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ELECTRIC CONDUCTIVITY OF INHOMOGENEOUSTWO-COMPONENT MEDIA IN TWO DIMENSIONSV. V. Kabanov *, K. Zagar, D. MihailoviInstitut Jozef Stefan1000, Ljubljana, SloveniaSubmitted 9 August 2004The eletri ondutivity is alulated for regular inhomogeneous two-omponent isotropi medium in whihdroplets of one phase with ondutivity �2 are embedded in another, with ondutivity �1. An expression isformulated that an be used in many di�erent situations and is of partiular relevane in the ase where therelative proportion of the omponents is temperature-dependent and varies over a wide range. Behavior of thee�etive ondutivity depends on the spatial arrangements and the shape of the inlusions.PACS: 77.22.Ch 1. INTRODUCTIONDetermination of the e�etive ondutivity �effof spatially inhomogeneous heterophase systems is anold, but inreasingly important problem of theoreti-al physis. With the advent of new nanosale probesof ondensed matter systems, it has beome apparentthat many very diverse systems that were previouslythought to be homogeneous are in fat either statiallyor dynamially inhomogeneous. The e�etive ondu-tivity in suh ases annot be dealt with in terms ofhomogeneous medium theory, is not trivial, and solu-tions are presently known only in some rather speialases. Di�erent aspets of the theory and di�erent lim-iting ases are extensively disussed in Ref. [1℄.In this paper, we fous on the problem of alu-lating the e�etive ondutivity of an inhomogeneoustwo-dimensional (2D) plane. The lassial problem anbe formulated as follows. We assume that a 2D systemontains a mixture ofN (N � 2) di�erent phases or ma-terials with di�erent ondutivities �i, i = 1; 2; : : : ; N .The arrangements of di�erent phases an be random orregular. The question that we wish to address is howthe e�etive ondutivity of the plane depends on theondutivities of the phases, their onentration, andthe spatial arrangements.In the past, a number of di�erent approahes havebeen used to takle this problem. The exat result for*E-mail: vitor.kabanov�ijs.si

the e�etive ondutivity of a two-omponent systemwith a symmetri and isotropi distribution of ompo-nents was obtained by Dykhne [2℄. He found that thee�etive ondutivity of the system is determined bythe simple relation �eff = p�1�2:A symmetri distribution used in this problem amountsto the ase where the two omponents an be inter-hanged without hanging the end result. Obviously,one requirement for a symmetri distribution is thatthe two omponents have equal proportions, but it alsomeans that more general ases annot be onsideredwith this model.Further investigations have shown that a more gen-eral duality relation is valid for 2D heterogeneous on-dutors than that initially onsidered by Keller andDykhne [1℄. More reently, it was shown that a moregeneral relation for the e�etive ondutivity tensor ex-ists that is valid for multiomponent and anisotropisystems [3, 4℄. The e�etive ondutivity of severalexamples of ordered two-omponent systems was alsoalulated exatly [5�7℄. It was shown in [5, 6℄ thatfor a hessboard plane and for a plane onstruted oftriangles, the relation derived by Dykhne is also valid.A similar relation to the Dykhne formula for thee�etive ondutivity of a system onsisting of ran-domly distributed metalli and dieletri regions neara metal-to-insulator transition was derived by Efros809
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Fig. 1. Spatial arrangements of phases with ondutivities �1 = 1 and �2 = � for four onsidered asesand Shklovskii [8℄. They generalized the expression ofDykhne on the basis of saling arguments to the ase ofarbitrary onentrations of the two phases near a per-olation threshold, suh that the e�etive ondutivitybeomes �eff = �1(�2=�1)s; (1)where s is a universal saling exponent. Critial ex-ponents are also relatively well-known for this type ofsystems [9℄. This relation is not appliable when thesystem is driven away from the perolation thresholdand the general solution of the e�etive ondutivity ofan inhomogeneous medium thus remains an open prob-lem.Sen and Torquato [10℄ derived an expression thatallows an expliit alulation of the e�etive ondu-tivity tensor from the n-point probability funtionsSn(r1; : : : ; rn). These funtions give the probability of

the points at r1; : : : ; rn to belong to the same phase,and are therefore uniquely determined by the spatialdistribution of the phases. Unfortunately, the applia-tion of this method is limited beause the omputationswith n > 5 are fairly time onsuming.Di�erent expansions of the e�etive ondutivityin terms of a small parameter have been used in thepast [1, 11, 12℄. In most ases, the low-order termsweakly depend on mirogeometry. A diagrammatiexpansion for the e�etive ondutivity developed byKhalatnikov and Kamenshhik [13℄ promises to givemore generally appliable results. The perturbative ap-proah seems to be quite e�etive beause it allows ana-lyzing random and nonsymmetri distributions withdi�erent ondutivities.The problem was also disussed in the ase whereN = 2 and N = 3 on the basis of numerial alula-tions [3, 14℄. It was shown that the e�etive ondutiv-810



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Eletri ondutivity of inhomogeneous two-omponent media : : :ity for N = 3 is not universal and depends on the spa-tial arrangements of the phases. We have employed theboundary element method for e�ient numerial treat-ment of two-dimensional multi-phase systems with anarbitrary arrangement of phases. More details on themethod and its results an be found in [15℄.In this paper, we onsider the ondutivity of a two-phase system in two dimensions for a wide range of on-entrations and ondutivities. One phase is assumedto be omposed of droplets (of di�erent shapes) withondutivity �2 embedded within a medium of ondu-tivity �1 (see Fig. 1). We begin with alulating thee�etive ondutivity �eff using a perturbation theoryapproah with the two phases having the respetive vo-lume frations (1 � �) and �. Beause the problem islinear, we an introdue a dimensionless ondutivity�, measured in units of �1 = 1; and the e�etive on-dutivity �eff is a funtion of � = �2=�1 = �2 and �.The volume-averaged ondutivity�� = 1V Z � dVis given by �� = (1� �) + ��: (2)If the ondutivities of the two phases are not vastlydi�erent, j� � 1j � 1;the e�etive ondutivity an be alulated by pertur-bation theory [13℄. To apply perturbation theory, werewrite the spatial dependene of the ondutivity as�(r) = ��(1� �(r)); (3)where �(r) = �(r) � ���� :Assuming that the spatial distribution of ondutivityis unorrelated, we then obtainZ dr�(r)�(r + r0) = (� � 1)2�(1� �)��2 Æ(r0): (4)A straightforward alulation shows that up to the se-ond order in �, the ondutivity is given by�eff = �� � (� � 1)2�(1� �)2�� : (5)This result has been known for many years and wasderived for the dieletri funtion of dieletri mix-tures [16℄. In Refs. [11, 12℄, it was also derived usinga systemati perturbative expansion, whih showed itto be exat to the seond order in �. The seond term

in Eq. (5) represents the �rst nonvanishing ontribu-tion due to the inhomogeneity of the distribution ofthe phases. In the ase where � = 0:5, the result oin-ides with the expansion of the exat expression for theondutivity up to the seond order in (�2 � �1) [2℄:�eff = p�1�2: (6)2. CONDUCTIVITY OF A REGULARISOTROPIC TWO-COMPONENT SYSTEMIN TWO DIMENSIONSNext, we exatly alulate the e�etive ondutiv-ity of the plane with di�erent regular isotropi distri-butions. As before, we onsider a 2D plane onstrutedfrom two di�erent phases with di�erent ondutivities�1 = 1 and �2 = �. The regions with the ondutivity�2 have a irular shape with radius R and form a regu-lar square lattie with the period a as shown in Fig. 1a.Changing the radius R from 0 to a=2, we an hangethe volume fration of the seond phase from � = 0 tothe ritial onentration � = 0:785, whereafter the re-gions with the ondutivity �2 start to overlap and theperolation threshold is reahed. In the ase of metallidroplets, the total harge density must be zero, while a�nite harge density an aumulate on the surfae be-tween di�erent phases. This allows us to formulate theintegral equation for the surfae harge density [5, 6℄.We de�ne the surfae harge density by the relation�(�)R d� = d�(�);where d�(�) is the harge on a small part of the surfaebetween the two omponents with the lengthdl = Rd�:We reall that the salar potential at the point r isdetermined by the relation� = E0x� 2 Z d2r0 ln jr� r0j�(r0); (7)where ln jr� r0j=2� is the 2D Green's funtion. Theboundary onditions on the surfae between two phasesare [16℄ E1n �E2n = 4��(�); (8)�1E1n = �2E2n: (9)Substitutingr0 = i(ma+R os �0) + j(na+R sin �0);r = iR os � + jR sin �811



V. V. Kabanov, K. Zagar, D. Mihailovi ÆÝÒÔ, òîì 127, âûï. 4, 2005in Eqs. (7)�(9), we obtain an integral equation for the surfae harge density in the form�(�) = �2� 24E0 os � + 2r 1Xn;m=�1 �Z�� d�0�(�0)Re� exp (i�)m+ r(os �0 � os �)+i(n+ r(sin �0 � sin �))�35 ; (10)where r = Ra ; � = 1� �1 + � :As shown in the Appendix, the sum over m an be alulated exatly and the integral equation for the surfaeharge density is redued to the form�(�) = �2� 24E0 os � + 2r 1Xn=�1 �Z�� d�0K(n; �; �0)�(�0)35 ; (11)where K(n; �; �0) = � os � sin (2�r(os �0 � os �)) + sin � sh [2�(n+ r(sin �0 � sin �))℄h [2�(n+ r(sin �0 � sin �))℄ � os (2�r(os �0 � os �)) : (12)Expanding the surfae density �(�) in terms of Legendre polynomials Pl(os �) and taking into aount that�(��) = �(�); �(� � �) = ��(�);where �(�) = 1Xl=1 2l�1P2l�1(os �); (13)we obtain the linear set of algebrai equations for the oe�ients 2l�1,22l�14l � 1 = �2� "23E0Æl;1 + 2r 1Xk=1 2k�1Kl;k# ; (14)where Kl;k = 1Xn=�1 �Z0 d�0 �Z0 d� K(n; �; �0) sin �P2l�1(os �)P2k�1(os �0): (15)Solving Eq. (14) with a �nite number of Legendre polynomials taken into aount, we obtain the surfae hargedensity in Eq. (13). As a result, the e�etive ondutivity is evaluated by alulating the total urrentj = �1En = Enthrough the semiirular surfae with the radius R0 = a=2 (see Fig. 1a). Calulations similar to that of Eq. (12)lead to the expression for the e�etive ondutivity�eff = �4� �=2Z��=2 d� 24os � + 2rE0 1Xn=�1 �Z�� d�0K 0(n; �; �0)�(�0)35 ; (16)where K 0(n; �; �0) = � os � sin(2�(r os �0 � (1=2) os �)) + sin � sh (2�(n+ r sin �0 � (1=2) sin �))h (2�(n+ r sin �0 � (1=2) sin �))� os (2�(r os �0 � (1=2) os �)) : (17)812



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Eletri ondutivity of inhomogeneous two-omponent media : : :The result above applies to the ase of a uniformdistribution of irular droplets within the plane. Tosee how the e�etive ondutivity depends on the shapeof the regions with the ondutivity �2; we have per-formed alulations in the ase where irular dropletswere replaed with squares, triangles, and rhombuseswith the ratio of diagonals tg� = a=b, where a and bare translation vetors along x and y axes respetively(see Fig. 1b, , d). In all these ases, Eqs. (10)�(17) areslightly modi�ed beause in a polar oordinate system,r(�) is a funtion of the angle. Unlike in the ase ofirles, the perolation threshold for ases b, , and dis � = 0:5. We note that in the ase of rhombuses, thelattie is anisotropi and �11eff 6= �22eff .3. DISCUSSIONThe results of the alulations of the e�etive on-dutivity are presented in Fig. 2, as a funtion of ��for di�erent values of the volume fration �. It is easyto hek that the results satisfy the generalized dualityrelation [3, 4℄�11eff (�1; �2)�22eff (1=�1; 1=�2) = 1: (18)For irles, squares, and triangles,�22 = �11:For rhombuses,�22(�) = �11(�=2� �):Figure 2a, b, , d shows that for small �, the pertur-bation theory [11�13℄ (Eq. (5)) gives the orret resultindependent of the geometry.3.1. Approximate expression for the e�etiveondutivityAlthough the preditions in Fig. 2 represent the re-sults of a preise numerial alulation, they are notvery tratable when it omes to omparing with exper-imental data, being the result of numerial alulations.It is therefore helpful to try to obtain a funtional formfor desribing the behavior predited in Fig. 2, whihalso inludes all the relevant parameters, suh as thevolume fration � and the two ondutivities �1 and �2.Suh an expression an then be used in a wide rangeof problems, provided the validity range is taken intoaount. We desribe the properties of suh a heuris-tially determined funtion and determine its validityrange in terms of the parameters �; �1, and �2.

As an be seen from Fig. 2, the dependene of thee�etive ondutivity on � shows similar behavior in-dependently of the partiular geometry of the phases.First, we observe that when � is small, all the urvesare linear in �� with the same slope. In the relativelywide interval 0:1 < � < 10, the e�etive ondutivityis determined by the equation�eff (�) = �(1��)1 ��2 : (19)The range of appliability of this formula beomeswider as we approah the perolation threshold �.When � = �2=�1 � 1, the e�etive ondutivity sat-urates at �sat. The value of �sat is not universal anddepends on the geometry. It was pointed out reentlythat in the ase of irles with � < 0:5 in the entirerange of �, the e�etive ondutivity may be approxi-mated by the formula [18℄�eff (�) = 1� ��1 + ��: (20)To derive an approximate expression for the e�etiveondutivity, we assume that Eq. (20) remains or-ret if we replae � with the e�etive volume fration�eff (�; �). We require that�eff (�; �) � � as �! 0or � ! 0and �eff (�; �) � 1� 1� ��1 + �� as � ! �to satisfy Eq. (19), whih is valid at � = �. It is easyto see that the funtion�eff (�; �) = � + 1� �� 1��1� (1� p(�))�1 + (1� p(�))���1 +�1� (1� p(�))�1 + (1� p(�))��� � (1� p(�))�; (21)where p(�) ! 0 as � ! � and p(�) ! 1 as � ! 0,satis�es all the above requirements. The funtion p(�)is not universal and depends on the geometri shape ofthe region with ondutivity � and on the partiulararrangement of these inlusions in the 2D plane. InFig. 3, we plot p(�) as a funtion of 1��=� in ases a,b, and . Case d is di�erent beause the e�etive on-dutivity is anisotropi. As is learly seen from Fig. 3,the behavior of the funtion p(�) for irles (ase a) isdi�erent from the ases of squares and triangles (b and). On the other hand, in ases b and , p(�) showssimilar behavior.813
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Fig. 2. E�etive ondutivity of the plane as a funtion of �� for di�erent volume frations and four onsidered geometries
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Fig. 3. Dependene of the funtion p(�) on 1 � �=�for ases a (irles), b (squares), and  (triangles)

3.2. Shape dependene of the e�etiveondutivityThe funtion p(�) is related to the value of�sat = 1 + �eff (� = �1; �)1� �eff (� = �1; �) :Therefore, the behavior of p(�) lose to the perolationthreshold should be di�erent for di�erent geometries.In Fig. 4, we plot the value of �sat as a funtion of(1 � �=�) in the ase of irles, squares, and trian-gles. There is an important di�erene between thesetwo ases. In the ase of irles, �sat has a power-likedivergene (1 � �=�)�k (k � 0:5). For squares andtriangles, this behavior is logarithmi. In both ases,lose to perolation threshold, �sat is proportional tothe average inverse distane between boundaries of theneighboring irles or squares,�sat / Z dy1� 2f(y) ;814
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Fig. 4. Saturated e�etive ondutivity as � !1 forases a, b, and . Full, dotted, and dashed lines showdi�erent analyti asymptoti behavior for these ases:1 � (�=2 + arsin((�=�)1=2))=(1 � �=�)1=2 � �=2(ase a), 2 � 1:3 ln(1=(1 � (�=�)1=2)) (ase b),3 � p2 ln(2=p3(1� (�=�)1=2)) (ase )where f(y) =pr2 � y2for irles and f(y) = r � jyjfor squares. We here assume that the period of the sys-tem is 1, and the dimensionless size of the irle andthe square is r. Diret integration leads to the followingresults:�sat / �=2� aros((1� �=�)1=2(1� �=�)1=2 � �=2 (22)for irles and�sat / � ln�1� (�=�)1=2� (23)for squares (Fig. 4). For triangles (), the asymptotiformula is similar to Eq. (23) with di�erent numeri o-e�ients. Interestingly, this observation suggests thatbehavior of the funtion p(�) is di�erent depending onthe urvature of the embedded regions.4. CONCLUSIONFrom alulations of the e�etive ondutivity of in-homogeneous two-phase systems in two dimensions, we�nd that the results of preise numerial alulationsan be approximated by a universal funtion for �eff ,Eqs. (20) and (21), where the funtion p(�) depends

on the spatial arrangements of the 2D plane and onthe shape of the inlusions with ondutivity �. It isshown that in a large interval of the ondutivity �, thee�etive ondutivity �eff is determined by the spatialaverage of the logarithm of individual ondutivities.The loser the system is to the perolation threshold,the larger the validity range of this result. For largevalues of the ondutivity �, �eff saturates at a value�sat. The value of �sat near the perolation thresholdis determined by the average inverse distane betweenboundaries of neighboring regions with the ondutiv-ity � in the diretion of the �eld (Eqs. (22) and (23)).The model that we have developed is quite gener-ally appliable and an be applied in some interestingsituations, suh as uprates and other two-dimensionalomplex transition metal oxides that exist near a phase-separation threshold. Importantly, there appears tobe a signi�ant amount of experimental evidene thatmany anomalous properties of oxides are assoiatedwith the oexistene of two or more phases. The appli-ation of the presented model may help understandingthe transport properties of suh systems.APPENDIXHere, we show how the sum over m in Eq. (10) anbe alulated exatly. We represent the sum asS = 1Xm=�1Re� exp(i�)m+ � + i�� ;where� = r(os �0 � os �); � = n+ r(sin �0 � sin �):The sum over m is alulated using the de�nition ofthe digamma funtion. As a result, we express the sumasS = Re fexp(i�)[ (�� � i�)�  (1 + � + i�)℄g == �Re fexp(i�) tg(�(� + i�))g :Calulating the imaginary part of the previous equa-tion, we obtain the result in Eq. (12),S = � os � sin (2��) + sin � sh (2��)h (2��)� os (2��) :REFERENCES1. D. J. Bergman and D. Stroud, Sol. St. Phys. 46, 147(1992).815
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