ДВУХФОТОННАЯ НУТАЦИЯ В ДВУХУРОВНЕВОЙ СПИНОВОЙ СИСТЕМЕ, ВОЗБУЖДЕННАЯ МИКРОВОЛНОВЫМ И РАДИОЧАСТОТНЫМ ПОЛЯМИ

Г. Г. Федорук*

Institute of Physics, University of Szczecin 70-451, Szczecin, Poland

Институт прикладных физических проблем им. А. Н. Севченко 220064, Минск, Беларусь

Поступила в редакцию 21 декабря 2004 г.

Двухфотонная нестационарная нутация наблюдалась в двухуровневой спиновой системе (E'_1 -центры в кристаллическом кварце) с использованием в электронном парамагнитном резонансе поперечного микроволнового поля и линейно поляризованного радиочастотного поля, ориентированного вдоль статического магнитного поля. Данная нутация возбуждается, когда сумма энергий микроволнового и радиочастотного фотонов равняется разности энергий двух спиновых состояний. Двухфотонный характер нутации подтвержден измерением ее частоты в зависимости от амплитуды и частоты радиочастотного поля, а также от амплитуды микроволнового поля. Измерена амплитуда эффективного поля двухфотонных переходов. Показано, что скорость затухания двухфотонной нутации близка к скорости затухания однофотонной нутации и обусловлена спин-спиновым взаимодействием E'_1 -центров.

PACS: 42.50.Md, 33.35.+r, 32.80.Wr

1. ВВЕДЕНИЕ

Многофотонные процессы, в которых одновременно поглощается или испускается несколько фотонов, играют важную роль в нелинейной оптике [1]. Хотя подобные процессы давно известны также в магнитном резонансе, лишь в последнее время появился интерес к изучению их динамики, в частности, в двухуровневых спиновых системах [2-5]. Как известно [3], в многоуровневых спиновых системах для многофотонных переходов, происходящих с изменением магнитного квантового числа $\Delta m_s > 1$, требуются реальные промежуточные энергетические уровни. В двухуровневых спиновых системах могут реализовываться многофотонные переходы с $\Delta m_s = 1$. Именно таким переходам посвящен ряд недавних работ по импульсному ЯМР и ЭПР [2–5]. В этом случае реальных промежуточных уровней не существует, а их роль могут играть «одетые» спиновые состояния [3]. Одетыми называют собственные состояния спиновой системы, помещенной в сильное микроволновое (MB) поле, имеющее частоту, близкую к резонансной частоте этой системы. Энергетические уровни одетой системы формируют «лестницу» дублетов, разделенных энергией фотонов MB-поля. В то же время разница энергий состояний каждого дублета определяется обобщенной частотой Раби.

Ниже ограничимся многофотонными переходами, инициированными в двухуровневых спиновых системах бихроматическим излучением, созданным поперечным микроволновым и продольным радиочастотным (РЧ) полями [3]. Останавливаясь на импульсных ЭПР-исследованиях динамики многофотонных процессов, вызванных указанным бихроматическим излучением, следует отметить, что, в частности, двухфотонные переходы подобного типа могут возбуждаться, когда МВ-поле ориентировано не строго перпендикулярно статическому магнитному полю, и, таким образом, вдоль этого поля создается компонента МВ-поля. Схема эксперимента, использующая МВ-поле, наклоненное под углом 45° к направлению статического поля, неоднократно приме-

^{*}E-mail: fedaruk@wmf.univ.szczecin.pl

нялась для исследования динамики двухфотонных переходов в двухуровневых системах с использованием нутации и нутационного эха [6, 7]. В таких экспериментах двухфотонные переходы возбуждаются двумя компонентами микроволнового поля одинаковой частоты. Подобная конфигурация полей для двухфотонного возбуждения предложена недавно в стохастической ЯМР-спектроскопии [2].

При использовании поперечного МВ- и продольного РЧ-полей разница в частотах велика, что открывает новые возможности двухчастотной магниторезонансной спектроскопии и ее аппаратурной реализации. В такого рода импульсных ЭПР-экспериментах, базирующихся на одновременном поглощении или испускании нескольких фотонов с заметно различающимися частотами, удалось при возбуждении нерезонансным МВ-полем зарегистрировать двух- и трехфотонное электронное спиновое эхо [4], при этом сумма энергий одного МВи одного или двух РЧ-фотонов равнялась резонансной частоте двухуровневой спиновой системы. При возбуждении двухуровневой системы бихроматическим полем в случае равенства частоты МВ-поля и резонансной частоты спиновой системы наблюдалась индуцированная РЧ-полем прозрачность среды по отношению к МВ-излучению [5].

Аналогичная конфигурация полей дала возможность наблюдать также однофотонную нутацию, обусловленную переходами между одетыми состояниями двухуровневой системы, возбуждаемой резонансным МВ-полем [8, 9]. В ЯМР недавно исследована также трехфотонная нутация между одетыми состояниями двухуровневой системы [4]. Наблюдавшаяся нутация возбуждалась тремя циркулярно поляризованными фотонами низкочастотного РЧ-поля, когда их частота была близка к одной трети частоты однофотонной нутации, вызываемой резонансным поперечным РЧ-полем.

В настоящей работе в двухуровневой спиновой системе, насколько нам известно, впервые наблюдалась двухфотонная нестационарная нутация, возбужденная в ЭПР совместным воздействием МВ- и РЧ-полей. В отличие от других когерентных нестационарных эффектов (свободная индукция, эхо и др.), нутация непосредственно отражает динамику квантовых переходов во время взаимодействия излучений со спиновой системой, а ее частота дает прямую информацию об амплитуде эффективного поля этого взаимодействия. Эти возможности нутации ниже проиллюстрированы для двухфотонных переходов в модельной двухуровневой спиновой системе — E_1' -центрах в кристаллическом кварце.

2. ПРЕДСКАЗАНИЯ ТЕОРИИ

Рассмотрим электронную спиновую систему со спином S = 1/2, находящуюся в статическом магнитном поле B_0 , направленном вдоль оси z лабораторной системы координат, в линейно поляризованном микроволновом поле $2B_1 \cos(\omega t)$, направленном вдоль оси x, и линейно поляризованном радиочастотном поле $2B_2 \cos(\omega_{rf} t)$, приложенном вдоль оси z. В этом случае гамильтониан (в единицах частоты) имеет вид

$$H_{lab}(t) = \omega_0 S_z + 2\omega_1 \cos(\omega t) S_x + 2\omega_2 \cos(\omega_{rf} t) S_z, \quad (1)$$

где $\omega_0 = \gamma B_0$ — частота Лармора (резонансная частота спиновых переходов), $\gamma = g\beta_e/\hbar$ — гиромагнитное отношение электрона, g - g-фактор электрона, β_e — магнетон Бора, $\omega_1 = \gamma B_1$ и $\omega_2 = \gamma B_2$ — частоты Раби соответственно для МВ- и РЧ-полей.

При условии $\omega_0 \gg \omega_1$ только одна компонента (σ^+ -фотоны) линейно поляризованного MB-поля, вращающаяся в направлении ларморовой прецессии спинов, играет определяющую роль, а влиянием второй компоненты (σ^- -фотоны) MB-поля, вращающейся в противоположном направлении, можно пренебречь.

При рассматриваемом воздействии бихроматического излучения могут возбуждаться многофотонные переходы типа $\sigma^+ + k\pi_{rf}$, во время которых поглощается один микроволновый σ^+ -фотон и одновременно поглощается (k > 0) или испускается (k < 0) k радиочастотных π -фотонов [5]. Поскольку π -фотоны имеют нулевой угловой момент, нет ограничений на число РЧ-фотонов, участвующих в таком многофотонном переходе.

Для описания многоквантовых переходов, вызванных бихроматическим излучением, в работе [5] был использован переход в обобщенную вращающуюся систему координат (toggling frame). При этом амплитуда эффективного поля, вычисленная до поправок третьего порядка [5], оказалась равна

$$\omega_{1,k} = \omega_1 \left[J_{-k}(z) + \frac{\omega_1}{2\omega_{rf}} \times \sum_{l \neq k} \sum_{m \neq 0} \frac{J_{-l}(z)J_{m-l}(z)J_{m-k}(z)}{(l-k)m} \right] = \omega_1 \left[c_k^{(1)} + c_k^{(3)} \right], \quad (2)$$

где парамет
р $z=2\omega_2/\omega_{rf},\,J_n(z)-$ функция Бесселя первого рода порядк
аn.

3 ЖЭТФ, вып.6

Первый коэффициент $c_k^{(1)}$ описывает эффективное поле для $\omega_1 \ll \omega_{rf}$. В этом случае амплитуда эффективного поля для резонансного МВ-поля ($\omega = \omega_0$) дается суммой амплитуд эффективного поля всех многофотонных процессов типа $-m\pi_{rf} + \sigma_{mw}^+ + m\pi_{rf}$:

$$\omega_{1,0} = \omega_1 J_0(z). \tag{3}$$

В случае нерезонансного МВ-поля при $\omega_0 = \omega + \omega_{rf}$ (k = 1) для двухфотонного перехода $\sigma^+ + \pi_{rf}$ и соответствующих многофотонных процессов типа $-m\pi_{rf} + \sigma^+_{mw} + (m+1)\pi_{rf}$ амплитуда эффективного поля равна

$$\omega_{1,1} = \omega_1 J_{-1}(z). \tag{4}$$

При z < 1 или в отсутствие многофотонных процессов типа $-m\pi_{rf} + \sigma_{mw}^+ + (m+1)\pi_{rf}$ эффективное поле двухфотонного перехода $\sigma^+ + \pi_{rf}$ может быть приближенно описано зависимостью [3]

$$\omega_{1,1} \approx \frac{\omega_1 \omega_2}{\omega_{rf}} \,. \tag{5}$$

Для больших значений ω_1 необходимо учитывать влияние члена третьего порядка $c_k^{(3)}$.

3. МЕТОДИКА ЭКСПЕРИМЕНТА

Конфигурация полей в лабораторной системе координат и диаграмма энергетических уровней, показывающая импульсное установление двухфотонного резонанса ($\omega_0 = \omega + \omega_{rf}$) между частотой Лармора и

Рис.1. *а* — Конфигурация полей в лабораторной системе координат, использованная для наблюдения двухфотонного резонанса. *б* — Диаграмма энергетических уровней, показывающая импульсное установление двухфотонного резонанса ($\omega_0 = \omega + \omega_{rf}$) импульсом магнитного поля при использовании непрерывных MB- и РЧ-полей суммой частот МВ- и РЧ-полей в проведенных экспериментах, представлены на рис. 1. При этом использовались непрерывные МВ- и РЧ-поля, а установление резонанса осуществлялось импульсом продольного магнитного поля. Первоначально равновесная спиновая система находилась в нерезонансном статическом магнитном поле $B = B_0 - \Delta B$. Затем в момент времени t = 0 магнитное поле импульсно изменялось до резонансного значения В₀. За счет эффекта Зеемана в результате скачка магнитного поля $\Delta B = |B - B_0|$ частота ω'_0 квантового перехода спиновой системы изменялась до значения ω_0 и становилась равной сумме частот МВ- и РЧ-полей (рис. 16). На время действия импульса устанавливалось резонансное взаимодействие суммарного поля со спиновой системой. Время установления резонансных условий составляло около 120 нс и было существенно короче T_2 и $2\pi/\omega_{1,1}$, что обеспечивало возбуждение двухфотонной нутации.

Непрерывное РЧ-поле и импульс магнитного поля создавались пропусканием тока через один и тот же модуляционный элемент, находящийся внутри измерительного резонатора. В данном случае измерение токов, создающих эти поля, позволило найти амплитуду B_2 создаваемого в месте расположения образца РЧ-поля при известной амплитуде импульса магнитного поля ΔB . Величина ΔB определялась по частоте биений (равных $\Delta B/\gamma$) в сигнале свободной индукции, наблюдавшемся после окончания импульса магнитного поля [10]. Это позволяло определять амплитуду B_2 РЧ-поля с точностью около 5 %.

Рассмотренная методика формирования нутационных сигналов была реализована на созданном нами импульсном спектрометре ЭПР 3-сантиметрового диапазона [9, 11]. Амплитуды МВ- и РЧ-полей (в частотных единицах) не превышали 1.5 МГц. Для улучшения отношения сигнал/шум использовалось многоканальное цифровое суммирование сигналов. Привязка фазы РЧ-поля к фазе МВ-поля отсутствовала. Отсутствовала также привязка фазы РЧ-поля к началу импульса магнитного поля.

Двухфотонная нутация наблюдалась для E'_1 -центров (S = 1/2) в кристаллическом кварце, облученном нейтронами. При направлении магнитного поля, параллельном оптической оси кристалла, спектр ЭПР данных центров в 3-сантиметровом диапазоне состоит из одиночной линии с шириной $\Delta B_{pp} = 0.016$ мТл. Узость линии ЭПР и большие времена релаксации даже при комнатной температуре сделали E'_1 -центры в кварце удобным объектом для нутационных исследований [3, 6, 8, 9].

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Эксперименты выполнены при комнатной температуре. Статическое магнитное поле было параллельно оптической оси кристалла. При этом длительность отрицательных импульсов магнитного поля составляла 10 мкс, их амплитуда $\Delta B = 0.12$ мTл, а период повторения импульсов — 1.25 мс.

На рис. 2 представлена зависимость амплитуды абсорбционного сигнала однофотонной нутации от величины отстройки магнитного поля во время действия импульса ($\delta/\gamma = (\omega_0 - \omega)/\gamma$) от резонансного значения B_0 .

Как известно, в случае неоднородной ширины линии магнитного резонанса $\sigma \gg \omega_1$ при $T_2 \ll T_1$ (исключая времена $t < 1/\omega_1$) сигнал однофотонной нутации может быть описан соотношением [11, 12]

$$v \propto \omega_1 f(\omega) J_0(\omega_1 t) \exp\left(-\frac{t}{2T_2}\right).$$
 (6)

Здесь $f(\omega)$ — значение нормированной функции формы линии вблизи центра неоднородной линии, $J_0(\omega_1 t)$ — функция Бесселя нулевого порядка, T_1 и T_2 — соответственно, времена спин-решеточной и спин-спиновой релаксации. В случае E'_1 -центров выполнялось условие $\omega_1 > \sigma$ и сигнал имел форму,

Рис.2. Спектр ЭПР E_1' -центров в кристаллическом кварце, зарегистрированный с помощью однофотонной нутации при $\omega_1/2\pi = 0.96~{\rm MF}$ ц. Штриховая линия — спектр, получаемый при малом микроволновом поле

промежуточную между затухающей функцией Бесселя и затухающей синусоидой, характерной для однородно уширенной линии (см. осциллограмму на рис. 3*a*). При этом частота нутаций равнялась частоте Раби $\omega_1 = \gamma B_1$ и практически не зависела от отстройки от резонанса.

Из-за радиационного уширения ширина линии, зарегистрированной с помощью нутации, превышает ширину линии ЭПР E'_1 -центров, получаемой при использовании малого микроволнового поля и показанной на рис. 2 штриховой линией.

Стрелками на рис. 2 отмечены значения магнитного поля во время действия импульса, при которых зарегистрированы сигналы нутаций, приведенные на рис. 3. Сигнал на рис. 3а представляет собой однофотонную нутацию с частотой $\omega_1 = 0.96$ МГц, зарегистрированную при резонансном значении магнитного поля (на рис. 2 положение отмечено стрелкой 1). Сигналы, показанные на рис. 36-r, получены при отстройках магнитного поля от резонансного значения для однофотонного резонанса, отмеченных на рис. 2 стрелками 2-4, и одновременном воздействии MB- и PЧ-полей с частотами, удовлетворяющими условию $\omega+\omega_{rf}=\omega_0.$ При этом амплитуда РЧ-поля $\omega_2 = \gamma B_2 = 1.02$ МГц была близка к амплитуде МВ-поля и была одинакова для всех указанных отстроек от резонанса.

Как видно на осциллограммах, представленных на рис. 3δ -*г*, в соответствии с соотношением (5) частота наблюдаемой нутации Ω_n уменьшается с увеличением величины отстройки магнитного поля и, соответственно, с увеличением частоты РЧ-поля, необходимым для выполнения условия $\omega + \omega_{rf} = \omega_0$. При этом амплитуда регистрируемых сигналов уменьшается. Отметим, что если бы регистрируемый сигнал не был обусловлен двухфотонными переходами, а, например, был связан с изменением сигнала однофотонной нутации однородно уширенной линии, вызванным отстройкой от резонанса, то его частота определялась бы обобщенной частотой Раби $\Omega = \sqrt{\omega_1^2 + \delta^2}$ и возрастала бы с увеличением отстройки δ .

На рис. 4 представлена зависимость частоты двухфотонной нутации от параметра $z = 2\omega_2/\omega_{rf}$ (нормированной амплитуды РЧ-поля) при $\omega_1/2\pi = 0.96$ МГц. Экспериментальные данные, представленные кружками, получены при изменении ω_2 при фиксированной частоте РЧ-поля, $\omega_{rf}/2\pi = 2.62$ МГц. Остальные данные получены при изменении частоты ω_{rf} РЧ-поля при $\omega_2/2\pi = 1.02$ МГц. Сплошной линией показана аппроксимация экспериментальных данных

Рис.3. Нутационные сигналы ЭПР E_1' -центров, зарегистрированные при фиксированных амплитудах МВ-($\omega_1/2\pi = 0.96$ МГц) и РЧ- ($\omega_2/2\pi = 1.02$ МГц) полей для различных частот отстройки $\delta = \omega_0 - \omega$ от однофотонного резонанса. Однофотонная нутация при $\delta = 0$ и $\omega_2 = 0$ (a). Двухфотонная нутация при отстройках $\delta \approx \omega_{rf}$ и $\omega_{rf}/2\pi = 1.37$ (δ), 2.62 (ϵ), 3.40 (ϵ) МГц

зависимостью $\Omega_n = k\omega_1\omega_2/\omega_{rf}$, где $k = 0.74 \pm 0.07$.

Отсутствие в выполненных экспериментах привязки фазы РЧ-поля к фазе MB-поля приводило к тому, что регистрируемый сигнал являлся усреднением большого числа (до 10³) сигналов, полученных при случайной фазе РЧ-поля. Такое усреднение обусловливает подавление вклада всех многофотонных процессов типа $-m\pi_{rf} + \sigma_{mw}^+ + (m+1)\pi_{rf}$ [5]. Поэтому регистрируемая нутация определялась только двухфотонными переходами $\sigma^+ + \pi_{rf}$, а ее частота может быть описана соотношением (5).

Представленные на рис. 4 экспериментальные

данные подтверждают двухфотонную природу наблюдавшейся нутации. Еще одна зависимость, подтверждающая указанное происхождение регистрируемых сигналов, приведена на рис. 5. Как показано на рис. 5 для $\omega_2/2\pi = 1.02$ МГц и $\omega_{rf}/2\pi = 2.62$ МГц, частота двухфотонной нутации пропорциональна амплитуде МВ-поля (в частотных единицах) в соответствии с предсказаниями теории.

Возможность измерения в данном эксперименте амплитуд МВ-и РЧ-полей позволила количественно (с точностью не хуже 10% даже в случае самых низких частот нутации) сравнить эффективное по-

Рис.4. Зависимость частоты двухфотонной нутации от параметра $z=2\omega_2/\omega_{rf}$

Рис.5. Зависимость частоты двухфотонной нутации от амплитуды микроволнового поля (в частотных единицах) при $\omega_2/2\pi = 1.02$ МГц и $\omega_{rf}/2\pi = 2.62$ МГц

ле двухфотонных переходов, даваемое частотой нутации, с предсказаниями теории. Обнаруживается количественное отличие амплитуды этого поля от предсказаний соотношения (5), близкое к величине $k = 1/\sqrt{2} \approx 0.707$. Это может быть связано с тем, что, как показано в работах [13,14], влияние продольного поля на переходы с участием одетых состояний в подобного типа экспериментах может быть в $\sqrt{2}$ раз меньше, чем влияние поперечного поля.

Как видно на рис. 3*в*, *г*, наблюдавшиеся сигналы двухфотонной нутации достаточно хорошо аппроксимируются характерной для неоднородной линии зависимостью типа (6), которая в данном случае может быть записана в виде

$$v \propto J_0(\omega_{1,1}t) \exp\left(-\frac{t}{2T_2}\right).$$
 (7)

Штриховой линией изображена зависимость, даваемая формулой (7) при $\omega_{1,1}/2\pi = 0.28~{\rm MFu}$ (рис. 36), $\omega_{1,1}/2\pi = 0.19~{\rm MFu}$ (рис. 3c) и $T_2 = 3.5~{\rm mkc}$. В этом случае в большей степени, чем для однофотонной нутации, выполняется условие $\omega_{1,1} \ll \sigma$. При этом в результате неоднородного уширения частота двухфотонной нутации практически не зависела от отстройки от резонанса, а определялась амплитудой эффективного поля.

Оцененное из затухания двухфотонной нутации время $T_2 = 3.5 \pm 0.4$ мкс совпадает с аналогичным временем для однофотонной нутации, обусловленным диполь-дипольным взаимодействием E'_1 -центров [9]. Аналогичный результат при малых амплитудах микроволнового поля наблюдался также для E'_1 -центров в аморфном кварце в случае двухфотонной нутации, возбужденной двумя микроволновыми фотонами одинаковой частоты [15]. При этом при увеличении амплитуды микроволнового поля наблюдалось аномальное, зависящее от поля затухание двухфотонной нутации, причина которого окончательно не установлена [16]. Возможно, что двухфотонная нутация, возбуждаемая фотонами с сильно различающимися частотами, позволит получить новые данные для установления причины указанного затухания.

5. ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе представлены результаты прямой регистрации двухфотонной нутации, возбужденной в двухуровневой спиновой системе поперечным микроволновым и продольным радиочастотным полями. Возможность измерения в данном эксперименте амплитуд MB- и РЧ-полей позволила определить эффективное поле двухфотонных переходов. Наряду с ранее проиллюстрированными приложениями, связанными с индуцируемой РЧ-полем прозрачностью [5] и заменой второго микроволнового поля в двойном электрон-электронном резонансе продольным радиочастотным полем [17], исследование динамики многофотонных переходов с применением использованной конфигурации полей может оказаться полезным для изучения релаксационных процессов в присутствии сильных возбуждающих полей и при создании новых методик сужения линий [4].

Автор выражает благодарность И. З. Рутковскому за помощь в проведении эксперимента.

ЛИТЕРАТУРА

- 1. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interaction: Basic Processes and Application, Wiley, New York (1992).
- 2. C. A. Michal, J. Chem. Phys. 118, 3451 (2003).
- I. Gromov and A. Schweiger, J. Magn. Reson. 146, 110 (2000).
- H. Hatanaka, M. Sugiyama, and N. Tabuchi, J. Magn. Reson. 165, 293 (2003).
- M. Kälin, I. Gromov, and A. Schweiger, Phys. Rev. A 69, 033809 (2004).

- R. Boscaino, F. M. Gelardi, and G. Messina, Phys. Rev. A 28, 495 (1983).
- G. Bimbo, R. Boscaino, M. Cannas, F. M. Gelardi, and R. N. Shakmuratov, J. Phys.: Condens. Matter 15, 4215 (2003).
- 8. G. Jeschke, Chem. Phys. Lett. 301, 524 (1999).
- 9. Г. Г. Федорук, ФТТ 46, 1581 (2004).
- 10. В. С. Кузьмин, Г. Г. Федорук, Нестационарные когерентные явления в парамагнитных спиновых системах, БГУ, Минск (2001), с. 101.
- 11. Г. Г. Федорук, Ж. прикл. спектр. 69 (2), 141 (2002).
- S. Stoll, G. Jeschke, M. Willer, and A. Schweiger, J. Magn. Reson. 130, 86 (1998).
- S. A. Holmstrom, A. S. M. Windsor, C. Wei, J. P. D. Martin, and N. B. Manson, J. Luminescence 76-77, 38 (1998).
- 14. C. Wei, S. A. Holmstrom, A. D. Greentree, and N. B. Manson, J. Opt. B 1, 289 (1999).
- A. Angello, R. Boscaino, M. Cannas, F. M. Gelardi, and R. N. Shakhmuratov, Phys. Rev. A 59, 4087 (1999).
- N. Ya. Asadullina, T. Ya. Asadullin, and Ya. Ya. Asadullin, J. Phys.: Condens. Matter 13, 3475 (2001).
- 17. M. Fedin, M. Kälin, I. Gromov, and A. Schweiger, J. Chem. Phys. 120, 1361 (2003).