experimentally [46—49], this condition
can be reached when clusters are located in a gas of
light (usually, helium) atoms that collide with clusters
and metallic walls maintained at a certain temperature.
Collisions establish the wall temperature for each clus-
ter if the typical time for equilibration to a gas temper-
ature as a result of collisions with the atomic heat bath
is short compared to a typical dwell time of the cluster
in each aggregate state. As earlier, we assume the ex-
istence of the two aggregate states [42—44] and use the
dynamic coexistence of phases in clusters [11,50-52]
within a temperature range; in other words, we assume
that part of the time, the cluster is found in one ag-
gregate state and in the remainder, it is found in the
other. In addition, while the cluster is in each aggre-
gate state, vibrational equilibrium is established [25],
and hence the temperature of bound atoms for each
aggregate state coincides with the thermostat temper-
ature if the cluster is in a canonical ensemble [41]. In
this case, the probability w;;, that the cluster is found
in the liquid state is given by the formula [18, 43, 44|

Wiig = ma

AF AE (13)
p = exp <_T> = exp <AS — T) ,

where T is the cluster temperature (which coincides
with the thermostat temperature), AFE is the energy of
configurational excitation, AS is the entropy jump as
a result of melting, and AF is a change of the free en-
ergy. The parameters of the phase transition AF and
AS determine the behavior of the cluster heat capacity,
which we connect with the cluster heat capacity that
can be calculated from computer simulations. Using
the average kinetic energy of atoms for each aggregate
state, we characterize each of those states by the mean
potential energy, i.e., we ignore the broadening of the
energy of each cluster state due to fluctuations.

We first determine the cluster heat capacity and

separate its «resonance» part, the peak due to the
phase transition. According to formula (5), we have

E=—-FEy+ sol Wgol + AEw”q + ﬂw”q, (14)
Msol Niiq

and because the cluster is in a thermostat, Ky, = Kjiq.
Assuming that 15, = 1114, We obtain the average clus-
ter energy according to formula (14),

. .
B=— 4 ABuwyy = —22 + AE-L (15)

Nsol Nsol 1 + D .

We first consider the Lennard—Jones cluster of 13
atoms in a thermostat. We note that the anharmonicity
of atomic oscillations affects the degree of the config-
urational excitation. Indeed, because the anharmonic-
ity is greater for the liquid than for the solid cluster,
the density of vibrational states increases faster with
energy than does that of the solid, and therefore the
average potential energy for the isothermal liquid clus-
ter is higher than that for the solid. If the melting
temperatures for the isolated and isothermal clusters
are approximately equal (as they are for clusters of ca.
100 atoms or more), we find a special excess change
of the cluster’s potential energy in the isothermal case
that does not appear in the constant-energy case. Tak-
ing the melting point T, = 0.29D for both cases and
the corresponding kinetic energies at this temperature
to be

IX’SO[(Tm) = I([l'q (Tm) ~ 29D/

we find the excess excitation energy AE' as a change
of the average potential energy per atom given by

I(li (Tm) [(sol (Tm)
AE' = AE + —4 - = AE +
nliq(Tm) Nsot (Trm)
1 1
Ko (Th, — =3.1D, (16
+ Keol(Tm) | 23530 ~ 7A17D) (16)

where AE = 2.5D is the energy difference for aggre-
gate states of an isolated cluster at the melting point.
We here assume that the anharmonicity parameter 7 is
identical for both aggregate states of an isolated cluster,
and its dependence on the excitation energy is given in
Fig. 4. Next, the dependence of the temperature of a
given aggregate state on the excitation energy is repre-
sented in Fig. 5, and, as indicated in formula (16), the
excitation energies of isolated clusters correspond to the
temperature 0.29D for each aggregate state. Therefore,
the anharmonicity of the solid aggregate state under
isothermal conditions is higher than that for an iso-
lated cluster, whereas for the liquid state, we have a
different relation between these values. As a result, the
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Fig.5. Temperatures of the Lennard — Jones cluster of

13 atoms depending on the excitation energy (the tem-

peratures of the solid and liquid aggregate states, av-

erage transversal temperature, and configuration tem-
perature)

isothermal phase transition requires a greater change
of potential energy than that at constant energy, due
to interactions between atoms for the Lennard—Jones
13-atom cluster. Due to the anharmonicity, the energy
change for an isothermal cluster exceeds that of the
isolated cluster approximately by 20 %.

We next analyze the temperature dependence of the
heat capacity under isothermal conditions. We repre-
sent the cluster heat capacity in the isothermal case
as [53, 54]

_ dE _ d(AEw“q)
C= =Cy+ aT ,

I (17)

where the first term characterizes the cluster’s heat ca-
pacity in the absence of the phase transition,

d (K’sol/nsol) _ d (K’liq /nliq)

Co = ar 4T (18)
and the resonance part of the heat capacity is
d (AEwy; AE?
Cres = ( wlzq) = P (19)

T T2 (1+p)?

We here assume that the energy of configurational exci-
tation AE and the entropy jump AS are independent
of the temperature. Formula (19) leads to the max-
imum C77%* at the melting point 7T}, defined in this

case as p(Ty,) = 1. We have

AE?  AS?
¢cmaz — _ S

res 4T2 - 4 (20)

To account for the temperature dependence of the
entropy jump, we represent it as

AS = AS + aT, (21)

where ASg is the entropy jump at zero temperature.
At the melting point, this gives

_AS,, — AS,

a
T '

(22)
where AS,, is the entropy jump at the melting point.
On the basis of formulas (13) and (19), we obtain the
resonant part of the heat capacity:

AE dp P
Omaz — T _
res (14 p)2dT (14 p)? x
dAS AE\ AS2 1
<—dT N ﬁ) = Som  ASAS,. (2

Because numerical calculations by the molecular dy-
namics method allow one to determine the heat capac-
ity maximum, this relation can be used for evaluating
the entropy at zero temperature as

40maz

ASy = 2AS,, — ores 24
So S AS, (24)

We now use this formula for the Lennard—Jones
cluster of 55 atoms. As our basis, we take computer
simulations of this cluster in [28, 55, 56], which give the
parameters characterizing the phase transition within
the ranges

Cne® = 650 £ 50.

res

T,
AE=15+1 = =031£00L,

From this, we have

AE
=2 —484+5. (25)

ASp
S T

On the basis of formula (24), we have
ASp =36 £+ 15. (26)

The large uncertainty here makes this result relatively
uninformative. We need a way to do better.

We now determine the entropy jump at zero temper-
ature from another standpoint. The energy of forma-
tion of one vacancy at zero temperature can be found
by comparing the total binding energies of atoms e55
and e56 for the Lennard— Jones clusters of 55 and 56
atoms. On the basis of calculations in [57] for €55 and
€56, we have [43]

Ae = €56 — &55 — 2.64D
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at zero temperature. The direct calculations for lower
excitations of this cluster [58] lead to the minimal ex-
citation energy 2.63D. The proximity of these values
confirms that an excited atom transferred onto the clus-
ter surface can be treated as being well removed from
the vacancy from which it came. Evidently, the energy
of void formation, the relaxed form, is less than the
energy Ae of formation of the initial vacancy. This im-
plies that the number of atoms leaving the body of the
cluster to form voids is

v > ﬁ ~
ANG

Taking the number of voids in the liquid state of the
Lennard — Jones cluster of 55 atoms to be v = 5-7, we
determine the entropy jump at zero temperature ASy
as we treat the solid-liquid transition to be a conse-
quence of transitions of atoms from the outer cluster
shell onto its surface. Because of the icosahedral struc-
ture of this cluster, its outermost shell consists of 42
atoms, and there are 80 positions with 3-atom «hol-
lows» on the surface for atoms promoted from the outer
shell. A new vacancy on the cluster edge or surface has
[ = 6 neighboring atoms, and a vertex vacancy has only
I = 5. Therefore, if v atoms transfer onto the cluster
surface, then vl bonds are lost in the cluster surface
for atoms transferred to any of the 80 positions on the
cluster surface if we assume that v transferring atoms
on the cluster surface do not border vacancies on the
cluster shell. From this, for the configurational exci-
tation of the cluster at zero temperature, we find the
entropy jump that results from v atoms moving from
the outermost shell,

5. (27)

ASo =InC:CY,,

where m = 80 — vl is the number of positions on the
cluster surface for transition of atoms from the outer-
most cluster shell. This formula implies that the en-
tropy jump at zero temperature is

ASy=285+0.3 for v=25,
ASy=31.6+04 for v=06,
ASy =3234+0.7 for v=".

Thus, the entropy jump at zero temperature depends
weakly on the number of transferred atoms, and the
average value of the entropy jump at zero temperature
is

ASy=31+2. (28)
One can see that this value is well within the range in
formula (26). Because the accuracy is higher in this

case than in formula (26), we use formula (24) for de-
termination of AS,,. Then formula (24) gives

_AS,  [AS?
Adm ===+ 55

tacpe,  (29)
and on the basis of formula (28) and the calculated
maximal heat capacity

cmer — 650 + 50,

res

we obtain AE

m

ASp,

This result, together with its validity range, is con-
sistent with formula (25), but we now have a result
with greater precision and presumably with greater ac-
curacy. Thus the analysis of computer simulations of
these clusters by molecular dynamics allows us to deter-
mine some thermodynamical parameters of the phase
transition within the framework of a simple scheme.
Below, we analyze these results together with the mi-
croscopic nature of the phase transitions.

5. CHARACTER OF PHASE TRANSITIONS IN
SIMPLE ENSEMBLES OF BOUND ATOMS

The nature of the order—disorder phase transition
for an ensemble of bound atoms may be understood
on the basis of the lattice model (see, e.g., [6, 59, 60]).
Within this model, atoms are located at sites of a crys-
tal lattice and interaction occurs only between nearest
neighbors. Then the ordered state is a compact distri-
bution of atoms, which leads to a maximum number of
bonds between nearest-neighbor atoms, and the disor-
dered state with a random distribution of atoms cor-
responds to a maximum entropy and to a loss of some
of the bonds between nearest neighbors that occur in
the ordered state. The phase transition between these
states proceeds by a stepwise change of the total atomic
binding energy and the entropy of the evolving distribu-
tion. This order—disorder phase transition models the
solid-liquid phase transition for an ensemble of bound
atoms, with the ordered state being analogous to the
solid state and the disordered state analogous to the
liquid state. Because this phase transition involves a
change of the atomic configuration, the passage to the
disordered state occurs by configurational excitation of
the system. One can see that the lattice model for
configurational excitation of such a system is a simpli-
fied void model, in which a void is considered equiva-
lent to a vacancy and additional assumptions are used.
Thus, the conclusions following from the lattice model
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generally apply also to the void model of configuration
excitation.

In considering a phase change of clusters, we invoke
a certain hierarchy of times for establishment of the
various equilibria along the path to the overall transi-
tion. We now exhibit the validity of the hierarchy of
times in clusters that was the basis of the argument.
We assume that a typical time to establish thermal
(vibrational) equilibrium in clusters, 7, is short com-
pared to a typical time of transition between aggre-
gate states. Roughly, we have 79 ~ 1/wp, where wp is
the Debye frequency. To estimate the time needed for
an atom promoted to the cluster surface to move from
one position to another or to its ground-state location,
we assume for simplicity that all atom positions are
separated by identical barriers. Moreover, we take the
barrier height to be Uy = 0.56D, as it is at zero temper-
ature (see Fig. 3), even though a temperature increase
leads to a decrease of these barriers. A transition of
an atom in a three-contact hollow on the cluster sur-
face may proceed in one of the three directions through
a triangular transition state, joined there to two near-
est neighbors. With 7 denoting the transition time to
a neighboring position on the cluster surface, we find
the mean transition time to the ground state to be 97.
Thus, under these assumptions, we infer that transi-
tions between different configurational states proceed
faster by an order of magnitude than a transition from
the surface to a vacancy in the outer shell, normally
occupied in the solid state. This allows us to join all
the different configurational excitations for promotion
of one atom from the outermost shell onto the cluster
surface in one liquid aggregate state.

We now estimate the time 7 of transition between
neighboring positions on the cluster surface on the ba-
sis of the Frenkel model [61], according to which the
transition occurs if the atomic oscillation energy ex-
ceeds the barrier height. Assuming for simplicity that
the barrier has an axial symmetry, we take it in the
form | U

U(p) =Uo + 5 WKP-
where p is the distance from the point of the barrier
minimum in the saddle plane. From this, we find the
transition rate

oo

11 Upp)| _
1/—7_0 47TR2/27rpdpexp{ T | =
0
T
= 5o exp <——>, (31)
2R2d_U T
dp?

where T is the current temperature and R is the dis-
tance between an atom and the saddle point. Taking

d’U D

dp? "R

for an estimate, we obtain
1

T=—~ 507 (32)
v

at the melting point 7,, = 0.29D. Thus, the hierarchy
of times is as we used above.

Consequently, we have three typical times that are
of importance near the melting point, where the rates
of the phase transition in both directions are simi-
lar. These times are the time 7y of equilibrium es-
tablishment for transversal degrees of freedom, during
which a definite vibrational temperature is established
depending on the aggregate state; the typical time
7 for transition between neighboring configurationally
excited states; and the typical time of transition be-
tween aggregate states. The last is the longest one,
but during the time 7, an equilibrium is established
within the liquid state. This reflects the lability of that
state. We note that from the standpoint of void for-
mation, the case of a 13-atom cluster is special because
the liquid aggregate state involves formation of only
one void in this case. For larger clusters, the time of
transition between the aggregate states is increased in
comparison with times of transition between neighbor-
ing configurationally excited states. We demonstrate
this for a 55-atom cluster, assuming that the number
of voids v = 6 is the optimal one for the liquid state.
This means that the total probability for the cluster to
be in any of the configurationally excited states with
v = 5 is less than for v = 6, and for v = 4 is still less
than that for v = 5. To reach the solid aggregate state
starting from the liquid, this cluster must pass through
configurationally excited states with small probabilities
of occurrence, and hence, in most histories, the cluster
returns to its initial liquid state many times and even-
tually reaches the other, solid aggregate state. This
means that a typical time of transition between aggre-
gate states is very long compared with the time for
passage between neighboring configurationally excited
states, particularly in the case of large clusters. Thus,
the dynamic coexistence of phases in clusters proceeds
such that the vibrational temperature is established
fast, next an equilibrium is established between config-
urationally excited states of the liquid phase, and then
the phase transition can proceed during longer times.

At zero temperature, the vacancy and the relaxed
void become equivalent if we neglect the vacancy—atom
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Parameters of melting for atomic clusters and macro-
scopic inert gases

LJi3 LJss bulk inert gases
Tm/D 0.29 0.31 0.58
AE/D 2.5 16 +1 0.98n
(Tsot — T1iq)/Tm | 0.22]0.31 £+ 0.02 0.56
ASqy 52 | 31+2 0.73n
AS,, 86 | 48+4 1.68n
ASy/ASy, % | 60 | 65+10 44

interaction. Real parameters of voids take this inter-
action into account, and hence the relaxation has its
effect on the thermal motion of atoms upon configura-
tional excitation. Of course, the lower the temperature,
the less is the configurational excitation and the less is
the vibrational excitation as well. Evidently, the sep-
aration of the configurational excitation from thermal
vibrations of atoms that we have used is valid only at
low to moderate temperatures, and is better for clus-
ters with completed outer shells than for others. There-
fore, we use the void concept primarily for clusters with
complete shells, such as those consisting of 7, 13, 19,
55, 147, ... atoms. In these cases, there is a solid-
liquid coexistence region of temperature and pressure
within which the probability distribution of the total
kinetic energy is distinctly bimodal [11, 26] for an iso-
lated cluster. The occurrence and persistence of these
two aggregate states allows us to use the approach of
two aggregate states [44], which is an analogue of the
solid and liquid aggregate states for bulk systems. We
note that in reality, several types of configurational ex-
citations can be observed that correspond to excitation
of different cluster shells [27, 28].

Next, for some clusters with incomplete outer shells,
thermodynamically stable states of configurational ex-
citation are absent, in particular, for clusters consist-
ing of 8 and 14 atoms [26], because only a small en-
tropy (and free energy) jump separates the states; this
is much the same situation as occurs with excited states
of atoms with open shells. Therefore, the real behavior
of excitations of open-shell clusters with pair interac-
tions may be more complicated than that within the
framework of the void model of a cluster with two ag-
gregate states. Nevertheless, this model is useful for
understanding and description of the clusters with a
pairwise atomic interaction.

The table presents some parameters for the liquid
states of Lennard —Jones clusters consisting of 13 and
55 atoms, which we obtained from the analysis of the
results of molecular dynamics computer simulations.
In this table, L.J, is a cluster consisting of n atoms
with the Lennard — Jones interaction potential, D is the
depth of the potential well, T, is the melting point,
AF is the phase transition energy for an isolated clus-
ter at the melting point, Ty, and Tj;, are the effective
(kinetic-energy-based) temperatures of the solid and
liquid states for an isolated cluster at the melting point,
and ASp and AS,, are the respective entropy jumps for
the phase transition at zero temperature and the melt-
ing point. In determining the difference Tso; — T};q, we
assume the heat capacity for each aggregate state to be
given by the Dulong— Petit law.

In the table, we also include the parameters of bulk
inert gases consisting of n atoms, which were found
[15-17,19] on the basis of measured parameters of con-
densed inert gases and are averaged over classical inert
gases (Ne, Ar, Kr, Xe). Then the reduced entropy jump
in inert gases near the triple point is

AS,,/n = 1.68 +0.03

[18,43,62]. Considering the entropy jump at zero tem-
perature as a result of vacancy formation in a solid, we
then obtain

n+v+v1nn—;—v7 (33)

ASy=InC,,, =nln

where n is the number of atoms in the system, v is the
number of vacancies, and C},, is the number of ways
to remove v atoms from the initial lattice containing
n 4 v atoms. For condensed inert gases [15-17,19], we
have

n/v=3.12+0.01,
which gives
ASp/n =0.73

as included in the table.

It follows from the data in the table that in all the
cases under consideration, the atomic thermal motion
makes a very large contribution to the entropy jump at
the melting point. This effect is very important because
it holds down the temperature of the phase transition or
even makes it possible at all, in principle. In addition,
the thermal contribution to the entropy jump can solve
the paradox of the phase transition, which we now con-
sider. In practice, it is convenient to use the Lindemann
criterion [29, 30] for the melting point of an ensemble
of bound atoms. According to this criterion, melting

1293



R. S. Berry, B. M. Smirnov

MWITD, Tom 127, BHIm. 6, 2005

starts if the ratio of the amplitude of atom oscillations
to the distance between nearest neighbors reaches a
value in the range 0.10-0.15. With computer modelling
of clusters, more precise criteria of the phase transition
were introduced, using the correlations in positions of
two cluster atoms. In particular, this correlation func-
tion can use the Etters—Kaelberer parameter [31-33]
or the Berry parameter [12, 34]. These parameters are
proportional to the mean fluctuation of the distance
between two atoms, which, similarly to the Lindemann
index, falls into different ranges for the solid and liquid
states; this difference allows us to distinguish a cluster’s
state. These parameters are connected with thermal
motion of atoms, while the melting, i.e., the lability of
the liquid, results from configurational excitation of an
ensemble of bound atoms.

One can see an apparent contradiction between the
nature of the phase transition that we attribute to con-
figurational excitation and the practical criterion signi-
fying this transition, which is based on thermal motion
of atoms. This contradiction disappears when we ac-
count for the influence of thermal excitation on the en-
tropy of this transition in accordance with formula (21).
The second part of this formula accounts for the appar-
ent paradox of the thermal motion in the entropy jump,
and hence, if we understand the origin of the paradox,
the amplitude-based criteria of the phase transition be-
come natural. The nature of this term results from
the lower density of atoms in the liquid state and from
the associated larger entropy of the atomic vibrations.
Naturally, the entropy jump due to vibrations of atoms
increases with increasing the temperature. Thus, al-
though the method of calculation separates configura-
tional excitation from the thermal motion of the bound
atoms, the latter gives a contribution to the entropy
change of the transition.

We conclude that because thermal motion of atoms
gives a significant contribution to the entropy jump,
this effect improves conditions of the phase transition
or can even be a required condition for the phase transi-
tion. When we consider a bulk system of bound atoms,
we base our argument on the model in which the liquid
state is formed from the solid state by removal of inter-
nal atoms. Then the system relaxes to the liquid state
by shrinking, such that vacancies of the crystal lattice
are transformed into voids. The entropy of this configu-
rational excitation follows from this intermediate state
with vacancies, and the void concept [14] describes the
phase transition. Using the void concept for the anal-
ysis of the phase transitions allows one to understand
its nature more deeply.

6. CONCLUSIONS

The void concept for configurational excitation of
ensembles of bound atoms is the basis for their anal-
ysis. This concept follows from a general approach of
local minima of the potential energy surface for an en-
semble of interacting atoms [20]; a simplified version of
this approach allows us to analyze the results of cluster
computer simulations by molecular dynamics. On the
basis of this analysis, we can understand some aspects
of the behavior of ensembles of bound atoms at the
phase transition in detail. In particular, there is a dif-
ference in the transition parameters for an isolated clus-
ter at constant energy and a similar cluster in a thermo-
stat. The entropy jump of the phase transition includes
two contributions, both of which are important: the
thermal, virational motion of atoms (because the solid
state is characterized by a more compact distribution
and correspondingly by a lower entropy than the liquid
aggregate state at this temperature) and the configu-
rational excitation that introduces the voids, providing
the basis of the fluidity of the liquid. The thermal
effect in the entropy jump at the phase transition pro-
vides the validity of melting criteria based on thermal
motion of atoms, whereas the «nature» of the phase
transition consists in the configurational excitation.

The void concept for configurational excitation of
ensembles of bound atoms, interpreted with the help
of the results of computer simulations and thermo-
dynamic parameters of condensed inert gases, gives
a deepened understanding of the phase transition in
these ensembles.

This paper is supported in part by the RFBR, (grant
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