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ondu
tivity is 
al
ulated for regular inhomogeneous two-
omponent isotropi
 medium in whi
hdroplets of one phase with 
ondu
tivity �2 are embedded in another, with 
ondu
tivity �1. An expression isformulated that 
an be used in many di�erent situations and is of parti
ular relevan
e in the 
ase where therelative proportion of the 
omponents is temperature-dependent and varies over a wide range. Behavior of thee�e
tive 
ondu
tivity depends on the spatial arrangements and the shape of the in
lusions.PACS: 77.22.Ch 1. INTRODUCTIONDetermination of the e�e
tive 
ondu
tivity �effof spatially inhomogeneous heterophase systems is anold, but in
reasingly important problem of theoreti-
al physi
s. With the advent of new nanos
ale probesof 
ondensed matter systems, it has be
ome apparentthat many very diverse systems that were previouslythought to be homogeneous are in fa
t either stati
allyor dynami
ally inhomogeneous. The e�e
tive 
ondu
-tivity in su
h 
ases 
annot be dealt with in terms ofhomogeneous medium theory, is not trivial, and solu-tions are presently known only in some rather spe
ial
ases. Di�erent aspe
ts of the theory and di�erent lim-iting 
ases are extensively dis
ussed in Ref. [1℄.In this paper, we fo
us on the problem of 
al
u-lating the e�e
tive 
ondu
tivity of an inhomogeneoustwo-dimensional (2D) plane. The 
lassi
al problem 
anbe formulated as follows. We assume that a 2D system
ontains a mixture ofN (N � 2) di�erent phases or ma-terials with di�erent 
ondu
tivities �i, i = 1; 2; : : : ; N .The arrangements of di�erent phases 
an be random orregular. The question that we wish to address is howthe e�e
tive 
ondu
tivity of the plane depends on the
ondu
tivities of the phases, their 
on
entration, andthe spatial arrangements.In the past, a number of di�erent approa
hes havebeen used to ta
kle this problem. The exa
t result for*E-mail: vi
tor.kabanov�ijs.si

the e�e
tive 
ondu
tivity of a two-
omponent systemwith a symmetri
 and isotropi
 distribution of 
ompo-nents was obtained by Dykhne [2℄. He found that thee�e
tive 
ondu
tivity of the system is determined bythe simple relation �eff = p�1�2:A symmetri
 distribution used in this problem amountsto the 
ase where the two 
omponents 
an be inter-
hanged without 
hanging the end result. Obviously,one requirement for a symmetri
 distribution is thatthe two 
omponents have equal proportions, but it alsomeans that more general 
ases 
annot be 
onsideredwith this model.Further investigations have shown that a more gen-eral duality relation is valid for 2D heterogeneous 
on-du
tors than that initially 
onsidered by Keller andDykhne [1℄. More re
ently, it was shown that a moregeneral relation for the e�e
tive 
ondu
tivity tensor ex-ists that is valid for multi
omponent and anisotropi
systems [3, 4℄. The e�e
tive 
ondu
tivity of severalexamples of ordered two-
omponent systems was also
al
ulated exa
tly [5�7℄. It was shown in [5, 6℄ thatfor a 
hessboard plane and for a plane 
onstru
ted oftriangles, the relation derived by Dykhne is also valid.A similar relation to the Dykhne formula for thee�e
tive 
ondu
tivity of a system 
onsisting of ran-domly distributed metalli
 and diele
tri
 regions neara metal-to-insulator transition was derived by Efros809
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Fig. 1. Spatial arrangements of phases with 
ondu
tivities �1 = 1 and �2 = � for four 
onsidered 
asesand Shklovskii [8℄. They generalized the expression ofDykhne on the basis of s
aling arguments to the 
ase ofarbitrary 
on
entrations of the two phases near a per-
olation threshold, su
h that the e�e
tive 
ondu
tivitybe
omes �eff = �1(�2=�1)s; (1)where s is a universal s
aling exponent. Criti
al ex-ponents are also relatively well-known for this type ofsystems [9℄. This relation is not appli
able when thesystem is driven away from the per
olation thresholdand the general solution of the e�e
tive 
ondu
tivity ofan inhomogeneous medium thus remains an open prob-lem.Sen and Torquato [10℄ derived an expression thatallows an expli
it 
al
ulation of the e�e
tive 
ondu
-tivity tensor from the n-point probability fun
tionsSn(r1; : : : ; rn). These fun
tions give the probability of

the points at r1; : : : ; rn to belong to the same phase,and are therefore uniquely determined by the spatialdistribution of the phases. Unfortunately, the appli
a-tion of this method is limited be
ause the 
omputationswith n > 5 are fairly time 
onsuming.Di�erent expansions of the e�e
tive 
ondu
tivityin terms of a small parameter have been used in thepast [1, 11, 12℄. In most 
ases, the low-order termsweakly depend on mi
rogeometry. A diagrammati
expansion for the e�e
tive 
ondu
tivity developed byKhalatnikov and Kamensh
hik [13℄ promises to givemore generally appli
able results. The perturbative ap-proa
h seems to be quite e�e
tive be
ause it allows ana-lyzing random and nonsymmetri
 distributions withdi�erent 
ondu
tivities.The problem was also dis
ussed in the 
ase whereN = 2 and N = 3 on the basis of numeri
al 
al
ula-tions [3, 14℄. It was shown that the e�e
tive 
ondu
tiv-810
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ondu
tivity of inhomogeneous two-
omponent media : : :ity for N = 3 is not universal and depends on the spa-tial arrangements of the phases. We have employed theboundary element method for e�
ient numeri
al treat-ment of two-dimensional multi-phase systems with anarbitrary arrangement of phases. More details on themethod and its results 
an be found in [15℄.In this paper, we 
onsider the 
ondu
tivity of a two-phase system in two dimensions for a wide range of 
on-
entrations and 
ondu
tivities. One phase is assumedto be 
omposed of droplets (of di�erent shapes) with
ondu
tivity �2 embedded within a medium of 
ondu
-tivity �1 (see Fig. 1). We begin with 
al
ulating thee�e
tive 
ondu
tivity �eff using a perturbation theoryapproa
h with the two phases having the respe
tive vo-lume fra
tions (1 � �) and �. Be
ause the problem islinear, we 
an introdu
e a dimensionless 
ondu
tivity�, measured in units of �1 = 1; and the e�e
tive 
on-du
tivity �eff is a fun
tion of � = �2=�1 = �2 and �.The volume-averaged 
ondu
tivity�� = 1V Z � dVis given by �� = (1� �) + ��: (2)If the 
ondu
tivities of the two phases are not vastlydi�erent, j� � 1j � 1;the e�e
tive 
ondu
tivity 
an be 
al
ulated by pertur-bation theory [13℄. To apply perturbation theory, werewrite the spatial dependen
e of the 
ondu
tivity as�(r) = ��(1� �(r)); (3)where �(r) = �(r) � ���� :Assuming that the spatial distribution of 
ondu
tivityis un
orrelated, we then obtainZ dr�(r)�(r + r0) = (� � 1)2�(1� �)��2 Æ(r0): (4)A straightforward 
al
ulation shows that up to the se
-ond order in �, the 
ondu
tivity is given by�eff = �� � (� � 1)2�(1� �)2�� : (5)This result has been known for many years and wasderived for the diele
tri
 fun
tion of diele
tri
 mix-tures [16℄. In Refs. [11, 12℄, it was also derived usinga systemati
 perturbative expansion, whi
h showed itto be exa
t to the se
ond order in �. The se
ond term

in Eq. (5) represents the �rst nonvanishing 
ontribu-tion due to the inhomogeneity of the distribution ofthe phases. In the 
ase where � = 0:5, the result 
oin-
ides with the expansion of the exa
t expression for the
ondu
tivity up to the se
ond order in (�2 � �1) [2℄:�eff = p�1�2: (6)2. CONDUCTIVITY OF A REGULARISOTROPIC TWO-COMPONENT SYSTEMIN TWO DIMENSIONSNext, we exa
tly 
al
ulate the e�e
tive 
ondu
tiv-ity of the plane with di�erent regular isotropi
 distri-butions. As before, we 
onsider a 2D plane 
onstru
tedfrom two di�erent phases with di�erent 
ondu
tivities�1 = 1 and �2 = �. The regions with the 
ondu
tivity�2 have a 
ir
ular shape with radius R and form a regu-lar square latti
e with the period a as shown in Fig. 1a.Changing the radius R from 0 to a=2, we 
an 
hangethe volume fra
tion of the se
ond phase from � = 0 tothe 
riti
al 
on
entration �
 = 0:785, whereafter the re-gions with the 
ondu
tivity �2 start to overlap and theper
olation threshold is rea
hed. In the 
ase of metalli
droplets, the total 
harge density must be zero, while a�nite 
harge density 
an a

umulate on the surfa
e be-tween di�erent phases. This allows us to formulate theintegral equation for the surfa
e 
harge density [5, 6℄.We de�ne the surfa
e 
harge density by the relation�(�)R d� = d�(�);where d�(�) is the 
harge on a small part of the surfa
ebetween the two 
omponents with the lengthdl = Rd�:We re
all that the s
alar potential at the point r isdetermined by the relation� = E0x� 2 Z d2r0 ln jr� r0j�(r0); (7)where ln jr� r0j=2� is the 2D Green's fun
tion. Theboundary 
onditions on the surfa
e between two phasesare [16℄ E1n �E2n = 4��(�); (8)�1E1n = �2E2n: (9)Substitutingr0 = i(ma+R 
os �0) + j(na+R sin �0);r = iR 
os � + jR sin �811
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e 
harge density in the form�(�) = �2� 24E0 
os � + 2r 1Xn;m=�1 �Z�� d�0�(�0)Re� exp (i�)m+ r(
os �0 � 
os �)+i(n+ r(sin �0 � sin �))�35 ; (10)where r = Ra ; � = 1� �1 + � :As shown in the Appendix, the sum over m 
an be 
al
ulated exa
tly and the integral equation for the surfa
e
harge density is redu
ed to the form�(�) = �2� 24E0 
os � + 2r 1Xn=�1 �Z�� d�0K(n; �; �0)�(�0)35 ; (11)where K(n; �; �0) = � 
os � sin (2�r(
os �0 � 
os �)) + sin � sh [2�(n+ r(sin �0 � sin �))℄
h [2�(n+ r(sin �0 � sin �))℄ � 
os (2�r(
os �0 � 
os �)) : (12)Expanding the surfa
e density �(�) in terms of Legendre polynomials Pl(
os �) and taking into a

ount that�(��) = �(�); �(� � �) = ��(�);where �(�) = 1Xl=1 
2l�1P2l�1(
os �); (13)we obtain the linear set of algebrai
 equations for the 
oe�
ients 
2l�1,2
2l�14l � 1 = �2� "23E0Æl;1 + 2r 1Xk=1 
2k�1Kl;k# ; (14)where Kl;k = 1Xn=�1 �Z0 d�0 �Z0 d� K(n; �; �0) sin �P2l�1(
os �)P2k�1(
os �0): (15)Solving Eq. (14) with a �nite number of Legendre polynomials taken into a

ount, we obtain the surfa
e 
hargedensity in Eq. (13). As a result, the e�e
tive 
ondu
tivity is evaluated by 
al
ulating the total 
urrentj = �1En = Enthrough the semi
ir
ular surfa
e with the radius R0 = a=2 (see Fig. 1a). Cal
ulations similar to that of Eq. (12)lead to the expression for the e�e
tive 
ondu
tivity�eff = �4� �=2Z��=2 d� 24
os � + 2rE0 1Xn=�1 �Z�� d�0K 0(n; �; �0)�(�0)35 ; (16)where K 0(n; �; �0) = � 
os � sin(2�(r 
os �0 � (1=2) 
os �)) + sin � sh (2�(n+ r sin �0 � (1=2) sin �))
h (2�(n+ r sin �0 � (1=2) sin �))� 
os (2�(r 
os �0 � (1=2) 
os �)) : (17)812
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ondu
tivity of inhomogeneous two-
omponent media : : :The result above applies to the 
ase of a uniformdistribution of 
ir
ular droplets within the plane. Tosee how the e�e
tive 
ondu
tivity depends on the shapeof the regions with the 
ondu
tivity �2; we have per-formed 
al
ulations in the 
ase where 
ir
ular dropletswere repla
ed with squares, triangles, and rhombuseswith the ratio of diagonals tg� = a=b, where a and bare translation ve
tors along x and y axes respe
tively(see Fig. 1b, 
, d). In all these 
ases, Eqs. (10)�(17) areslightly modi�ed be
ause in a polar 
oordinate system,r(�) is a fun
tion of the angle. Unlike in the 
ase of
ir
les, the per
olation threshold for 
ases b, 
, and dis �
 = 0:5. We note that in the 
ase of rhombuses, thelatti
e is anisotropi
 and �11eff 6= �22eff .3. DISCUSSIONThe results of the 
al
ulations of the e�e
tive 
on-du
tivity are presented in Fig. 2, as a fun
tion of ��for di�erent values of the volume fra
tion �. It is easyto 
he
k that the results satisfy the generalized dualityrelation [3, 4℄�11eff (�1; �2)�22eff (1=�1; 1=�2) = 1: (18)For 
ir
les, squares, and triangles,�22 = �11:For rhombuses,�22(�) = �11(�=2� �):Figure 2a, b, 
, d shows that for small �, the pertur-bation theory [11�13℄ (Eq. (5)) gives the 
orre
t resultindependent of the geometry.3.1. Approximate expression for the e�e
tive
ondu
tivityAlthough the predi
tions in Fig. 2 represent the re-sults of a pre
ise numeri
al 
al
ulation, they are notvery tra
table when it 
omes to 
omparing with exper-imental data, being the result of numeri
al 
al
ulations.It is therefore helpful to try to obtain a fun
tional formfor des
ribing the behavior predi
ted in Fig. 2, whi
halso in
ludes all the relevant parameters, su
h as thevolume fra
tion � and the two 
ondu
tivities �1 and �2.Su
h an expression 
an then be used in a wide rangeof problems, provided the validity range is taken intoa

ount. We des
ribe the properties of su
h a heuris-ti
ally determined fun
tion and determine its validityrange in terms of the parameters �; �1, and �2.

As 
an be seen from Fig. 2, the dependen
e of thee�e
tive 
ondu
tivity on � shows similar behavior in-dependently of the parti
ular geometry of the phases.First, we observe that when � is small, all the 
urvesare linear in �� with the same slope. In the relativelywide interval 0:1 < � < 10, the e�e
tive 
ondu
tivityis determined by the equation�eff (�) = �(1��)1 ��2 : (19)The range of appli
ability of this formula be
omeswider as we approa
h the per
olation threshold �
.When � = �2=�1 � 1, the e�e
tive 
ondu
tivity sat-urates at �sat. The value of �sat is not universal anddepends on the geometry. It was pointed out re
entlythat in the 
ase of 
ir
les with � < 0:5 in the entirerange of �, the e�e
tive 
ondu
tivity may be approxi-mated by the formula [18℄�eff (�) = 1� ��1 + ��: (20)To derive an approximate expression for the e�e
tive
ondu
tivity, we assume that Eq. (20) remains 
or-re
t if we repla
e � with the e�e
tive volume fra
tion�eff (�; �). We require that�eff (�; �) � � as �! 0or � ! 0and �eff (�; �) � 1� 1� ��
1 + ��
 as � ! �
to satisfy Eq. (19), whi
h is valid at � = �
. It is easyto see that the fun
tion�eff (�; �) = � + 1� �� 1��1� (1� p(�))�1 + (1� p(�))���
1 +�1� (1� p(�))�1 + (1� p(�))���
 � (1� p(�))�
; (21)where p(�) ! 0 as � ! �
 and p(�) ! 1 as � ! 0,satis�es all the above requirements. The fun
tion p(�)is not universal and depends on the geometri
 shape ofthe region with 
ondu
tivity � and on the parti
ulararrangement of these in
lusions in the 2D plane. InFig. 3, we plot p(�) as a fun
tion of 1��=�
 in 
ases a,b, and 
. Case d is di�erent be
ause the e�e
tive 
on-du
tivity is anisotropi
. As is 
learly seen from Fig. 3,the behavior of the fun
tion p(�) for 
ir
les (
ase a) isdi�erent from the 
ases of squares and triangles (b and
). On the other hand, in 
ases b and 
, p(�) showssimilar behavior.813
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Fig. 2. E�e
tive 
ondu
tivity of the plane as a fun
tion of �� for di�erent volume fra
tions and four 
onsidered geometries
1

10−1

10−2

10−2 10−1 1
1 − ν/νc

p(ν)

Fig. 3. Dependen
e of the fun
tion p(�) on 1 � �=�
for 
ases a (
ir
les), b (squares), and 
 (triangles)

3.2. Shape dependen
e of the e�e
tive
ondu
tivityThe fun
tion p(�) is related to the value of�sat = 1 + �eff (� = �1; �)1� �eff (� = �1; �) :Therefore, the behavior of p(�) 
lose to the per
olationthreshold should be di�erent for di�erent geometries.In Fig. 4, we plot the value of �sat as a fun
tion of(1 � �=�
) in the 
ase of 
ir
les, squares, and trian-gles. There is an important di�eren
e between thesetwo 
ases. In the 
ase of 
ir
les, �sat has a power-likedivergen
e (1 � �=�
)�k (k � 0:5). For squares andtriangles, this behavior is logarithmi
. In both 
ases,
lose to per
olation threshold, �sat is proportional tothe average inverse distan
e between boundaries of theneighboring 
ir
les or squares,�sat / Z dy1� 2f(y) ;814
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ondu
tivity of inhomogeneous two-
omponent media : : :
1

3

2

10−3 10−1 1
1 − ν/νc

10−4 10−2
1

10

σeff

Fig. 4. Saturated e�e
tive 
ondu
tivity as � !1 for
ases a, b, and 
. Full, dotted, and dashed lines showdi�erent analyti
 asymptoti
 behavior for these 
ases:1 � (�=2 + ar
sin((�=�
)1=2))=(1 � �=�
)1=2 � �=2(
ase a), 2 � 1:3 ln(1=(1 � (�=�
)1=2)) (
ase b),3 � p2 ln(2=p3(1� (�=�
)1=2)) (
ase 
)where f(y) =pr2 � y2for 
ir
les and f(y) = r � jyjfor squares. We here assume that the period of the sys-tem is 1, and the dimensionless size of the 
ir
le andthe square is r. Dire
t integration leads to the followingresults:�sat / �=2� ar

os((1� �=�
)1=2(1� �=�
)1=2 � �=2 (22)for 
ir
les and�sat / � ln�1� (�=�
)1=2� (23)for squares (Fig. 4). For triangles (
), the asymptoti
formula is similar to Eq. (23) with di�erent numeri
 
o-e�
ients. Interestingly, this observation suggests thatbehavior of the fun
tion p(�) is di�erent depending onthe 
urvature of the embedded regions.4. CONCLUSIONFrom 
al
ulations of the e�e
tive 
ondu
tivity of in-homogeneous two-phase systems in two dimensions, we�nd that the results of pre
ise numeri
al 
al
ulations
an be approximated by a universal fun
tion for �eff ,Eqs. (20) and (21), where the fun
tion p(�) depends

on the spatial arrangements of the 2D plane and onthe shape of the in
lusions with 
ondu
tivity �. It isshown that in a large interval of the 
ondu
tivity �, thee�e
tive 
ondu
tivity �eff is determined by the spatialaverage of the logarithm of individual 
ondu
tivities.The 
loser the system is to the per
olation threshold,the larger the validity range of this result. For largevalues of the 
ondu
tivity �, �eff saturates at a value�sat. The value of �sat near the per
olation thresholdis determined by the average inverse distan
e betweenboundaries of neighboring regions with the 
ondu
tiv-ity � in the dire
tion of the �eld (Eqs. (22) and (23)).The model that we have developed is quite gener-ally appli
able and 
an be applied in some interestingsituations, su
h as 
uprates and other two-dimensional
omplex transition metal oxides that exist near a phase-separation threshold. Importantly, there appears tobe a signi�
ant amount of experimental eviden
e thatmany anomalous properties of oxides are asso
iatedwith the 
oexisten
e of two or more phases. The appli-
ation of the presented model may help understandingthe transport properties of su
h systems.APPENDIXHere, we show how the sum over m in Eq. (10) 
anbe 
al
ulated exa
tly. We represent the sum asS = 1Xm=�1Re� exp(i�)m+ � + i�� ;where� = r(
os �0 � 
os �); � = n+ r(sin �0 � sin �):The sum over m is 
al
ulated using the de�nition ofthe digamma fun
tion. As a result, we express the sumasS = Re fexp(i�)[ (�� � i�)�  (1 + � + i�)℄g == �Re fexp(i�) 
tg(�(� + i�))g :Cal
ulating the imaginary part of the previous equa-tion, we obtain the result in Eq. (12),S = � 
os � sin (2��) + sin � sh (2��)
h (2��)� 
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