ОБРАЩЕНИЕ ДВУХМАГНОННОЙ РЕЛАКСАЦИИ В ФЕРРИТОВЫХ СФЕРАХ

Г. А. Мелков^{*}, А. Д. Дзяпко, А. В. Чумак, А. Н. Славин

Киевский Национальный университет им. Тараса Шевченко 01680, Киев, Украина

Поступила в редакцию 6 апреля 2004 г.

Теоретически и экспериментально в ферритовых сферах железо-иттриевого граната (ЖИГ) изучено обращение двухмагнонной релаксации, обусловленной линейным рассеянием колебаний однородной прецессии намагниченности на неоднородностях образца. Обращение релаксации осуществлено путем параметрического обращения волнового фронта дипольно-обменных спиновых волн, образовавшихся при рассеянии однородной прецессии на неоднородностях. В результате обратного двухмагнонного рассеяния дипольно-обменных спиновых волн с некоторой задержкой во времени вновь формировалось однородное колебание намагниченности, амплитуда которого могла превосходить начальную амплитуду однородной прецессии. Эффект обращения релаксации обусловлен кристаллографической анизотропией образца и максимален при намагничивании сферы ЖИГ вдоль промежуточной оси [110]. Эксперимент был проведен на сферах ЖИГ диаметром 0.65-1.05 мм при частоте параллельной накачки $\omega_p/2\pi \approx 9.4$ ГГц, которая примерно в два раза превышала частоту однородной прецессии. Максимальное время задержки восстановленного сигнала однородной прецессии составляло около 2 мкс, максимальная амплитуда примерно в пять раз превышала первоначальную амплитуду однородной прецессии. Экспериментально найдены «скрытые» параметры релаксации ферритов, такие как обусловленная многочастичными процессами собственная ширина линии ферромагнитного резонанса и ширина линии, связанная с двухмагнонным рассеянием на объемных неоднородностях.

PACS: 76.50.+g, 76.90.+d, 85.70.Ge

1. ВВЕДЕНИЕ

Основной вклад в ширину ΔH линии ферромагнитного резонанса даже в наиболее совершенных образцах железо-иттриевого граната (ЖИГ) вносят процессы двухмагнонной релаксации, обусловленные упругим двухмагнонным рассеянием колебаний намагниченности на объемных и поверхностных неоднородностях образца [1]. В результате двухмагнонного рассеяния однородная прецессия намагниченности, или магнон с волновым числом k = 0, возбуждает спиновую волну, или магнон с волновым числом $k' \neq k = 0$, определяемым размером неоднородности а. Наиболее интенсивно возбуждаются волны с $k' \sim 2\pi/a$; для монокристаллов ЖИГ с типичным размером неоднородностей $a \sim 1$ мкм это означает возбуждение однородной прецессией дипольно-обменных спиновых волн с $k' \sim 10^4$ см⁻¹,

для которых наряду с магнитодипольным начинает заметно сказываться пропорциональное k'^2 обменное взаимодействие магнитных моментов.

Заметим, что в идеальном безграничном кристалле двухмагнонное рассеяние и связанная с ним двухмагнонная релаксация невозможны в силу действия закона сохранения импульса. Этот закон может нарушаться лишь при наличии в кристалле неоднородностей и границ.

В результате двухмагнонной релаксации энергия однородной прецессии до необратимого превращения в тепловые колебания решетки переходит вначале к системе дипольно-обменных спиновых волн, где она может существовать даже после исчезновения колебаний однородной прецессии, так как времена жизни дипольно-обменных спиновых волн, $T_k = 2/\gamma \Delta H_k$, в несколько раз превосходят времена жизни однородной прецессии, $T = 2/\gamma \Delta H$. Здесь γ — гиромагнитное отношение для электронного спина, ΔH_k — ширина линии резонанса ди-

^{*}E-mail: melkov@univ.kiev.ua

польно-обменных спиновых волн с волновым числом k. До достижения амплитудой дипольно-обменных волн теплового уровня энергия этих волн может быть передана обратно в однородную прецессию, в результате чего произойдет обращение двухмагнонной релаксации и частичное восстановление однородной прецессии намагниченности.

Известно несколько методов обращения процессов рассеяния, нами будет использован метод обращения волнового фронта параметрической накачкой [2]. Этот метод применительно к нашему случаю состоит в следующем. Вначале сигнальный электромагнитный импульс длительностью τ_s на частоте ω_s , близкой к частоте ферромагнитного резонанса ω_0 , возбуждает однородную прецессию, которая, в свою очередь, в результате взаимодействия со случайными неоднородностями образца возбуждает набор из $n \gg 1$ дипольно-обменных спиновых волн, бегущих от этих неоднородностей с различными волновыми векторами \mathbf{k}_n , частотами $\omega_n \sim \omega_s$ и групповыми скоростями v_n. После окончания сигнального импульса однородная прецессия быстро затухает, а спиновые волны продолжают удаляться от неоднородностей, затухая во времени со значительно меньшей скоростью, чем однородная прецессия. Затем в момент времени $t = t_p$ подается импульс однородной параметрической накачки длительностью τ_p на частоте $\omega_p \approx 2\omega_s$. Накачка, во-первых, приводит к параметрическому усилению первичных (бегущих от неоднородностей) волн, обладающих частотами ω_n и волновыми векторами \mathbf{k}_n , и, во-вторых, возбуждает новые, холостые волны, часто́ты ω_i и волновые векторы \mathbf{k}_i которых удовлетворяют законам сохранения энергии и импульса:

$$\omega_i = \omega_p - \omega_n, \quad \mathbf{k}_i = \mathbf{k}_p - \mathbf{k}_n$$

где \mathbf{k}_p — волновой вектор накачки. В случае однородной накачки $(\mathbf{k}_p = 0)$ имеем $\mathbf{k}_i = -\mathbf{k}_n$, т.е. холостая волна по отношению к первичной дипольно-обменной спиновой волне является обращенной волной, которая следует по тому же пути, что и первичная волна, но в обратном направлении. Такое поведение холостой волны может быть интерпретировано как обращение волнового фронта (или обращение времени) первичной волны под действием импульсной параметрической накачки [2]. Таким образом, для всех n холостых обращенных волн обратный путь к неоднородностям будет точно таким же, как и для первичных волн, и займет после выключения накачки независимо от скорости волн v_n то же самое время t_p , которое первичные волны распространялись от неоднородностей до момента приложения накачки. Поэтому во время $t = 2t_p$ (при $\tau_p \ll t_p$) все холостые волны одновременно достигнут соответствующих неоднородностей, на которых в результате обратного двухмагнонного рассеяния сформируют восстановленный сигнал однородной прецессии намагниченности.

Параметрически усиленные распространяющиеся от неоднородностей дипольно-обменные спиновые волны также могут вносить вклад в восстановление однородной прецессии намагниченности [3]. До действия параметрической накачки фазы всех спиновых волн, $\varphi_n = \omega_n t \; (\omega_s - 1/\tau_s < \omega_n < \omega_s + 1/\tau_s), c$ течением времени равномерно распределяются в интервале $0-2\pi$, в силу чего их суммарный вклад в однородную прецессию намагниченности из-за обратного двухмагнонного рассеяния будет равен нулю. После включения накачки начинается процесс усиления первичных спиновых волн. Если импульс накачки достаточно длинный ($au_p \leq T_k$) и поэтому имеет узкий частотный состав, то параметрическое усиление спиновых волн, вызванное этим импульсом, является узкополосным: из всего набора дипольно-обменных спиновых волн селективно будут усилены лишь волны с частотами, близкими к половине частоты накачки, $\omega_p/2$. Таким образом, когерентность системы расфазированных спиновых волн будет частично восстановлена, и их вклад в однородную прецессию будет отличен от нуля [3]. Этот вклад будет нарастать по мере действия фазирующего импульса накачки и будет максимален в момент его окончания, т.е. при $t = t_p + \tau_p$, а не при $t = 2t_n$, как это было при обращении волнового фронта дипольно-обменных спиновых волн. После окончания импульса накачки вновь начнется дефазировка дипольно-обменных спиновых волн и их вклад в однородную прецессию будет уменьшаться до полного исчезновения при достижении равномерного распределения спиновых волн по фазам (за время порядка $1/\tau_s$).

В настоящей работе мы ограничимся исследованием обращения двухмагнонной релаксации только за счет эффекта параметрического обращения волнового фронта дипольно-обменных спиновых волн. В соответствии со сказанным выше для этого будут использоваться короткие ($\tau_s, \tau_p \ll \Gamma_k^{-1}, t_p$) импульсы сигнала и накачки. Вначале будут получены теоретические соотношения, описывающие процесс обращения двухмагнонной релаксации, которые затем будут проверены экспериментально с помощью параметрической накачки трехсантиметрового диапазона длин волн на малых ферритовых сферах диаметром от 0.65 до 1.05 мм.

2. ТЕОРИЯ

Связанные неоднородностями кристалла колебания однородной прецессии и дипольно-обменные спиновые волны в присутствии параллельной параметрической накачки можно записать в виде [3,4]

$$\frac{\partial c_0}{\partial t} + i\omega_0 c_0 + \Gamma_0 c_0 - -i\sum_{\mathbf{k}\neq 0} R_{0\mathbf{k}} c_{\mathbf{k}} = -i\gamma h_s \exp(-i\omega_s t), \quad (1)$$

$$\frac{\partial c_{\mathbf{k}}}{\partial t} + i\omega_k c_{\mathbf{k}} + \Gamma_{k0} c_{\mathbf{k}} - \\ - i \sum_{\substack{\mathbf{k}' \neq \mathbf{k} \\ \mathbf{k} \neq 0}} R_{\mathbf{k}\mathbf{k}'} c_{\mathbf{k}'} = -iV_{\mathbf{k}}h_p \exp(-i\omega_p t)c^*_{-\mathbf{k}}, \quad (2)$$

где c_0 и $c_{\mathbf{k}}$ — амплитуды соответственно однородной прецессии с частото
й ω_0 и дипольно-обменных спиновых воли с частотой ω_k . Здесь h_p , h_s и ω_p , ω_s — соответственно амплитуды и частоты переменного магнитного поля параллельной накачки и сигнала, возбуждающего однородную прецессию, V_k коэффициент связи дипольно-обменных спиновых волн с параллельной накачкой [1]; для однородной прецессии в уравнении (1) такая связь отсутствует [1]; R_{**kk**'} — вероятность рассеяния на неоднородности спиновой волны (или колебания) с волновым вектором k' с последующим превращением ее в новую спиновую волну (или колебание) с волновым вектором $\mathbf{k} \neq \mathbf{k}'$. Как указывалось ранее, вероятность рассеяния зависит от линейного размера *а* неоднородности, вероятность $R_{\mathbf{k}\mathbf{k}'}$ максимальна при $|\mathbf{k}' - \mathbf{k}| \sim 2\pi/a$. Наконец, $\Gamma_0 = \gamma \Delta H_0/2$ и $\Gamma_{k0} = \gamma \Delta H_{k0}/2$ — параметры собственной релаксации соответственно однородной прецессии и спиновых волн, учитывающие лишь собственные многомагнонные и магнон-фононные процессы релаксации, в том числе и с участием оптических ветвей. Вклады в релаксацию из-за двухмагнонных процессов, которые мы обозначим как $\delta\Gamma_0 = \gamma \delta H_0/2$ и $\delta \Gamma_k = \gamma \delta H_k/2$ соответственно для однородной прецессии и спиновых волн, должны быть определены из системы (1), (2). В результате суммарные частоты релаксации и полные ширины линий будут иметь вид

 $\Gamma = \Gamma_0 + \delta \Gamma_0, \quad \Delta H = \Delta H_0 + \delta H_0$

для однородной прецессии и

 $\Gamma_k = \Gamma_{k0} + \delta \Gamma_k, \quad \Delta H_k = \Delta H_{k0} + \delta H_k$

для дипольно-обменных спиновых волн.

Из рассмотрения собственных колебаний бесконечной системы уравнений (1), (2) в случае

малости вероятности двухмагнонного рассеяния, $|R_{\mathbf{kk'}}| \ll \Gamma_0, \Gamma_{k0}$, можно получить при $k \ge 0$ [5]

$$\delta\Gamma_k = \sum_{\mathbf{k}'} |R_{\mathbf{k}\mathbf{k}'}|^2 \frac{\Gamma_{k'}}{\Gamma_{k'}^2 + (\omega_{k'} - \omega_k)^2}.$$
 (3)

После подачи на феррит электромагнитного сигнала на частоте $\omega_s \approx \omega_0$ наибольшей амплитудой будет обладать спиновая волна с k = 0, т. е. однородная прецессия. Учитывая это обстоятельство, а также выражение (3), систему уравнений (1), (2) можно существенно упростить:

$$\frac{\partial c_0}{\partial t} + i\omega_0 c_0 + \Gamma c_0 = -i\gamma h_s \exp(-i\omega_s t), \qquad (4)$$

$$\frac{\partial c_{\mathbf{k}}}{\partial t} + i\omega_k c_{\mathbf{k}} + \Gamma_k c_{\mathbf{k}} =$$
$$= -iR_{\mathbf{k}0}c_0 - iV_{\mathbf{k}}h_p \exp(-i\omega_p t)c^*_{-\mathbf{k}}.$$
 (5)

Выражение для параметра связи дипольно-обменных спиновых волн с параллельной накачкой $V_{\mathbf{k}}$ запишем с учетом поля магнитной кристаллической анизотропии H_a . Известно, что несмотря на малость $(H_a \ll 4\pi M_0, M_0$ — намагниченность насыщения феррита), кристаллографическая анизотропия может оказывать существенное влияние на характер нелинейных процессов [4]. Как мы увидим ниже, именно такая ситуация наблюдается и в исследуемом нами случае. Для ориентации намагниченности \mathbf{M}_0 в плоскости (110) имеем

$$V_{\mathbf{k}} = \frac{1}{4} \gamma \frac{\omega_M}{\omega_k} \sin^2 \theta_k \exp(2i\varphi_k) - \frac{3}{4} \gamma^2 \frac{H_a}{\omega_k} \left(\sin^2 \theta_H - \frac{3}{4} \sin^2 2\theta_H \right), \quad (6)$$

где θ_k и φ_k — соответственно полярный и азимутальный углы спиновых волн в системе координат, связанной с направлением внешнего постоянного магнитного поля \mathbf{H}_0 , θ_H — угол между \mathbf{H}_0 и осью [001] кристалла, $\omega_M = 4\pi\gamma M_0$.

Решим систему (4), (5), предполагая следующую последовательность действующих на феррит коротких импульсов сигнала и накачки (как отмечалось ранее, $\tau_s, \tau_p \ll \Gamma_0, \Gamma_k, t_p$). В момент времени t = 0 включается сигнальный импульс на частоте $\omega_s = \omega_0$, раскручивающий, согласно (4), однородную прецессию до амплитуды

$$c_0 = A \exp(-i\omega_s t), \quad A = i\gamma h_s \tau_s. \tag{7}$$

После выключения сигнального импульса амплитуда однородной прецессии экспоненциально затухает, частично передавая энергию спиновым волнам. Затем в момент времени $t = t_p$ включается короткий импульс накачки на частоте $\omega_p = 2\omega_s = 2\omega_0$. К этому времени амплитуды спиновых волн, согласно (5), (7) в предположении $\Gamma \gg \Gamma_k$, достигают значений

$$c_{\mathbf{k}}(t = t_p) = -A \frac{R_{\mathbf{k}0}}{(\omega_k - \omega_0) - i\Gamma_k} \times \exp(-i\omega_k t_p) \exp(-\Gamma_k t_p). \quad (8)$$

После включения накачки при $t \ge t_p$ спиновые волны, во-первых, начинают нарастать с начальным условием (8) и, во-вторых, возникают обращенные волны, бегущие в обратном направлении к неоднородностям. Их амплитуды c_k^{rev} , согласно (5) при $t \ge t_p$, имеют вид

$$c_{\mathbf{k}}^{rev} = \frac{R_{\mathbf{k}0}}{2\nu_k} \frac{V_{\mathbf{k}}h_p}{\Gamma_k - i(\omega_k - \omega_0)} \times A^* \exp\left[i\omega_k(t - 2t_p)\right] \exp(-\Gamma_k t) \exp(\nu_k t), \quad (9)$$

где $\nu_k^2 = |V_{\mathbf{k}}h_p|^2 - (\omega_k - \omega_0)^2.$

После рассеяния на неоднородностях все волны (9) в результате обратного двухмагнонного рассеяния восстанавливают однородное колебание намагниченности (7), но, конечно, с другой амплитудой $A^{rev} \neq A$. Для нахождения A^{rev} необходимо воспользоваться уравнением (1) при $h_s = 0$, подставляя туда формулу (9); в результате имеем

$$A^{rev} = iA^* \sum_{\substack{k>0\\ \theta_k,\varphi_k}} \frac{V_{\mathbf{k}}h_p}{2\nu_k} \exp\left[-i\omega_k(t-2t_p)\right] \times \\ \times \exp(\nu_k\tau_p) \exp(-2\Gamma_k t_p) \times \\ \times \frac{|R_{\mathbf{k}0}|^2}{[\Gamma_k - i(\omega_k - \omega_0)] [\Gamma_k - \Gamma_0 + i(\omega_k - \omega_0)]}.$$
(10)

Из (10) видно, что каждая спиновая волна вносит вклад в однородную прецессию со своей фазой, пропорциональной $\exp\left[-i\omega_k(t-2t_p)\right]$, в результате чего суммарный вклад всех спиновых волн в общем случае усреднится в нуль. Лишь в момент времени $t = 2t_p$ сумма (10) будет отлична от нуля, так как только в этот момент времени фаза всех дипольно-обменных спиновых волн одинакова.

Сумма в выражении (10) при $t = 2t_p$ определяет максимальную амплитуду $A^{rev}(2t_p)$ однородной прецессии, восстановленную в результате процесса обращения. Мы здесь приведем приближенную оценку этой суммы, основываясь на том, что параметрическая накачка возбуждает узкий пакет волн вблизи частоты $\omega_p/2$, обладающих минимальным порогом параметрического возбуждения. Считая, что разброс собственных частот возбужденных

дипольно-обменных спиновых волн удовлетворяет неравенству $|\omega_k - \omega_p/2| \ll \Gamma, \Gamma_k$, а разброс их волновых чисел — $\Delta k \ll k$, можно вынести из-под знака суммы в (10) все постоянные коэффициенты и коэффициенты, зависящие от k. Суммирование в (10) по φ_k обращает в нуль вклад от первого слагаемого в выражении (6) для V_k (коэффициента связи дипольно-обменных спиновых волн с параметрической накачкой) из-за симметричности распределения дипольно-обменных спиновых волн в ферритовой сфере по азимутальным углам [4]. Таким образом, оказывается, что эффект обращения релаксации в ферритовой сфере (или, в общем случае, в образце с одинаковыми поперечными размагничивающими факторами) обусловлен влиянием магнитной кристаллографической анизотропии, описываемой вторым слагаемым в выражении (6) для $V_{\mathbf{k}}$.

С учетом сказанного выше, а также в предположении большой амплитуды параметрической накачки, $h_p V_{\mathbf{k}} \gg \Gamma_k$, для коэффициента обращения K двухмагнонной релаксации, представляющего собой отношение максимальной амплитуды $A^{rev}(2t_p)$ однородной прецессии, восстановленной в результате процесса обращения дипольно-обменных спиновых волн, к первоначальной амплитуде A, возбужденной входным электромагнитным сигналом (7), окончательно можно получить

$$K = \frac{|A^{rev}(2t_p)|}{|A|},$$
 (11)

$$K = \frac{\delta \Gamma_0}{\Gamma} \exp(h_p V_{\mathbf{k}} \tau_p) \exp(-2\Gamma_k t_p) \times \left[\frac{3H_a}{8\pi M_0} \left(\sin^2 \theta_H - \frac{3}{4}\sin^2 2\theta_H\right)\right].$$
(12)

Из анализа выражения (12) видно, что коэффициент обращения K максимален при $\theta_H = 90^\circ$, т.е. при ориентации внешнего постоянного магнитного поля вдоль промежуточной оси кристалла [110]. При $heta_H = 0$ (трудная ось [001]) и $heta_H = 55^\circ$ (легкая ось [111]) имеем K = 0. Обращение также равно нулю при отсутствии двухмагнонного рассеяния $(\delta\Gamma_0 = \delta\Gamma_k = 0);$ при $\delta\Gamma_0, \delta\Gamma_k \ll \Gamma_k$ оно линейно увеличивается с ростом вероятности рассеяния $|R_{\mathbf{k}\mathbf{k}'}|^2$, однако затем, при $\delta\Gamma_k \sim \Gamma_k$, экспоненциально уменьшается из-за увеличения затухания дипольно-обменных спиновых волн, $\Gamma_k = \Gamma_{k0} + \delta \Gamma_k$. Отметим, наконец, что величина К экспоненциально растет с увеличением амплитуды h_p и длительности τ_p импульса накачки и может превышать единицу, т. е. возможно восстановление сигнала однородной прецессии с амплитудой, превышающей первоначальную ее амплитуду.

3. ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Устройство экспериментального макета для исследования обращения двухмагнонной релаксации под действием параллельной накачки изображено на рис. 1. Сигнал частоты $\omega_s/2\pi \approx 4.7$ ГГц подавался на ферритовую сферу 1 и снимался с нее с помощью петли связи 2, являющейся оконечной нагрузкой 50-омного коаксиального кабеля 3. Ферритовая сфера находилась внутри прямоугольного диэлектрического резонатора 4, настроенного на частоту накачки $\omega_p/2\pi \approx 9.4$ ГГц. Тип колебаний резонатора $H_{11\delta}$, его переменное магнитное поле на сфере параллельно внешнему постоянному магнитному полю **H**₀, т.е. реализуется случай параллельной накачки спин-волновой нестабильности [1]. Резонатор был изготовлен из термостабильной керамики с диэлектрической постоянной $\varepsilon \approx 80$; для помещения ферритовой сферы в нем было просверлено сквозное круглое отверстие диаметром 1.1 мм. Отверстие расположено в пучности магнитных силовых линий резонатора и в минимуме электрических, в силу чего сдвиг собственной частоты резонатора из-за отверстия не превышал 3%. Мощность накачки P_p частоты $\omega_p \approx 2\omega_s$ подавалась на диэлектрический резонатор с помощью стандартного трехсантиметрового волновода 5 прямоугольного сечения. Источником накачки служил магнетронный генератор, обес-

Рис. 1. Экспериментальный макет: 1 — ферритовая сфера; 2 — петля связи; 3 — коаксиальный кабель сигнального тракта; 4 — открытый диэлектрический резонатор накачки; 5 — прямоугольный волновод тракта накачки. Штриховыми линиями изображены магнитные силовые линии СВЧ-полей диэлектрического резонатора и волновода; H₀ — внешнее постоянное магнитное поле

печивающий мощность $P_p = 6$ Вт при длительности импульса $\tau_p = 80$ нс. Источником сигнальной мощности P_s служил клистронный генератор; мощность P_s во избежание насыщения не превышала 10 мкВт, длительность импульсов сигнала составляла $\tau_s = 50$ нс. Отраженный от ферритовой сферы и излученный ею сигналы с коаксиального кабеля через ферритовый циркулятор попадали в измерительный тракт сигнала, содержащий фильтр низких частот (для подавления импульса накачки), малошумящий полупроводниковый усилитель, усилитель мощности и полупроводниковый детектор 1. Сигнал с детектора 1 подавался на первый канал двухлучевого осциллографа. Второй канал этого осциллографа использовался для регистрации падающего на диэлектрический резонатор импульса накачки; этот импульс снимался с полупроводникового детектора 2, связанного через направленный ответвитель с волноводным трактом накачки.

Осциллограммы импульсов, наблюдавшихся нами на экране осциллографа, приведены на рис. 2. Здесь верхний луч описывает напряжение на детекторе 1 (сигнальный тракт), нижний — на детекторе 2 (тракт накачки). Рисунок 2 а соответствует случаю настройки частоты ω_0 однородной прецессии в резонансе с частотой сигнала, $\omega_0 = \omega_s$. При этом мощность сигнала частично поглощается в ферритовой сфере за счет возбуждения однородной прецессии, а затем и дипольно-обменных спиновых волн, в результате чего, а также из-за влияния переходных процессов, форма отраженного от петли связи сигнального импульса (см. импульс 1 на рис. 2а) отлична от прямоугольной формы, которую имел падающий на эту петлю сигнал. Поглощенная образцом мощность после выключения сигнального импульса накапливалась в системе дипольно-обменных спиновых волн, на которую в момент времени $t = t_p$ начинал действовать импульс накачки 2. Накачка приводила к обращению волнового фронта спиновых волн и восстановлению колебаний однородной прецессии, которые в момент времени $t \approx 2t_p$ наводили в петле связи выходной сигнал 3.

В другом, нерезонансном, случае ($\omega_0 \neq \omega_s$) поглощение мощности в феррите уменьшается, в связи с чем уменьшается амплитуда выходного сигнала, а отраженная от петли связи мощность растет. Осциллограмма на рис. 2δ соответствует случаю сильной отстройки от резонанса: $|\omega - \omega_0| \gg \gamma \Delta H$. В этом случае выходной импульс исчезает, а отраженный от петли связи импульс 4 восстанавливает свою прямоугольную форму и становится равным падающему на ферритовый образец входному сигнальному им-

Рис.2. Осциллограммы импульсов в тракте сигнала (верхний луч) и в тракте накачки (нижний луч); одно деление на горизонтальной оси соответствует 100 нс. *a*) Случай ферромагнитного резонанса на частоте сигнала: $\omega_0 = \omega_s, H_0 = 1650 \ \exists; 6$) случай сильной отстройки частоты сигнала от частоты ферромагнитного резонанса: $|\omega_0 - \omega_s| \gg \gamma \Delta H, H_0 = 2000 \ \exists; 1$ и 4 — импульсы, отраженные от петли связи с ферритом соответственно при ферромагнитном резонансе и вдали от него; 2 — падающий импульс накачки; 3 — выходной сигнал, излученный ферритовой сферой в результате процесса обращения двухмагнонной релаксации. Образец — сфера ЖИГ (диаметр 1.05 мм, $\Delta H = 0.5 \ \exists$), намагниченная вдоль промежуточной оси; $t_p = 200$ нс

Рис. 3. Зависимость коэффициента обращения K двухмагнонной релаксации от угла θ_H между направлением внешнего постоянного магнитного поля \mathbf{H}_0 и кристаллографической осью [001] в плоскости (1 $\overline{1}0$); образец — сфера ЖИГ диаметром 1.05 мм, $\Delta H = 0.5$ Э. Точки — эксперимент при $t_p = 180$ нс, $P_p = 6$ Вт; сплошная линия — теоретическая зависимость (12), нормированная на экспериментальные значения при $\theta_H = 90^\circ$. На горизонтальной оси указаны положения трудной [001], легкой [111] и промежуточной [110] кристаллографических осей

пульсу. Таким образом, коэффициент обращения *К* двухмагнонной релаксации (см. формулу (11)) под действием параллельной накачки мог быть экспериментально определен как отношение амплитуды вы-

ходного сигнала (см. импульс 3 на рис. 2a) к амплитуде отраженного импульса (импульс 4 на рис. 2b) при условии сильной отстройки постоянного магнитного поля от ферромагнитного резонанса.

Экспериментальная зависимость коэффициента обращения К двухмагнонной релаксации от кристаллографической ориентации сферы ЖИГ показана на рис. 3. Эта зависимость в общих чертах соответствует приведенной выше теории (см. формулу (12)): максимум наблюдается при намагниченности сферы вдоль промежуточной оси [110], минимумы совпадают с направлением постоянного магнитного поля вдоль легкой [111] и трудной [001] осей. Для удобства сравнения экспериментальной (точки) и теоретической (сплошная линия) зависимостей коэффициента преобразования от кристаллографической ориентации теоретическая кривая на рис. 3 нормирована на экспериментальные значения при $\theta_H = 90^\circ$; об абсолютной величине коэффициента преобразования К, следующей из теоретической зависимости (12), речь будет идти ниже. Имеющееся на рис. З отличие теории от эксперимента (особенно при **H**₀ || [001] и **H**₀ || [111], где, согласно теории, K = 0, а эксперимент дает конечное значение К) может быть объяснено приближенностью теории, в частности, игнорированием второй константы кристаллографической анизотропии, магнитоупругой энергии и т. д. Влияет также и ошибка в установлении кристаллографической ориентации образца; нами использовался простой метод магнитной ориентации [6], точность которого составляла ±3°.

Наконец, в амплитуду выходного импульса могут вносить вклад процессы, связанные с возбуждением входным электромагнитным импульсом не только однородной прецессии, но и целого набора длинноволновых магнитостатических колебаний, амплитуда которых может отличаться от нуля из-за неоднородности магнитных полей. Эти процессы ответственны за обнаруженное экспериментально ферромагнитное эхо [7]. Несмотря на то что ферромагнитное эхо наблюдалось при поперечной накачке на частоте, равной частоте сигнала, нет принципиальных ограничений на его существование и при параллельной накачке удвоенной частоты, хотя этот вопрос требует детального изучения. Однако несомненно, что из-за однородности внешнего постоянного магнитного поля в исследованных нами малых ферритовых сферах вклад ферромагнитного эха в наших экспериментах должен быть малым. Напомним, что усиленное эхо было получено в работе [7] только на больших образцах неправильной геометрической формы со специально созданной неоднородностью внутреннего постоянного магнитного поля.

Приведенные на рис. 3 результаты получены на высококачественной сфере ЖИГ с полной шириной линии ферромагнитного (ФМ) резонанса

$$\Delta H = \Delta H_0 + \delta H_0 = 2(\Gamma_0 + \delta \Gamma_0) / \gamma,$$

равной 0.5 Э (на частоте сигнала 4.7 ГГц). Как для уменьшения вклада поверхностных неоднородностей, так и для уменьшения ширины ΔH линии сфера была тщательно отполирована абразивной пастой с размером зерна менее 1 мкм. При этом частота $\delta\Gamma_0$ двухмагнонной релаксации и определяемый ею вклад δH_0 в ширину линии определялись в основном объемными неоднородностями, к которым относятся немагнитные включения, дислокации, вакансии и т.д. В отличие от частоты Го собственной релаксации (и собственной ширины линии $\Delta H_0 = 2\Gamma_0/\gamma$), являющейся параметром материала, частота $\delta\Gamma_0$ двухмагнонной релаксации и соответствующая ей двухмагнонная ширина линии $\delta H_0 = 2\delta\Gamma_0/\gamma$ есть параметры образца, и они могут быть легко изменены путем, например, внесения на поверхность сферы дополнительных неоднородностей шлифовкой образца крупной абразивной пастой. При этом за счет роста величины $\delta\Gamma_0 = \gamma \delta H_0/2$ будет изменяться полная ширина линии $\Delta H = \Delta H_0 + \delta H_0$ образца, легко измеряемая в эксперименте. Для исследования влияния состояния поверхности образца на коэффициент обращения К двухмагнонной релаксации ферритовая сфера была подвергнута двукратной кратковременной шлифовке абразивной пастой с размером зерна 10 мкм. В результате шлифовки ширина линии ΔH ферромагнитного резонанса была последовательно увеличена от 0.5 до 0.6 Э, а затем до 0.7 Э. Зависимость коэффициента обращения K двухмагнонной релаксации от ориентации постоянного магнитного поля \mathbf{H}_0 при этом не изменялась и была аналогична изображенной на рис. 3. Однако абсолютная величина K при этом выросла, что полностью соответствует приведенной выше теории. Величина K по сравнению с полированным образцом с $\Delta H = 0.5$ Э возросла в среднем в 1.6 раза при $\Delta H = 0.6$ Э и в 1.9 раза при $\Delta H = 0.7$ Э. Наблюдаемое увеличение коэффициента K, согласно выражению (12), связано с ростом первого сомножителя в выражении (12),

$$\frac{\delta\Gamma_0}{\Gamma} = \frac{\Delta H - \Delta H_0}{\Delta H} = \frac{\delta H_0}{\Delta H}, \qquad (13)$$

где, как отмечалось ранее, ΔH — полная, а ΔH_0 собственная ширина линии ферромагнитного резонанса, обусловленная собственными процессами релаксации, δH_0 — ширина линии ферромагнитного резонанса, обусловленная процессами двухмагнонного рассеяния. Величина ΔH в (13) измеряется экспериментально; из приведенных выше данных известно также, что ширина линии $\delta H_0 = \Delta H - \Delta H_0$, ответственная за двухмагнонное рассеяние, при каждой шлифовке увеличивается на 0.1 Э. Сопоставляя приведенные выше экспериментальные результаты по изменению К при шлифовке с формулой (13), можно приблизительно оценить значения и всех других параметров релаксации образца и найти соответствующие им ширины линий. Для согласования теории с экспериментом следует принять, что для исследуемой ферромагнитной сферы собственная ширина линии ФМР-резонанса составляет $\Delta H_0 = 0.35$ Э, а двухмагнонная ширина линии, обусловленная вкладом только объемных неоднородностей, — 0.15 Э; дополнительный вклад поверхностных неоднородностей из-за шлифовки увеличивал двухмагнонную ширину линии последовательно до 0.25 и 0.35 Э. Полученные экспериментальные результаты не противоречат теории ферромагнитной релаксации: например, для собственной ширины линии ферромагнитного резонанса монокристаллов ЖИГ, обусловленной собственными процессами релаксации, теоретическое значение ΔH_0 находится в пределах 0.1-0.5 Э [8, 9].

На рис. 4 показана экспериментальная зависимость коэффициента обращения двухмагнонной релаксации от времени t_p включения импульса накачки; время появления выходного восстановленного

Рис.4. Зависимость коэффициента обращения K двухмагнонной релаксации от времени t_p включения импульса накачки. Образец — шлифованная сфера ЖИГ диаметром 1.05 мм, $\Delta H = 0.7$ Э, $P_p = 6$ Вт

импульса в пределах точности эксперимента составляет при этом $2t_p$. В соответствии с теоретической зависимостью (12) кривая $K(t_p)$ на рис. 4 близка к экспоненциальной. Из наклона этой зависимости (61 дБ/мкс) может быть найден параметр ΔH_k релаксации волн, которые возбуждаются в результате рассеяния колебаний однородной прецессии на неоднородностях: $\Delta H_k = 0.4$ Э. Данные, приведенные на рис. 4, соответствуют случаю дважды шлифованной сферы ЖИГ.

Установлено, что шлифовка поверхности влияет на величину ΔH_k заметно слабее, чем на ΔH_0 : для нешлифованной сферы величина ΔH_k составляла 0.37 Э, т.е. изменение ΔH_k в результате шлифовки было всего лишь 8 % против 40 % для ΔH . Такой результат не является неожиданным, так как из-за малой длины свободного пробега шлифовка влияет лишь на небольшое число возбужденных вблизи поверхности дипольно-обменных спиновых волн [10]. Полученные в настоящей работе значения ΔH_k более чем в два раза превосходят минимальное значение ширины линии спиновых волн, возбуждаемых методом параллельной накачки [1]. Дело, по-видимому, заключается в том, что в наших экспериментах величина постоянного магнитного поля Но соответствовала условию возникновения ферромагнитного резонанса на частоте сигнала и примерно на 80 Э превышала поле H_c минимума порога параллельной накачки [1]. При этом максимальный полярный угол θ_k спиновых волн, вырожденных с однородной прецессией, не превышал $\theta_k \approx 65^\circ$. Согласно [11], параметр релаксации таких волн примерно в два раза превышает таковой для спиновых волн с $\theta_k = 90^\circ$, возбуждаемых при $H_0 = H_c$.

Остановимся, наконец, на оценке абсолютных значений коэффициента обращения K двухмагнонной релаксации, следующих из теоретической зависимости (12), и сравним эти значения с экспериментальными результатами. Наибольшей проблемой при этом является нахождение амплитуды поля накачки h_p в резонаторе, действующего на ферритовую сферу. Из-за экспоненциальной зависимости $K(h_p)$ даже небольшая ошибка в определении поля накачки приводит к существенному разбросу величин K. Заметим, что второй экспоненциальный множитель в (12) легко определяется из эксперимента (см. рис. 4).

Теоретический расчет поля h_p в резонаторе по величине падающей на него мощности P_p в настоящее время невозможен ввиду отсутствия электродинамической теории открытого диэлектрического резонатора прямоугольной формы с центральным цилиндрическим отверстием для помещения феррита. Для экспериментального определения амплитуды поля накачки h_p был использован метод калиброванного образца с известной величиной порогового поля *h_c* параметрической нестабильности при параллельной накачке [12]. Для определения h_c использовался полый объемный резонатор прямоугольной формы, для которого нахождение переменных магнитных полей через падающую мощность, добротность и размеры резонатора не представляет труда [13]. Калиброванный образец помещался в диэлектрический резонатор, для которого по наблюдению порога параллельной накачки экспериментально устанавливалась связь между h_p и падающей мощностью. Найденная таким образом максимальная амплитуда переменного магнитного поля h_p , действующего на образец в наших измерениях, составляла 20 ± 3 Э.

Подставляя полученные данные в формулу (12), можно получить теоретически ожидаемое значение коэффициента обращения K двухмагнонной релаксации. Например, для ситуации, изображенной на рис. 3, теория дает для K значения в пределах от 0.5 до 3.0, что не противоречит экспериментально полученному значению K = 2.2. Таким образом, полученные нами теоретические соотношения, несмотря на свою приближенность, как качественно, так и количественно правильно описывают процесс обращения двухмагнонной релаксации в ферритовых сферах.

4. ЗАКЛЮЧЕНИЕ

В работе изучено обращение двухмагнонной релаксации однородной прецессии намагниченности ферритовой сферы ЖИГ. Использовался метод продольной параметрической накачки, частота которой в два раза превышает частоту однородной прецессии. В результате действия накачки происходило восстановление колебаний однородной прецессии, максимальная амплитуда восстановленных колебаний могла в K > 1 раз превышать первоначальную амплитуду однородной прецессии, возбужденной внешним электромагнитным полем. Теоретическое выражение для коэффициента обращения К двухмагнонной релаксации было найдено на основе системы связанных уравнений однородной прецессии и коротковолновых дипольно-обменных спиновых волн, которые возбуждаются в результате рассеяния однородной прецессии на неоднородностях. В случае сферы ЖИГ, обладающей кубической кристаллографической анизотропией, коэффициент обращения К максимален при намагничивании кристалла вдоль промежуточной оси [110]; К = 0 при намагничивании вдоль трудной [001] и легкой [111] осей. Для достижения максимальной величины К необходима оптимальная величина вероятности двухмагнонного рассеяния однородной прецессии с образованием дипольно-обменных спиновых волн, при которой двухмагнонное уширение собственной линии ферромагнитного резонанса примерно равно ширине этой линии. При бо́льшем рассеянии величина К экспоненциально убывает из-за роста параметра затухания дипольно-обменных спиновых волн; в отсутствие рассеяния K = 0. Коэффициент обращения экспоненциально увеличивается с ростом амплитуды накачки и ее длительности и экспоненциально уменьшается с увеличением времени задержки включения импульса накачки.

Экспериментальные исследования процесса обращения двухмагнонной релаксации были проведены на малых монокристаллических сферах ЖИГ диаметром 0.65–1.05 мм при частоте накачки $\omega_p/2\pi \approx 9.4$ ГГц. Эксперимент подтвердил основные выводы теории. В частности, максимальное значение коэффициента обращения K двухмагнонной релаксации наблюдалось при намагничивании сферы вдоль промежуточной оси; при намагничивании вдоль трудной и легкой осей значение K было минимальным, хотя и ненулевым.

Изменение эффективности двухмагнонного рассеяния путем шлифовки поверхности сферы крупной абразивной пастой в соответствии с теорией увеличивало коэффициент обращения K. Из сопоставления теории с экспериментом были найдены значения собственной ширины линии ферромагнитного резонанса и ширины линии, обусловленной двухмагнонным рассеянием на объемных неоднородностях; они были соответственно равны 0.35 и 0.15 Э. Параметры релаксации ΔH_k дипольно-обменных спиновых волн были измерены по наклону зависимости коэффициента обращения K от времени задержки.

Экспериментально измеренная величина коэффициента обращения K в пределах точности эксперимента соответствовала теории. При малых задержках обращение двухмагнонной релаксации сопровождается эффектом усиления, т.е. K > 1. Для сферы ЖИГ диаметром 1.05 мм при $t_p = 180$ нс достигнуто значение $K \approx 5$. Максимальное время задержки восстановленного сигнала составляло около 2 мкс.

Исследованное в работе обращение двухмагнонной релаксации однородной прецессии намагниченности в ферритовых сферах ЖИГ продольной параметрической накачкой может найти применение для обработки СВЧ-информации, а также при измерении «скрытых» времен релаксации, таких как собственная ширина линии ферромагнитного резонанса и ширина линии, обусловленная двухмагнонным рассеянием на объемных неоднородностях. Кроме того, эффект обращения релаксации может быть использован для прямого измерения времени релаксации дипольно-обменных спиновых волн. Знание этих времен релаксации сейчас особенно актуально в связи с разработкой наноразмерных магнитных элементов памяти, собственными возбуждениями которых являются дипольно-обменные спиновые волны.

ЛИТЕРАТУРА

- 1. А. Г. Гуревич, Г. А. Мелков, *Магнитные колебания и волны*, Наука, Москва (1994).
- 2. Б. Я. Зельдович, Р. Ф. Пилипецкий, В. В. Шкунов, Обращение волнового фронта, Наука, Москва (1985).
- G. A. Melkov, Yu. V. Kobljanskyj, A. A. Serga, V. S. Tiberkevich, and A. N. Slavin, Phys. Rev. Lett. 86, 4918 (2001).

- 4. В. С. Львов, *Нелинейные спиновые волны*, Наука, Москва (1987).
- E. Schlomann, J. J. Green, U. Milano, J. Appl. Phys. 31, 3865 (1966).
- Y. Sato and P. S. Carter, IRE Trans., MTT-10, 611 (1962).
- D. E. Kaplan, R. M. Hill, and G. F. Herrmann, J. Appl. Phys. 40, 1164 (1969).
- 8. M. Sparks, *Ferromagnetic Relaxation Theory*, McGraw-Hill, New York-London (1964).

- V. Cherepanov, I. Kolokolov, and V. L'vov, Phys. Rep. 229, 81 (1993).
- 10. Г. А. Мелков, ЖЭТФ 70, 1324 (1976).
- Ю. М. Яковлев, С. Ш. Генделев, Монокристаллы ферритов в радиоэлектронике, Сов. радио, Москва (1975).
- **12**. Г. А. Мелков, Радиотехн. и электрон. **17**, 2027 (1972).
- **13**. Я. А. Моносов, *Нелинейный ферромагнитный резонанс*, Наука, Москва (1971).