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We consider the chaotic oscillator synchronization and propose new approach for detecting the synchronized
behavior of chaotic oscillators. This approach is based on the analysis of different time scales in the time series
generated by coupled chaotic oscillators. We show that complete synchronization, phase synchronization, lag
synchronization, and generalized synchronization are particular cases of the synchronized behavior called the
time-scale synchronization. The quantitative measure of the chaotic oscillator synchronous behavior is proposed.
This approach is applied for the coupled Rdssler systems.
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1. INTRODUCTION

Synchronization of chaotic oscillators is one of the
fundamental phenomena in nonlinear dynamics. It oc-
curs in many physical [1-6] and biological [7-9] pro-
cesses. It seems to play an important role in the ability
of biological oscillators, such as neurons, to act coop-
eratively [10-12].

Several different types of synchronization of cou-
pled chaotic oscillators have been described theoreti-
cally and observed experimentally [13-16]. The com-
plete synchronization implies the coincidence of states
of coupled oscillators, xi(t) &~ x2(t), with the differ-
ence between state vectors of coupled systems converg-
ing to zero in the limit as ¢ — oo [17-20]. It occurs
when interacting systems are identical. If the param-
eters of coupled chaotic oscillators slightly mismathch,
the state vectors are close, |x;(t) — x2(t)| & 0, but dif-
fer from each other. Another type of synchronized be-
havior of coupled chaotic oscillators with slightly mis-
matched parameters is the lag synchronization: this
is the case where the state vectors coincide with each
other after a time shift, x; (¢ + 7) = x2(t). As the cou-
pling between the oscillators increases, the time lag 7
decreases and the synchronization regime tends to the
complete synchronization [21-23]. The generalized syn-
chronization [24-26], introduced for drive-response sys-
tems, means that there is some functional relation be-
tween coupled chaotic oscillators, i.e., x2(t) = F[xy (¢)].
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We finally mention the phase synchronization
regime. To describe the phase synchronization, the
instantaneous phase ¢(t) of a chaotic continuous time
series is usually introduced [13-16,27,28]. The phase
synchronization means the entrainment of phases
of chaotic signals, with their amplitudes remaining
chaotic and uncorrelated.

All synchronization types mentioned above are re-
lated with each other (see [1,22,24] for details), but
the relation between them is not completely clarified
yet. For each type of synchronization, there are spe-
cific ways to detect the synchronized behavior of cou-
pled chaotic oscillators. The complete synchronization
can be detected by comparison of system state vectors
x1 (t) and x5 (t), whereas the lag synchronization can be
determined by means of a similarity function [21]. The
case of the generalized synchronization is more intri-
cate because the functional relation F[...] can be very
complicated, but there are several methods to detect
the synchronized behavior of coupled chaotic oscilla-
tors, such as the auxiliary system approach [29] or the
method of nearest neighbors [24, 30].

Finally, the phase synchronization of two coupled
chaotic oscillators occurs if the difference between the
instantaneous phases ¢(t) of chaotic signals x; »(t) is
bounded by some constant:

|01 (#) = ¢(t)] < const. (1)

It is possible to define the mean frequency of the chaotic
signal,
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which is the same for both coupled chaotic systems,
i.e., phase locking leads to frequency entrainment. We
note that for the results to be correct, the mean fre-
quency Q a of chaotic signal x(¢) must coincide with
the main frequency Qg = 27 fy of the Fourier spec-
trum (see [31] for details]). There is no general way
to introduce the phase for chaotic time series. There
are several approaches that allow defining the phase for
«good» systems with a simple topology of a chaotic at-
tractor (the so-called phase coherent attractor), whose
Fourier spectrum contains a single main frequency fj.

First of all, a plane in the system phase space may
exist such that the projection of the chaotic attractor
on it looks like a circular band. For such a plane, the
coordinates z and y can be introduced with the origin
placed somewhere near the center of the chaotic attrac-
tor projection. The phase can then be introduced as
an angle in this coordinate system [32, 21], but this
requires all trajectories of the chaotic attractor projec-
tion on the (z,y) plane to revolve around the origin.
A coordinate transformation can be sometimes used
to obtain a proper projection [32, 13]. If the projec-
tions of chaotic trajectories on the plane (z,9) always
rotate around the origin, the velocities & and y can
also be used; in some cases, this approach is more suit-
able [33,34]. Another way to define the phase ¢(t) of
a chaotic time series z(t) is to construct the analytical
signal [14, 27] using the Hilbert transform. Moreover,
the Poincaré secant surface can be used to introduce
the instantaneous phase of a chaotic dynamical sys-
tem [14, 27]. Finally, the phase of a chaotic time series
can be introduced by means of the continuous wavelet
transform [35], but the appropriate wavelet function
and its parameters should be chosen [36].

All these approaches give correct results for «good»
systems with well-defined phase, but fail for oscillators
with nonrevolving trajectories. Such chaotic oscilla-
tors are often called «systems with ill-defined phase»
or «systems with the funnel attractor». Introducing
the phase via the approaches mentioned above usually
leads to incorrect results for system with ill-defined
phase [31]. Therefore, the phase synchronization of
such systems can be usually detected by means of in-
direct indications [32, 37] and measurements [33].

In this paper, we propose a new approach for detect-
ing the synchronization between two coupled chaotic
oscillators. The main idea of this approach consists in
the analysis of the system behavior at different time
scales, which allows us to consider different cases of
synchronization from a universal standpoint [38]. Us-
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ing the continuous wavelet transform [39-42], we intro-
duce the continuous set of time scales s and the instan-
taneous phases ¢4(t) associated with them. In other
words, ¢s(t) is a continuous function of time ¢ and time
scale s. As we show in what follows, if two chaotic oscil-
lators demonstrate any type of synchronized behavior
mentioned above, the time series x; »(t) generated by
these systems involve time scales s that are necessarily
correlated and satisfy the phase locking condition

|ds1(t) — dsa(t)] < const. (3)

In other words, complete, lag, phase, and generalized
synchronizations are the particular cases of the syn-
chronous coupled chaotic oscillator behavior called «the
time-scale synchronization».

The structure of this paper is as follows. In Sec. 2,
we discuss the continuous wavelet transform and the
method of the time scales s and define the phases ¢4(t)
associated with them. In Sec. 3, we consider the phase
synchronization of two coupled Réssler systems. We
demonstrate the application of our method and dis-
cuss its relation to traditional approaches. Section 4
deals with synchronization of two coupled Rdossler sys-
tems with funnel attractors. In this case, the tradi-
tional methods for introducing the phase fail and it is
impossible to detect the phase synchronization regime.
Synchronization between systems can be revealed here
only by means of indirect measurements (see [33] for de-
tails). We demonstrate the efficiency of our method for
such cases and discuss the correlation between phase,
lag, and complete synchronizations. In Sec. 5, we ap-
ply our method to the unidirectional coupled Rossler
systems with phase-coherent attractors in which the
generalized synchronization is observed. The quantita-
tive measure of synchronization is described in Sec. 6.
The conclusions are presented in Sec. 7.

2. CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform is a powerful tool
for analyzing the behavior of nonlinear dynamical sys-
tems. In particular, the continuous wavelet analysis
has been used for the detection of synchronization of
chaotic oscillations in the brain [35, 43, 44] and chaotic
laser array [45]. It has also been used to detect the basic
frequency of oscillations in nephron autoregulation [46].
We propose to analyze the dynamics of coupled chaotic
oscillators by considering system behavior at different
time scales s, each of which is characterized by its own
phase ¢s(t). In defining the continuous set of instanta-
neous phases ¢,(t), the continuous wavelet transform
is a convenient mathematical tool.
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We consider the continuous wavelet transform of a
chaotic time series x(t),

I/V(S7 to) =

é\g

where 15 4,(t) is the wavelet function related to the
mother-wavelet function g (t) as

Vs to(t) = \/gw <

The time scale s corresponds to the width of the wavelet
function v 4, (), to is the shift of the wavelet along the
time axis, and the symbol «x» in (4) denotes complex
conjugation. We note that the time scale s is typically
used instead of the Fourier-transform frequency f and
can be considered as the quantity inversed to it.

The Morlet wavelet [47]

1 t—to

S

(5)

_ Ui

SV _7>

has been used as a mother-wavelet function. The choice

of the parameter value Qg = 27 provides the relation

s = 1/f between the time scale s of the wavelet trans-

form and the frequency f of the Fourier transform.
The wavelet surface

Soln) = —= exp(jQun) exp ( (6)

W (s,to) = [W(s,t0)| exp[jos(to)] (7)

describes the system dynamics on every time scale s at
the time instant ¢o. The value of [W (s, )| indicates
the presence and intensity of the time scale s mode in
the time series (t) at the time instant tg. The quanti-
ties

E(s.to) = [W (s, to)[? (8)

and

E) = [ Wsito) P dt (9
are the instantaneous and integral energy distributions
on time scales, respectively.

The phase ¢s(t) = arg W(s,t) is naturally intro-
duced for every time scale s. This means that the be-
havior of each time scale s can be described by means
of its own phase ¢4(t). If two interacting chaotic oscil-
lators are synchronized, the corresponding time series
x;(t) and x5(¢) involve scales s correlated with each
other. This correlation can be detected by examining
condition (3), which must be satisfied for synchronized
time scales.
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3. PHASE SYNCHRONIZATION OF TWO
ROSSLER SYSTEMS

We first consider two coupled Réssler systems with
slightly mismatched parameters [27, 28],

10 = —Wi Y12 — 21,2 + E(T21 — T12),

U1,2 = w1,221,2 + ayi 2, (10)

Zlo=p+ 21212 —0),

where a = 0.165, p = 0.2, and ¢ = 10. The parameters
w1,2 = wo = A determine the parameter detuning and ¢
is the coupling parameter (wp = 0.97, A = 0.02). It was
shown [21] that the phase synchronization is observed
for these control parameter values and the coupling pa-
rameter ¢ = 0.05.

In this case, the phase of the chaotic signal can be
easily introduced in one of the ways mentioned above,
because the phase coherent attractor with rather simple
topological properties is realized in the system phase
space. The attractor projection on the (x,y) plane
resembles the smeared limit cycle where the phase
point always rotates around the origin (Fig. 1a). The
Fourier spectrum S(f) contains the basic frequency
peak fo ~ 0.163 (see Fig. 1b), which coincides with
the mean frequency f = Q/27 determined from the in-
stantaneous phase ¢(t) dynamics (2). Therefore, the
phase synchronization regime can be detected in two
coupled Rossler systems (10) by means of traditional
approaches without complications.

When the coupling parameter ¢ is equal to 0.05, the
phase synchronization between chaotic oscillators is ob-
served. Phase locking condition (1) is satisfied and the
mean frequencies (_2172 are entrained. Hence, the time
scales sg &~ 6 of both chaotic systems corresponding
to the mean frequencies 91’2 should be correlated with
each other. Correspondingly, the phases ¢s1 2(t) asso-
ciated with these time scales s should be locked and
condition (3) should be satisfied. The time scales that
are nearest to the time scale sy should also be cor-
related, but the interval of the correlated time scales
depends on the coupling strength. At the same time,
there should be time scales that remain uncorrelated.
These uncorrelated time scales cause a difference be-
tween chaotic oscillations of coupled systems.

Figure 2 illustrates the behavior of different time
scales for two coupled Rdéssler systems (10) with phase
coherent attractors. It is clear that the phase differ-
ence ¢g1(t) — ¢s2(t) for scales so = 6 is bounded, and



MWITD, Tom 127, BhIm. 4, 2005

Synchronization of chaotic oscillator time scales

—10

—20 L 1 L 1 L 1

lg 5(f) [dB]
0

—15

Fig.1. (a) A phase coherent attractor and (b) the Fourier spectrum for the first Rdssler system (10). The coupling parameter
¢ between the oscillators is equal to zero

$s1(t) — ps2(t)
200 T T T T
s=4
s=25 s=06
0 W
s=28
—200 s—3 .
b

—400 1 1

0 1000 2000 t

Fig.2. (a) Wavelet power spectra (E(s)) for the first (solid line) and the second (dashed line) Rdssler systems (10). (b) The
dependence of the phase difference ¢s1(t) — ¢s2(t) on time ¢ for different time scales s. The coupling parameter between
the oscillators is ¢ = 0.05. Phase synchronization for two coupled chaotic oscillators is observed

therefore time scales sg = 6 corresponding to the main
frequency fo of the Fourier spectrum are synchronized.
It is important to note that the wavelet power spec-
tra (E12(s)) that are close to each other (Fig. 2a) and
time scales s characterized by a large value of energy
(e.g., s = 5) close to the main time scale s = 6.0 are
also correlated. There are also time scales that are not
synchronized, for example, s = 3.0, s = 4.0 (Fig. 2b).

Therefore, phase synchronization of two coupled
chaotic oscillators with phase coherent attractors man-
ifests itself as a synchronous behavior of the time scales
sp (and time scales s close to sg) corresponding to the
chaotic signal mean frequency €.
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4. SYNCHRONIZATION OF TWO ROSSLER
SYSTEMS WITH FUNNEL ATTRACTORS

We consider a more complicated example where it
is impossible to correctly introduce the instantaneous
phase ¢(t) of the chaotic signal x(t). It is clear that
in such cases, the traditional methods of detecting the
phase synchronization fail and it is necessary to use the
other techniques, e.g., indirect measurements [33]. On
the contrary, our approach gives correct results and
allows detecting the synchronization between chaotic
oscillators as easily as before.

As an illustration, we consider two nonidentical cou-
pled Rossler systems with funnel attractors (Fig. 3),
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Fig.3. (a) A phase picture and (b) the power spectrum of oscillations for the first Réssler system (11). The coupling
parameter ¢ is equal to zero

10 = —wial12 — 21,2 +&(T21 — T12), phase locking was not observed (see Fig. 4b).
Y12 = w1 2T12 +ayi2 + (Y21 — Y1.2), (11) It is clear that the mechanism of synchronization
o =p+z1a(Tra—c), of coupled chaotic oscillators is the same in both cases
7 7 ’ / considered in Sec. 3 and 4. The synchronization phe-
where ¢ is a coupling parameter and w; = 0.98,  nomenon is caused by the existence of time scales s in

wy = 1.03. The control parameter values have been
selected by analogy with [33] as a = 0.22, p = 0.1,
and ¢ = 8.5. We note that under these control pa-
rameter values, none of the methods mentioned above
allows defining the phase of the chaotic signal correctly
in entire range of the coupling parameter ¢ variation.
Therefore, nobody can determine by means of direct
measurements whether the synchronization regime oc-
curs for several values of £. On the other hand, our ap-
proach allows easily detecting synchronization between
the coupled oscillators under consideration for all val-
ues of the coupling parameter.

In [33], it was shown by means of indirect measure-
ments that for the coupling parameter value ¢ = 0.05,
synchronization of two coupled Rossler systems (11)
occurs. Our approach based on the analysis of the dy-
namics of different time scales s gives analogous results.
The behavior of the phase difference ¢4 (t) — @52 (t) for
this case is presented in Fig. 4b. One can see that phase
locking occurs for the time scales s = 5.25, which are
characterized by the largest energy value in the wavelet
power spectra (E(s)) (Fig. 4a).

We note that the phase difference ¢g1(t) — ¢sa(t)
is also bounded at the time scales close to s = 5.25.
We can say that the time scales s = 5.25 (and close
to them) of two oscillators are synchronized with each
other. At the same time, other time scales (e.g.,
s =4.5,6.0) remain uncorrelated. For such time scales,
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system dynamics correlated with each other. There-
fore, there is no reason to divide the considered syn-
chronization examples into different types.

It has been shown [21] that there is a certain rela-
tion between phase, lag, and complete synchronizations
for chaotic oscillators with slightly mismatched param-
eters. With the increase of the coupling strength, the
systems undergo the transition from unsynchronized
chaotic oscillations to phase synchronization. With a
further increase of the coupling, lag synchronization is
observed. As of the coupling parameter increases fur-
ther, the time lag decreases and both systems tend to
have the complete synchronization regime.

We consider the dynamics of different time scales s
of two nonidentical coupled Rossler systems (11) when
the coupling parameter value increases. If there is no
phase synchronization between the oscillators, their dy-
namics remain uncorrelated for all time scales s. Fi-
gure 5 illustrates the dynamics of two coupled Rossler
systems when the coupling parameter ¢ is small enough
(¢ = 0.025). The power spectra (E(s)) of the wavelet
transform for Rossler systems differ from each other
(Fig. 5a), but the maximum values of the energy cor-
respond approximately to the same time scale s in
both systems. It is clear that the phase difference
0s1(t) — ¢s2(t) is not bounded for almost all time
scales (Fig. 5b). One can see that the phase difference
@s1(t) — ¢s2(t) increases for the time scale s = 3.0, but
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Fig.4. (a) The normalized energy distribution in the wavelet spectrum (E(s)) for the first (line 1) and the second (line 2)
R&ssler systems (11); (b) the phase difference ¢s1(t) — ¢s2(t) for two coupled Rdssler systems. The value of the coupling
parameter is selected as ¢ = 0.05. The time scales s = 5.25 are correlated with each other and synchronization is observed
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Fig.5. (a) The normalized energy distribution in the wavelet spectrum (E(s)) for the first (line 1) and the second (line 2)
Rdssler systems; (b) the phase difference ¢s1(t) — ¢s2(t) for two coupled Réssler systems. The value of coupling parameter
is selected as ¢ = 0.025. There is no phase synchronization between the systems

decreases for s = 4.5. This means that there should
be a time scale 3.0 < s* < 4.5 at which the phase
difference remains bounded. This time scale s* plays
the role of a point separating the time scale areas with
the phase difference increasing and decreasing, respec-
tively. In this case, the measure of time scales at which
the phase difference remains bounded is zero and we
cannot speak about the synchronous behavior of cou-
pled chaotic oscillators (see also Sec. 6).

As soon as any of the time scales of the first chaotic
oscillator becomes correlated with another time scale
of the second oscillator (e.g., when the coupling pa-
rameter increases), phase synchronization occurs (see
Fig. 4). The time scales s characterized by the largest
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value of energy in the wavelet spectrum (FE(s)) are
more likely to become correlated first. The other time
scales remain uncorrelated as before. The phase syn-
chronization between chaotic oscillators leads to phase
locking (3) at the correlated time scales s.

Ag the parameter of coupling between the chaotic
oscillators increases, more and more time scales become
correlated and one can say that the degree of synchro-
nization grows. Therefore, with the further increase of
the coupling parameter value (e.g., ¢ = 0.07) in coup-
led Rossler systems (11), the time scales that were un-
correlated before become synchronized (Fig. 6b). It
is evident that the time scales s = 4.5 are synchro-
nized in comparison with the previous case (¢ = 0.05,
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Fig.6. (a) The normalized energy distribution in the wavelet spectrum (E(s)) for the first (line 1) and the second (line 2)
R&ssler systems; (b) the phase difference ¢s1(t) — ¢s2(t) for two coupled Réssler systems. The value of coupling parameter
is selected as ¢ = 0.07
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Fig.7. (a) The normalized energy distribution in the wavelet spectrum (E(s)) for the Rdssler system; (b) the phase differ-
ence ¢s1(t) — ¢s2(t) for two coupled Rdssler systems. The value of the coupling parameter is selected as ¢ = 0.25. Lag
synchronization is observed, all time scales are synchronized

Fig. 4b) when these time scales were uncorrelated. The
number of time scales s demonstrating phase locking
increases, but there are nonsynchronized time scales as
before (e.g., the time scales s = 3 and s = 6 remain
nonsynchronized).

The occurrence of lag synchronization [21] be-
tween oscillators means that all time scales are cor-
related. Indeed, the lag-synchronization condition
21(t — 7) ~ wo(t) implies that Wi(s,t —7) ~ Wa(t, s)
and therefore ¢4 (t — 7) & ¢52(t). In this case, phase
locking condition (3) is obviously satisfied for all time
scales s. For instance, when the coupling parame-
ter of chaotic oscillators (11) becomes large enough
(s = 0.25), lag synchronization of two coupled os-

3

cillators occurs. In this case, the power spectra of
the wavelet transform coincide with each other (see
Fig. 7a) and phase locking takes place for all time
scales s (Fig. 7b). We note that the phase difference
0s1(t) — dsa(t) is not equal to zero in the case of lag
synchronization. It is clear that this difference depends
on the time lag 7.

A further increase of the coupling parameter
leads to a decrease of the time lag 7 [21]. Both
systems tend to have the complete synchronization
regime x1(t) &~ x2(t), and hence the phase difference
0s1(t) — dsa(t) tends to be zero for all time scales.

The dependence of the synchronized time scale
range [S,,;sp] on the coupling parameter is shown in
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Fig.8. The dependence of the synchronized time scale
range [sm; sp] on the coupling strength ¢ for two cou-
pled Réssler systems (11) with funnel attractors

Fig. 8. The range [sm; sp] of synchronized time scales
appears at ¢ ~ 0.039. The appearance of the synchro-
nized time scale range corresponds to the phase syn-
chronization regime. As the coupling parameter value
increases, the range of synchronized time scales ex-
pands until all time scales become synchronized. Syn-
chronization of all time scales means the presence of
the lag synchronization regime.

We can therefore say that the time-scale synchro-
nization is the most general synchronization type uni-
fying (at least) the phase, lag, and complete synchro-
nization regimes.

5. GENERALIZED SYNCHRONIZATION
REGIME

We consider another type of synchronized behavior,
the so-called generalized synchronization. It has been
shown above that phase, lag, and complete synchro-
nizations are naturally related to each other and the
synchronization type depends on the number of syn-
chronized time scales. The details of the relations be-
tween phase and generalized synchronizations are not
clear at all. There are several works [1, 22| dealing with
the problem of how phase and generalized synchroniza-
tions are correlated with each other. For instance, it
has been reported in [22] that two unidirectional cou-
pled Rossler systems can demonstrate the generalized
synchronization, while the phase synchronization has
not been observed. This case can easily be explained
by means of the time scale analysis. The equations of
the coupled Rdssler system are

L1 = —wiyr — 21,
71 = wiT1 + ays,

H=p+z(z1—c

. (12)
By = —ways — 22 + (1 — 22),
U2 = waxa + aya,
2:’2 =p—|— 2’2(332 — C),
where x; = (21,1, 21)7 and xo = (22, y2, 20)7 are the

respective state vectors of the first (drive) and the sec-
ond (response) Rossler systems. The control parame-
ter values are chosen as w; = 0.8, wo = 1.0, @ = 0.15,
p =0.2, c =10, and € = 0.2. Generalized synchroniza-
tion occurs in this case (see [22] for details). The time
scale analysis explains why it is impossible to detect
phase synchronization in system (12) despite general-
ized synchronization being observed.

We consider Fourier spectra of coupled chaotic os-
cillators (Fig. 9). There are two main spectral compo-
nents with the frequencies f; = 0.125 and fo = 0.154
in these spectra. The analysis of the behavior of time
scales shows that both the time scales s; = 1/f; = 8.0
of the coupled oscillators corresponding to the fre-
quency f1 and time scales close to s; are synchronized,
while the time scales s, = 1/f> &~ 6.5 and those close
to this value do not demonstrate synchronous behavior
(Fig. 10b).

The source of such behavior of time scales becomes
clear from the wavelet power spectra (E(s)) of both
systems (see Fig. 10a). The time scale s; of the drive
Rossler system is characterized by a large value of en-
ergy, while the part of energy associated with this scale
of the response system is quite small. Therefore, the
drive system dictates its own dynamics at the time scale
s1 to the response system. The opposite situation oc-
curs for the time scales sy (Fig. 10a). The drive system
cannot dictate its dynamics to the response system be-
cause the part of energy associated with this time scale
is small in the first Rossler system and large enough
in the second one. Therefore, time scales s, are not
synchronized.

Thus, the generalized synchronization of the unidi-
rectional coupled Rdéssler systems appears as the time
scale synchronized dynamics, similarly to other syn-
chronization types. It is also clear why the phase syn-
chronization was not observed in this case. Figure 9
shows that the instantaneous phases ¢1 () of chaotic
signals x; »(¢) introduced by means of traditional ap-
proaches are determined by both frequencies, f; and fs,
but only the spectral components with the frequency f;
are synchronized. Therefore, observation of the instan-
taneous phases ¢1 2(t) does not allow detecting phase
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Fig.9. Fourier spectra for (a) the first (drive) and (b) the second (response) Résler systems (12). The coupling parameter
is ¢ = 0.2. Generalized synchronization occurs
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Fig.10. (a) The normalized energy distribution in the wavelet spectrum (FE(s)) for the first (line 1) and the second (line 2)
Rdssler systems. The time scales indicated with arrows correspond to the frequencies fi = 0.125 and f> = 0.154; (b) the
phase difference ¢s1(t) — ¢s2(t) for two coupled Réssler systems. The generalized synchronization is observed

synchronization in this case although the synchroniza-
tion of time scales takes place.

Thus, one can see that there is a close relation be-
tween different types of the chaotic oscillator synchro-
nization. According to the results mentioned above,
we can say that phase, lag, complete, and generalized
synchronizations are particular cases of time-scale syn-
chronization. Therefore, it is possible to consider differ-
ent types of synchronized behavior from the universal
standpoint. Unfortunately, it is not clear how one can
distinguish the phase synchronization!) and the gener-

1) We here mean that phase synchronization between chaotic
oscillators occurs if the instantaneous phase ¢(t) of the chaotic
signal may be correctly introduced by means of traditional ap-
proaches and phase locking condition (1) is satisfied.
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alized synchronization using only the results obtained
from the analysis of the time scale dynamics.

6. MEASURE OF SYNCHRONIZATION

From the examples given above, we can see that
any type of synchronous behavior of coupled chaotic
oscillators leads to the occurrence of synchronized time
scales. Therefore, the measure of synchronization can
be introduced. This measure p can be defined as the
part of the wavelet spectrum energy associated with
the synchronized time scales,
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P12 = L /<E12(5)> ds, (13)

where [s,,; sp] is the range of time scales for which con-
dition (1) is satisfied and

oo

ELQ = /<E172(8)>d8 (14)

0

is the total energy of the wavelet spectrum. This mea-
sure p is zero for the nonsynchronized oscillations and
unity for the complete and lag synchronization regimes.
If the phase synchronization regime is observed, p takes
a value between zero and unity depending on the part
of energy associated with the synchronized time scales.
Hence, the synchronization measure p allows not only
distinguishing the synchronized and nonsynchronized
oscillations, but also characterizing the degree of ti-
me-scale synchronization quantitatively.

Figure 11 presents the dependence of the time-scale
synchronization measure p; for the first Rossler oscilla-
tor of system (11) considered in Sec. 4 on the coupling
parameter ¢. It is clear that the part of the energy asso-
ciated with the synchronized time scales grows monoto-
nically with the growth of the coupling strength. Sim-
ilar results have been obtained for the generalized syn-
chronization of two coupled Réssler systems considered
in Sec. 5.

We have already mentioned that when the coupled
oscillators do not demonstrate synchronous behavior,
there are time scales s* at which the phase difference

p1
1.0

0.8

0.6

0.4r

0.2

0 0.1 0.2 €

Fig.11. The dependence of the synchronization mea-

sure p; for the first Rossler system (11) on the coupling

strength . The measure p, for the second Rdssler os-

cillator behaves in a similar manner (not shown in the
figure)

¢s1(t) — ¢s2(t) is bounded. Such time scales play the
role of points separating the time scale areas where the
phase difference increases and decreases, respectively
(see also Sec. 4). Nevertheless, the presence of such
time scales does not mean the occurrence of chaotic
synchronization because the part of energy associated
with them is equal to zero. Therefore, the synchro-
nization measure p of such oscillations is zero, and the
dynamical regime realized in the system in this case
should be classified as nonsynchronous.

7. CONCLUSIONS

Summarizing this work, we note several principal
aspects. First, we have proposed to consider the time
scale dynamics of coupled chaotic oscillators. It al-
lows us to consider the different types of behavior of
coupled oscillators (such as the complete synchroniza-
tion, the lag synchronization, the phase synchroniza-
tion, the generalized synchronization, and the nonsyn-
chronized oscillations) from the universal standpoint.
In this case, time-scale synchronization is the most
common type of synchronous coupled chaotic oscillator
behavior. Therefore, the other types of synchronous os-
cillations (phase, lag, complete, and generalized) may
be considered the particular cases of time-scale syn-
chronization. The quantitative characteristic p of the
synchronization measure has also been introduced. It
is important to note that our method (with insignifi-
cant modifications) can also be applied to dynamical
systems synchronized by the external (e.g., harmonic)
signal.

Second, the traditional approach for the phase syn-
chronization detecting based on the introduction of the
instantaneous phase ¢(t) of the chaotic signal is suit-
able and correct for such time series characterized by
the Fourier spectrum with a single main frequency fy.
In this case, the phase ¢ associated with the time
scale s corresponding to the main frequency fo of the
Fourier spectrum coincides approximately with the in-
stantaneous phase ¢(t) of the chaotic signal introduced
by means of the traditional approaches (see also [36]).
Indeed, because the other frequencies (the other time
scales) do not play a significant role in the Fourier spec-
trum, the phase ¢(t) of the chaotic signal is close to the
phase ¢4 (t) of the main spectral frequency fy (and the
main time scale sg, respectively). It is obvious that
in this case, the mean frequencies f = (¢(t))/27 and
fso = (ds0(t))/27 should coincide with each other and
with the main frequency fo of the Fourier spectrum
(see also [31]),
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= fso = fo. (15)
If the chaotic time series is characterized by the Fourier
spectrum without a single basic frequency (like the
spectrum shown in Fig. 3b), the traditional approaches
fail. One has to consider the dynamics of the system
at all time scales, but this cannot be done by means
of the instantaneous phase ¢(¢). On the contrary, our
approach based on the analysis of time scale dynamics
can be used for both types of chaotic signals.

Finally, our approach can be easily applied to the
experimental data because it does not require any a
priori information on the considered dynamical sys-
tems. Moreover, in several cases, the influence of the
noise can be reduced by means of the wavelet trans-
form (see [39, 48, 49] for details). We believe that our
approach will be useful and effective for the analysis of
physical, biological, physiological, and other data, such
as described in [9, 10, 35, 36].
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