
ÆÝÒÔ, 2005, òîì 127, âûï. 6, ñòð. 1223�1229 

 2005
RADIATION OF QUANTIZED BLACK HOLEI. B. Khriplovi
h *Budker Institute of Nu
lear Physi
s630090, Novosibirsk, RussiaNovosibirsk University630090, Novosibirsk, RussiaSubmitted 11 January 2005The maximum entropy of a quantized surfa
e is demonstrated to be proportional to the surfa
e area in the
lassi
al limit. The general stru
ture of the horizon spe
trum and the value of the Barbero � Immirzi parameterare found. The dis
rete spe
trum of thermal radiation of a bla
k hole naturally �ts the Wien pro�le. Thenatural widths of the lines are very small as 
ompared to the distan
es between them. The total intensity ofthe thermal radiation is 
al
ulated.PACS: 04.60.Pp, 04.70.Dy1. INTRODUCTIONThe idea of quantizing the horizon area of bla
kholes was put forward many years ago by Bekenstein inthe pioneering arti
le [1℄. He pointed out that reversibletransformations of the horizon area of a nonextremalbla
k hole found by Christodoulou and Ru�ni [2, 3℄have an adiabati
 nature. Of 
ourse, the quantizationof an adiabati
 invariant is perfe
tly natural, in a

or-dan
e with the 
orresponden
e prin
iple.On
e this hypothesis is a

epted, the general stru
-ture of the quantization 
ondition for large quantumnumbers be
omes obvious, up to an overall numeri
al
onstant �. The quantization 
ondition for the horizonarea A should be A = � l2pN; (1)where N is some large quantum number [4℄. Indeed,the presen
e of the Plan
k length squaredl2p = k~
3is only natural in this quantization rule. Then, for thehorizon area A to be �nite in the 
lassi
al limit, thepower of N must be the same as that of ~ in l2p. Thisargument 
an be 
he
ked by 
onsidering any expe
ta-tion value in quantum me
hani
s, nonvanishing in the
lassi
al limit. It is worth mentioning that there are*E-mail: khriplovi
h�inp.nsk.su

no 
ompelling reasons to believe that N is an integer.Neither are there 
ompelling reasons to believe thatspe
trum (1) is equidistant [5, 6℄.On the other hand, formula (1) 
an be interpretedas follows. The entire horizon area A is split into ele-ments of typi
al size � l2p, ea
h of them giving a 
ontri-bution to the large quantum number N . This s
hemearises, in parti
ular, in the framework of loop quantumgravity (LQG) [7�11℄.A quantized surfa
e in LQG looks as follows. Thesurfa
e is assigned a set of edges. Ea
h edge is suppliedwith an integer or half-integer �angular momentum� j:j = 1=2; 1; 3=2; : : : (2)The proje
tions m of these �angular momenta� rangeas usual from �j to j. The area of the surfa
e isA = 8�
 l2pXi pji(ji + 1) : (3)The numeri
al fa
tor 
 in (3) 
annot be determinedwithout an additional physi
al input. This free (so-
al-led Barbero � Immirzi) parameter [12, 13℄ 
orrespondsto a family of inequivalent quantum theories, all ofthem being viable without su
h an input.We mention that although spe
trum (3) is notequidistant, it is not far away from it. Indeed, evenfor the smallest quantum number j = 1=2, the quan-tity pj(j + 1) 
an be approximated by j + 1=2 withthe a

ura
y 13%. As j grows,pj(j + 1) � j + 1=21223
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omes better and better, i.e., spe
trum (3) ap-proa
hes an equidistant one. This feature of spe
-trum (3) is of interest in 
onne
tion with the obser-vation by Bekenstein: quantum e�e
ts result in the fol-lowing lower bound on the 
hange of the horizon area�A under an adiabati
 pro
ess:(�A)min = �l2p ; (4)here, � is a numeri
al fa
tor re�e
ting �the inherentfuzziness of the un
ertainty relation� [14℄. Of 
ourse,the right-hand side of formula (4) is proportional to ~,together with the Plan
k length squared l2p .Due to the un
ertainty of the numeri
al fa
tor � it-self, one 
annot see any reason why � should not slightly
hange from one a
t of 
apture to another. Therefore,the dis
ussed quasiequidistant spe
trum (3) agrees withthe bound (4), pra
ti
ally as well as the equidistantone. We return to relation (4) below.As regards the unknown parameter 
 in (3), the �rstattempts to �x its value, based on the analysis of thebla
k hole entropy, were made in [15, 16℄. However,these attempts did not lead to 
on
rete quantitativeresults.Then it was argued in [17℄ that for the bla
k holehorizon, all quantum numbers j are equal to 1=2 (as isthe 
ase in the so-
alled �it from bit� model formulatedearlier by Wheeler [18℄). With these quantum numbers,one arrives easily at the equidistant area spe
trum andat the value 
 = ln 2�p3for the Barbero � Immirzi parameter. However, the re-sult in [17℄ was demonstrated in [5℄ to be 
ertainly in-
orre
t1) be
ause it violates the so-
alled holographi
bound formulated in [22�24℄. A

ording to this bound,among the spheri
al surfa
es of a given area, the surfa
eof the bla
k hole horizon has the largest entropy.2. MICROCANONICAL ENTROPY OF BLACKHOLEOn the other hand, the requirement of maximumentropy allows one to �nd the 
orre
t stru
ture of thehorizon area [25℄, whi
h in parti
ular is of 
ru
ial im-portan
e for the problem of radiation of a quantizedbla
k hole.We a
tually 
onsider the �mi
ro
anoni
al� entropyS of a quantized surfa
e de�ned as the logarithm of1) Later, the result in [17℄ was also 
riti
ized in [19, 20℄. Thenan error made in [17℄ was a
knowledged [21℄. We demonstratebelow that the result in [19, 20℄ is also in
orre
t.

the number of states of this surfa
e for a �xed area A(instead of a �xed energy in 
ommon problems). Obvi-ously, this number of states K depends on the assump-tions 
on
erning the distinguishability of edges.To analyze the problem, it is 
onvenient to rewriteformula (3) asA = 8�
 l2pXjm pj(j + 1) �jm; (5)where �jm is the number of edges with given j andm. It 
an be demonstrated [5, 6℄ that the only rea-sonable assumption on the distinguishability of edgesthat may result in a

eptable physi
al predi
tions (i.e.,may 
omply both with the Bekenstein �Hawking rela-tion and with the holographi
 bound) is as follows:nonequal j, any m �! distinguishable;equal j, nonequal m �! distinguishable;equal j, equal m �! indistinguishable.Under this assumption, the number of states of thehorizon surfa
e for a given number �jm of edges withmomenta j and their proje
tions jz = m, is obviouslygiven by K = � ! Yjm 1�jm ! ; (6)where � =Xj �j ; �j =Xm �jm ;and the 
orresponding entropy equalsS = lnK = ln(� !) �Xjm ln(�jm !) : (7)The stru
tures of the last expression and of formula (5)are so di�erent that the entropy 
ertainly 
annot beproportional to the area in the general 
ase. However,this is the 
ase for the maximum entropy in the 
lassi
allimit.In this limit, with all the e�e
tive �o

upation num-bers� large, �jm � 1, we use the Stirling approxima-tion, and hen
e the entropy isS = � ln � �Xjm �jm ln �jm : (8)We 
al
ulate its maximum for a �xed area A, i.e., fora �xed sumN = 1Xjm pj(j + 1) �jm = 
onst : (9)1224
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k holeThe problem redu
es to the solution of the systemof equations ln � � ln �jm = �pj(j + 1) ; (10)where � is the Lagrange multiplier for 
onstraint (9).These equations 
an be rewritten as�jm = � exp���pj(j + 1)� ; (11)or �j = (2j + 1) exp���pj(j + 1)� �: (12)We now sum expressions (12) over j, and withXj �j = �;arrive at the equation for �:1Xj=1=2(2j + 1) exp���pj(j + 1)� = 1: (13)Its solution is � = 1:722: (14)Stri
tly speaking, the summation in formula (14)extends not to in�nity but to some jmax. Its valuefollows from the obvious 
ondition: none of the �jmshould be less than unity. Then, for � � 1, Eq. (11)gives jmax = ln �� : (15)It is well-known that the Stirling approximation for n!has reasonably good numeri
al a

ura
y even for n = 1.Therefore, formula (15) for jmax is not just an estimatebut has reasonably good numeri
al a

ura
y. The rela-tive magnitude of the 
orresponding 
orre
tion to (14)
an be easily estimated as � ln �=�.We now return to Eq. (10). Multiplying it by �jmand summing over jm, we arrive, with 
onstraint (9),at the following result for the maximum entropy for agiven value of N : Smax = 1:722N: (16)Therefore, with the Bekenstein �Hawking relation andformula (5), we �nd the value of the Barbero � Immirziparameter 
 = 0:274: (17)

Quite re
ently, this 
al
ulation with the same re-sult, although with somewhat di�erent motivation, wasreprodu
ed in [26℄.We emphasize that the above 
al
ulation is not spe-
ial for LQG only, but applies (with obvious modi�
a-tions) to a more general 
lass of approa
hes to the quan-tization of surfa
es. The following assumption is a
tu-ally ne
essary here: the surfa
e should 
onsist of sites ofdi�erent sorts, su
h that there are �i sites of ea
h sort i,with a generalized e�e
tive quantum number ri (here,pj(j + 1)) and a statisti
al weight gi (here, 2j + 1).Then in the 
lassi
al limit, with given fun
tions ri andgi, the maximum entropy of a surfa
e 
an be found, atleast numeri
ally, and is 
ertainly proportional to thearea of the surfa
e.As regards the previous attempts to 
al
ulate 
,one should indi
ate an apparent error in state 
ount-ing made in [19, 20℄. It 
an be easily 
he
ked that thetransition from formula (25) to formulas (29) and (36)in [19℄ performed therein and then used in [20℄, is 
er-tainly valid under the assumption that only two max-imum proje
tions �j are allowed for ea
h quantumnumber j. But it 
annot then hold for the 
orre
tnumber 2j + 1 of the proje
tions. Therefore, it is notsurprising that the equation for the Barbero � Immirziparameter in [20℄ is2 1Xj=1=2 exp���pj(j + 1)� = 1 ; (18)instead of ours in (13) (see also the dis
ussion of (18)in [26℄).The 
on
lusion is obvious. Any restri
tion on thenumber of admissible states for the horizon, as 
om-pared to a generi
 quantized surfa
e, be it the restri
-tion to j = 1=2 ; m = �1=2 ;made in [17℄, or the restri
tion toany j ; m = �j ;made in [19, 20℄, results in a 
on�i
t with the holo-graphi
 bound.3. QUANTIZATION OF ROTATING BLACKHOLEIn dis
ussing the radiation spe
trum of quantizedbla
k holes, one should take the angular momentum se-le
tion rules into a

ount. Obviously, radiation of anyparti
le with a non-vanishing spin is impossible if both1225
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k hole are spheri
allysymmetri
. Therefore, to �nd the radiation spe
trum,the quantization rule for the mass of a S
hwarzs
hildbla
k hole must be generalized to that of a rotatingKerr bla
k hole.To derive the quantization rule for a Kerr bla
khole, we return to the thought experiment analyzedin [2, 3℄. Therein, under adiabati
 
apture of a parti
lewith an angular momentum j, the angular momentumJ of a rotating bla
k hole 
hanges by a �nite amount j,but the horizon area A does not 
hange. Of 
ourse, un-der some other variation of parameters, it is the angularmomentum J that remains 
onstant. In other words,we have here two independent adiabati
 invariants, Aand J , for a Kerr bla
k hole with mass M .Su
h a situation is quite 
ommon in ordinary me-
hani
s. For example, the energy of a parti
le withmass m bound in the Coulomb �eldU(r) = ��ris E = � m�22 (Ir + I�)2 ; (19)where Ir and I� are the respe
tive adiabati
 invariantsfor the radial and angular degree of freedom. Of 
ourse,the energy E is in a sense also an adiabati
 invariant,but it is invariant only under those variations of pa-rameters that preserve both Ir and I�. In quantumme
hani
s, formula (19) be
omesE = � m�22 ~2 (nr + 1 + l)2 ; (20)where nr and l are the radial and orbital quantum num-bers, respe
tively.This example prompts the solution of the quantiza-tion problem for a Kerr bla
k hole. It is 
onvenientlyformulated in terms of the so-
alled irredu
ible massMir of a bla
k hole, related by de�nition to its horizonradius rh and area A asrh = 2kMir ; A = 16�k2M2ir : (21)Together with the horizon area A, the irredu
ible massis an adiabati
 invariant. In a

ordan
e with (3)and (9), it is quantized asM2ir = 12 m2pN ; (22)where m2p = ~
=k

is the Plan
k mass squared.For a S
hwarzs
hild bla
k hole, Mir 
oin
ides withits ordinary mass M . But for a Kerr bla
k hole, thesituation is more interesting. Here,M2 = M2ir + J2r2h =M2ir + J24k2M2ir ; (23)where J is the internal angular momentum of a rotatingbla
k hole.Now, taking (22) into a

ount, we arrive at the fol-lowing quantization rule for the mass squared M2 of arotating bla
k hole:M2 = 12 m2p �
N + J(J + 1)
N � : (24)Obviously, as long as the bla
k hole is far from an ex-tremal one, i.e., while 
N � J , we 
an negle
t thedependen
e of M2 on J , and the angular momentumsele
tion rules have pra
ti
ally no e�e
t on the bla
khole radiation spe
trum.As regards the mass and irredu
ible mass of a
harged bla
k hole, they are related byM = Mir + q22rh ; (25)where q is the bla
k hole 
harge. This formula has asimple physi
al interpretation: the total mass (or to-tal energy) M of a 
harged bla
k hole 
onsists of itsirredu
ible mass Mir and of the energy q2=2rh of itsele
tri
 �eld in the outer spa
e r > rh.With rh = 2kMir, relation (25) 
an be rewritten asM2 = M2ir + q416k2M2ir + q22k : (26)Thus, for a 
harged bla
k hole, M2 is quantized asM2 = 12 m2p �
N + q44
N + q2� : (27)In fa
t, relations of this type (even in a more generalform, for Kerr �Newman bla
k holes, both 
harged androtating) were already presented in the pioneering arti-
le [1℄, although with the equidistant quantization rulefor M2ir, i.e., for the horizon area (see also [14℄). Morere
ently, the 
on
lusion that the mass of a quantizedbla
k hole must be expressed via its quantized area andangular momentum, was made in the approa
h basedon the notion of the so-
alled isolated horizons [27, 28℄.Here, we do not mention the attempts to quantizerotating and 
harged bla
k holes that resulted in weirdquantization rules for Ĵ2 and e2=~
.1226
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k hole4. RADIATION SPECTRUM OF QUANTIZEDBLACK HOLEIt follows from expression (24) that for a rotatingbla
k hole, the radiation frequen
y !, whi
h 
oin
ideswith the loss �M of the bla
k hole mass, is! = �M = T��N + 14kM 2J + 1
N �J; (28)where �N and �J are the respe
tive losses of the areaquantum number N and the angular momentum J .Here, in line with (24), we have used the identityT = �M�S = 18�kM �M2�M2ir (29)for the Hawking temperature T as well as formula (23).In the same way, for a 
harged bla
k hole, with for-mula (27), we obtain the radiation frequen
y! = �M = T��N + 14kM �2 + q2
N � q�q ; (30)where �q is the loss of the 
harge.We are mainly interested in the �rst, temperatureterms in (28) and (30), dominating everywhere ex
eptthe vi
inity of the extremal regime, where J ! 
N ,or q2 ! 2
N , and T ! 0. The natural assumption isthat the thermal radiation o

urs when an edge with agiven value of j disappears, whi
h means that�Nj = rj ; !j = T� rj : (31)Thus we arrive at the dis
rete spe
trum with a �nitenumber of lines. Their frequen
ies start at!min = T�p3=2and terminate at !max = T ln �:We re
all that j � jmax = ln �=�;and hen
e the number of lines is not very large, � 102,if the bla
k hole mass is 
omparable to the mass of theSun. But be
ause of the exponential de
rease of the ra-diation intensity with ! or j (see below), the existen
eof !max and a �nite number of lines are not of greatimportan
e.To substantiate the assumption made, we return tothe lower bound (4) on the 
hange of the horizon areaunder an adiabati
 
apture of a parti
le. The presen
eof the gap (4) in this pro
ess means that this threshold


apture e�e
tively 
onsists in the in
rease by unity ofthe o

upation number �jm with the smallest j, equalto 1=2. If the 
apture were a

ompanied by a reshuf-�e of few o

upation numbers, the 
hange of the area
ould be easily made arbitrarily small. For instan
e,one 
ould delete two edges with quantum numbers j1and j2, and add an edge with the quantum numberj1 + j2. Obviously, with j1;2 � 1, the area in
rease
ould be made arbitrarily small.It is only natural to assume that in the radiationpro
ess as well, 
hanging several o

upation numbersinstead of one is at least strongly suppressed. We thusarrive at Eqs. (31).Our next assumption, at least as natural as thisone, is that the probability of radiation of a quantumwith the frequen
y !j is proportional to the o

upationnumber �j . Correspondingly, the radiation intensity Ijat this frequen
y !j is proportional to �j !j :Ij � �j!j � �(2j + 1)!j exp(�!j=T ) : (32)We 
ompare this expression with the intensity ofthe bla
k-body radiation in the Wien limit !=T � 1,I(!) = A !34�2 exp(�!=T ) d! ; (33)where A is the area of a spheri
al bla
k body. First ofall, our relation (32) for Ij dire
tly reprodu
es the expo-nential fa
tor of the Wien spe
trum. Next, d! in (33)goes over into (1=2)�T be
ause the limit !=T � 1 
or-responds in our problem to pj(j + 1)� 1, i.e., topj(j + 1) � j + 1=2;and the minimum in
rement of j is 1/2. Now, to re-produ
e the Wien pro�le, we supplement relation (32)with the following fa
tors: some �os
illator strength�proportional to !j , obvious powers of �T , the Newton
onstant k (ne
essary to transform � into A), and obvi-ous numeri
al ones. We thus arrive at the �nal formulafor the dis
rete radiation spe
trum of a bla
k hole:Ij = AT 4 �48�2 j �j + 12� (j + 1)�� exp���pj(j + 1)� : (34)Of 
ourse, be
ause Wien spe
trum (33) 
orrespondsto j � 1, we 
annot guarantee the exa
t stru
ture ofthe j-dependen
e in formula (34), espe
ially in the pre-exponential fa
tor. For instan
e, it would perhaps beequally legitimate to writej3=2(j + 1)3=2instead of1227
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ally.We note that be
ause the bla
k hole temperature Tis less than the minimum allowed frequen
y !min, thisspe
trum has no Rayleigh � Jeans region at all.Now, the emission probability for a quantum of fre-quen
y !j = T� rj , i.e., the width of the 
orrespondingline, is�j = Ij!j = AT 3 �38�2 (j + 1=2)pj(j + 1)�� exp���pj(j + 1)� : (35)The ratio of this natural line width to the distan
e�!j = !j+1 � !j � 12 �Tbetween the lines is very small numeri
ally:�j�!j � �216�3 (j + 1=2)pj(j + 1)�� exp���pj(j + 1)� . 10�3: (36)Thus, the radiation spe
trum of an isolated bla
k holeis really dis
rete.Finally, the total radiation intensity of a bla
k holeis I =Xj Ij = 0:150AT 4: (37)The numeri
al 
oe�
ient in this expression is 
lose tothat in the total intensity of the 
ommon thermal ra-diation, i.e., to the Stefan �Boltzmann 
onstant�2=60 = 0:164:The point is that the Rayleigh � Jeans 
ontribution tothe total intensity, whi
h is 
ompletely absent in thepresent spe
trum, would be small anyway.Formulas (34) and (37) des
ribe not only the ther-mal radiation of bosons, photons, and gravitons, butalso the thermal radiation of fermions, massless neu-trinos. However, in the last 
ase, a proper a

ount forthe number of polarization states is ne
essary: for atwo-
omponent Dira
 neutrino, the numeri
al fa
torsin formulas (34) and (37) are two times smaller.In fa
t, it was argued long ago [29℄ that the dis-
rete thermal radiation spe
trum of a bla
k hole, withthe equidistant quantization rule for the horizon area,should �t the Wien pro�le.

On the other hand, our 
on
lusion of the dis
reteradiation spe
trum of a bla
k hole in LQG di�ers dras-ti
ally from that of [30℄ a

ording to whi
h the bla
khole spe
trum in LQG is dense.As regards the nonthermal radiation of extremalbla
k holes, des
ribed by the terms with �J and �q inEqs. (28) and (30), these e�e
ts are due to tunneling(see a relatively re
ent dis
ussion of the subje
t anda detailed list of relevant referen
es in [31; 32℄). Theloss of 
harge by a 
harged bla
k hole is in fa
t 
ausedby the Coulomb repulsion between the bla
k hole andthe emitted parti
les with the same sign of 
harge. Fora rotating bla
k hole, the reason is the intera
tion ofangular momenta: parti
les (mainly massless) whosetotal angular momentum is parallel to that of the bla
khole are repelled from it.I appre
iate numerous useful dis
ussions withO. P. Sushkov. I am also grateful to J. Bekenstein forthe 
orresponden
e; in parti
ular, he has attra
ted myattention to the limit (4). An essential part of this workwas done during my visit to the S
hool of Physi
s, Uni-versity of New South Wales, Sydney; I wish to thankUNSW for the kind hospitality. The investigation wassupported in part by the Russian Foundation for Basi
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