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We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor atoms in
a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. [16] are defined
by the lowest two energy states of the remaining valence electron localized around one or another donor. We
show that an electron located initially at one donor site can be transferred to another donor site via an auxiliary
molecular level formed upon the hybridization of the excited states of two donors. The electron transfer is driven
by a single resonant microwave pulse in the case where the energies of the lowest donor states coincide or by
two resonant pulses in the case where they differ from each other. Depending on the pulse parameters, various
one-qubit operations, including the phase gate, the NOT gate, and the Hadamard gate, can be realized in short
times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown to be
weak enough for coherent qubit manipulation being possible, at least in the proof-of-principle experiments on

one-qubit devices.
PACS: 85.35.-p, 03.67.Lx, 73.20.Hb

1. INTRODUCTION

Solid-state systems are of great interest in searching
for a scalable quantum computer technology. Several
schemes for solid-state quantum information process-
ing have been proposed [1-3]. For example, the coher-
ent control of superconducting qubits [4] and their cou-
pling [5] have been demonstrated, the qubits being en-
coded in the states of a Cooper-pair box. One promis-
ing area of current investigation is concerned with the
semiconductor-based devices. In Kane’s proposal [6],
the qubits are defined by long-lived nuclear spins of
phosphorous dopants in a silicon host. They are ma-
nipulated by external surface gates and radio-frequency
magnetic fields. While long coherence times of nuclear
spins make the Kane scheme very promising, the single-
spin measurement remains a significant challenge [7].
This also concerns an alternative Si:P architecture
that uses electron spin states as qubits [8].

Along with spin-based qubits, the charged-based
qubits in semiconductors are currently discussed as
well. The logical states of a charge semiconductor qubit
may be formed by, e.g., the ground state and the ex-
cited state of the electron in a single quantum dot [1]
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or the spatially separated states of the electron in two
different quantum dots [9-13]. Although decoherence
of the charge-based qubits is rather strong [14, 15], the
charge qubits are nevertheless believed to be realizable
at the present technological level due to their short op-
eration times [16]. One of the obstacles to the practical
realization of scalable quantum computation in the sys-
tem of quantum dots is that it is extremely difficult, if
at all possible, to manufacture a set of quantum dots
with identical or at least predetermined characteristics
each. This complicates the issue, introducing the errors
into the operations with qubits [17] and resulting in a
need for numerous ancillary corrective gates. In this
respect, it would be more reasonable to use natural
atoms (instead of «artificialy ones) as the localization
centers for the electrons carrying the quantum infor-
mation. Recent advances in manipulation with single
atoms on the solid surface [18] and atomically precise
placement of single dopants in semiconductors [19, 20]
allow constructing rather complex solid-state atomic
architectures.

Recently, Hollenberg et al. proposed a two-atom
charge-qubit scheme [16] and reported the first results
on its fabrication and characterization [20] in the case
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Fig.1. The logical states |0) = |L) and |1) = |

the buried donor charge qubit

R) of

of phosphorous dopants in silicon. In that scheme, the
buried donor charge qubit consists of two dopant atoms
about 50 nm apart in a semiconductor host. One of the
donors is singly ionized. The logical states are formed
by the lowest two energy states of the remaining va-
lence electron localized at the left or the right donor,
|0) = |L) and |1) = |R), see Fig. 1. The qubit is con-
trolled by the surface electrodes through adiabatic vari-
ations of the donor potentials. Initialization and read-
out of the qubit are facilitated by a single-electron tran-
sistor. The coupling of such qubits via the Coulomb in-
teraction, in principle, allows realizing the conditional
two-qubit gates [16].

It was shown in Ref. [16] that although the coher-
ence time 7., ~ 1 ns for charge-based qubits is much
shorter than for their spin-based counterparts, the cor-
responding gate operations times are also shorter, of
the order of 7, ~ 50 ps. We note, however, that
the ratio 7op/Teon ~ 107! seems to be insufficiently
small for the fault-tolerant scalable quantum compu-
tation being possible [21]. In this paper, we propose
an alternative scheme for operations with buried donor
charge qubits, instead of applying biases to the surface
gates. Our scheme is based on the effect of electron
transfer between the lowest states localized at different
donors upon the influence of a resonant pulse [9] or two
resonant pulses [22]. Such a transfer occurs via an ex-
cited molecular level of the double-donor system and
allows implementation of different one-qubit rotations.
The operation times can be made orders of magnitude
shorter than in the original proposal [16].

The paper is organized as follows. In Sec. 2, we
describe a three-level model for the resonant electron
transfer between the donors and briefly discuss the rele-
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vant one-electron states of a PJ molecular ion in Si. We
next present the analytical solution for the unitary elec-
tron evolution under the influence of microwave pulses.
In Sec. 3, we show that in the P :Si system, it is
possible to realize various one-qubit operations, includ-
ing the NOT gate, the phase gate, and the Hadamard
transformation. Decoherence due to the electron in-
teraction with acoustic phonons is studied in Sec. 4.
Discussion of the results is given in Sec. 5.

2. MODEL FOR THE RESONANT ELECTRON
TRANSFER

We consider a singly ionized pair of phosphorous
atoms embedded in silicon. The remaining valence elec-
tron is described by the Hamiltonian

FIO = ZEn|Xn><Xn|/ (1)

where E, and |x,) are the respective one-electron
eigenenergies and eigenstates of the molecular ion
P;:Si. In general, to calculate the energy spec-
trum and the wave functions (r|y,) of the single-
electron/double-donor system beneath the surface, one
should account for the conduction-band anisotropy, the
intervalley terms, the surface effects, the potentials
induced in the substrate by the gate voltages, etc.
This necessarily requires numerical calculations, see,
e.g., Ref. [23]. We note that although the conduction-
band edge of bulk silicon has six degenerate minima,
it has been shown both experimentally [24] and theo-
retically [25] that substitutional impurities break the
translational symmetry of the crystal lattice, thus lift-
ing the degeneracy. The spacing between energy levels
in the ground-state and excited-state multiplets may be
further increased by appropriately choosing the gate
potentials. Anyway, to quantify the structure of the
P;‘ : Si energy spectrum and wave functions, one should
make sophisticated numerical calculations for a specific
donor configuration. In this paper, however, we restrict
ourselves to a semiquantitative consideration based on
an isotropic effective mass approximation [26] that al-
lows an explicit analytical solution. The problem then
reduces to that for a hydrogen-like molecular ion with
the effective Bohr radius @} ~ 3 nm and the effec-
tive Hartree unit of energy E* = €?/caly ~ 40 meV,
where ¢ = 11.7 is the dielectric constant for silicon®).

1) We note that the isotropic effective mass approximation
gives the value E = —E*/2 &~ —20 meV for the ground-state
energy of a single phosphorous donor in silicon, which is about
half the experimentally observed value E —45.5 meV (see,

e.g. [27]).
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The energy spectrum of the Hy ion for different atomic
separations is known with high accuracy [28].

We approximate the Hamiltonian Hy in Eq. (1) by
the reduced three-level Hamiltonian

A

H, = Ei|x1)(x1|+Ez2|x2){(x2|+Err|xTR)(XTR], (2)

where |y1) and |y2) are the lowest molecular states
1so, and 2po,, whose respective wave functions are,
respectively, symmetric and antisymmetric about the
midpoint of the line joining the two donors (Fig. 2),
and |yrg) is one of the excited molecular states dis-
cussed below. It is convenient to pass from the states
'x1) and |y2) delocalized over the PJ :Si ion to the
states

_ )+ Ixe) _ ) = Ixe)

V2 V2

localized at the left and the right donor, respectively.
For donor separations Ry > ap, the wave functions
(r|L) and (r|R) are almost indistinguishable from the
one-electron 1s orbitals of the corresponding donor
atoms.

The states |L) and |R) form the respective qubit
logical states |0) and |1). These states are well defined
if the thermal energy kg7 is much lower than the differ-
ences AF3; = F3—F; and AFE3y, = E3— FEs between the
energy E5 of the excited molecular state |ys) and the
respective energies Fy and Es. At R4 >> ajy, we have
E, ~ E> ~# —E*/2 and E3 ~ —E*/8, and therefore
AE3; ~ AFE3y ~ 3E*/8 ~ 15 meV. Because the states
|L) and |R) are not the exact eigenstates of the Hamil-
tonian H,, the initial qubit state |¥(0)) = a|L) + 5| R)
evolves with time in the absence of external fields as

) 5(0)) =exp( ) x

iAEQlt
2h

|L) and |R)

iH,t
h

tEqt

h

IE

T(t)) = exp (—

< {80+ 5 - ayex -
% sin (AEQ”) (L) — |R>]}, (3)

2h
where AFs; Ey, — Ei. We note that at
t < to = h/AEs, the initial qubit state remains
almost unchanged (not counting the common phase).
Because the value of AFs; is exponentially small at

© = Rg/ay > 129, 30],
)

the period tg ~ i/ AEy; that it takes for the qubit state
to change is rather long, to > 1 us at Rz > 60 nm.

AEy
E*

1
1+ —+4+0
+2x+

1

€

2

=4ge " ! {
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In what follows, we consider the processes occuring in
time intervals much shorter than ¢q and hence ignore
the off-diagonal term [—(AEs /2)|L)(R| + H.c.] in H,
that gives rise to the electron tunneling |L) < |R).
Then Hamiltonian (2) takes the form

A

E,+FE
jid 1+ Lo

2

~
~

1L+ BRI +

(5)

where (Ey + E»)/2 = E; = Ey at Ry > a%. In the
general case where the qubit is biased by gate voltages,
the energies Ey, and Eg of the respective lowest states
localized at the left and the right donor differ from each
other. In this case, the localized states are all the bet-

+ Err|xTR)(XTR],

ter approximations to the energy eigenstates, and the
Hamiltonian H, becomes

H, ~ Er|L)(L| + Eg|R)(R| + Err|xTr){XTR|- (6)

We now let the buried donor charge qubit interact
with an external electromagnetic field E(¢). Then the
Hamiltonian becomes

A

H,+V(t),

H(t) = (7)

where the interaction term V(t) is

V(t) = E(t) |dr|xrr)(L| + drlxTr)(R| + He |, (8)

with d; = (xrr| — er|L) and dg = (x7r| — er|R)
being the electric dipole moments for the transitions
|L, R) <+ |xTr) between the respective localized states
|L) and |R) and one of the excited molecular states
|xTr) delocalized over the double-donor system. For
definiteness, we choose this state to be the third one-
electron state |yz) of the molecular ion P :Si. At
Ep = Eg and Rq/aj > 6, this is the 3do, state whose
wave function (r|xs) is symmetric about the midpoint
of the line joining the two donors and has its max-
ima at the donor locations [31], see Fig. 2. If the
donors are arranged along the x axis, the state |ys) is
formed upon the hybridization of |2S) 7 r and |2P, )1 r
atomic states of the donors, and the wave function
(r|xs) in the vicinity of the left/right donor is equal
to [(v|2S)r,r F (v|2P:)1.r]/2 at Rq > aly. We note
that for such a choice of the state |ys), the electric
field should have a nonzero x component in order that
dr.r # 0.

We consider two cases: (a) Ej, = Er &~ E; and (b)
E # Eg, the desired value of the difference Er — E



L. A. Openov

MWITD, Tom 127, BHIm. 5, 2005

X1 X2 X3
T T T T T T T 4F T T T T T T ] T T T T T T T
04l a I 1 o1o0f ¢ -
0.2 b
0.3 b
i 71 0.05r b
0
0.2f . I |
—0.2f . o~ ~
ol | I | \/\/
0 1 L 1 —0.4F 1 1 1 1 1 1 L —0.05 1 1 1 1 1 1 1
—-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20
X,ap X,ap X,ap

Fig.2. One-electron wave functions of the lowest two states, 1so, (a) and 2po, (b), and the excited state 3doy (c) of

the molecular ion PJ :Si in the isotropic effective mass approximation. The coordinate x is along the line joining the two

donors. The donor separation is R; = 20a’z. The symmetric and antisymmetric linear superpositions of the 1so4 and 2po,

states correspond to the respective 1s atomic states |L) and |R) localized at the left and the right donor. They form the

qubit logical states |0) = |L) and |1) = |R). The excited state 3do, is an auxiliary («transport») state needed to transfer
an electron between |L) and |R) states under the influence of the external electromagnetic field

being discussed below. In case (a), we suppose E(t) to
oscillate at a frequency w = (Ergr — Er.r)/h.

E(t) = Eo(t) coswt, 9)
where Eg(t) is the slowly varying envelope of the
field. Using of the resonant approximation?®, i.e., omit-

ting the rapidly oscillating terms with the frequencies
+(w+Err/h— Er r/h) from the Hamiltonian, we have

V() = 5o MOl L]+ Ar(lxrr) (RI| +

+H.e., (10)
where Ap gr(t) = Eg(t)dr r. In case (b), the field
E(t) has two components oscillating at the frequencies
wr, = (Err — Er)/h and wg = (ETr — ER)/h,

E(t) = Eg1(t) cos(wrt) + Ega(t) cos(wrt + ¢), (11)

where ¢ is the phase shift between the two components.
In the resonant approximation (see footnote 2), we have

2) The resonant approximation is valid if the absolute value of
the detuning from resonance, id = hw — (Err — Er, r), is small
compared to the spacing between the energy Erpr of the state
|xTR) and the energy E’ of the state |x') nearest to |x7r). In the
case where there are two components in E(t), the absolute values
of both hdy, = hwp — (ETR —EL) and hdp = hwgr — (ETR —ER)
should be small compared to |E’ — Epg|.
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(1) ; exp(—iwrt) A ()| xrr) L] +

+ 1exp(—iw}gt — i) Ar(t)|[xTR)(R| + H.c., (12)

2
where Az r(t) = Egi2(t) - dz,gr. In this paper, we
restrict ourselves to the rectangular pulse shape, and
therefore Eq(#) in Eq. (9) and both Eq;(¢) and Eg(#)
in Eq. (11) are constant at 0 < ¢t < 7,, and zero else-
where.

It is straightforward to solve the nonstationary
Schrodinger equation for the state vector |¥(t)),

0|w(t))

th 5t

= H(1)|¥(t)), (13)
with the Hamiltonian H(t) in Eq. (7) given by Egs. (5)
and (10) in case (a) or Egs. (6) and (12) in case (b),
and to find the coefficients Cr (t), Cr(t), and Crr(t) in
the expansion of |¥(t)) in terms of the states |L), |R),

and ‘XTR>7
)in)+

1Egrt
h

1Bt
h

() = O (t) exp (—

+Caltyesp (51 ) )+

1Ergpt
h

+cTR<t>exp(— )|><TR>7 (14)

provided that |¥(0)) = a|L)+B|R), where |a]> +|5|*> =
= 1. In case (a), we have
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Q‘AL‘Q 22 }
Crt)=a |l - ————sin" Ot| —
O R
205 AR .
B F—— L Ot
B|AL‘2+‘)\R‘2 Sin )
201\, .9
CR(t) = —am Sin Qt"‘ (15)
2‘)‘R|2 22 }
+08 |1 - —————sin” Q¢ ,
-
A A
Crr(t) = —iM sin 20,
VIALP + [AR[?
where
VAL + AR
In case (b), the coefficients Cr(t), Cgr(t), and

Crr(t) are also given by Eqs. (15) and (16) with
the only exception that Ar must be replaced by
Ar exp(—i¢). From Eqgs. (15) and (16), we can see that
at t = 7op = mk/20 (hereafter, k is a positive integer),
the coefficient C7gr vanishes, and hence the state
vector |¥(¢)) remains in the qubit subspace {|L),|R)}
and |CL(7op)? + |Cr(70p)|? = 1. In particular, if
Cr(0) = 1 and Cr(0) = 0, then Cr(rop) = 0 and
Cr(top) = £1 at A\p = FAg and odd k, i.e., there is a
complete population transfer |L) — |R), see Ref. [9].
Thus, the auxiliary excited state |xrr) plays the role
of the «transport» state, in that it assists the qubit
evolution by means of the electron transfer between
the states |L) and |R) as the pulse is on but remains
unpopulated after the pulse is off.

3. QUBIT ROTATIONS

In this section, we show that the auxiliary-state-
assisted electron transfer between the two donors al-
lows various qubit rotations. In case (a), where the
two donors in the molecular ion P :Si are equivalent,
i.e., E;, = Ep and |AL| = |Ag|, the qubit state |¥(t))
at the operation time 7,, remains unchanged,

iELTop

() =exp (-2 ) o), )

if 75, = wk/€, or changes into
iELTop
() = % exp (~ L) (511) +alB)]  (19)

if 7op = w(2k — 1)/2Q and A\ = FAg, see Eqgs. (14)
and (15). The latter corresponds to the quantum NOT
operation.

Case (b) seems to be more realistic because of the
different local atomic surroundings of the donors in the

4 ZKBT®, Brim. 5

pair due to both the uncontrollable damage of the host
upon ion implantation and the probabilistic variations
in the path taken through the substrate by each im-
planted ion [20]. Besides, the surface gates can be used
to intentionally tune Ej, and Eg to the predetermined
values. Moreover, one can change the values of A\; and
AR separately by changing the electric field amplitudes
Epy; and Ep,. It follows from Eqgs. (14) and (15) that
the relative phase shift operation is implemented at
Top = Tk /€1,

¥ (r2p) = exp (-T2 ) x

] ],

X [ozL) + fexp {—
while the value of 7,, = 7(2k — 1)/2Q corresponds to
realization of the quantum NOT operation,

() = oo (- EL2i5) Blzp i), (20)

it \r = FAr and ¢ = mn+ (Egr — Er)7op/2h (hereafter,
n is an integer), or to the Hadamard transformation,

B
9 (72p)) = exp (2272

a+ a—p
x[ 2|L>+ 7

if (Er — Er)Top/h = 2mm (where m is a positive in-
teger). Here, the plus sign corresponds to the values
of = 2mn and A\, = —Ar(vV2—1) or ¢ = 7(2n + 1)
and A; = Ar(v/2 — 1), and the minus sign corresponds
to the values of ¢ = 27n and A\;, = Agp(vV2 + 1) or
p=n(2n+1)and \;, = —Ar(v2+1).

Therefore, various one-qubit operations can be im-
plemented on the buried donor charge qubit through
appropriate choices of the pulse frequency, phase, am-
plitude, and duration. Let us estimate the value of the
operation time

B, e

Top ~ 1/Q ~ h/|AL.R| ~ h/ea’y Eo,

see Sec. 2. For the field amplitude Ey ~ 1 V/cm, we
have 7,, ~ 1 ns. An increase in the pulse intensity
causes the value of 7,, to decrease to the picosecond
time scale, such that the value of 7,, can be made or-
ders of magnitude shorter than the period to that it
takes for the qubit state to change due to the direct
electron tunneling |L) < |R), see Sec. 2, as well as the
operation times in the case where the qubit is manip-
ulated by adiabatically varying the potentials of the
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surface gates [16]. We note that in case (b), the en-
ergies Er, and Eg should be sufficiently different from
each other in order that all these operations could be
implemented in short times to avoid decoherence, as
discussed below. For example, at 7,, ~ 1 ps, we should
have Er — Er, ~ 3 meV.

4. DECOHERENCE EFFECTS

An uncontrolled interaction of the quantum system
with its environment leads to entanglement between
the states of the system and the environmental degrees
of freedom. This disturbs the unitary evolution of the
system and results in the loss of coherence. There are
various sources of decoherence in solids. For the charge
qubit considered in this paper, the decoherence due to
the phonon emission/absorption processes was studied
in Refs. [16, 26] and was found to be much weaker than
the decoherence due to both Nyquist — Johnson voltage
fluctuations in the surface electrodes and the 1/ f noise
from the background charge fluctuations. We note,
however, that there are two mechanisms of the phonon-
induced decoherence, which are caused by either the
energy relaxation processes or the virtual-phonon de-
phasing processes. Which one of those mechanisms is
dominant depends on the specific parameters of the
quantum system and its environment, as well as on the
operation times. Here, we show that the dephasing
processes play a decisive role in limiting the fault toler-
ance of the buried donor charge qubit. For simplicity,
we consider the qubit at zero temperature and assume
isotropic acoustic phonons with the linear dispersion
law wq = sq, where s is the speed of sound.

We first recall some general concepts concerning the
transition probability for an electron moving in a time-
dependent potential. If the electron, being initially in a
state |#) of the discrete energy spectrum, interacts with
the harmonic field

V(t) = Fem ™t 4 Fteit, (22)
then the probability amplitude to find it in a state | f)
at a time ¢ is given by the following expression that
results from the first-order perturbation theory [32]%):

exp[—i(wiy +w)t] =1

ai_)f(w’t) =Fy

! I(wif + w)
exp|—i(w;f —w)t] — 1
n Fz*f p[ hE if ) ] 7 (23)
wif = w)
3) We note that Eq. (23) is applicable as long as

i 5 (@, B)] < 1.
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where w;y = (E; — Ey)/h. The common approach is to
ignore the first term in Eq. (23) and use the expression

.9
t

lim (<t)

t—oo  Tte?

d(€),

thus arriving at the so-called Fermi golden rule for the
transition probability,

(24)

| ~

Wiﬁf(wv t) = |ai—>f (wa t)
f‘24sin2 [(wif —w)t/2]

| h?(wip = w)?

2m
~ ?|Fif\26(hwif —hw)t =T p(w)t,  (25)

where T r(w) is the time-independent transition
rate. The J-function reflects the energy conservation,
hwiy = hw, for such a transition.

The electron—phonon coupling in confined systems
is described by the Hamiltonian

Hopn =S Map(a) [B+bg],  (26)

where EI‘ and l;q are the respective operators of
creation and annihilation of a phonon with the
wave vector q, p(q) = [drexp(iq-r)p(r) is the
Fourier transform of the electron density operator
plr)y =5 ¥r (r)¥, (r)jm)(n|, and A(q) is the mi-
croscopic electron—phonon interaction matrix element,
which can be expressed in terms of the deformation
potential D and the density of the crystal p as

h
D, | ;
2pwqv

with v being the normalizing volume. If harmonic
field (22) is associated with a deformation phonon ha-
ving the frequency wq, then, taking into account that
the deformation fields produced by the phonons with
different wave vectors are not correlated, we have the
total transition rate [33]*)

Aa) (27)

27
Ling = W Z |Fig(@)]?6(hwiy — hwq), (28)
q

where

Fig(a) = Ma){ile’@™|f). (29)

4) We note that at T' = 0, there are no phonons in the sample,
and hence only the second term in Eq. (22) is relevant for the
electron—phonon interaction because the initial and final phonon
states, |ipp) and |fpp), are the respective states |0q) exp(—iEot)
and |1q) exp[—i(Eo + wq)t], where Eq = 3° (hwq/2), and hence

<fph“;é‘iph> = eXp(iwqt)'
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4.1. Decoherence during adiabatic variations of
the surface gate potentials

In the case where the buried donor charge qubit is
controlled by the surface gates [16], such that the state
vector |¥(¢)) remains in the qubit subspace {|L),|R)}
during the operation and the overlap (L|R) is negli-
gibly small, Hamiltonian (26) can be written in the
spin-boson form [34]

5.3 gla) b+ (30)
where &, = |L)(L| — | R)(R| and
o(@ = 2D (o) — (mieR) . (o)
pr(0)
prr (0)exp [~ (1) — iR
with the spectral function |
m Z |g S (34)

There is no relaxation in this case because for the phase
operation to be implemented, the energies E; and Egr
must be sufficiently different from each other [14], so
that the basis {|L), |R)} coincides with the energy ba-
sis of the electron in the double donor system and elec-
tron term (6) commutes with interaction term (30)
in the Hamiltonian. As a result, the diagonal ele-
ments of the density matrix remain unchanged. On
the other hand, decoherence upon implementing the
quantum NOT operation (where E;, = Egr and the
energy basis of the electron is formed by the states
X1,2) = [|L)%|R)] /2, see Sec. 2) was suggested to be
caused by relaxation [14], such that both off-diagonal
and diagonal elements of the density matrix decrease
exponentially with time, the relaxation rate I's_,; (see

Eq. (28)) being [14, 26]
FQal - D2 qgl
Amphs® [1 4 (garaty)?/4]"
SIH(Q21Rd)>
w (1 2RI ) s
( g1 Rq (85)

where qo1 = AE» /sh, see Eq. (4).

Since (r|L,R) = (ma%}) Y2 exp(—|r — rp g|/a%) for
1s-orbitals, where ry r are the donor coordinates, we

have [14]

sin(q, Ra/2)
[1+ (ga3)?/4]*

where ¢, is the component of the phonon wave vector
along the line joining the two donors, and we chose the
origin of the coordinates in between the donors, such
that rp g = :F(Rd/Q)ex-

Fedichkin and Fedorov [14] have shown that at
T = 0, decoherence upon implementing the phase ope-
ration emerges as pure dephasing, the electron density
matrix being given by the general expression [35, 36]

g(a) = —iX(a) (32)

pLr(0)exp {—BQ(t) + 2@
(33)

prR(0)

We note, however, that approximation (25) for
Wiy (w,t) and, accordingly, Eq. (28) for I';_, ; are valid
if the time ¢ is sufficiently long, see Eq. (24). To quan-
tify the applicability of this approximation, we analyze
the more general expression for W;_,;(¢) that follows
from Eq. (25),

hQZ\F

We can roughly distinguish two phonon contribu-
tions to W;_f(t), one being from the «resonant
componenty, i.e., from the d-function-like peak of
sin?[(wip — wq)t/2]/(wif — wq)? as a function of ¢ at
q = qif = wif/s, with the height ¢*/4 and the width
~ 1/st, and the other from the remaining «nonresonant
background» of the phonon spectrum. The former can
be estimated as

wq)t/2]

2

[(wig —
(wif — wq)

|2SID ‘ (36)

zﬁf

2

W) ~ L P P, (37)
and the latter as
W0 ~ 1t Figlamanl? (39)
at ¢y € Qmae and
2
W0 ~ 7ot () Fsaman)® (30

979 4*
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at it > Qmaaz, Where ¢mq, is the wave vector at
which the function |Fjf(q)|> has a maximum and Agq
is a characteristic width of |Fj¢(¢)|? in the maximum.
The specific values of A¢, ¢maz, and Fif(¢maz) de-
pend on the specific type of wave functions (r|i) and
(r|f) in the matrix element (i|exp(iq - r)|f). Next,
if, eg., ¢if < @maes and we are interested in the
transition probability W;_,;(¢) at a moment of time
t such that sqff\Fif(qif)Pt & Aq|Fit(qmaz)]?, then

Wi(i)f (t) < Wl.(i)f(t), and hence the Fermi golden rule
appears to be broken [37,38]. This is due to the viola-
tion of the energy conservation at short times [32].

Inspection of the phonon-induced transitions be-
tween the states |y1,2) = [|L) £ |R)]/v/2 of the double-
donor system with EF; = Er and the donor separation
R4 > a% (these transitions are relevant for decoherence
during the implementation of the NOT operation [14])
provides an illustrative example of the departure from
the Fermi golden rule. In this case,

(2le"*(1) = [(Le"*|L) — (Rl |R)] /2,

and hence Fy(q) = g(q), see Eq. (32), and the
resonant component of the transition probability is
Wi, () ~ ¢3, D% /phs?, in accordance with the value
of the relaxation rate I's_,; given by Eq. (35). Since
the value of ga; = AE» /hs decreases exponentially
with R4, see Eq. (4), the value of I'y_,; decreases expo-
nentially as well, going below 10% s™! at Ry/a}y > 10
(see Fig. 5 in Ref. [26]). On the other hand, since
21 < Gmaz ~ 1/a%, we have W2(2_)>1(t) ~ D?/phs*al}
from Eq. (38). More accurate calculations result in
W2(2_)>1(t) = B?(t)/2, see Eq. (34). If the operation
time 7,, is long compared to the phonon transit time,
a’y/s (= 0.3 ps for PJ :Si), it follows from Eq. (34) (see
Ref. [14]) that

D2

*2

B(rp) = =
(7or) 3n2phsiai;

(40)

and therefore spectral function (34) appears to be a
material constant, being about 6 - 10~ for the phos-

phorous donors in silicon [14], where D = 3.3 eV,
s = 9. 10° cem/s, and p = 233 g/em?’.
Hence, Wi, (t) > Wi, (t) at Rgq/a% = 10 and

t < T~ 3-1079 s, the time # being exponentially longer
for larger values of Ry/a%, and in any case longer than
the operation time 7,,, see Sec. 3.

Therefore, contrary to suggestions [14, 26] that the
phonon-induced decoherence in the case of the NOT
operation is determined by the value of the relaxation
rate ['y_,; given by Eq. (35), we see that at sufficiently
short operation times, decoherence in the cases of both
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phase and NOT operations is determined by the same
spectral function B?(t), see Eq. (34). The distinction
between the two cases is that the diagonal elements of
the density matrix remain unchanged in the case of the
phase operation because there is no relaxation, while
they decay exponentially (along with the off-diagonal
matrix elements) in the case of the NOT operation [14].

4.2, Decoherence during the
auxiliary-state-assisted operations

Because the excited «transport» level |T R) becomes
temporarily populated during the resonant-pulse oper-
ations on the P;’ :Si qubit, the phonon-induced elec-
tron transitions |TR) <+ |L, R) and |[TR) <> |x1,2) can
have a detrimental effect on the qubit evolution, along
with the transitions |L) < |R) and |x1) > [x2) stud-
ied above. We now clarify which type of the phonon-
induced electron transitions («resonant» or «nonreso-
nant») is dominant in this case and estimate the tran-
sition probability. We follow the line of reasoning
outlined above and start with calculations of the ma-
trix elements (T'R|exp(iq-r)|L,R). For our choices
of the «transport» state |TR) = |y3) and the double
donor orientation, see Sec. 2, at R > aj, we have
TR) ~ [|2S)1, — |12P,)1, + |2S)r + [2P;)r] /2, where

(r]28)1.r =
_ 1 (1 _r-rrr ) exp <_|1‘—1‘L,R|>
/8ra 203 20 )
(x[2P,) L ) ( 'r“'”‘)
r2P,)pr = —F———(@ —apRr)exp | —————— | .
L.R \/W L.,R p 2“3

Neglecting the exponentially small overlap between
the localized atomic-like orbitals centered at different
donors, we have

(TR|e™™|L, R) =
2(qa*B)2 F 3i(gza%)/2

[9/4 + (qa}y)*T’ p<¢ ) (41)

Depending on the relative values of E; and Eg, the
lowest energy eigenstates of P :Si are either |L) and
|R) (if Er # Eg) or x1 and x» (if Ep = Eg), and
therefore, in order to find the probability Wy g(t) of the
electron escape from the «transport» state at 7' = 0, we
must add the respective probabilities of the |TR) — |L)
and |TR) — |R) or [TR) — |x1) and |[TR) — |x2) elec-
tron transitions. If the value of Egr — Ep, is much less
than the difference between Ergr and Ep g, then we
have the same result in both cases, and hence Wrpr(t) is

1q: R
2
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given by Eq. (36), where now w;; ~ AFE3/h ~ 3E*/8h

is independent of R4 at Ry > a}, and

(2a5)" +9(g:0%)*/4
[9/4 + (qa3)*)°

Taking into account that

|Fif(a)/* =16 Ma)l.

(42)

Wifdy 3e?
8chs

gifag = . R8> Gmaztly ~ 1
and using Eq. (36), it is straightforward to derive the
following expressions for the respective probabilities of

the «resonant» and «nonresonanty» transitions:

2 Lok )2
Wj(}}%(t) ~ %(QUGE)S 3/4+ (QZfaB) ~t (43)
mphs*ay [9/4 + (gifay)?]
and
176 D>
WiA(®) (44)

~ 364572 phs?(a%y)?(gipaly)?

It follows from Eqs. (43) and (44) that Wq(}]%(t) =T'rrt,
where 7 &~ 3107 s~!, and W%%(t) ~ 1075, and hence
the «resonant» transitions are dominant at ¢ > 0.3 ps.
We now check what states among those involved
in the auxiliary-state-assisted qubit evolution are most
sensitive to phonon-induced decoherence. As we have
seen above, decoherence of the low-energy states |L)
and |R) (or |x1) and |y2)) is quantified by the error rate
[14], i. e., the error generated during the operation time,
D(t) = B*(t)/2 =~ 3-1073. This value is greater than
W;Z}%(t) but less than W;l}%(t) at t > 10710 s, where the
processes of the spontaneous phonon emission by an
electron temporarily occupying the «transporty level
become prevailing. Hence at 7,, < 100 ps, the error
rate does not exceed the value of D(7,,) ~ 3-107%.

5. DISCUSSION

Fast auxiliary-state-assisted evolution of the do-
uble-donor charge qubit driven by the resonant elec-
tromagnetic field allows implementation of various
one-qubit rotations in very short operation times
Top < 100 ps, thus minimizing the unwanted deco-
herence effects. At such times, the error rate due
to acoustic phonons is D(7,,) ~ 3-1073% at T = 0.
At finite temperatures, such that kg1 > hwg, where
hwo = hs/al = 2 meV for dephasing processes and
«nonresonant» emission/absorption transitions, and
hwo = |E; — Ey| for the «resonanty [i) > |f) transi-
tions, the error rate increases by a factor of ~ kpT'/hw.

The strongest increase in the error rate at 7 # 0 oc-
curs if the two donors in the molecular ion PJ :Si are
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equivalent, because the energies 'y and Er of the low-
est localized states |L) and |R) are then equal to each
other, and the difference Es — E; between the eigenen-
ergies of the two lowest delocalized molecular states
|x1) and |x2) is exponentially small at large donor sep-
arations, e.g., Fy — E; ~ 107% meV at R = 60 nm, see
Eq. (4). To weaken the decoherence, it would be rea-
sonable to use the surface gates in order to increase the
difference Er — Er, up to Er — Ef, ~ 1 meV such that
the energy basis of the electron be formed by the states
|L) and |R) instead of the states |x1) and |x2). In this
case, the electromagnetic field should have two compo-
nents driving the electron transitions |L) + |TR) and
|R) <+ |TR) between the states |L, R) and the auxiliary
«transport» state |TR).

At T # 0, the processes of the phonon absorption by
an electron temporarily occupying the transport state
also contribute to decoherence. For our choice of the
transport state, |TR) = |xs), the state nearest to it
in energy is the state |y4). In the case where the
two donors are equivalent and R/aj > 15, this is the
4f0'u state |X4> ~ [|QS>L — ‘QPx>L — |QS>R — ‘QPx>R] /2,
whose wave function (r|y4) is antisymmetric about the
midpoint of the line joining the two donors [31]. At
x = Rq/aj > 1, the energy separation [30]

o)
2 x

is small but greatly exceeds the value of Es — Ey, e.g.,

E4 — E3 ~ 0.3 meV at Rg = 60 nm. The donor asym-

metry in the presence of gate potentials results in a

further increase in E4 — E3, and therefore the phonon

absorption processes does not contribute much to de-
coherence at sufficiently low temperatures T' < 10 K.

3

E, — Fy = E*%exp

Thus, the error rate due to phonon-induced deco-
herence is D(7,p) ~ 31073 at 7,, < 100 ps and
T < 10 K. This value is to be compared to the error
rates due to other sources of decoherence. The low-
est bounds for the decoherence times associated with
the Johnson noise from the gates and the environmen-
tal charge fluctuations are [16, 20, 26], respectively,
7~ 1 usand 7 ~ 1 ns, and hence the corresponding er-
ror rates [14] D(7op) = 1 — exp(—7op/7) do not exceed
that due to phonons at 7,, < (1-10) ps. Hence, the
performance of the buried donor charge qubit appears
to be limited primarily by the electron—phonon inter-
action. In this paper, we concentrated on the phospho-
rous donors in silicon. Since spectral function (34) that
ultimately determines the error rate for one-qubit op-
erations is a material constant, it would be worthwhile
to search for other materials and/or doping elements
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for the buried donor charge qubit, in order to weaken
the decoherence effects.

Although we restricted ourselves to rectangular
shapes of the resonant pulses, our consideration can
be generalized to other pulse shapes [39]. The results
obtained can also be applied to quantum-dot structures
and Josephson three-level gates [39-42]. Finally, once
a fundamental possibility of the auxiliary-state-assisted
operations has been demonstrated, it is straightforward
to organize the coupling of PJ : Si qubits for conditional
quantum operations [16, 20].

In summary, we have proposed a scheme for fast
rotations of the buried donor charge qubit through
an auxiliary-state-assisted electron evolution under the
influence of resonant microwave pulses. This scheme
allows implementing one-qubit operations in times as
short as 7,, ~ 1 ps. With the example of the PJ :Si
qubit, we have shown that dephasing and «nonreso-
nant» relaxation due to acoustic phonons are the main
sources of decoherence. The error rate at 7' < 10 K and
operation times 7,, = (1-10) ps is about 3 - 1072, i.e.,
greater than the fault-tolerance threshold for quan-
tum computation but sufficiently low to investigate the
small-scale devices and thus to demonstrate the exper-
imental feasibility of the scheme.

Discussions with A. V. Tsukanov, L. Fedichkin, and
M. S. Litsarev are gratefully acknowledged.
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