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SIMPLE THEORY OF EXTREMELY OVERDOPED HTSA. F. Andreev *Kapitza Institute for Physial Problems, Russian Aademy of Sienes119334, Mosow, RussiaLow Temperature Laboratory, Helsinki University of TehnologyFIN-02015 HUT, FinlandSubmitted 15 November 2004We demonstrate the existene of a simple physial piture of superondutivity for extremely overdoped CuO2planes. It has all the harateristi features of HTS, suh as a high superonduting transition temperature,the dx2�y2 symmetry of the order parameter, and the oexistene of a single-eletron Fermi surfae and apseudogap in the normal state. The values of the pseudogap are alulated for di�erent doping levels. Orbitalparamagnetism of preformed pairs is predited.PACS: 74.20.-z, 74.78.-w1. INTRODUCTIONIn this work (also see earlier Letter [1℄), we demon-strate that in the phase diagram of uprate high-temperature superondutors (HTS), a small region ex-ists where the harateristi features of HTS an be eas-ily understood on the base of a simple theory. Theseharateristi features inlude a high superondutingtransition temperature, the dx2�y2 symmetry of the or-der parameter (see [2℄), and the oexistene of a sing-le-eletron Fermi surfae and a pseudogap in the normalstate [3℄. The last phenomenon is usually attributed tothe presene of preformed (i.e., normal-state) eletronpairs (in partiular, bipolarons [4�8℄).The aforementioned small region in the phase dia-gram is situated in the viinity of the maximal hole-doping level x = x ompatible with superondutiv-ity. The superonduting transition temperature T iszero for x � x, and hene it is low in our region nearx = x. However, T inreases with dereasing x forx < x suh that it is quite high at the boundary of theregion (i.e., for x � x � 1).Two features of our small region are important tomake a simple physial piture possible. These are rel-atively low T and the lear nature of the normal stateas mostly the onventional Fermi liquid.We alulate the pseudogap. With inreasing x,*E-mail: andreev�kapitza.ras.ru

the pseudogap dereases for x < x. As well as T, thepseudogap disappears at x = x. However, it reappearsfor larger doping levels x > x.As a new predition, we show the existene of an un-usual orbital paramagnetism of the preformed (singlet)pairs, whih an probably be experimentally separatedfrom the Pauli spin paramagnetism of single eletronsand the Landau diamagnetism of single eletrons andpairs. 2. PAIR QUASIPARTICLESThe key point is the existene of very mobile pairquasipartiles in rystals under the tight-binding on-ditions, i.e., if the energy of the eletron�eletron inter-ation at a distane of the order of the atomi spaingonsiderably exeeds the eletron tunneling amplitudeto neighboring lattie ites. Quasipartiles of this typewere studied earlier [9℄ in helium quantum rystals andmore reently by Alexandrov and Kornilovith [7℄ as amodel of bipolarons in HTS (also see [10℄).�7 � �4 � �3� � �� � �1 � �2� � �� � �6 � �5Figure. CuO2 plane: � � Cu atoms and � � O atoms790



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Simple theory of extremely overdoped HTSWe onsider two eletrons loalized at neighboring(1 and 2 in the Figure) opper atoms (to be more pre-ise, in unit ells ontaining these atoms) forming asquare lattie in the CuO2 plane. The eletron tun-neling from 2 to 4 or 6 does not hange the energyof the system in view of the rystal lattie symmetry.The same is true for the eletron tunneling from 1 to3 or 5. Owing to this type of transitions, an eletronpair an move as a whole over the entire plane, beausethe 2 ! 4 transition an be followed by the transition1 ! 7 or 1 ! 3, and so on. Beause the transitionsdo not hange the energy of the system, the motion isfully oherent. An eletron pair behaves as a deloal-ized Bose quasipartile.To alulate the quasipartile spetrum, we onsiderthe loalized states of a pair,jr; r0; ��i = +r�+r0� j0i ; (1)where +r� are the eletron reation operators with aspin projetion � ="; # at a point r and j0i is the ele-tron vauum.The e�etive tunneling Hamiltonian Heff is de�nedby the matrix elements of the operatorH = tXrr0� +r0�r�; (2)whih orrespond to the transitions of one of the ele-trons to opper atoms that are next-to-nearest neigh-bors of the initial atom, suh that the energy of thesystem of two eletrons remains unhanged. Here, t isthe tunneling amplitude, whih is known to be positive(see [2, p. 1004℄).Let an (n = x; y) be the square-lattie periods di-reted from point 1 to point 2 and from point 1 to point4, respetively. We haveHeff jr; r+ ax; ��i = t(jr+ ax + ay ; r+ ax; ��i++ jr+ ax � ay; r+ ax; ��i +jr; r+ ay; ��i + jr; r� ay; ��i) == t(� jr+ ax; r+ ax + ay; ��i ++ jr+ ax � ay; r+ ax; ��i +jr; r+ ay ; ��i � jr� ay; r; ��i); (3)where we used the antisymmetry of quantities (1) withrespet to the arguments (r; �) and (r0; �). Analo-gously,Heff jr; r+ ay; ��i = t(� jr+ ay ; r+ ax + ay; ��i++ jr� ax + ay; r+ ay; ��i +jr; r+ ax; ��i � jr� ax; r; ��i): (4)

The omplete set of loalized states of an eletronpair is determined by the state vetorsjr; n; ��i � jr; r+ an; ��i ; (5)where r labels unit ells of the square lattie.The problem obviously splits into two independentproblems for singlet and triplet pairs that are hara-terized by quantities (5), whih are respetively anti-symmetri and symmetri in the spin indies �; �. As-suming that the required stationary states of a pair aresuperpositions of loalized states,Xr;n  (n)�� eikr jr; n; ��i (6)with oe�ients  (n)�� independent of r (this orre-sponds to a de�nite quasimomentum k), we obtain(E(k)� �0) (x) = t (y)(1� e�i�x)(1� ei�y );(E(k)� �0) (y) = t (x)(1� ei�x)(1� e�i�y ); (7)where the upper or lower sign orresponds to a sin-glet or triplet state, respetively. The onditions forthe existene of a nontrivial solution  (x),  (y) of sys-tem (7) determine the energy E(k) of a pair quasiparti-le. Here, �0 is the energy of the initial loalized state;�x = k � ax and �y = k � ay . Everywhere in formulas(7), we omit idential spin indies ��.The minimal energy �m = minE(k) = �0 � 4t of asinglet pair is attained at �x = �y = 0. The same min-imal energy of a triplet pair is attained at the nonzeroquasimomentum �x = �y = �. This degeneray is re-moved by taking the eletron exhange in the initialloalized pair into aount. It is well known that thisexhange is of an antiferromagneti nature, and henesinglet pairs have the minimal energy.Thus, solitary Bose quasipartiles an exist in theCuO2 plane; these partiles are haraterized by a dou-bled eletri harge and by zero momentum and spin inthe ground state. It an be readily seen from Eqs. (7)that the e�etive mass of quasipartiles is m = ~2=ta2,where a = jaxj = jay j. In addition, quasipartiles havea spei� quantum number n = x; y, whih determinesthe orientation of a two-eletron �dumb-bell�. Substi-tuting E(k) = �m and k = 0 in Eqs. (7), we obtain (x) = � (y) in the ground state. Beause the orien-tations n = x and n = y are transformed into eahother under lattie rotation through the angle �=2 andunder re�etion in the diagonal plane passing throughpoints 1 and 3 in the �gure, the ground-state wave fun-tion  �  (x) = � (y) of quasipartiles transforms inaordane with the nontrivial 1D representation (usu-ally denoted by dx2�y2) of the symmetry group of theCuO2 plane (see [2℄).791



A. F. Andreev ÆÝÒÔ, òîì 127, âûï. 4, 20053. SUPERCONDUCTIVITYWe further assume that all the other two-eletron,three-eletron, et., on�gurations loalized at dis-tanes of the order of the atomi spaing are ener-getially disadvantageous ompared to the pair on-�guration onsidered above. In addition, we assumethat eletrons are repulsed at large distanes suh thatthe eletron�eletron interation energy is of the orderof the one-eletron tunneling amplitude. Under theseonditions, only single-eletron Fermi partiles and thepair Bose partiles onsidered above play signi�antrole.Finally, we assume that the minimal energy �m ofpair quasipartiles is suh that �m=2 is within the sing-le-eletron energy band. We note the following. Underthe tight-binding onditions, there are two di�erent sit-uations in whih �m=2 an be within the single-eletronenergy band. First, if single eletrons and eletrons inpairs orrespond to the same energy band, the single-eletron tunneling amplitude must be of the order ofthe eletron�eletron interation energy in the pairs,while the one-eletron tunneling amplitude t in pairs,introdued in Se. 2, must be muh smaller than theinteration. The last ondition, whih is the onditionof the appliability of the proedure used in Se. 2, anbe a result of the large polaron e�et in pairs. Seond,if single eletrons and eletrons in pairs orrespond todi�erent bands, both one-eletron amplitudes an beof the same order. The analysis arried out by Alexan-drov and Kornilovith in [7℄ shows that the onditionsformulated above are likely to be realisti.We now trae the hange of the state of the sys-tem at T = 0 as the number of eletrons inreases(the hole-doping level dereases). Until �m=2 > �F ,only single-eletron quasipartiles are present and thesystem behaves as an ordinary Fermi liquid. The on-dition �m=2 = �F determines the minimal hole-dopinglevel ompatible with the state of a normal Fermi liq-uid. Let n denote the orresponding eletron densityn. Upon a further derease in the hole-doping level, alladditional n � n eletrons pass into a Bose �Einstein(BE) ondensate of pair quasipartiles (we everywhereonsider the ase of small n� n values, for whih theonentration of pairs is low and their interation anbe disregarded). The system beomes a superondu-tor. The superonduting order parameter is given bythe boson ground-state wave funtion  �  (x) nor-malized by the ondition j j2 = (n � n)=2; the wavefuntion transforms in aordane with the dx2�y2 rep-resentation of the symmetry group of the CuO2 plane.It is important to note the following. In the system

ground state (i.e., for omplete �lling of all fermionstates with the energies smaller than �F ), the uner-tainty in the energy of a boson quasipartile with lowexitation energy � = k2=2m, arising due to its ol-lisions with single-eletron Landau quasipartiles, isproportional to �2. As in the onventional theory ofFermi liquid, this is, �rst, beause of a low density offermions in an order-� neighborhood of �F , with whihthe given boson an ollide due to energy onserva-tion. Seond, the statistial weight of the �nal states towhih fermioni transitions are possible is small. Theprobability of the boson deay into two fermions perunit time is also small: as suggested at the beginningof this setion, the boson must overome a signi�antenergy barrier. Thus, the proposed piture of super-ondutivity in the viinity of the maximal doping levelremains valid even in the region of appreiable densi-ties of fermions, where the interation between bosonsand fermions is signi�ant. The ritial eletron densityn is determined from the ondition that the eletronhemial potential is equal to half the minimal bosonenergy. In the general ase, this energy is a funtionalof the distribution funtion for single-eletron Landauquasipartiles.In alulating the superonduting transition tem-perature, the fermion distribution funtion may be on-sidered as orresponding to T = 0, beause the temper-ature orretions (proportional to T 2) to the thermo-dynami funtions of the Fermi liquid are onsiderablysmaller than the orretions inluded below.The density of unondensed bosons at a �nite tem-perature T < T isN 0 = Z 2�k dk(2�~)2 1e�=T � 1 = mT2�~2 lg T� : (8)The integral in Eq. (8) diverges at small � and is there-fore ut o� at � � � , where � is a small tunnelingamplitude of eletrons in the diretion perpendiularto the CuO2 plane.The exess number n�n of eletrons in the systemis equal to the doubled sum of N 0 and the numberN0 ofbosons in the ondensate. This leads to the dependeneof the superonduting transition temperature on thedoping level for small values of n� n:n� n = mT�~2 lg T� : (9)The number of pairs in the ondensateN0 = n� n2 �1� TT lgT=�lg T=� � (10)792



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Simple theory of extremely overdoped HTSdetermines the modulus of the order parameterj j2 = N0 at �nite temperatures. The superondut-ing transition temperature de�ned by Eq. (9) is quitehigh. To within the logarithmi term, this temperatureis of the order of the one-eletron tunneling amplitudet at the boundary of the appliability region (i.e., forn� n � a�2). The possibility that the superondut-ing transition temperature may have suh an order ofmagnitude was pointed out in the aforementioned pa-per by Alexandrov and Kornilovith [7℄.The interation of fermions with the BE onden-sate (e�etive eletron�eletron interation), whih isdesribed by the order parameter  , reates an e�e-tive potential �k ating on fermions as in onventionalsuperondutors:Hint =Xk (�k+k"+�k# +H..): (11)In view of the symmetry of  , we have�k = V (k̂2x � k̂2y) ; (12)where k̂ = k=jkj and V is invariant under the symme-try group.Owing to this interation, fermions in the superon-duting state onsidered aquire features typial of anordinary superondutor with the dx2�y2 symmetry.4. NORMAL STATE THERMODYNAMICS.THE PSEUDOGAPThe total number of pairs for T < T is indepen-dent of the temperature and is equal to (n�n)=2. Theeletron hemial potential for T < T is also tempera-ture-independent and equal to � = �(n) = �m(n)=2,where �m = �m(n) is the pair minimal energy, whihdepends on the fermion density, as shown above.For T > T, the fermion distribution funtion, asabove, orresponds to T = 0, but with the tempera-ture-dependent hemial potential. The pair energyspetrum is E = �m(�) + �, where � = k2=2m. Thepair density above T is given byN = 1Z0 2�k dk(2�~)2 1e(�+�)=T � 1 == mT2�~2 lg 11� e��=T : (13)The parameter � (� � �) is de�ned by� = ��m�� Æ�� 2Æ�; (14)

where Æ� = ���(n). With hanging the temperature,the total eletron number onservation givesn� n = 2N + �n��Æ�: (15)From the last equation, we �nd � = �(T ) and then allthe other quantities.For n > n and not too high temperature T �� T lg(T=�), the pair density is determined byN(T )�N(T)N(T) = �n=��2(2� ��m=��)Te��p=T ; (16)where N(T) = (n� n)=2 and�p = T lg T� = �~2m (n� n) (17)is the pseudogap for n > n. As well as T, it is zero atthe ritial value of the doping level n = n. For higherdoping level n < n (T = 0), we haveN(T ) = mT2�~2 e��0p=T ; (18)where �0p = �2���n � ��m�n � (n � n) (19)is the pseudogap for n < n. Equation (18) holds inthe low-temperature region T � �0p. For n < n, thepseudogap �0p is the gap in the energy spetrum of thepair quasipartiles. For high temperatures T � �p;�0p(but T � t), the pair density is a linear funtion oftemperature, N(T ) = z�n=��2(2� ��m=��)T (20)where z is the solution of the equation �z = e�z with� = �~2m �n=��2� ��m=��: (21)The entropy of pairs is determined by the equationS(T ) = m2�~2 1Z0 d�f(1 + f) lg(1 + f)� f lg fg; (22)where f = �e(�+�)=T � 1	�1. For n > n in thelow-temperature region T � �p, we haveS(T )T ��ST �T=T = � m2�~2 �pT e��p=T ; (23)793



A. F. Andreev ÆÝÒÔ, òîì 127, âûï. 4, 2005where �ST �T=T = �m12~2 : (24)The funtion S(T ) is almost linear in T , with exponen-tially small deviations. For n < n, the pair entropy isexponentially small at low temperatures T � �0p:S(T ) = mT2�~2 e��0p=T : (25)At high temperatures T � �p;�0p, the entropy isS(T ) = m�2�~2T: (26)The temperature-independent fator � is deter-mined by � = 1Zz x dxex � 1 � �z2: (27)The entropy is again a linear funtion of temperature.5. ORBITAL PARAMAGNETISM OF PAIRSIn this setion, we show that the orbital motionof eletrons inside the pairs ause a peuliar paramag-netism. Let a pair be at rest as a whole. For singletpairs at k = 0, the Hamiltonian in Eqs. (3) and (4) anbe written as the 2� 2 matrixH = 4t 0 11 0! � 4t�1; (28)ating on a state vetor =  (x) 10!+  (y) 01! ; (29)where  (n), n = x; y, are quantum amplitudes of twoorientations of the two-eletron dumb-bell and �1 is aPauli matrix.In the x-state, oordinates of two eletrons (withrespet to the enter of gravity of the pair) arex1 = �a=2, y1 = 0 and x2 = a=2, y2 = 0, respe-tively. In the y-state, we have x1 = 0, y1 = �a=2 andx2 = 0, y2 = a=2. From this, we �nd the oordinateoperators for both eletrons:x1 = �x2 = �a2  1 00 0! ;y1 = �y2 = �a2  0 00 1! : (30)

The veloity operators are determined by the ommu-tators _r1;2 = i~ [H; r1;2℄ : (31)Simple alulation gives_x1 = � _x2 = � _y1 = _y2 = �2at~  0 �ii 0 ! �� �2at~ �2: (32)The operator of the pair magneti moment, whih isdireted along the z axis, is� � �z = e2X1;2 (x _y � y _x) = �eta2~ �2; (33)where e is the eletron harge and  is the veloity oflight.In the presene of an external magneti �eldB � Bz, the Hamiltonian of the pair isH = 4t�1 � �B: (34)The energy eigenvalues areE = �0 � 4t"1 +� ea24~B�2#1=2 : (35)In weak �elds, the minimal energy isEmin = �0 � 4t� t e2a48~22B2: (36)The average magneti moment of the pair ish�i = ��Emin�B = �B; (37)where � = e2a44~22 t = e2a24m2 (38)is the pair paramagneti polarizability.We note that pairs with k = 0 in the upper energyband (the lower sign in (35)) are diamagneti.The pair ontribution to the paramagneti susep-tibility of a 3D sample is� = e2a24m2N (3); (39)794



ÆÝÒÔ, òîì 127, âûï. 4, 2005 Simple theory of extremely overdoped HTSwhere N (3) = N(T )=L is the 3D density of pairs andN(T ) is the 2D density determined by formulas (16),(18), and (20). Here, L is the distane between neigh-boring CuO2 planes.Generally, we have three ompeting ontributions tothe magneti suseptibility: the orbital paramagnetismof pairs onsidered above, the Pauli spin suseptibilityof single eletrons (pairs are singlet), and the Landaudiamagnetism of single eletrons and pairs. Spin sus-eptibility is isotropi. Orbital paramagnetism andLandau diamagnetism are both strongly anisotropi(the magneti moment is direted along the z axisindependently of the diretion of the magneti �eld)beause of a 2D harater of single eletrons and pairs.However, Landau diamagnetism, espeially in the 2Dase, is very sensitive to inhomogeneities. For example,it is easily suppressed by loalization of harge arriers.Orbital paramagnetism is �nite at zero veloity of apair as a whole. Therefore, it has to be muh morestable against inhomogeneities. We hope that orbitalparamagnetism an be experimentally separated fromthe other two ontributions to suseptibility.This study was supported by the INTAS (grant� 01686), CRDF (grant �RP1-2411-MO-02), Lever-hulme Trust (grant � S-00261-H), the Russian Foun-dation for Basi Researh (grant � 03-02-16401), and
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