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The electric conductivity is calculated for regular inhomogeneous two-component isotropic medium in which
droplets of one phase with conductivity o2 are embedded in another, with conductivity o1. An expression is
formulated that can be used in many different situations and is of particular relevance in the case where the
relative proportion of the components is temperature-dependent and varies over a wide range. Behavior of the
effective conductivity depends on the spatial arrangements and the shape of the inclusions.

PACS: 77.22.Ch

1. INTRODUCTION

Determination of the effective conductivity oepy
of spatially inhomogeneous heterophase systems is an
old, but increasingly important problem of theoreti-
cal physics. With the advent of new nanoscale probes
of condensed matter systems, it has become apparent
that many very diverse systems that were previously
thought to be homogeneous are in fact either statically
or dynamically inhomogeneous. The effective conduc-
tivity in such cases cannot be dealt with in terms of
homogeneous medium theory, is not trivial, and solu-
tions are presently known only in some rather special
cases. Different aspects of the theory and different lim-
iting cases are extensively discussed in Ref. [1].

In this paper, we focus on the problem of calcu-
lating the effective conductivity of an inhomogeneous
two-dimensional (2D) plane. The classical problem can
be formulated as follows. We assume that a 2D system
contains a mixture of N (N > 2) different phases or ma-
terials with different conductivities ;, 1 =1,2,... N.
The arrangements of different phases can be random or
regular. The question that we wish to address is how
the effective conductivity of the plane depends on the
conductivities of the phases, their concentration, and
the spatial arrangements.

In the past, a number of different approaches have
been used to tackle this problem. The exact result for
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the effective conductivity of a two-component system
with a symmetric and isotropic distribution of compo-
nents was obtained by Dykhne [2]. He found that the
effective conductivity of the system is determined by
the simple relation

Oeff = +/0102.

A symmetric distribution used in this problem amounts
to the case where the two components can be inter-
changed without changing the end result. Obviously,
one requirement for a symmetric distribution is that
the two components have equal proportions, but it also
means that more general cases cannot be considered
with this model.

Further investigations have shown that a more gen-
eral duality relation is valid for 2D heterogeneous con-
ductors than that initially considered by Keller and
Dykhne [1]. More recently, it was shown that a more
general relation for the effective conductivity tensor ex-
ists that is valid for multicomponent and anisotropic
systems [3, 4]. The effective conductivity of several
examples of ordered two-component systems was also
calculated exactly [5-7]. It was shown in [5, 6] that
for a chessboard plane and for a plane constructed of
triangles, the relation derived by Dykhne is also valid.

A similar relation to the Dykhne formula for the
effective conductivity of a system consisting of ran-
domly distributed metallic and dielectric regions near
a metal-to-insulator transition was derived by Efros



V. V. Kabanov, K. Zagar, D. Mihailovic

MWITD, Tom 127, BhIm. 4, 2005

QOO

g

>

Fig.1. Spatial arrangements of phases with conductivities 01 = 1 and o2 = o for four considered cases

and Shklovskii [8]. They generalized the expression of
Dykhne on the basis of scaling arguments to the case of
arbitrary concentrations of the two phases near a per-
colation threshold, such that the effective conductivity
becomes

(1)

where s is a universal scaling exponent. Critical ex-
ponents are also relatively well-known for this type of
systems [9]. This relation is not applicable when the
system is driven away from the percolation threshold
and the general solution of the effective conductivity of
an inhomogeneous medium thus remains an open prob-
lem.

Sen and Torquato [10] derived an expression that
allows an explicit calculation of the effective conduc-
tivity tensor from the n-point probability functions
Sn(r1,...,r,). These functions give the probability of

oeff = 01(02/01)%,
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the points at ry,...,r, to belong to the same phase,
and are therefore uniquely determined by the spatial
distribution of the phases. Unfortunately, the applica-
tion of this method is limited because the computations
with n > 5 are fairly time consuming.

Different expansions of the effective conductivity
in terms of a small parameter have been used in the
past [1, 11, 12]. In most cases, the low-order terms
weakly depend on microgeometry. A diagrammatic
expansion for the effective conductivity developed by
Khalatnikov and Kamenshchik [13] promises to give
more generally applicable results. The perturbative ap-
proach seems to be quite effective because it allows ana-
lyzing random and nonsymmetric distributions with
different conductivities.

The problem was also discussed in the case where
N = 2 and N = 3 on the basis of numerical calcula-
tions [3, 14]. It was shown that the effective conductiv-
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ity for N = 3 is not universal and depends on the spa-
tial arrangements of the phases. We have employed the
boundary element method for efficient numerical treat-
ment of two-dimensional multi-phase systems with an
arbitrary arrangement of phases. More details on the
method and its results can be found in [15].

In this paper, we consider the conductivity of a two-
phase system in two dimensions for a wide range of con-
centrations and conductivities. One phase is assumed
to be composed of droplets (of different shapes) with
conductivity oo embedded within a medium of conduc-
tivity o1 (see Fig. 1). We begin with calculating the
effective conductivity o using a perturbation theory
approach with the two phases having the respective vo-
lume fractions (1 — v) and v. Because the problem is
linear, we can introduce a dimensionless conductivity
o, measured in units of oy = 1, and the effective con-
ductivity oepr is a function of 0 = 02/01 = 02 and v.
The volume-averaged conductivity

6:%/adV

g=(1-v)+vo.

is given by
(2)

If the conductivities of the two phases are not vastly
different,
|U - 1‘ < ]-7

the effective conductivity can be calculated by pertur-
bation theory [13]. To apply perturbation theory, we
rewrite the spatial dependence of the conductivity as

o(r) = (1 - a(r)), (3)

where

Assuming that the spatial distribution of conductivity
is uncorrelated, we then obtain
—1)2u(1 =
/ dra(r)a(r +r) = LDV =Y)

5-2

o(r).  (4)
A straightforward calculation shows that up to the sec-
ond order in «, the conductivity is given by

(0 —1)%v(1 - 1/)‘

20 5)

Oeff =0 —
This result has been known for many years and was
derived for the dielectric function of dielectric mix-
tures [16]. In Refs. [11, 12], it was also derived using
a systematic perturbative expansion, which showed it
to be exact to the second order in a. The second term
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in Eq. (5) represents the first nonvanishing contribu-
tion due to the inhomogeneity of the distribution of
the phases. In the case where v = 0.5, the result coin-
cides with the expansion of the exact expression for the
conductivity up to the second order in (2 — 1) [2]:

Oeff = \/0103. (6)

2. CONDUCTIVITY OF A REGULAR
ISOTROPIC TWO-COMPONENT SYSTEM
IN TWO DIMENSIONS

Next, we exactly calculate the effective conductiv-
ity of the plane with different regular isotropic distri-
butions. As before, we consider a 2D plane constructed
from two different phases with different conductivities
01 = 1 and o5 = 0. The regions with the conductivity
02 have a circular shape with radius R and form a regu-
lar square lattice with the period a as shown in Fig. 1a.
Changing the radius R from 0 to a/2, we can change
the volume fraction of the second phase from v = 0 to
the critical concentration v, = 0.785, whereafter the re-
gions with the conductivity o, start to overlap and the
percolation threshold is reached. In the case of metallic
droplets, the total charge density must be zero, while a
finite charge density can accumulate on the surface be-
tween different phases. This allows us to formulate the
integral equation for the surface charge density [5, 6].
We define the surface charge density by the relation

p(0)R df = dp(0),

where dp(6) is the charge on a small part of the surface
between the two components with the length

dl = Rdf.

We recall that the scalar potential at the point r is
determined by the relation

¢ = Egx — 2/d2r' In|r —r'|p(x'), (7)

where In|r —r'|/27 is the 2D Green’s function. The
boundary conditions on the surface between two phases
are [16]

EL - B2 = dmp(9), (®)

01E} =0y E2. (9)
Substituting
r' =i(ma+ Rcosf') + j(na + Rsinf'),

r =iRcosf + jRsinf
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in Eqgs. (7)-(9), we obtain an integral equation for the surface charge density in the form

0) '|
0 |-E 0 +2 d6' p(6") exp (0 . 1
p(6) = [ 0CosO+ rnmgoo/ {m+r(cos€’—cos@)—}—i(n—}—r(sinﬁ’—sinﬁ)) J ’ (10)
where
R 1—0
r=—, K= .
a 1+o

As shown in the Appendix, the sum over m can be calculated exactly and the integral equation for the surface
charge density is reduced to the form

p(6) = 5 {Eocosemr > /dGIanG)(G)}, (11)

n=—oo

where

cos B sin (27 (cos B’ — cosh)) + sin O sh [2m(n + r(sin 6’ — sin 6))]
ch27(n + r(sin ' — sinh))] — cos (27r(cos @' — cos b))

K(n,0,0') = (12)

Expanding the surface density p(f) in terms of Legendre polynomials P;(cos#) and taking into account that

p(=0) = p(6), p(r—86) = —p(0),

where

0) = ca1Pai(cosh), (13)

=1

we obtain the linear set of algebraic equations for the coefficients co;_1,

262[,1 K 2 ad
= — | =Eyo 2 1 K, 14
17—1 5 | 370 1,1+ T};C% 18 k|, (14)
where
K= Z /d@'/d@l&’(n,@,@')sinHPgl_l(cost‘))ng_l(cos@'). (15)
n=-00

Solving Eq. (14) with a finite number of Legendre polynomials taken into account, we obtain the surface charge
density in Eq. (13). As a result, the effective conductivity is evaluated by calculating the total current

j=oE,=E,
through the semicircular surface with the radius R’ = a/2 (see Fig. 1a). Calculations similar to that of Eq. (12)
lead to the expression for the effective conductivity

w/2

aeffzﬁ/de cos9+— /del (n,0,0"p(6" | , (16)
—x/2 n=—oc_"
where

cos B sin(27(r cosf' — (1/2) cosB)) + sinfsh (27 (n + rsind’ — (1/2) sinh))
ch (27(n + rsinf’ — (1/2)sinf)) — cos (27 (r cos ' — (1/2) cosh))

K'(n,8,0'") = (17)
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The result above applies to the case of a uniform
distribution of circular droplets within the plane. To
see how the effective conductivity depends on the shape
of the regions with the conductivity oy, we have per-
formed calculations in the case where circular droplets
were replaced with squares, triangles, and rhombuses
with the ratio of diagonals tga = a/b, where a and b
are translation vectors along = and y axes respectively
(see Fig. 1b, ¢, d). In all these cases, Eqs. (10)—(17) are
slightly modified because in a polar coordinate system,
r(f) is a function of the angle. Unlike in the case of
circles, the percolation threshold for cases b, ¢, and d
is v, = 0.5. We note that in the case of rhombuses, the
lattice is anisotropic and olf # 027

3. DISCUSSION

The results of the calculations of the effective con-
ductivity are presented in Fig. 2, as a function of ¢”
for different values of the volume fraction v. It is easy
to check that the results satisfy the generalized duality
relation [3, 4]

aéflf(al,ag)asz(l/al,1/02) =1. (18)

For circles, squares, and triangles,

For rhombuses,
0?2 (a) = o' (1/2 — a).

Figure 2a, b, ¢, d shows that for small x, the pertur-
bation theory [11-13] (Eq. (5)) gives the correct result
independent of the geometry.

3.1. Approximate expression for the effective
conductivity

Although the predictions in Fig. 2 represent the re-
sults of a precise numerical calculation, they are not
very tractable when it comes to comparing with exper-
imental data, being the result of numerical calculations.
It is therefore helpful to try to obtain a functional form
for describing the behavior predicted in Fig. 2, which
also includes all the relevant parameters, such as the
volume fraction v and the two conductivities oy and o».
Such an expression can then be used in a wide range
of problems, provided the validity range is taken into
account. We describe the properties of such a heuris-
tically determined function and determine its validity
range in terms of the parameters v, o1, and o5.
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As can be seen from Fig. 2, the dependence of the
effective conductivity on o shows similar behavior in-
dependently of the particular geometry of the phases.
First, we observe that when x is small, all the curves
are linear in ¢” with the same slope. In the relatively
wide interval 0.1 < o < 10, the effective conductivity
is determined by the equation

(1-v)

oef(0) = 0y 5

oy (19)

The range of applicability of this formula becomes
wider as we approach the percolation threshold v..
When o = 05/01 > 1, the effective conductivity sat-
urates at ogq¢. The value of o4, is not universal and
depends on the geometry. It was pointed out recently
that in the case of circles with v < 0.5 in the entire
range of o, the effective conductivity may be approxi-
mated by the formula [18]

_l—yn
T 14wk

oeff () (20)
To derive an approximate expression for the effective
conductivity, we assume that Eq. (20) remains cor-
rect if we replace v with the effective volume fraction
Vet (K, ). We require that

Vepf(k, V) =V as k—0
or
v—0
and
11—-o0v
ueff(n,u)%;1+ayc as v — v,

to satisfy Eq. (19), which is valid at v = v,. It is easy
to see that the function

1
Vepf (K, V) =V + Pl

<—

where p(v) = 0 as v — v, and p(v) = 1 as v — 0,
satisfies all the above requirements. The function p(v)
is not universal and depends on the geometric shape of
the region with conductivity ¢ and on the particular
arrangement, of these inclusions in the 2D plane. In
Fig. 3, we plot p(v) as a function of 1 — v/, in cases a,
b, and ¢. Case d is different because the effective con-
ductivity is anisotropic. As is clearly seen from Fig. 3,
the behavior of the function p(v) for circles (case a) is
different from the cases of squares and triangles (b and
¢). On the other hand, in cases b and ¢, p(v) shows
similar behavior.

- (L =p@)re, (21)
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Fig. 2. Effective conductivity of the plane as a function of " for different volume fractions and four considered geometries

p(v)
F ' ' — e
1 T T DDDDE
o A‘:
o A i
o A o
A
A .
o A
A
1071 2 : E
A . ]
A
A A '.o
At *
.
o
10*2 | | i
1072 107! 1
1-v/ve

Fig.3. Dependence of the function p(v) on 1 — v/v,
for cases a (circles), b (squares), and c (triangles)

3.2. Shape dependence of the effective
conductivity

The function p(v) is related to the value of

14+ v (k= —1,v)
1— vk =—-1v)

Osat =

Therefore, the behavior of p(v) close to the percolation
threshold should be different for different geometries.
In Fig. 4, we plot the value of o4, as a function of
(1 — v/v.) in the case of circles, squares, and trian-
gles. There is an important difference between these
two cases. In the case of circles, o4, has a power-like
divergence (1 — v/v.) * (k ~ 0.5). For squares and
triangles, this behavior is logarithmic. In both cases,
close to percolation threshold, o, is proportional to
the average inverse distance between boundaries of the
neighboring circles or squares,

Osat X /

dy
1—-2f(y)’
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Fig.4. Saturated effective conductivity as ¢ — oo for

cases a, b, and c¢. Full, dotted, and dashed lines show

different analytic asymptotic behavior for these cases:

1 — (7/2 + arcsin((v/ve)?)) /(1 = v/ve)Y? — 7)2

(case a), 2 — 1.3In(1/(1 — (v/ve)'?)) (case b),
3— V2In(2/V3(1 = (v/ve)"?)) (case c)

where

for circles and
fly) =r—1yl

for squares. We here assume that the period of the sys-
tem is 1, and the dimensionless size of the circle and
the square is . Direct integration leads to the following
results:

7/2 — arccos((1 — v/v.)'/?
(1—v/v.)t/?

Ogat X - 77/2 (22)

for circles and

eat 5 —In (1 - (1//1/6)1/2) (23)
for squares (Fig. 4). For triangles (¢), the asymptotic
formula is similar to Eq. (23) with different numeric co-
efficients. Interestingly, this observation suggests that
behavior of the function p(v) is different depending on
the curvature of the embedded regions.

4. CONCLUSION

From calculations of the effective conductivity of in-
homogeneous two-phase systems in two dimensions, we
find that the results of precise numerical calculations
can be approximated by a universal function for oy,
Eqs. (20) and (21), where the function p(r) depends
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on the spatial arrangements of the 2D plane and on
the shape of the inclusions with conductivity o. It is
shown that in a large interval of the conductivity o, the
effective conductivity o.ps is determined by the spatial
average of the logarithm of individual conductivities.
The closer the system is to the percolation threshold,
the larger the validity range of this result. For large
values of the conductivity o, o, saturates at a value
0sat- The value of o4, near the percolation threshold
is determined by the average inverse distance between
boundaries of neighboring regions with the conductiv-
ity o in the direction of the field (Eqgs. (22) and (23)).

The model that we have developed is quite gener-
ally applicable and can be applied in some interesting
situations, such as cuprates and other two-dimensional
complex transition metal oxides that exist near a phase-
separation threshold. Importantly, there appears to
be a significant amount of experimental evidence that
many anomalous properties of oxides are associated
with the coexistence of two or more phases. The appli-
cation of the presented model may help understanding
the transport properties of such systems.

APPENDIX

Here, we show how the sum over m in Eq. (10) can
be calculated exactly. We represent the sum as

- 2 ne{ashta)

m=—0o0
a=n+r(sinf —sinf).

exp(i6)
m+ [ +ia

where
B =r(cosf' — cosb),

The sum over m is calculated using the definition of
the digamma function. As a result, we express the sum
as

$ = Re {exp(i8)[(~F — ia) —¥(1 + B +ia)]} =
= w Re {exp(if) ctg(n (B + ia))}.

Calculating the imaginary part of the previous equa-
tion, we obtain the result in Eq. (12),

cosfsin (273) + sin 6 sh (2w a)

5= ch (2ma) — cos (27 3)
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