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SIMPLE THEORY OF EXTREMELY OVERDOPED HTSA. F. Andreev *Kapitza Institute for Physi
al Problems, Russian A
ademy of S
ien
es119334, Mos
ow, RussiaLow Temperature Laboratory, Helsinki University of Te
hnologyFIN-02015 HUT, FinlandSubmitted 15 November 2004We demonstrate the existen
e of a simple physi
al pi
ture of super
ondu
tivity for extremely overdoped CuO2planes. It has all the 
hara
teristi
 features of HTS, su
h as a high super
ondu
ting transition temperature,the dx2�y2 symmetry of the order parameter, and the 
oexisten
e of a single-ele
tron Fermi surfa
e and apseudogap in the normal state. The values of the pseudogap are 
al
ulated for di�erent doping levels. Orbitalparamagnetism of preformed pairs is predi
ted.PACS: 74.20.-z, 74.78.-w1. INTRODUCTIONIn this work (also see earlier Letter [1℄), we demon-strate that in the phase diagram of 
uprate high-temperature super
ondu
tors (HTS), a small region ex-ists where the 
hara
teristi
 features of HTS 
an be eas-ily understood on the base of a simple theory. These
hara
teristi
 features in
lude a high super
ondu
tingtransition temperature, the dx2�y2 symmetry of the or-der parameter (see [2℄), and the 
oexisten
e of a sing-le-ele
tron Fermi surfa
e and a pseudogap in the normalstate [3℄. The last phenomenon is usually attributed tothe presen
e of preformed (i.e., normal-state) ele
tronpairs (in parti
ular, bipolarons [4�8℄).The aforementioned small region in the phase dia-gram is situated in the vi
inity of the maximal hole-doping level x = x
 
ompatible with super
ondu
tiv-ity. The super
ondu
ting transition temperature T
 iszero for x � x
, and hen
e it is low in our region nearx = x
. However, T
 in
reases with de
reasing x forx < x
 su
h that it is quite high at the boundary of theregion (i.e., for x
 � x � 1).Two features of our small region are important tomake a simple physi
al pi
ture possible. These are rel-atively low T
 and the 
lear nature of the normal stateas mostly the 
onventional Fermi liquid.We 
al
ulate the pseudogap. With in
reasing x,*E-mail: andreev�kapitza.ras.ru

the pseudogap de
reases for x < x
. As well as T
, thepseudogap disappears at x = x
. However, it reappearsfor larger doping levels x > x
.As a new predi
tion, we show the existen
e of an un-usual orbital paramagnetism of the preformed (singlet)pairs, whi
h 
an probably be experimentally separatedfrom the Pauli spin paramagnetism of single ele
tronsand the Landau diamagnetism of single ele
trons andpairs. 2. PAIR QUASIPARTICLESThe key point is the existen
e of very mobile pairquasiparti
les in 
rystals under the tight-binding 
on-ditions, i.e., if the energy of the ele
tron�ele
tron inter-a
tion at a distan
e of the order of the atomi
 spa
ing
onsiderably ex
eeds the ele
tron tunneling amplitudeto neighboring latti
e 
ites. Quasiparti
les of this typewere studied earlier [9℄ in helium quantum 
rystals andmore re
ently by Alexandrov and Kornilovit
h [7℄ as amodel of bipolarons in HTS (also see [10℄).�7 � �4 � �3� � �� � �1 � �2� � �� � �6 � �5Figure. CuO2 plane: � � Cu atoms and � � O atoms790
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onsider two ele
trons lo
alized at neighboring(1 and 2 in the Figure) 
opper atoms (to be more pre-
ise, in unit 
ells 
ontaining these atoms) forming asquare latti
e in the CuO2 plane. The ele
tron tun-neling from 2 to 4 or 6 does not 
hange the energyof the system in view of the 
rystal latti
e symmetry.The same is true for the ele
tron tunneling from 1 to3 or 5. Owing to this type of transitions, an ele
tronpair 
an move as a whole over the entire plane, be
ausethe 2 ! 4 transition 
an be followed by the transition1 ! 7 or 1 ! 3, and so on. Be
ause the transitionsdo not 
hange the energy of the system, the motion isfully 
oherent. An ele
tron pair behaves as a delo
al-ized Bose quasiparti
le.To 
al
ulate the quasiparti
le spe
trum, we 
onsiderthe lo
alized states of a pair,jr; r0; ��i = 
+r�
+r0� j0i ; (1)where 
+r� are the ele
tron 
reation operators with aspin proje
tion � ="; # at a point r and j0i is the ele
-tron va
uum.The e�e
tive tunneling Hamiltonian Heff is de�nedby the matrix elements of the operatorH = tXrr0� 
+r0�
r�; (2)whi
h 
orrespond to the transitions of one of the ele
-trons to 
opper atoms that are next-to-nearest neigh-bors of the initial atom, su
h that the energy of thesystem of two ele
trons remains un
hanged. Here, t isthe tunneling amplitude, whi
h is known to be positive(see [2, p. 1004℄).Let an (n = x; y) be the square-latti
e periods di-re
ted from point 1 to point 2 and from point 1 to point4, respe
tively. We haveHeff jr; r+ ax; ��i = t(jr+ ax + ay ; r+ ax; ��i++ jr+ ax � ay; r+ ax; ��i +jr; r+ ay; ��i + jr; r� ay; ��i) == t(� jr+ ax; r+ ax + ay; ��i ++ jr+ ax � ay; r+ ax; ��i +jr; r+ ay ; ��i � jr� ay; r; ��i); (3)where we used the antisymmetry of quantities (1) withrespe
t to the arguments (r; �) and (r0; �). Analo-gously,Heff jr; r+ ay; ��i = t(� jr+ ay ; r+ ax + ay; ��i++ jr� ax + ay; r+ ay; ��i +jr; r+ ax; ��i � jr� ax; r; ��i): (4)

The 
omplete set of lo
alized states of an ele
tronpair is determined by the state ve
torsjr; n; ��i � jr; r+ an; ��i ; (5)where r labels unit 
ells of the square latti
e.The problem obviously splits into two independentproblems for singlet and triplet pairs that are 
hara
-terized by quantities (5), whi
h are respe
tively anti-symmetri
 and symmetri
 in the spin indi
es �; �. As-suming that the required stationary states of a pair aresuperpositions of lo
alized states,Xr;n  (n)�� eikr jr; n; ��i (6)with 
oe�
ients  (n)�� independent of r (this 
orre-sponds to a de�nite quasimomentum k), we obtain(E(k)� �0) (x) = t (y)(1� e�i�x)(1� ei�y );(E(k)� �0) (y) = t (x)(1� ei�x)(1� e�i�y ); (7)where the upper or lower sign 
orresponds to a sin-glet or triplet state, respe
tively. The 
onditions forthe existen
e of a nontrivial solution  (x),  (y) of sys-tem (7) determine the energy E(k) of a pair quasiparti-
le. Here, �0 is the energy of the initial lo
alized state;�x = k � ax and �y = k � ay . Everywhere in formulas(7), we omit identi
al spin indi
es ��.The minimal energy �m = minE(k) = �0 � 4t of asinglet pair is attained at �x = �y = 0. The same min-imal energy of a triplet pair is attained at the nonzeroquasimomentum �x = �y = �. This degenera
y is re-moved by taking the ele
tron ex
hange in the initiallo
alized pair into a

ount. It is well known that thisex
hange is of an antiferromagneti
 nature, and hen
esinglet pairs have the minimal energy.Thus, solitary Bose quasiparti
les 
an exist in theCuO2 plane; these parti
les are 
hara
terized by a dou-bled ele
tri
 
harge and by zero momentum and spin inthe ground state. It 
an be readily seen from Eqs. (7)that the e�e
tive mass of quasiparti
les is m = ~2=ta2,where a = jaxj = jay j. In addition, quasiparti
les havea spe
i�
 quantum number n = x; y, whi
h determinesthe orientation of a two-ele
tron �dumb-bell�. Substi-tuting E(k) = �m and k = 0 in Eqs. (7), we obtain (x) = � (y) in the ground state. Be
ause the orien-tations n = x and n = y are transformed into ea
hother under latti
e rotation through the angle �=2 andunder re�e
tion in the diagonal plane passing throughpoints 1 and 3 in the �gure, the ground-state wave fun
-tion  �  (x) = � (y) of quasiparti
les transforms ina

ordan
e with the nontrivial 1D representation (usu-ally denoted by dx2�y2) of the symmetry group of theCuO2 plane (see [2℄).791



A. F. Andreev ÆÝÒÔ, òîì 127, âûï. 4, 20053. SUPERCONDUCTIVITYWe further assume that all the other two-ele
tron,three-ele
tron, et
., 
on�gurations lo
alized at dis-tan
es of the order of the atomi
 spa
ing are ener-geti
ally disadvantageous 
ompared to the pair 
on-�guration 
onsidered above. In addition, we assumethat ele
trons are repulsed at large distan
es su
h thatthe ele
tron�ele
tron intera
tion energy is of the orderof the one-ele
tron tunneling amplitude. Under these
onditions, only single-ele
tron Fermi parti
les and thepair Bose parti
les 
onsidered above play signi�
antrole.Finally, we assume that the minimal energy �m ofpair quasiparti
les is su
h that �m=2 is within the sing-le-ele
tron energy band. We note the following. Underthe tight-binding 
onditions, there are two di�erent sit-uations in whi
h �m=2 
an be within the single-ele
tronenergy band. First, if single ele
trons and ele
trons inpairs 
orrespond to the same energy band, the single-ele
tron tunneling amplitude must be of the order ofthe ele
tron�ele
tron intera
tion energy in the pairs,while the one-ele
tron tunneling amplitude t in pairs,introdu
ed in Se
. 2, must be mu
h smaller than theintera
tion. The last 
ondition, whi
h is the 
onditionof the appli
ability of the pro
edure used in Se
. 2, 
anbe a result of the large polaron e�e
t in pairs. Se
ond,if single ele
trons and ele
trons in pairs 
orrespond todi�erent bands, both one-ele
tron amplitudes 
an beof the same order. The analysis 
arried out by Alexan-drov and Kornilovit
h in [7℄ shows that the 
onditionsformulated above are likely to be realisti
.We now tra
e the 
hange of the state of the sys-tem at T = 0 as the number of ele
trons in
reases(the hole-doping level de
reases). Until �m=2 > �F ,only single-ele
tron quasiparti
les are present and thesystem behaves as an ordinary Fermi liquid. The 
on-dition �m=2 = �F determines the minimal hole-dopinglevel 
ompatible with the state of a normal Fermi liq-uid. Let n
 denote the 
orresponding ele
tron densityn. Upon a further de
rease in the hole-doping level, alladditional n � n
 ele
trons pass into a Bose �Einstein(BE) 
ondensate of pair quasiparti
les (we everywhere
onsider the 
ase of small n� n
 values, for whi
h the
on
entration of pairs is low and their intera
tion 
anbe disregarded). The system be
omes a super
ondu
-tor. The super
ondu
ting order parameter is given bythe boson ground-state wave fun
tion  �  (x) nor-malized by the 
ondition j j2 = (n � n
)=2; the wavefun
tion transforms in a

ordan
e with the dx2�y2 rep-resentation of the symmetry group of the CuO2 plane.It is important to note the following. In the system

ground state (i.e., for 
omplete �lling of all fermionstates with the energies smaller than �F ), the un
er-tainty in the energy of a boson quasiparti
le with lowex
itation energy � = k2=2m, arising due to its 
ol-lisions with single-ele
tron Landau quasiparti
les, isproportional to �2. As in the 
onventional theory ofFermi liquid, this is, �rst, be
ause of a low density offermions in an order-� neighborhood of �F , with whi
hthe given boson 
an 
ollide due to energy 
onserva-tion. Se
ond, the statisti
al weight of the �nal states towhi
h fermioni
 transitions are possible is small. Theprobability of the boson de
ay into two fermions perunit time is also small: as suggested at the beginningof this se
tion, the boson must over
ome a signi�
antenergy barrier. Thus, the proposed pi
ture of super-
ondu
tivity in the vi
inity of the maximal doping levelremains valid even in the region of appre
iable densi-ties of fermions, where the intera
tion between bosonsand fermions is signi�
ant. The 
riti
al ele
tron densityn
 is determined from the 
ondition that the ele
tron
hemi
al potential is equal to half the minimal bosonenergy. In the general 
ase, this energy is a fun
tionalof the distribution fun
tion for single-ele
tron Landauquasiparti
les.In 
al
ulating the super
ondu
ting transition tem-perature, the fermion distribution fun
tion may be 
on-sidered as 
orresponding to T = 0, be
ause the temper-ature 
orre
tions (proportional to T 2) to the thermo-dynami
 fun
tions of the Fermi liquid are 
onsiderablysmaller than the 
orre
tions in
luded below.The density of un
ondensed bosons at a �nite tem-perature T < T
 isN 0 = Z 2�k dk(2�~)2 1e�=T � 1 = mT2�~2 lg T� : (8)The integral in Eq. (8) diverges at small � and is there-fore 
ut o� at � � � , where � is a small tunnelingamplitude of ele
trons in the dire
tion perpendi
ularto the CuO2 plane.The ex
ess number n�n
 of ele
trons in the systemis equal to the doubled sum of N 0 and the numberN0 ofbosons in the 
ondensate. This leads to the dependen
eof the super
ondu
ting transition temperature on thedoping level for small values of n� n
:n� n
 = mT
�~2 lg T
� : (9)The number of pairs in the 
ondensateN0 = n� n
2 �1� TT
 lgT=�lg T
=� � (10)792



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Simple theory of extremely overdoped HTSdetermines the modulus of the order parameterj j2 = N0 at �nite temperatures. The super
ondu
t-ing transition temperature de�ned by Eq. (9) is quitehigh. To within the logarithmi
 term, this temperatureis of the order of the one-ele
tron tunneling amplitudet at the boundary of the appli
ability region (i.e., forn� n
 � a�2). The possibility that the super
ondu
t-ing transition temperature may have su
h an order ofmagnitude was pointed out in the aforementioned pa-per by Alexandrov and Kornilovit
h [7℄.The intera
tion of fermions with the BE 
onden-sate (e�e
tive ele
tron�ele
tron intera
tion), whi
h isdes
ribed by the order parameter  , 
reates an e�e
-tive potential �k a
ting on fermions as in 
onventionalsuper
ondu
tors:Hint =Xk (�k
+k"
+�k# +H.
.): (11)In view of the symmetry of  , we have�k = V (k̂2x � k̂2y) ; (12)where k̂ = k=jkj and V is invariant under the symme-try group.Owing to this intera
tion, fermions in the super
on-du
ting state 
onsidered a
quire features typi
al of anordinary super
ondu
tor with the dx2�y2 symmetry.4. NORMAL STATE THERMODYNAMICS.THE PSEUDOGAPThe total number of pairs for T < T
 is indepen-dent of the temperature and is equal to (n�n
)=2. Theele
tron 
hemi
al potential for T < T
 is also tempera-ture-independent and equal to � = �(n
) = �m(n
)=2,where �m = �m(n) is the pair minimal energy, whi
hdepends on the fermion density, as shown above.For T > T
, the fermion distribution fun
tion, asabove, 
orresponds to T = 0, but with the tempera-ture-dependent 
hemi
al potential. The pair energyspe
trum is E = �m(�) + �, where � = k2=2m. Thepair density above T
 is given byN = 1Z0 2�k dk(2�~)2 1e(�+�)=T � 1 == mT2�~2 lg 11� e��=T : (13)The parameter � (� � �) is de�ned by� = ��m�� Æ�� 2Æ�; (14)

where Æ� = ���(n
). With 
hanging the temperature,the total ele
tron number 
onservation givesn� n
 = 2N + �n��Æ�: (15)From the last equation, we �nd � = �(T ) and then allthe other quantities.For n > n
 and not too high temperature T �� T
 lg(T
=�), the pair density is determined byN(T )�N(T
)N(T
) = �n=��2(2� ��m=��)Te��p=T ; (16)where N(T
) = (n� n
)=2 and�p = T
 lg T
� = �~2m (n� n
) (17)is the pseudogap for n > n
. As well as T
, it is zero atthe 
riti
al value of the doping level n = n
. For higherdoping level n < n
 (T
 = 0), we haveN(T ) = mT2�~2 e��0p=T ; (18)where �0p = �2���n � ��m�n � (n
 � n) (19)is the pseudogap for n < n
. Equation (18) holds inthe low-temperature region T � �0p. For n < n
, thepseudogap �0p is the gap in the energy spe
trum of thepair quasiparti
les. For high temperatures T � �p;�0p(but T � t), the pair density is a linear fun
tion oftemperature, N(T ) = z�n=��2(2� ��m=��)T (20)where z is the solution of the equation �z = e�z with� = �~2m �n=��2� ��m=��: (21)The entropy of pairs is determined by the equationS(T ) = m2�~2 1Z0 d�f(1 + f) lg(1 + f)� f lg fg; (22)where f = �e(�+�)=T � 1	�1. For n > n
 in thelow-temperature region T � �p, we haveS(T )T ��ST �T=T
 = � m2�~2 �pT e��p=T ; (23)793
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 = �m12~2 : (24)The fun
tion S(T ) is almost linear in T , with exponen-tially small deviations. For n < n
, the pair entropy isexponentially small at low temperatures T � �0p:S(T ) = mT2�~2 e��0p=T : (25)At high temperatures T � �p;�0p, the entropy isS(T ) = m�2�~2T: (26)The temperature-independent fa
tor � is deter-mined by � = 1Zz x dxex � 1 � �z2: (27)The entropy is again a linear fun
tion of temperature.5. ORBITAL PARAMAGNETISM OF PAIRSIn this se
tion, we show that the orbital motionof ele
trons inside the pairs 
ause a pe
uliar paramag-netism. Let a pair be at rest as a whole. For singletpairs at k = 0, the Hamiltonian in Eqs. (3) and (4) 
anbe written as the 2� 2 matrixH = 4t 0 11 0! � 4t�1; (28)a
ting on a state ve
tor =  (x) 10!+  (y) 01! ; (29)where  (n), n = x; y, are quantum amplitudes of twoorientations of the two-ele
tron dumb-bell and �1 is aPauli matrix.In the x-state, 
oordinates of two ele
trons (withrespe
t to the 
enter of gravity of the pair) arex1 = �a=2, y1 = 0 and x2 = a=2, y2 = 0, respe
-tively. In the y-state, we have x1 = 0, y1 = �a=2 andx2 = 0, y2 = a=2. From this, we �nd the 
oordinateoperators for both ele
trons:x1 = �x2 = �a2  1 00 0! ;y1 = �y2 = �a2  0 00 1! : (30)

The velo
ity operators are determined by the 
ommu-tators _r1;2 = i~ [H; r1;2℄ : (31)Simple 
al
ulation gives_x1 = � _x2 = � _y1 = _y2 = �2at~  0 �ii 0 ! �� �2at~ �2: (32)The operator of the pair magneti
 moment, whi
h isdire
ted along the z axis, is� � �z = e2
X1;2 (x _y � y _x) = �eta2~
 �2; (33)where e is the ele
tron 
harge and 
 is the velo
ity oflight.In the presen
e of an external magneti
 �eldB � Bz, the Hamiltonian of the pair isH = 4t�1 � �B: (34)The energy eigenvalues areE = �0 � 4t"1 +� ea24~
B�2#1=2 : (35)In weak �elds, the minimal energy isEmin = �0 � 4t� t e2a48~2
2B2: (36)The average magneti
 moment of the pair ish�i = ��Emin�B = �B; (37)where � = e2a44~2
2 t = e2a24m
2 (38)is the pair paramagneti
 polarizability.We note that pairs with k = 0 in the upper energyband (the lower sign in (35)) are diamagneti
.The pair 
ontribution to the paramagneti
 sus
ep-tibility of a 3D sample is� = e2a24m
2N (3); (39)794



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Simple theory of extremely overdoped HTSwhere N (3) = N(T )=L is the 3D density of pairs andN(T ) is the 2D density determined by formulas (16),(18), and (20). Here, L is the distan
e between neigh-boring CuO2 planes.Generally, we have three 
ompeting 
ontributions tothe magneti
 sus
eptibility: the orbital paramagnetismof pairs 
onsidered above, the Pauli spin sus
eptibilityof single ele
trons (pairs are singlet), and the Landaudiamagnetism of single ele
trons and pairs. Spin sus-
eptibility is isotropi
. Orbital paramagnetism andLandau diamagnetism are both strongly anisotropi
(the magneti
 moment is dire
ted along the z axisindependently of the dire
tion of the magneti
 �eld)be
ause of a 2D 
hara
ter of single ele
trons and pairs.However, Landau diamagnetism, espe
ially in the 2D
ase, is very sensitive to inhomogeneities. For example,it is easily suppressed by lo
alization of 
harge 
arriers.Orbital paramagnetism is �nite at zero velo
ity of apair as a whole. Therefore, it has to be mu
h morestable against inhomogeneities. We hope that orbitalparamagnetism 
an be experimentally separated fromthe other two 
ontributions to sus
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