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COULOMB CORRECTIONS TO BREMSSTRAHLUNGIN ELECTRIC FIELD OF HEAVY ATOM AT HIGH ENERGIESR. N. Lee *, A. I. Milstein **, V. M. Strakhovenko ***Budker Institute of Nulear Physis630090, Novosibirsk, RussiaO. Ya. ShwarzNovosibirsk State University630090, Novosibirsk, RussiaSubmitted 29 April 2004We onsider the di�erential and partially integrated ross setions for bremsstrahlung from high-energy eletronsin the atomi �eld, with this �eld taken into aount exatly. We use the semilassial eletron Green's funtionand wave funtions in an external eletri �eld. It is shown that the Coulomb orretions to the di�erential rosssetion are very suseptible to sreening. Nevertheless, the Coulomb orretions to the ross setion summedover the �nal-eletron states are independent of sreening in the leading approximation in the small parameter1=mrsr (rsr is the sreening radius and m is the eletron mass, ~ =  = 1). We also onsider bremsstrahlungfrom a �nite-size eletron beam on a heavy nuleus. The Coulomb orretions to the di�erential probabilityare also very suseptible to the beam shape, while the orretions to the probability integrated over momentumtransfer are independent of it, apart from the trivial fator, whih is the eletron-beam density at zero impatparameter. For the Coulomb orretions to the bremsstrahlung spetrum, the next-to-leading terms with respetto the parameters m=" (" is the eletron energy) and 1=mrsr are obtained.PACS: 12.20.Ds, 95.30.Cq1. INTRODUCTIONBremsstrahlung in the eletri �eld of atoms is afundamental QED proess. Its investigation, started inthe 1930s, is important for various appliations. In theBorn approximation, both the di�erential ross setionand the bremsstrahlung spetrum have been obtainedfor arbitrary eletron energies and atomi form fa-tors [1℄ (see also Ref. [2℄). High-energy asymptotis ofthe bremsstrahlung ross setion in a Coulomb �eld hasbeen studied in detail in Ref. [3℄ exatly in the parame-ter Z� (where Z is the atomi number and � = 1=137 isthe �ne-struture onstant). In these papers, the di�er-ential ross setions and the bremsstrahlung spetrumhave been obtained. For a sreened Coulomb �eld, thehigh-energy asymptotis of the di�erential ross setionwas derived in Ref. [4℄. The e�et of sreening on the*E-mail: R.N.Lee�inp.nsk.su**E-mail: A.I.Milstein�inp.nsk.su***E-mail: V.M.Strakhovenko�inp.nsk.su

spetrum was studied in Refs. [5, 6℄. For the spetrum,it turned out that sreening is essential only in the Bornapproximation. In other words, the Coulomb orre-tions to the spetrum are not signi�antly modi�ed bysreening. By de�nition, Coulomb orretions are thedi�erene between the result obtained exatly in theexternal �eld and that obtained in the Born approxi-mation. In the reent paper [7℄, it was laimed thatCoulomb orretions to the di�erential ross setion ofthe bremsstrahlung are also independent of sreening.In the present paper, we investigate the bremsstrah-lung ross setion in the eletri �eld of a heavy atom.We assume that ", "0 � m, where " and "0 are the ini-tial and �nal eletron energies, respetively. In Se. 2,we onsider the di�erential ross setion in detail inthe leading approximation, i.e., negleting orretionsin the parameters m=" and 1=mrsr. In ontrast tothe statement in Ref. [7℄, sreening may strongly mo-dify Coulomb orretions to the di�erential ross se-tion. We demonstrate expliitly that this fat does5



R. N. Lee, A. I. Milstein, V. M. Strakhovenko, O. Ya. Shwarz ÆÝÒÔ, òîì 127, âûï. 1, 2005not ontradit the �nal-state integration theorem [5℄,whih implies that Coulomb orretions to the spe-trum are independent of sreening. We also study thein�uene of the eletron beam �nite size on Coulomborretions. Again, Coulomb orretions to the di�er-ential ross setion are very sensitive to the shape ofthe eletron beam, while the spetrum is independentof it, exept for a trivial fator. In Se. 3, we onsiderorretions to Coulomb orretions in the spetrum. Itturns out that in the �rst nonvanishing order, they en-ter the spetrum as a sum of two terms. The �rst termis proportional to m=" and is independent of sreening.The seond term is small in the parameter 1=mrsr andis independent of the energy.Our approah is based on the use of the semilas-sial Green's funtion and the semilassial wave fun-tion of the eletron in an external �eld. Previously, thismethod was suessfully applied to the investigation ofthe photoprodution proess at high energy [8, 9℄.2. DIFFERENTIAL CROSS SECTIONThe ross setion of the eletron bremsstrahlung inthe external �eld has the formd� = �(2�)4! dp0 dk Æ("� "0 � !)jM j2 ; (1)where k is the photon momentum, p and p0 are therespetive initial and �nal eletron momenta,! = jkj; " = "p =pp2 +m2; "0 = "p0 :The matrix element M is given byM = Z dr exp(�ik � r) � (out)P 0 (r)ê� (in)P (r); (2)where  (in)P and  (out)P are the respetive wave funtionsof the in- and out-state of the eletron in an external�eld, ontaining the diverging and onverging spherialwaves and the plain wave with 4-momentum P in theirasymptotis, ê� = e���, e� is the photon polarization4-vetor, and � are the Dira matries.In Ref. [10℄, the semilassial wave funtion of theeletron in an arbitrary loalized potential was foundwith the �rst orretion in m=" taken into aount.In alulating bremsstrahlung and the e+e� photopro-dution ross setion in the leading approximation, thefollowing form of the wave funtion an be used [10℄:

 (in; out)P (r) = � Z dqi� �� exp24ip � r� iq2 � i� 1Z0 dx V (rx)35��8<:1� 12p 1Z0 dx� � rV (rx)9=;uP ;rx = r� xn+ qp2jr � nj=p ;� = signP 0 ; n = p=p :
(3)

In this formula, q is a two-dimensional vetor ly-ing in the plane perpendiular to p, the upper signorresponds to  (in)P , and uP is the onventionalDira spinor. We reall that the wave funtion (in)(�"p;�p) orresponds to the positron in the �nal statewith the 4-momentum ("p;p). For a Coulomb �eld,wave funtion (3) oinides with the standard Furry �Sommerfeld �Maue wave funtion. When the anglesbetween p and r in  (in)P (r), and between p and �r in (out)P (r) are not small, it is possible to replae rx inEq. (3) by Rx = r� xn. Then the integral over q anbe taken, and we obtain the onventional eikonal wavefuntion (in; out)P; eik (r) = exp24ip � r� i� 1Z0 dx V (Rx)35��8<:1� 12p 1Z0 dx� � rV (Rx)9=;uP : (4)We diret the z axis along the vetor � = k=!,then r = z� + �. In this frame, the polar angles ofp and p0 are small. We split the integration region inEq. (2) into two: z > 0 and z < 0. The orrespondingontributions to M are denoted as M+ and M�, withM =M+ +M�. For z > 0, the funtion  (out)p0 (r) hasthe eikonal form and we obtainM+ = Zz>0 dr Z dqi� exp(iq2 � i� � r ��i 1Z0 dx hV �r�nx+qp2z=p�+ V (r+n0x)i9=;���up0 24ê�� 12p 1Z0 dxê�� � rV �r�nx+qp2z=p� �� 12p0 1Z0 dx� � rV (r+ n0x)ê�35up ; (5)6



ÆÝÒÔ, òîì 127, âûï. 1, 2005 Coulomb orretions to bremsstrahlung in eletri �eld : : :where � = p0 + k� p is the momentum transfer.In Eq. (5), we have replaedp2jr � nj=p in the de�-nition of rx in Eq. (3) by p2z=p. It is easy to see thatwithin our auray, we an also replae the quantityV (r+n0x) in Eq. (5) by V (r+n0x+qp2z=p) and on-sider the vetor q to be perpendiular to z axis. Afterthat, we shift � ! � � qp2z=p and take the integralover q. We obtainM+ = Zz>0 dr exp(� i z2p�2? � i� � r�� i 1Z0 dx[V (r� nx) + V (r+ n0x)℄9=;�� �up0 24ê� � 12p 1Z0 dx ê�� � rV (r� nx)�� 12p0 1Z0 dx� � rV (r+ n0x)ê�35 up: (6)In the same way, we obtainM� = Zz<0 dr exp(i z2p0�2? � i� � r�� i 1Z0 dx[V (r� nx) + V (r+ n0x)℄9=;�� �up0 24ê� � 12p 1Z0 dxê�� � rV (r� nx) �� 12p0 1Z0 dx� � rV (r+ n0x)ê�35 up: (7)There are two overlapping regions of the momentumtransfer �, I: �� m!" ;II: �� �min = m2!2""0 : (8)In the �rst region, we an neglet the terms pro-portional to �2? in the exponents in Eqs. (6) and (7).Then the sum M =M+ +M�

beomesM = Z dr exp8<:� i� � r��i 1Z0 dx[V (r� nx) + V (r+ n0x)℄9=;�� �up0 24ê� � 12p 1Z0 dx ê�� � rV (r� nx)�� 12p0 1Z0 dx� � rV (r+ n0x)ê�35up: (9)We an make the replaement n;n0 ! � in the pre-fator in Eq. (9). In the exponent, we must take thelinear term of the expansion of the integral in n � �and n0 � � into aount. As a result, we haveM = Z dr exp [�i� � r� i�(�)℄�� 1Z0 dy �up0�ê�[iy(n��)��=2p℄ � rV (r��y)++ [�i y(n0 � �)��=2p0℄ � rV (r+ �y)ê��up ;�(�) = 1Z�1 dzV (r) : (10)
In the arguments of V (r � �y), we make the sub-stitutions z ! z � y. After that, we take the integralover y and obtainM = A(�) � ��up0 � (n� n0)ê��2z �� ê��2p�z+ �ê�2p0�z �up� ;A(�) = �i Z dr exp[�i� � r� i�(�)℄r�V (r) : (11)We now pass to the alulation of M in the se-ond region, where � � �min. In Eq. (6) for M+, wean replae n0 ! n and z�2?=2p ! ~z�2?=2p, where~z = r �n. Beause the polar angle of n is small, we anintegrate in Eq. (6) over the half-spae ~z > 0. Afterthe integration over ~z, we obtainM+ = �i Z d� exp [�i� � �� i�(�)℄�� �up0 ê� [2p+� ��? ℄up2p� � n+�2? : (12)7



R. N. Lee, A. I. Milstein, V. M. Strakhovenko, O. Ya. Shwarz ÆÝÒÔ, òîì 127, âûï. 1, 2005The alulation of M� is performed quite similarly.As a result, we haveM = �i Z d� exp [�i� � �� i�(�)℄���up0 � ê� (2p+� ��? )2p� � n+�2? � (2p0+� ��? ) ê�2p0� � n0��2? �up: (13)Now we an write the representation for M that isvalid in both regions,M = ""0! A(�) ���up0 ��2ê�p? + p0?ÆÆ0 ++ ê��"Æ0 � �ê�"0Æ �up� ;Æ = m2 + p2? ; Æ0 = m2 + p02? : (14)Within our auray, this expression oinides withEq. (11) in region I and with Eq. (13) in region II. Us-ing the expliit form of the Dira spinors, we �nallyobtainM = 12ÆÆ0A(�) ��'0y�(p? + p0?) �� �"+"0! e� � (p?+p0?)�i[� � e�℄ � (p?+p0?) ++ 2im[� � e�℄z�� (Æ + Æ0)�� �"+ "0! e� � i[� � e�℄?��'� : (15)This expression is in agreement with that obtainedin [4℄ by another method. We emphasize that the po-tential enters amplitude (15) only via A(�).2.1. Coulomb orretions to the di�erentialross setion in a sreened Coulomb potentialWe disuss Coulomb orretions to the di�erentialross setion of bremsstrahlung. We reall that theseorretions are the di�erene between the exat (in theexternal �eld strength) ross setion and that obtainedin the Born approximation, whih is proportional to[jA(�)j2 � jAB(�)j2℄ with A(�) from Eq. (11) andAB(�) = �i Z dr exp[�i� � r℄r�V (r) ==�? Z dr exp[�i� � r℄V (r) : (16)The sreening modi�es the Coulomb potential of thenuleus at distanesrsr � �C = 1=m:

In the region �� max(�min; r�1sr);the quantities A(�) and AB(�) are of the formA(�) = AB(�)�(1� iZ�)�(1 + iZ�) � 4�2?��iZ� == ��? �Z��(1� iZ�)�(1 + iZ�) � 4�2?�1�iZ� : (17)Therefore,jA(�)j2 = jAB(�)j2 for �� max(�min; r�1sr)and Coulomb orretions to the di�erential ross se-tion vanish in this region in the leading approximation.Hene, Coulomb orretions are important only in theregion � . max(�min; r�1sr)� m:In this region, we an use Eq. (11) for the matrixelement. For the Coulomb orretions, substitutingEq. (11) in Eq. (1), using the relationd
p0d
k = d� d�?d�z!""0 ;and integrating over the azimuthal angle � and sum-mating over polarizations, we obtaind�C = �d! d�?d�z16�3"3"0�2z �"2+"02+2m2!�z +m4!2""0�2z ��� �jA(�)j2 � jAB(�)j2� : (18)We note that in this formula, we an assume that the zaxis is direted along the vetor p. Then �z is negativeand j�zj > �min = m2!2""0 :The potential V (r) and the transverse momentumtransfer �? enter Eq. (18) only as the fator dR,dR = d�? �jA(�)j2 � jAB(�)j2� : (19)It follows from the de�nition of A(�) that forrsr � j�zj�1, sreening an be negleted. However,it is obvious from Eq. (19) that sreening drastiallymodi�es the �?-dependene of the di�erential rosssetion for rsr . j�z j�1. We illustrate this statementwith the example of the Yukawa potentialV (r) = �Z� exp[��r℄=r:8
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−60Fig. 1. The quantity �? dR=d�? as a funtion of �for Z = 80 and  = 1 (solid urve),  = 0:5 (dashedurve), and  = 0:01 (dotted urve). The variable � isde�ned in Eq. (20)After the straightforward alulation, we have�? dRd�? = 32�3(Z�)2 �� 264�2 ������ 1Z0 dx xJ1(x�)K1(x) �� exp[2iZ�K0(x)℄������2� �4(1 + �2)2375 ;� = �?p�2z + �2 ;  = �p�2z + �2 :
(20)

We emphasize that �? enters the right-hand side ofEq. (20) only via the variable �, and hene p�2z + �2is the harateristi sale of the distribution (20). For� � j�zj, this sale is entirely determined by thesreening radius rsr = ��1. In this ase, the �?-distribution is muh wider than that in the absene ofsreening. We therefore onlude that in ontrast tothe statement in Ref. [7℄, Coulomb orretions to thedi�erential ross setion strongly depend on sreening.We note that sreening also a�ets the shape of the�?-distribution (20) via the parameter , whih variesfrom 0 to 1. In Fig. 1, we show the dependene of�? dR=d�? on the saling variable � for Z = 80 anddi�erent values of the parameter .We note that in ontrast to bremsstrahlung,Coulomb orretions to the di�erential ross setionof e+e� photoprodution in the atomi �eld areimportant only in the region �? � m, where sreeningmay be negleted [4℄.

2.2. Integrated ross setionIt was shown in Ref. [5℄ that Coulomb orretionsto the ross setion of bremsstrahlung integrated over�? are independent of sreening in the leading approx-imation. The statement was based on the possibility toobtain this ross setion from that for the e+e� photo-prodution. In this subsetion, we perform the expliitintegration of d�C , Eq. (18), over �?. We show thatthe strong in�uene of sreening on the shape of d�Cdoes not ontradit the statement in Ref. [5℄. Our on-sideration is quite similar to that used in Ref. [11℄ inthe alulation of Coulomb orretions to the e+e� pairprodution in ultrarelativisti heavy-ion ollisions.We onsider the quantityR = Z dR = Z d�? �jA(�)j2 � jAB(�)j2� : (21)This integral onverges due to the ompensation in theintegrand, and the main ontribution omes from theregion �? . max(j�z j; r�1sr);see Eq. (17). Substituting the integral representationfor A(�), Eq. (11), and for AB(�), Eq. (16), inEq. (21), we haveR = Z d�? ZZ dr1 dr2 �� exp[i� � (r1 � r2)℄ fexp[i�(�1)� i�(�2)℄� 1g �� [r1?V (r1)℄ � [r2?V (r2)℄ : (22)It is neessary to treat this repeated integral withare. If one naively hanges the order of integrationover �? and r1;2, the integration over �? in in�nitelimits leads to Æ(�1 � �2). Then the quantity R van-ishes after the integration over �1, whih is not orret.Suh an erroneous hange of the order of integrationswas made in Ref. [4℄ in expliitly verifying that the in-tegrated ross setion is independent of sreening. Al-though this independene itself takes plae, the proof ofthis fat given in Ref. [4℄ and widely ited in textbooksis not onsistent. The orret integration in Eq. (22)an be performed as follows. We restrit the region ofintegration over �? by the ondition�? < Q;where Q� max(j�zj; r�1sr):In this region, integral (21) is saturated and hene theresult of integration must be independent of Q. We an9



R. N. Lee, A. I. Milstein, V. M. Strakhovenko, O. Ya. Shwarz ÆÝÒÔ, òîì 127, âûï. 1, 2005then hange the order of integrations over r1;2 and�?in Eq. (22) and take the integral over �?:R = 2�Q Z Z dr1 dr2 J1(Qj�1��2j)j�1��2j �� exp[i�z(z1�z2)℄ fexp[i�(�1)�i�(�2)℄�1g�� [r1?V (r1)℄ � [r2?V (r2)℄ : (23)It is seen from this formula that the main ontributionto the integral is given by the region j�1 � �2j � 1=Q.If �1;2 � 1=Q and j�1 � �2j � 1=Q, thenj exp[i�(�1)� i�(�2)℄� 1j � 1and the integrand is suppressed. Therefore, inte-gral (23) is determined by the region where both�1 � 1=Q and �2 � 1=Q. Due to the fatorr1?V (r1)r2?V (r2) in the integrand, z1;2 � 1=Q also.If r � rsr, then V (r) � �Z�=rand �(�) � 2Z�(ln �+ onst):In addition, for r1;2 � j�z j�1, we an omit the fatorexp[i�z(z1 � z2)℄ in (23). We then perform the substi-tution r1;2 ! r1;2=Q and obtainR = 8�(Z�)2 ZZ d�1 d�2 (�1 � �2)J1(j�1 � �2j)�21�22j�1 � �2j ��(��2�1�2iZ� � 1) : (24)We emphasize that this formula does not ontain Q.Using the identity(�1 � �2)J1(j�1 � �2j)j�1 � �2j == �1�2�21 � �22 ��1 ���2 � �2 ���1� J0(j�1 � �2j); (25)and the relation2�Z0 d� J0�q�21 + �22 � 2�1�2 os�� == 2�J0(�1)J0(�2) ; (26)

whih follows from the summation theorem for theBessel funtions, we haveR = 32�3(Z�)2 �� 1Z0 1Z0 d�1 d�2�21 � �22 [�2J0(�2)J1(�1)� �1J0(�1)J1(�2)℄��(��2�1�2iZ� � 1) : (27)Making the hange of variables �1;2 = r exp(�t=4) andintegrating over r, we �nally obtainR = 32�3(Z�)2 1Z0 dtos(Z�t)� 1exp(t)� 1 == �32�3(Z�)2[Re (1 + iZ�) + C℄ == �32�3(Z�)2f(Z�) ; (28)where C is the Euler onstant and (x) = d ln �(x)=dx:Using this formula and taking the integral over�z from�1 to ��min in Eq. (18), we reprodue the well-known result obtained in Ref. [3℄. We note that thevalue of R following from the numerial integration ofEq. (20) over �? agrees with the universal result (28).Thus, we ome to a remarkable onlusion:Coulomb orretions to the ross setion integratedover �? are independent of sreening, although themain ontribution to the integral omes from theregion �? . max(�min; r�1sr);where, for �min � r�1sr, the di�erential ross setion isessentially modi�ed by sreening. We emphasize thatthis result is valid in the leading approximation withrespet to the parameters m=" � 1 and �C=rsr � 1.In the next setion, we show that in the limit m="! 0,the sreening ontributes to d�C=d! only as a orre-tion in the parameter �C=rsr.2.3. Beam-size e�et on Coulomb orretionsIt is interesting to onsider the e�et of a �nitetransverse size b of the eletron beam on Coulomborretions to bremsstrahlung in a Coulomb �eld ofa heavy nuleus. This onsideration should be per-formed in terms of the probability dW rather than theross setion. Similarly to the e�et of sreening, the�nite beam size an lead to a substantial modi�ationof Coulomb orretions to the di�erential probability10



ÆÝÒÔ, òîì 127, âûï. 1, 2005 Coulomb orretions to bremsstrahlung in eletri �eld : : :dWC , while Coulomb orretions to the probability in-tegrated over � is a universal funtion. To illustratethis statement, we onsider bremsstrahlung from theeletron desribed in the initial state by the wave fun-tion of the form (r) = Z d
p h(p) (in)P (r); (29)where the funtion h(p) is peaked at p = p0. If thewidth Æp of the peak satis�es the onditionÆp�p�min" . m;then (r) � Z d
p h(p) exp[i(p� p0) � �℄ (in)P0 (r) == �(�) (in)P0 (r) ; (30)where the funtion �(�) is normalized asZ d�j�(�)j2 = 1and has the widthb� 1=p�min" & �C :The quantity dWC is given by the right-hand side offormula (18), where the funtions A(�) and AB(�)are given by Eq. (11) and Eq. (16) with the additionalfator �(�) in the integrands. SubstitutingV (r) = �Z�=r;we haveA(�) = �2iZ��z Z d��(�) �� exp[�i�? � �℄K1(�z�)�=�1+2iZ� ;AB(�) = �2iZ��z Z d��(�) �� exp[�i�? � �℄K1(�z�)�=�: (31)If b� j�z j�1 � ��1min;then we an simply replae �(�) ! �(0) in Eq. (31),suh the di�erential distribution does not hange om-pared with the ase of a plain wave. Therefore, weonsider the ase b � ��1min, where the �niteness ofthe beam size is very important. In this ase we anreplae K1(�z�)! (�z�)�1 in Eq. (31).Substituting the funtions A(�?) and AB(�?)from Eq. (31) in dR de�ned by Eq. (19) and repeat-ing all the steps of the derivation ofR = Z dR
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Fig. 2. The quantity�? dR=d�? in the units (��20)�1as a funtion of � = �0�? for Z = 80 and�(�) = �0(�) (solid urve), �(�) = �1(�) (dashedurve). The funtions �0;1 are de�ned in Eq. (33)in the previous subsetion, we obtainR = �32�3(Z�)2f(Z�)j�(0)j2 : (32)We see that Coulomb orretions to the integratedprobability depend on the shape of the wave paketonly through the fator j�(0)j2 orresponding to theeletron density at zero impat parameter. Therefore,their dependene on Z� oinides with that in the aseof a plain wave (24). However, the shape of �(�) anessentially modify the �?-dependene of dWC . Asan illustration, in Fig. 2, we show the dependene of�?dR=d�? on � for Z = 80 and �(�) = �0(�) (solidurve) and �(�) = �1(�) (dashed urve), where�0(�) = exp[��2=2�20℄p��20 ;�1(�) = (�=�0)2 exp[��2=2�20℄p2��20 ; � = �0�? : (33)It is seen that the behavior of �?dR=d�? di�ers dras-tially for the two ases onsidered. In aordane withEq. (32), R = �32�3(Z�)2f(Z�)=��20for �(�) = �0(�) and R = 0for �(�) = �1(�). We note that in the latter ase, thefuntion �?dR=d�? itself is di�erent from zero.11



R. N. Lee, A. I. Milstein, V. M. Strakhovenko, O. Ya. Shwarz ÆÝÒÔ, òîì 127, âûï. 1, 20053. NEXT-TO-LEADING TERMS IN THEBREMSSTRAHLUNG SPECTRUMAs is known [5℄, the modi�ation of the high-energyasymptotis of Coulomb orretions to the spetrumdue to the sreening e�et is small. Below, we showthat the same is also true for the next term in m=". Inthis setion, we expliitly alulate the sreening or-retion in the leading term of the high-energy asymp-totis and neglet sreening in alulating the next-to-leading term in m=". In other words, we alulatethe �rst orretions in the small parameters m=" and1=mrsr to the bremsstrahlung spetrumd�d! = �!p0"02(2�)4 Z d
p0 d
k X�e;�0e;� jM j2 ; (34)with the amplitudeM given by Eq. (2) and summationperformed over the polarizations of all partiles. It isonvenient to alulate d�=d! using the Green's fun-tion G(r2; r1j") of the Dira equation in an external�eld. This Green's funtion an be represented asG(r2; r1j ") = X�e;n  n(r2) � n(r1)"� "n + i0 ++X�e Z dp(2�)3 � P (r2) � P (r1)"� "p + i0 ++  �P (r2) � �P (r1)"+ "p � i0 � ; (35)where  n is the disrete-spetrum wave funtion, "nis the orresponding binding energy, and P = ("p;p).The set of either in- or out-wave funtions an beused in Eq. (35). The regularization of denominatorsin Eq. (35) orresponds to the Feynman rule. FromEq. (35),X�e Z d
p  (in)P (r1) � (in)P (r2) ==X�e Z d
p  (out)P (r1) � (out)P (r2) == i (2�)2"pp ÆG(r1; r2j"p) ; (36)where 
p is the solid angle of p and ÆG = G� ~G. Thefuntion ~G is obtained from (35) by the replaementi � 0 $ �i � 0. Beause the bremsstrahlung spetrumis independent of the diretion of the vetor p, we anaverage the right-hand side of Eq. (34) over the anglesof this vetor. Using Eq. (36), we then obtain

d�d! = � �!2"p Z d
k4� ZZ dr1 dr2 exp(�ik � r)��X� Sp fÆG(r2; r1j") ê ÆG(r1; r2j"0) êg ; (37)where r = r2 � r1 and "0 = "� ! is the energy of the�nal eletron. Here and below, we use the linear po-larization basis (e� = e). We note that the integrationover d
k is trivial beause the integrand is independentof the angles of k, and we therefore omit the integralR d
k=4� below. It is onvenient to represent d�=d!in another form using the Green's funtion D(r2; r1j")of the squared Dira equation,G(r2; r1j") = �0("� V (r2))�  � p2 +m���D(r2; r1j") ; p2 = �ir2: (38)Performing transformations as in Refs. [12, 9℄, wean rewrite Eq. (37) asd�d! = � �!4"p ZZ dr1 dr2 exp(�ik � r) ��X� Spf[(2e � p2 � êk̂)ÆD(r2; r1j")℄�� [(2e � p1 + êk̂)ÆD(r1; r2j"0)℄g: (39)For the �rst two terms of the high-energy asymp-toti expansion of the spetrum, the leading ontribu-tion to the integral in Eqs. (37) and (39) is given bythe regionr = jr2 � r1j � 1�min = 2""0!m2 � 1m:This estimate is in aordane with the unertainty re-lation. Substituting ÆD = D� ~D in Eq. (39), we obtainfour terms. Within our auray, the terms ontainingD(")D("0) and ~D(") ~D("0) an be omitted and we haved�d! = �!2"p Re ZZ dr1 dr2 exp(�ik � r)��X� Spf[(2e � p2 � êk̂)D(r2; r1j")℄�� [(2e � p1 + êk̂) ~D(r1; r2j"0)℄g: (40)Here and below, we assume the subtration from theintegrand of its value at Z� = 0. For alulations in theleading approximation in m=", the funtion D(r2; r1j")an be used in the form [12℄D(r2; r1j") = �1+� � (p1+p2)2" �D(0)(r2; r1j"); (41)12



ÆÝÒÔ, òîì 127, âûï. 1, 2005 Coulomb orretions to bremsstrahlung in eletri �eld : : :where D(0)(r2; r1j") is the semilassial Green's fun-tion of the Klein �Gordon equation in the external �eld.The funtion ~D is obtained from Eq. (41) by the re-plaement D(0) ! D(0)�. Representation (41) an bediretly used for the alulation of the sreening or-retion to the spetrum. It is shown below that it anbe used for the alulation of the orretion in m=" aswell.Substituting Eq. (41) in Eq. (40) and taking thetrae, we obtaind�d! = 2�!"2 Re ZZ dr1 dr2 exp(�ik � r)��X� �4[e � p2D(0)2 ℄[e � p1D(0)1 ℄ ++ !2""0 [e � (p1 + p2)D(0)2 ℄[e � (p1 + p2)D(0)1 ℄� ;D(0)2 = D(0)(r2; r1j") ; D(0)1 = D(0)�(r1; r2j"0) : (42)
In deriving Eq. (42) we integrated the terms ontainingseond derivatives of D(0) by parts. We are interestedin the Coulomb orretions that an be obtained fromEq. (42) by the additional subtration of the Born term(/ (Z�)2) from the integrand.3.1. Next-to-leading term in m=" for Coulomborretions to the spetrumWe start with Eq. (40) and introdue the variablesr = r2 � r1; � = r� [r1 � r2℄r2 ; z = �r � r1r2 : (43)We note that the variable � in this setion has quitedi�erent meaning than the variable � in the represen-tation for A(�) in the previous setion, see Eq. (11).The analysis performed shows that the leading ontri-bution to the term under disussion originates from theregion � � 1=m and �;  � m=" � 1, where � is theangle between the vetors r2 and �r1, and  is the an-gle between the vetors r and k. Sreening an thenbe negleted and we an use the semilassial Green'sfuntion D in a Coulomb �eld obtained in Ref. [9℄,D(r2; r1j") = i�ei�r8�2r1r2 Z dq exp �i �rq22r1r2 ����2pr1r2jq� �j �2iZ�� ��1 + �r2r1r2� � q� �� �1 + i �(Z�)22�jq� �j� ���(Z�)24�2 (0��  � r=r) � (q� �)jq� �j3 � ;� = sign " ; � =p"2 �m2 ; � = 0; (44)

where q is a two-dimensional vetor in the plane per-pendiular to r. We note that beause the angle � issmall, we an assume that the variable z belongs to theinterval (0; 1) and r1 = rz, r2 = r(1� z). The funtion~D entering Eq. (40) is obtained from Eq. (44) by thereplaement �! �� and �! ��. The ontribution ofthe last term in braes in Eq. (44) vanishes after takingthe trae in Eq. (40). Therefore, this term an be omit-ted in the problem under onsideration. The remainingterms in Eq. (44) an be represented in form (41) withD(0)(r2; r1j") = i�ei�r8�2r1r2 Z dq exp �i �rq22r1r2 ����2pr1r2jq� �j �2iZ�� �1 + i �(Z�)22�jq� �j� : (45)Then, using the relation(e � p1;2)D(0)(r2; r1j") = i�2ei�r8�2r1r2 �� Z dq exp �i �rq22r1r2 ��2pr1r2jq� �j �2iZ�� ���1 + i �(Z�)22�jq� �j���e � rr + e � qr1;2 � ; (46)and passing from the variables r1;2 to the variables r,�, and z, we obtain from (42) thatd�Cd! = � �!"032�4" Re Z drr5 1Z0 dzz2(1� z)2 �� ZZZ dq1 dq2 d��� exp � i!r2 � 2 + m2""0�+ i "q21 � "0q222rz(1� z)���(�Q2Q1�2iZ�� 1 + 2(Z�)2 ln2 Q2Q1+ i�(Z�)22 �� "�Q2Q1�2iZ�� 1#� 1"Q1 � 1"0Q2�)��X� �4""0��e � r+ e � q11� z��e � r+ e � q2z �++ !2z2(1� z)2 (e � q1)(e � q2)� ; (47)where Q1;2 = jq1;2 � �j. The integral over � an betaken using the relations (see Appendix B in [9℄)13



R. N. Lee, A. I. Milstein, V. M. Strakhovenko, O. Ya. Shwarz ÆÝÒÔ, òîì 127, âûï. 1, 2005f(Z�) = 12�(Z�)2q2�� Z d�"�Q2Q1�2iZ�� 1 + 2(Z�)2 ln2 Q2Q1# == Re[ (1 + iZ�) + C℄;g(Z�) = i4�q Z d�Q2 "�Q2Q1�2iZ�� 1# == Z� �(1� iZ�)�(1=2 + iZ�)�(1 + iZ�)�(1=2� iZ�) ;
(48)

where  (t) = d ln �(t)=dt;C = 0:577 : : : is the Euler onstant, and q = jq1 � q2j.We next perform summation over the photon polariza-tion, pass to the variables~q = q1 + q2; q = q1 � q2;and take all integrals in the following order: d
r, d~q,dq, dr, dz. The �nal result for Coulomb orretions tothe bremsstrahlung spetrum is given byy d�Cdy = �4�0��y2 + 43(1� y)� f(Z�)�� �3(2� y)m8(1� y)" �y2 + 32(1� y)�Re g(Z�)� ;y = !=" ; �0 = �(Z�)2=m2 : (49)In this formula, the term proportional to f(Z�) orre-sponds to the leading approximation [3℄ and the termproportional to Re g(Z�) is an O(m=")-orretion. Inour reent paper [9℄, this result was obtained by meansof the substitution rules from the spetrum of pair pro-dution by photon in a Coulomb �eld. Formula (49)desribes bremsstrahlung from eletrons. For the spe-trum of photons emitted by positrons, it is neessary tohange the sign of Z� in (49). The O(m=")-orretionbeomes espeially important in the hard part of thespetrum, as an be seen in Fig. 3, where ��10 yd�C=dywith the orretion (solid line) and without it (dashedline) are shown for Z = 82 and " = 50 MeV. We notethat in the whole range of y, the relative magnitudeof the orretion is appreiably larger than m=" due tothe presene of a large numerial oe�ient.3.2. Sreening orretionsIn this subsetion, we alulate the sreening or-retion to the high-energy asymptotis of d�C=d!, on-sidering �C=rsr as a small parameter.
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Fig. 3. The dependene of ��10 yd�C=dy on y, see (49),for Z = 82, " = 50 MeV. Dashed urve: leading ap-proximation; solid urve: �rst orretion is taken intoaountWe start from Eq. (42) and use the semilassialGreen's funtion D(0)(r2; r1j") for an arbitrary loal-ized potential V (r). This Green's funtion was ob-tained in [10℄ with the �rst orretion inm=" taken intoaount. The leading term has the form (see also [12℄)D(0)(r2; r1j ") = i�ei�r8�2r1r2 �� Z dq exp24i �r q22r1r2�i�r 1Z0 dx V (r1+xr�q)35 : (50)Similarly to Eq. (47), we obtaind�Cd! = � �!"032�4" Re Z drr5 1Z0 dzz2(1� z)2�� ZZZ dq1 dq2 d��� exp �i�+ i!r2 � 2 + m2""0�+ i "q21 � "0q222rz(1� z)���X� �4""0��e � r+ e � q11� z��e � r+ e � q2z �++ !2z2(1� z)2 (e � q1)(e � q2)� ; (51)where� = r 1Z0 dx[V (r1+xr�q2)�V (r1+xr�q1)℄: (52)As we see in what follows, it is meaningful to re-tain the sreening orretion only in the ase where14



ÆÝÒÔ, òîì 127, âûï. 1, 2005 Coulomb orretions to bremsstrahlung in eletri �eld : : :rsr � ��1min, whih is onsidered below. Then themain ontribution to integral (51) omes from the re-gion 1=m . � . rsr � rand q1;2 � 1=m:Under these onditions, the narrow regionÆx = �=r � 1around the point x0 = �r1 � rr2 = zis important in the integration over x in Eq. (52).Therefore, we an perform this integration from �1to 1. The phase � then beomes� = 2Z� ln(Q2=Q1) + �(sr) == 2Z� ln(Q2=Q1) + r 1Z�1 dx[ÆV (r1 + xr� q2)�� ÆV (r1 + xr� q1)℄ ; (53)where ÆV (r) is the di�erene between the atomi po-tential and the Coulomb potential of a nuleus. Thenotation in Eq. (51) and in Eq. (53) is the same as inEq. (47). It is seen that�sr � � ÆV (�) � Z� ÆV (�)V (�) � 1 for � � � mand �sr � q1;2� � 1m� � 1 for � � rsr � 1m:Therefore, expression (51) an be expanded in�(sr). In our alulation of the sreening orretiond�(sr)C =d!, we retain the linear term of the expansionin �(sr). The funtion ÆV (R) an be expressed viathe atomi eletron form fator F (Q) asÆV (R) = Z dQ(2�)3 exp(iQ �R)F (Q)4�Z�Q2 : (54)Substituting this formula in Eq. (53) and taking theintegral over x from �1 to 1, we obtain�(sr) = Z dQ?(2�)2 [exp (iQ? � (�� q2))�� exp (iQ? � (�� q1))℄F (Q?)4�Z�Q2? ; (55)

whereQ? is a two-dimensional vetor lying in the planeperpendiular to r. We next use the identity (see Eqs.(22) and (23) in [13℄)Z d�� j�� q2jj�� q1j�2iZ� exp [iQ? � (�� q1;2)℄ == q24Q2? Z df �f2f1�2iZ� exp [iq � f1;2=2℄ ; (56)where q = q1 � q2; f1;2 = f �Q?:Expanding the exponential in Eq. (51) with respet to�(sr) and using relation (56), we take the integralsover q1;2, r, and z and obtainy d�(sr)Cdy = 4�(Z�)� Im Z dQ?Q4? F (Q?)�� Z df2� "�f2f1�2iZ� � 2iZ� ln f2f1#�� �S(�1)f21 � S(�2)f22 � ;S(�) = (�� 1)�2 ��( 12p� �y2(3� �) + (y � 1)(�2 + 2�� 3)� �� ln �p�+ 1p�� 1��� 3y2 � (y � 1)(�� 3)) ;y = !" ; �1;2 = 1 + 16m2f21;2 :
(57)

Using the trik introdued in [13℄, we an rewritethis formula in another form. We multiply the inte-grand in (57) by1 � 1Z�1 dx Æ�x� 2f �Q?f2 +Q2?� = (f2 +Q2?)�� 1Z�1 dxjxjÆ((f �Q?=x)2 �Q2?(1=x2 � 1)); (58)hange the order of integrations over f and x, and makethe shift f ! f +Q?=x:After that, the integration over f an be easily per-15
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Fig. 4. The dependene of A1=f(Z�) (solid urve) andA2=f(Z�) (dashed urve) on Zformed. Then we make the substitution x = th � andobtainy d�(sr)Cdy = 16�0m2 1Z0 dQ?2� F (Q?)Q4? �� 1Z0 d�sh � � sin(2Z��)2Z� � ���� 2�Z0 d'2� �e�S(�2)� e��S(�1)� ;�1;2 = 1 + 8m2e�� sh2 �Q2?(h � + os') :
(59)

Aording to Eq. (57), the orretion yd�(sr)C =dy hasthe form y d�(sr)Cdy = �0 �A1(1� y) +A2y2� : (60)Shown in Fig. 4 is the Z dependene of the ratioA1;2=f(Z�) alulated numerially with the use of formfators from [14℄. For the less realisti Yukawa poten-tial, we an perform analyti alulations of the fun-tions Ai. It turns out that their dependene on theparameter � = �=rsr has the formAi = (Z�)2�2 �ai ln2 � + bi ln� + i� ; (61)where bi and i are some funtions of Z�, while ai doesnot depend on Z�. Realling that � is proportional toZ1=3 in the Thomas �Fermi model, we see that Ai de-pend on Z mainly via the fator(Z�)2�2 / (Z�)2Z2=3:

Therefore, it is quite natural that yd�(sr)C =dy alu-lated with the use of the exat form fators is well �ttedby the expressiony d�(sr)Cdy � 8:6 � 10�3�0(Z�)2 �� Z2=3[1:2(1� y) + y2℄: (62)In fat, the auray of this �t for all Z is better thana few perent.It follows from Eq. (61) that for rsr & ��1min, thefator �2 in the sreening orretion is extremely small,�2 . (m=")2. The terms of suh an order were system-atially negleted in our onsideration. Hene, withinour auray, the aount of the sreening orretion ismeaningful only for rsr � ��1min.4. CONCLUSIONWe have performed a detailed analysis of Coulomborretions both to the di�erential and the integratedross setions of bremsstrahlung in an atomi �eld. Wehave alulated the next-to-leading term in the high-energy asymptotis of the bremsstrahlung spetrum.Similar to the leading term of the high-energy asymp-totis of Coulomb orretions to the spetrum, thisterm is independent of sreening in the leading order inthe parameter �=rsr. We have also alulated the �rstorretion to the spetrum in the parameter �=rsr.We have shown that in ontrast with Coulomb or-retions to the spetrum, Coulomb orretions to thedi�erential ross setion strongly depend on sreeningeven in the leading approximation. This dependene isvery important in the region that gives the main on-tribution to the integral over �?. We have performedthe expliit integration over �? of d�C for arbitrarysreening and have veri�ed the independene of the �-nal result from sreening.We also examined the e�et of the �nite beamsize on Coulomb orretions to bremsstrahlung ina Coulomb �eld of a heavy nuleus. Similar to thee�et of sreening, the �niteness of the beam sizeleads to a strong modi�ation of Coulomb orretionsto the di�erential probability, while the probabilityintegrated over �? depends only on the density of theeletron beam at zero impat parameter.This work was supported in part by the RFBR(grant � 03-02-16510) and Russian Siene SupportFoundation.16
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